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1. Introduction

It is a very important topic to seek for new soliton hierarchies generated from certain matrix spectral problems in
mathematical physics [1-37] because soliton hierarchies often possess bi-Hamiltonian structures which guarantee the
existence of hereditary recursion operators [32] and Liouville integrability [33]. The so-called trace identity [12,16], or more
generally the variational identity [27], provides a basic tool for generating Hamiltonian structures of soliton hierarchies.
Typical examples of soliton hierarchies, which fit into the zero curvature formulation, include the Korteweg-de Vries
hierarchy, the Ablowitz-Kaup-Newell-Segur hierarchy, the Kaup-Newell hierarchy, the Wadati-Konno-Ichikawa hierarchy,
the Boiti-Pempinelli-Tu hierarchy, and the Levi hierarchy.

In Refs.[6,7,16,28], the Levi hierarchy associated with the following spatial spectral problem

0 -p p b1

b u=[® Pla [P a=["] o)
-1 7—-¢q q ?2

has been considered, with 1 denoting the spectral parameter. Inspired by the form of the spectral matrix U in (1.1), we would

like to construct two new spatial spectral problems of Levi type by introducing modifications to (1.1):

B B 0 —p
¢X7U¢7 Uﬁ |:*/1 ;LZiq:|7 (12)
and
B [0 -
o=Up, U= [—/1 i_q} (1.3)
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The remainder of this paper is organized as follows. In Sections 2 and 3, we construct the corresponding soliton hierarchies of
Levi type with bi-Hamiltonian structures from the matrix spectral problems (1.2) and (1.3), respectively. In our analysis, we
will use the software Maple to deal with some complicated computations. The last section is devoted to a few conclusions
and discussions.

2. Soliton hierarchy of Levi type associated with (1.2)

In this section, we will construct a new soliton hierarchy of Levi type from the spatial spectral problem (1.2). Let W be of
the following form

a b
W= , 2.1
{c fa} (2.1)
and we solve the stationary zero curvature equation W, = [U, W], which becomes
ay = ;“(b - pc)7
by = —*b +2/pa + gb, (2.2)

cy = 22c—24ia—qc.

According to the relations of the spectral parameter / in these Eq. (2.2), we take the following Laurent series expansions

a= Zak)i”, b=Y b1, c= chﬂ.’z"’], (2.3)
k=0 k=0 k=0
namely,
W= iwkifzk W, — a bt
=0 ' g Ck/‘f1 —ay
Substituting (2.3) into (2.2), we arrive at
bo — 2pa, =0,
Co — 2(10 = 07
Qix = bk = PGy, (2'4)
by = —bix + qby + 2pay.4,
Ck+1 = Crx +qCp + 2ak+17 k > 0.

To determine the sequence of {ay, by, ¢, k > 0} recursively, we need rewrite a;.,; as

Qir1x = b — PCyq = (—bix + qby + 2pay 1) — P(Cix + 4C + 20i41) = —bi — PCyy + by, — Pqc. (2.5)
Thus the last two equations in (2.4) are transformed to

bii1 = —bix + qby + 2P0~ (=bi — PCy + by — PACy),

Chit = Cioe + € + 20" (—bi — pCi + by — PCy), k> 0.

Then we take the initial values

=1,  bo=2p, co=2, (2.6)
and impose the integration conditions
ily—0 = bily—o = Ckly—0 =0, k>1, (2.7)

to guarantee the uniqueness of the sequence. So, by using the symbolic computation software Maple, the first few sets can be
computed as follows:

a=-2p, bi=-2p,—4p*+2pq, 1 =-4p+2q;

a =2p, +6p* —4pq,

b, = 2p, — 2pq, — 4pq + 12pp, + 12p° — 12p*q + 2pg?,

C; = 2q, + 12p* — 12pq + 2¢%;

as = —2p,, — 12pp, + 6p,q — 20p’ + 24p*q — 6pg’,

b3 = —2py — 60p,p* +48pp,q — 6p,q* + 12p*q, — 6pqq, — 16pp, + 6puq

— 12p; +6p,q, + 2pq,, — 40p* + 60p*q — 24p*q* + 2pq’,
€3 = —4p,, + 24, + 6qq, — 12pq, — 40p> + 60p>q — 24pq® + 2¢°.
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We point out that the localness of the above functions is not an accident, and in fact, all the functions {ay, by, cx,k > 0} are
local. First from W, = [U, W], we have

itr(wz) = 2tr(WW,) = 2tr(W[U, W)) = 0

dX X ’ bl
and so, due to tr(W?) = 2(a? + bc), we can obtain

a* + bc = (a® + be)

|u:0 =1,

the last step of which follows from the initial data (2.6). Then, by using the Laurent expansions (2.3), a balance of coefficients
of /¥ for each k > 3 tells that

1
A1 = 75 Z aiaj =+ Z(b,cj) s k = 3. (28)
Rk e

Based on the recursion relations of the last two equations in (2.4) and the above Eq. (2.8), an application of the mathematical
induction finally shows that all functions {ay, by, cx,k > 4} are differential rational functions in u, and so, they are all local.
Now, taking

_ J2(n—k
vy — l(),znﬂ W), + Ay = )~(ZZHHW)+ n {O 0 } _ |:ZZoak),2(n k)+2 ZZZObMZ(n k)+1

0 7fn Zzzock)}(nfk)ﬂ 7Zz:0ak12(nfk)+2 7fn ’

where P, denotes the polynomial part of P in /, the zero curvature equations forn > 0

U, — VI + [U, v["]] =0 (2.9)
give

fn = —Cnx — qCy,

DPt, = —bu + Dfu + qb, = —bux — P(Cax + 4C,) + b, = Ania s

qs, :fnx = —Cnxx — (qcn)x = —Cpi1x + 2an+1,m nz=0.

Consequently, we have obtained a new soliton hierarchy of Levi type

p Ani1x
=K = . n=0 2.10
[q:|tn ! {—Cnﬂ.x + 2041 x ( )

The first and second nonlinear examples in this hierarchy (2.10) are as follows:

D, = 2Dy — 4Dqy — 4p,q + 12pp,,

(2.11)
4y, = Apxx — 24y +4D,q + 4pq, — 494y,
and
Pr, = —2Pyw — 60p,P° + 48pqp, — 6p,q* + 24p°q, — 12pqq, — 12pPpy + 6P q — 12D} + 6p,4,,
i, = —2qy — 24pap, + 12p,q* — 12p*q, + 24pqq, — 6G°q, — 24P, + 12p,.q — 24p} (2.12)
+24p, 4, + 12pqy — 644, — 6.
By setting p = 0, the first nonlinear example (2.11) reduces to the well-known Burgers equation q,, = —2(q, + 29q,). For
q = 2p, the second one reduces to mKdV equation p,, = —2 (P, — 6p°p)-
Next we consider Hamiltonian structures via the following trace identity [12,16],
5 ou 0 ., (9U oad "
a/tr<aw>dx_l 5}" tr<aw>, /_—ialn‘tr<w )’ (2.13)
It is easy to see
ou 0 -p 7]
i {_1 2),}’ tr(Wm)_—Zm—pc—b,
ou 0 -/ ou
= = , trfW—) =-ic
ap [o 0] ( ap) "

ou 0 0 ou
a_q*{o —1}’ ”(Wa_q>’“

Now the corresponding trace identity becomes
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0 0 —AC
= — —pc— — = )
5u/( 2)a—pc—bydx =1 E)i) { a }

Balancing coefficients of each power of / in the above equality, we have
)

—Cp
> (—2an+1—pc,,—bn>dx:<v—2n>[an}, n>o0.

Checking a particular case with n =1 yields y = 0, and thus we obtain

i " (20n:2 + PCoy1 + bria dx — —Cni1 n>0
Su 2n+2 T an ) -

Consequently, we obtain the following Hamiltonian structure for the soliton hierarchy (2.10)

p an+1,x (3Hn
=Ky = = , onx=1, 2.14
{ }t " |:—Cn+l.x + 2an+1,x} J ou ( )

n

with the Hamiltonian operator
0 o
/= {a 28}
and the Hamiltonian functionals

Ho = / (—2p + q)dx,

H, = / <2an+2 1 PChiq + br1+1>dx7 n> 1.

2n+2
It is now a direct computation that all members in (2.10) are bi-Hamiltonian. Firstly, by means of
— Cni1 = —Cnx — 4Cp — 2ns1
= —Cux — 4C, — 20" (—bnx — PCyy + by — PqC,)
= —Cnx — €, + 2(anx + PC,) + 207 ' pdc, — 207" q(an + pc,) + 207" pqc,
=(0+q—2p—20""pd)(—ca) + (20 — 207'q0)ay,

an+l = 871 (_bnx - anx + qbn - pqcn)
= (p+07'pd)(—cn) + (0 +97'qd)an,

we have
gp_ |0+d-2p- 207'pd 20-207"q0
p+9'pd —0+087'q0
satisfying {_C"“ } =¥ [ —Cn } Then we arrive at
aniq an
utn:Kn:](S:l":MézZ’l, ns1, (2.15)

where the second Hamiltonian operator M is given by

p+pd -8 +qd
9% +0q 0

M=]¥=

Thus, it is direct to see that the new soliton hierarchy of Levi type (2.10) is Liouville integrable [33], i.e., it possesses infinitely
many independent commuting symmetries and conservation laws. In particular, we have the Abelian symmetry algebra of
symmetries,

K1, K] = Ki(w)[Kn] = K (w)Ki] =0, Lm >0 (2.16)
and the Abelian algebras of conserved functionals,
(M M
{H[,Hm}]—./ (W) ]WdX—O, l,m = O (217)

and

T .
{H,,Hm},v,:/ (%) mPnge_o  1m=o0 (2.18)
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We point out that the novel hierarchy (2.10) is among soliton hierarchies resulting from Hamiltonian pairs directly [38].

3. Soliton hierarchy of Levi type associated with (1.3)

Here we will construct the new soliton hierarchy of Levi type from the spatial spectral problem (1.3). Let W be of the form
(2.1), and then the stationary zero curvature equation W, = [U, W] becomes

ay = /L(b - pC),
by = —2b + 2/pa + qb, (3.1)
¢y = ACc—2la—qc.

Further, taking the Laurent series expansions,

a=>» ai*, b= Zbk[", c=> i’ (3.2)
k=0 k=0 k=0

namely,
e a b
w=Y Wik W, { ok }
o Cke —0k

we arrive at

by — pcy =0,
Co — 2(10 = 07
by — 2pa, =0,

33
Ay = bl<+1 - kaH: ( )

b1 = —bix + gby 4 2pay.4,
Cra1 = Chx + qCy + 20p41, k> o0.

To determine the sequence of {ay, b, cx, k > 0} recursively, we need to represent a1 by {by, c,}, using the last two equations
in (3.3). In order to achieve this purpose, we rewrite a, as

ke = byt = PCiy = (=bix + aby + 2Py 1) — P(Cix + €k + 2ax1) = ~biw — P + qb, — pac;,, k> 0. (3.4)
Thus for each k > 0, we can change a1, to
Q1x = —brs1x — PCr1x + Gbia — PYCK
= —[~bro + (@hi)s + 2Py 1), ] — P [Coowx + (A€ + 2ks1x] + q(—Diee + b + 2Py 1) — PA(Clox + GCk + 2ap11).-
From this equation, we can have
(4P + 1)@xs1x + 2Pt = brooe — PCo = (qbi), = P(C1), — qbioe + q*bic — PGC — PG*Ci

namely,

1
(\/ 4P + 1ak+l)x = ﬁ [bkxx — DCrxx — (qbk)x - p(qck)x - qbkx + quk — DPqCyy — pqzck} .

It means that we arrive at

1 ., 1
= 0 b — PCrx — (b)), — P(qC
VRS VRS [ kx — PCiox — (D) — P(GC1)x (3.5)

—qby + @*b — pacy — pg’ci], k= 0.

Qg1

So by means of this relation (3.5) and the last two equations of (3.3), we can compute {ay, by, ¢x,k > 1} recursively from a
given initial values {bo, co,ao}-
Let us take the initial values

PR S N S (3.6)

Jap+1’ T Vap+1 ° Jap+1

which are determined by the initial conditions (3.3) and (3.4) with k = 0. To guarantee the uniqueness of {ay, by, ¢y}, we also
need to impose the integration conditions

luzo = bkluco = Ckluco =0, k=1
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Then, by means of the symbolic computation software Maple, the first few sets can be computed as follows:

2p, —4pq b — 2pq - 2p, 2q

a; = . 32 — 5 C1 = —375;
@ T @ T @p)?
-2
= W (4PPxx + P — 12pqp,, — 5P£ -3p,q+ 12p%¢* + 3Pq2)~,
2
by = @i (8P°Pss + 6PPw + P — 16p°q, + 16p°qp, — 8p°q, — 4pyp,
—14pp; — pq, — 2qp, — 6p; — 80°q* + 2p°q* + pq*),
-2
G = W (8ppxx + prx - 16p2qx - 8pqx - 1Op>2< - qx + 8p2q2 - 2pq2 - q2)§
-2
=t 17 (~16p°q’ +12p*q® + 24p*¢°p, + 32p°q, + 4Pq° — 18pq°p, — 16p*qp,,
+ 20pqp; — 48p°p,qy + 16p*qy, — 64°py + 12PqPy, — 30p3q — 4pPyGy — 16D Py
+80ppxpxx - 701-73 + quxx + 4pqu + szqx - Sppxxx + zopxpxx - pxxx)7
2
bs = 1 (—48p°qq, — 24p*qq, — 3pqd, + 8P* APy + 14PqPy + 80PPP + 72D° P,
+6pq°p, + 14pp,qy + 8D* Py — 50PAP} — Dy + 16D G + 8D% Ay — 16D Py + P
+3Dwd — 8PP + 20p:D — 24P°¢ — 2p°q® + pq® — 30p2q + 3p,q, — 3p,q> — 70p;),
2
S (—24p’q° — 2pg® +48p*qq, + 16p°q, + q° + 24pqq, — 40pqp,, + 70p3q

—40pp,q, + 8DGyy +3qq, — 10p,q — 10p,qy + Gyy)-

To prove the localness of {ay, by, cx,k > 4}, we have

7bk_pckx_pqck_qbk_ 1 Z (aiaj+bicj)7 k > 3. (37)

a =
“ 4p+1 2/4p +1,4,

ij=1

Based on this recursion relation (3.7) and the last two recursion relations in (3.3), an application of the mathematical induc-
tion finally shows that all functions {ay, by, cx,k > 4} are rational differential polynomials in u, namely, they are all local.

Now, taking
0 h n a an—k+2 n b )vn—k+2 h
V= 2w, = 2wk [ - { o, e
& —fa 2 k-0Ck/ +28n  —D k=0l ~fa

the zero curvature equations U, — V" + {U7 V[’”} =0,n > 0, give

&n = Cnx + qCp,
hn = *bnx + qu
fn = 8w —48&n

= —Cmo — (qCp)x — q(Cnx + qCp)
= —Cnitx + 20ni1x — GCrx — G°Cn
= —Cn2 + 20n42 + 20541 x + 2qa, 4
= —Cniz — 2PCyyy — 207 POCns2 + 207 ' q0n;1 + 240y, 4,
P, = —huw + qhy, + pfa,
ar, = fuxs nz=0.
Then we compute
P, = —hne + qh, + Dfa
= —hny + qhy + p(—8ny — 48n)
= bnw — (qby), + q(=bnx + gby) — Plenw + (qCy), ] — PA(Crx + qC,) (3.8)
= Gny1x +2(PApyq), + 2P0 1 4

- \/4p+1(\/4p+1an+1>x, n=o0,
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qt,, :fnx
= a(_Cn+2 = 2pCy; — 207 pacns + 2071 q0an + 2qan+1) 39
= (=0 —20p — 2p0)Cas + (240 + 20q)n 1 (3.9)

- —\/4p+1<\/4p+ 1cn+2)x 4 (290 4 20q)an1, 1 = 0.

Consequently, we have obtained a new soliton hierarchy of WKI type

|:p:| ¢ V4p+1(\/4p+1an+l)x
= Rn = ) n
tn

= >0 (3.10)
q ~V/Ap+1(V/Ap + Tcui2) + (240 +200)an
The first example in this soliton hierarchy (3.10) is as follows:
2
o= o (4PPux + P — 8P°dy — 2PG, — 2P,q — 4P5),
2
Y=y 17 (32P* P + 16PPys + 2P — 24, — 128p°qq, — 96pqq, — 24pqq,
+64p*qpy, +32PqPy, — 144PPPy +32P°q° Py + 16pq°p, + 48pp,q, + 96p° P4,
—96pqP; — Gy — 64D’ G — 48D° Qe — 12D + 4Pl — 36P,Dsc — 24P3q + 6p,G, + 2P,q° +120p;).
Through a similar computation, we have
i/ bnia +DPChip + Qni2 dx = —Cny2 7 n=o0,
ou n+1 Ani1
via the trace identity (2.13). Thus we obtain the following Hamiltonian structures for the soliton hierarchy (3.10):
|:p:| :Kn: \/4P+1<\/4P+1an+1>x :]|:—Cn+2:| :]M_HH n=0 (311)
al, ~VAp+T(V/Ap + Tena) + (240 +200)ans1 ni ou
X
with the Hamiltonian operator
= 0 \4p+10/4p +1 (3.12)
VAp+10./4p + 1 2q0 +20q ’
and the Hamiltonian functionals
' 2q 4pq
Ho = / ( - dX,
1+VAp+1  /ap+i(1+Ap+1) (3.13)
" (bni2 +pCyip +
Hni :/ (W)d& n=o0.

It is now a direct computation that all members in (3.10) are bi-Hamiltonian. By means of
—Cni2 = —Cny1x — qChyq — 205>
1 1 1
2 0
VAap+1 Ap+1
*p(qcnﬂ)x - qbn+1‘x + qzbnﬂ —PqCpi1x — pqzan]

= |o+q- B
{ 1 /a1 Jap i

2 1 1 3 2 2
+ 3] -8 +90q0+q0° —q°9) |a

L/4p+1 \/4p+1( “+a q°0)| a
=Y (—Cnr) + Yi2an, nzo0,

= —Cny1x —qChq — [bn+1,XX —DPChiixx — (qbnﬂ )x

(p0* — &°p + pdq + qop + pqo + 8pq)} (—Cni1)

niy =0 (=bnix — DPChi1x+ by — PGChyr)
= (=1+07'q) (@ + PCpyy) — 07" POCa11 — 07" PCy
= (p+07'pd)(~Cas1) + (~0+ 07 'q0)ay
=W (—Cur) + P20, nx=o0,
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we have

[Mn MIZ] _ {‘1’11 ‘{‘12:|
Mz] Mzz l1'121 lIJZZ '
M1 = 8p + pd + 20p? + 20pd~'pd + 2pdp + 2p*&,

My = -8 + qd — 20pd + 20pd~1qd — 2pd* + 2pqad, (3.14)
My = & + 8q + 20pd + 2090~ pd + 20°p + 29pq,
My, = =28 + 20997 qo.
Thus, we arrive at the bi-Hamiltonian structures:
Y LS Y VL S} (3.15)

Su ou’

where the second Hamiltonian operator M is given by (3.14). So, it is now direct to see that the new soliton hierarchy of Levi
type (3.10) is Liouville integrable [33], i.e., it possesses infinitely many independent commuting symmetries and conserva-
tion laws. In particular, we have the Abelian symmetry algebra of symmetries (2.16) and the Abelian algebras of conserved
functionals (2.17) and (2.18).

4. Conclusions and discussions

There are many soliton hierarchies obtained by means of matrix spectral problems based on the Lie algebras such as
sl(2,R) and so(3,R) [1-35]. In this paper, we have introduced the two new matrix spectral problems (1.2), (1.3) and the
two novel soliton hierarchies of Levi type (2.15), (3.15) have been derived, together with their bi-Hamiltonian structures.
We uses the software Maple to deal with some complicated computations.

In a subsequent study, we will consider some further problems: nonlinearization with Bargmann symmetry constraints,
constructing these soliton hierarchies (2.15), (3.15) with self-consistent sources, constructing multi-component integrable
couplings based on certain non-semisimple Lie algebras, seeking for Darboux transformations and exact solutions of these
hierarchies, and classifying multi-component integrable systems with certain Lie algebras.
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