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Abstract We study the motion of zeros of time dependent orthogonal polyno-

mials. We also relate the tau function of a Toda type lattice to the discriminant of

the corresponding orthogonal polynomials which is then related to the free

energy of an electrostatic equilibrium problem.
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1. Preliminaries
The purpose of this paper is twofold. First we study the motion of zeros of time
dependent orthogonal polynomials. Second we relate the tau function of a Toda
type lattice to the discriminant of the corresponding orthogonal polynomials
which is then related to the free energy of an electrostatic equilibrium problem.
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Both questions will be addressed in Section 3. In order to explain our results we
state general prerequisites in the rest of Section 1 while Section 2 is devoted to
exploring the connection between orthogonal polynomials and Toda lattices.

Given a probability measure l one constructs a unique set of orthonormal poly-
nomials fpnðxÞg with positive leading terms. These polynomials satisfy a three term
recurrence relation (Szeg}o et al., 1975).
xpnðxÞ ¼ anþ1pnþ1ðxÞ þ anpnðxÞ þ anpn�1ðxÞ; n P 0 ð1:1Þ

with
a0p�1ðxÞ :¼ 0; p0ðxÞ :¼ 1: ð1:2Þ

Let l be absolutely continuous, supported on ½a; b� with
l0ðxÞ ¼ wðxÞ ¼ e�vðxÞ ð1:3Þ

and assume that v is differentiable and the integrals
Z

R

v 0ðxÞ � v 0ðyÞ
x� y

ynwðyÞdy; ð1:4Þ
exist for n ¼ 0; 1; . . . Then the polynomials fpnðxÞg satisfy the differential recur-
rence relation (Chen Y and Ismail, 1997)
p0nðxÞ ¼ AnðxÞpn�1ðxÞ � BnðxÞpnðxÞ; n > 0; ð1:5Þ

where
AnðxÞ
an

:¼ wðyÞp2nðyÞ
y� x

� �b
a

þ
Z

R

v 0ðxÞ � v 0ðyÞ
x� y

p2nðyÞwðyÞdy: ð1:6Þ
When the condition wðxÞxn ! 0 as x! �1 is not satisfied the right-hand side of
(1.5) will have boundary terms (Chen Y and Ismail, 1997).

Recall that the discriminant of a polynomial f is defined by:
DðfÞ ¼ c2n�2
Y

16j<k6n

ðxj � xkÞ2; when f ¼ c
Yn
j¼1
ðx� xjÞ: ð1:7Þ
Ismail (1998) proved that the discriminant of pn is given by:
DðpnÞ ¼
Yn
j¼1

Anðxn;jÞ
an

" #Yn
k¼1

a2kþ2�2nk ; ð1:8Þ
see also Chapter 3 in Ismail (2005). This extends results of Stieltjes and Hilbert
from Jacobi polynomials to general orthogonal polynomials.

Next we state the electrostatic equilibrium problem of a Coulomb gas in one-
dimension. Consider n movable unit charged particles in an electric field with
potential v. The particles interact according to the logarithmic potential
�2e1e2 ln jx� yj. In addition the presence of the particles in the external field
creates an additional field whose potential is lnAnðxÞ=an, where An arise from v
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via (1.3) and (1.6) and the assumptions in (1.4) hold. Ismail (2000) proved that
when vðxÞ and vðxÞ þ lnAnðxÞ=an are convex functions the movable charges will
reach a unique electrostatic equilibrium position where the particles are located
at the zeros of pnðxÞ. He also gave a closed form expression for the energy at equi-
librium. This is reproduced in Ismail (2005).

The partition function associated with the weight function w in (1.3) is
Zn :¼
Z

Rn

Y
16j<k6n

ðxj � xkÞ2 exp �
Xn
j¼1

vðxjÞ
 !

dx1dx2 . . . dxn; ð1:9Þ
while the tau function is
s :¼ Zn=n!: ð1:10Þ

The partition and tau functions are functions of the parameters in v.
2. Orthogonal polynomials and Toda lattice
Let t ¼ ðt1; t2; . . . ; tMÞ with M P 1 and x 2 R. The tjs are time parameters. In this
section we allow v to depend on these time parameters in a specified manner, hence
the recursion coefficients an and an depend on t and will be denoted by anðtÞ and
anðtÞ, respectively.

We consider the following time-dependent measure dmðx; tÞ over an interval
K# R as
dmðx; tÞ ¼ 1

fðtÞ exp �
XM
l¼1

tlx
l

 !
dlðxÞ; fðtÞ ¼

Z
K

exp �
XM
l¼1

tlx
l

 !
dlðxÞ:

ð2:1Þ

Assume that fpnðx; tÞg

1
0 are orthonormal polynomials in x and fPnðx; tÞg10 are the

corresponding monic polynomials in x orthogonal with respect to mðx; tÞ over K,
where pn and Pn have exact degree n. Let
bnðtÞ ¼ a2nðtÞ: ð2:2Þ

From (1.1) and (1.2) it follows that
Pnðx; tÞ ¼
Yn
i¼1

aiðtÞ
" #

pnðx; tÞ;
Z
K

P2
nðx; tÞdmðx; tÞ ¼

Yn
i¼1

biðtÞ: ð2:3Þ
The recursion relations for Pn and pn are (Andrews et al., 1999):
xPnðx; tÞ ¼ Pnþ1ðx; tÞ þ anðtÞPnðx; tÞ þ bnðtÞPn�1ðx; tÞ; n P 0 ð2:4Þ

and
xpnðx; tÞ ¼ anþ1ðtÞpnþ1ðx; tÞ þ anðtÞpnðx; tÞ þ anðtÞpn�1ðx; tÞ; n P 0 ð2:5Þ

respectively, where, n P 1;b0ðtÞ ¼ a0ðtÞ ¼ 0 and P0ðx; tÞ ¼ p0ðx; tÞ ¼ 1:
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Let Q be the semi-infinite matrix
Q ¼ QðtÞ :¼

a0ðtÞ 1 0

b1ðtÞ a1ðtÞ 1

. .
. . .

. . .
.

bnðtÞ anðtÞ 1

0 . .
. . .

. . .
.

2
666666664

3
777777775
: ð2:6Þ
The coefficients anðtÞ and bnðtÞ in (2.4) satisfy the systems of differential–difference
equations, see Deift et al. (1999), or Toda et al. (1989).
_Q ¼ @

@tl
Q ¼ ½Q; ðQlÞþ�; 1 6 l 6M; ð2:7Þ
where ‘‘dot’’ denotes the partial derivative withe respect to the time variable tl;Aþ
means to select the upper triangle part (including entries in the diagonal) of a ma-
trix A.

All systems of equations in (2.7) are called the Toda lattices, since the first one
with t1 is exactly the Toda lattice (Toda et al., 1989). The first two Toda lattices in
the hierarchy (2.7) are
@

@t1
anðtÞ ¼ bnðtÞ � bnþ1ðtÞ;

@

@t1
bnðtÞ ¼ bnðtÞðan�1ðtÞ � anðtÞÞ ð2:8Þ
and
@

@t2
anðtÞ ¼ bnðtÞðan�1ðtÞ þ anðtÞÞ � bnþ1ðtÞðanðtÞ þ anþ1ðtÞÞ;

@

@t2
bnðtÞ ¼ bnðtÞða2

n�1ðtÞ � a2
nðtÞ � bnþ1ðtÞÞ;

ð2:9Þ
where n P 0 and a�1ðtÞ ¼ 0. The above time-dependent orthogonal polynomials
play an important role in the study of the Toda lattices (Adler and van Moerbeke,
1995; Chen et al., 1998).

Another important fact is that the orthonormal polynomials fpnðx; tÞg
1
n¼0 satisfy

the differential–difference relations
@

@x
pnðx; tÞ ¼ Anðx; tÞpn�1ðx; tÞ � Bnðx; tÞpnðx; tÞ; n P 1; ð2:10Þ
provided that the function vðxÞ determined by
dlðxÞ ¼ e�vðxÞ dx ð2:11Þ
is twice continuously differentiable for all x in K. Moreover, if mðx; tÞ has finite mo-
ments of all orders on K ¼ ða; bÞ# R (when dlðxÞ has unbounded support) and
mðaþ; tÞ ¼ mðb�; tÞ ¼ 0, then An and Bn can be computed by Chen Y and Ismail
(1997):
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Anðx; tÞ¼ anðtÞ
Z b

a

v 0ðxÞ� v 0ðyÞþ
PM

s¼1stsðxs�1�ys�1Þ
x�y

p2nðy;tÞdmðx; tÞ;

Bnðx; tÞ¼ anðtÞ
Z b

a

v 0ðxÞ� v 0ðyÞþ
PM

s¼1stsðxs�1�ys�1Þ
x�y

pnðy;tÞpn�1ðy;tÞdmðx;tÞ;

ð2:12Þ
where v 0 denotes the derivative of v with respect to x. Here we assumed that those
two integrals exist.

3. Equations of motion for zeros
Note that the three term recurrence relation (2.4) can be rewritten as
xPðx; tÞ ¼ QðtÞPðx; tÞ; Pðx; tÞ ¼ P0ðx; tÞ;P1ðx; tÞ; . . . ;Pnðx; tÞ; . . .ð ÞT;
ð3:1Þ
where the semi-infinite matrix Q is defined by (2.6). It then follows that
xlPnðx; tÞ ¼
Xnþl

i¼maxf0;n�lg
r
ðlÞ
n;iðtÞPiðx; tÞ; l P 1; ð3:2Þ
where all r
ðlÞ
n;iðtÞ are functions of ajðtÞ and bjðtÞ, 0 6 j 6 nþ l� 1 satisfying

r
ðlÞ
n;i

� �
¼ Ql: For example, when l ¼ 2, we have
x2Pnðx; tÞ ¼ Pnþ2ðx; tÞ þ ½anþ1ðtÞ þ anðtÞ�Pnþ1 þ ½bnþ1ðtÞ þ a2
nðtÞ

þ bnðtÞ�Pnðx; tÞ þ bnðtÞðanðtÞ þ an�1ðtÞÞPn�1ðx; tÞ
þ bnðtÞbn�1ðtÞPn�2ðx; tÞ ð3:3Þ
and thus
r
ðlÞ
n;n�2ðtÞ ¼ bnðtÞbn�1ðtÞ; r

ðlÞ
n;n�1ðtÞ ¼ bnðtÞðanðtÞ þ an�1ðtÞÞ;

rðlÞn;nðtÞ ¼ bnþ1ðtÞ þ a2
nðtÞ þ bnðtÞ;

r
ðlÞ
n;nþ1ðtÞ ¼ anþ1ðtÞ þ anðtÞ; r

ðlÞ
n;nþ2ðtÞ ¼ 1:

8>><
>>:
Let us recall that the dot denotes the partial derivative with respect to
tlð1 6 l 6MÞ. For each 1 6 l 6M, assume that
_Pnðx; tÞ ¼
@

@tl
Pnðx; tÞ ¼

Xn�1
i¼0

c
ðlÞ
n;iðtÞPiðx; tÞ; ð3:4Þ
where c
ðlÞ
n;iðtÞ are functions to be determined. The orthogonality relations imply that
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Z
K

Pnðx; tÞPiðx; tÞ exp �
XM
l¼1

tlx
l

 !
dlðxÞ ¼ 0; 0 6 i 6 n� 1:
Differentiating this with respect to tl, we obtain
Z
K

½ _Pnðx; tÞPiðx; tÞ þ Pnðx; tÞ _Piðx; tÞ� exp �
XM
l¼1

tlx
l

 !
dlðxÞ

�
Z
K

xlPnðx; tÞPiðx; tÞ exp �
XM
l¼1

tlx
l

 !
dlðxÞ ¼ 0; 0 6 i 6 n� 1;
which leads to that
Z
R

_Pnðx; tÞPiðx; tÞdmðx; tÞ �
Z
K

xlPnðx; tÞPiðx; tÞdmðx; tÞ ¼ 0; 0 6 i 6 n� 1:
Using the two expressions (3.2) and (3.4) for xlPnðx; tÞ and _Pnðx; tÞ and the orthog-
onality relations of fPnðx; tÞg1n¼0, it then follows that
c
ðlÞ
n;iðtÞ ¼ r

ðlÞ
n;iðtÞ; maxf0; n� lg 6 i 6 n� 1;

c
ðlÞ
n;iðtÞ ¼ 0; otherwise:

(
ð3:5Þ
If we denote by ðQlÞSL the strictly lower triangle part of the semi-infinite matrix Ql,
the above equality is equivalent to
c
ðlÞ
n;iðtÞ

� �
¼ ðQlðtÞÞSL: ð3:6Þ
Therefore, we have
_Pnðx; tÞ ¼
@Pnðx; tÞ
@tl

¼
Xn�1

i¼maxf0;n�lg
r
ðlÞ
n;iðtÞPiðx; tÞ; ð3:7Þ
which can be written concisely as
_Pðx; tÞ ¼ ðQlðtÞÞSLPðx; tÞ: ð3:8Þ

Let us now start to derive the equations of motion for the zeros of the

orthogonal polynomials Pnðx; tÞ. Let xn;kðtÞ, 1 6 k 6 n, be n roots of Pnðx; tÞ,
that is
Pnðxn;kðtÞ; tÞ ¼ 0; 1 6 k 6 n: ð3:9Þ

Differentiating the above equation with respect to tl, we obtain
@

@x
Pnðx; tÞ

����
x¼xn;kðtÞ

@xn;kðtÞ
@tl

þ _Pnðxn;kðtÞ; tÞ ¼ 0:
Therefore, using (3.7), it follows that
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@xn;kðtÞ
@tl

¼ �
_Pnðxn;kðtÞ; tÞ

@
@x
Pnðx; tÞjx¼xn;kðtÞ

¼ �
Pn�1

i¼maxf0;n�lgr
ðlÞ
n;iðtÞPiðxn;kðtÞ; tÞ

@
@x
Pnðx; tÞjx¼xn;kðtÞ

; ð3:10Þ
1 6 k 6 n, where 1 6 l 6M. This is the set of equations of motion which describe
the zeros of the time-dependent orthogonal polynomials Pnðx; tÞ; n P 0.

Furthermore, using (2.10) and (2.3), we can get
@

@x
Pnðx; tÞjx¼xn;kðtÞ ¼ anðtÞAnðxn;kðtÞ; tÞPn�1ðxn;kðtÞ; tÞ:
On the other hand, using the three term recurrence relation (2.4), we have
Pn�2ðxn;kðtÞ; tÞ
Pn�3ðxn;kðtÞ; tÞ

..

.

P1ðxn;kðtÞ; tÞ

2
66664

3
77775 ¼ R

Pn�1ðxn;kðtÞ; tÞ
Pn�2ðxn;kðtÞ; tÞ

..

.

P2ðxn;kðtÞ; tÞ

2
66664

3
77775; ð3:11Þ
where the square matrix R of order n� 2 is given by:
R ¼

xn;kðtÞ�an�1ðtÞ
bn�1ðtÞ

0

� 1
bn�2ðtÞ

xn;kðtÞ�an�2ðtÞ
bn�2ðtÞ

. .
. . .

.

0 � 1
b2ðtÞ

xn;kðtÞ�a2ðtÞ
b2ðtÞ

2
6666664

3
7777775
: ð3:12Þ
It then follows that
Pn�iðxn;kðtÞ; tÞ ¼ un;iðxn;kðtÞ; tÞPn�1ðxn;kðtÞ; tÞ; 1 6 i 6 n� 1; ð3:13Þ

where un;1ðxn;kðtÞ; tÞ ¼ 1 and un;iðxn;kðtÞ; tÞ; 2 6 i 6 n� 1, are recursively deter-
mined by using the formula (3.11). Therefore, we can now express (3.10) as
@xn;kðtÞ
@tl

¼ �
Pn�maxf0;n�lg

i¼1 un;iðxn;kðtÞ; tÞrðlÞn;n�iðtÞ
anðtÞAnðxn;kðtÞ; tÞ

; 1 6 k 6 n: ð3:14Þ
This will hold, provided that vðxÞ is twice continuously differentiable in K.
In particular, when l ¼ 1, noting that
_Pnðx; tÞ ¼ bnðtÞPn�1ðx; tÞ; n P 1;
we have
@x1;1ðtÞ
@t1

¼ @a0ðtÞ
@t1

¼ �b1ðtÞ;

@xn;kðtÞ
@t1

¼ � bnðtÞPn�1ðxn;kðtÞ; tÞ
anðtÞAnðxn;k; tÞPn�1ððxn;kðtÞ; tÞ

¼ � anðtÞ
Anðxn;kðtÞ; tÞ

;

8>><
>>: ð3:15Þ
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where n P 2 and 1 6 k 6 n. Then using (2.12), we arrive at
@x1;1ðtÞ
@t1

¼ �b1ðtÞ;
dxn;kðtÞ
dt1

¼ � 1R
K

v 0ðxÞ�v0ðyÞ
x�y þ

PM

s¼1
stsðxs�1�ys�1Þ
x�y

� �
p2nðy; tÞdmðy; tÞ

;

8>>>><
>>>>:

ð3:16Þ
where n P 2; 1 6 k 6 n; dlðxÞ ¼ e�vðxÞdx, and pn is the nth orthonormal
polynomial.

When l ¼ 2, note that
_P1ðx; tÞ ¼ b1ðtÞða1ðtÞ þ a0ðtÞÞ;
_Pnðx; tÞ ¼ bnðtÞbn�1ðtÞPn�2ðx; tÞ þ bnðtÞðanðtÞ þ an�1ðtÞÞPn�1ðx; tÞ;

(
ð3:17Þ
where n P 2. So for n P 2, we can compute that
@xn;kðtÞ
@t2

¼ � anðtÞbn�1ðtÞPn�2ðxn;kðtÞ; tÞ
Anðxn;kðtÞ; tÞPn�1ððxn;kðtÞ; tÞ

� anðtÞðanðtÞ þ an�1ðtÞÞ
Anðxn;kðtÞ; tÞ

¼ � anðtÞ
Anðxn;kðtÞ; tÞ

ðanðtÞ þ an�1ðtÞÞ þ bn�1ðtÞ
Pn�2ðxn;kðtÞ; tÞ
Pn�1ðxn;kðtÞ; tÞ

� �

¼ � anðtÞ
Anðxn;kðtÞ; tÞ

ðanðtÞ þ an�1ðtÞÞ þ bn�1ðtÞ
xn;kðtÞ � an�1ðtÞ

bn�1ðtÞ

� �

¼ � anðtÞ þ xn;kðtÞR
K

v 0ðxÞ�v 0ðyÞ
x�y þ

PM

s¼1
stsðxs�1�ys�1Þ
x�y

� �
p2nðy; tÞdmðy; tÞ

:

In the last step above, we have used
Pn�2ðxn;kðtÞ; tÞ
Pn�1ðxn;kðtÞ; tÞ

¼ xn;kðtÞ � an�1ðtÞ
bn�1ðtÞ

;

which is a consequence of the three term recurrence relation (2.4). Thus, we arrive
at
@x1;1ðtÞ
@t2

¼ �b1ðtÞða1ðtÞ þ a0ðtÞÞ;
@xn;kðtÞ

@t2
¼ � anðtÞ þ xn;kðtÞR

K
½v0ðxÞ�v0ðyÞ

x�y þ
PM

s¼1
stsðxs�1�ys�1Þ
x�y �p2nðy; tÞdmðy; tÞ

;

8>>><
>>>:

ð3:18Þ
where n P 2 and 1 6 k 6 n.

Example 1. Let M ¼ 1 and thus t ¼ t1 � t. Choose K ¼ R and vðxÞ ¼ x4.
Then
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Anðx; tÞ
anðtÞ

¼
Z 1

�1

v 0ðxÞ � v 0ðyÞ
x� y

p2nðy; tÞdmðy; tÞ

¼ 4

Z 1

�1
ðx2 þ xyþ y2Þp2nðy; tÞdmðy; tÞ

¼ 4½x2 þ a2nþ1ðtÞ þ a2
nðtÞ þ a2nðtÞ þ xanðtÞ�
Bnðx; tÞ
anðtÞ

¼
Z 1

�1

v 0ðxÞ � v 0ðyÞ
x� y

pnðy; tÞpn�1ðy; tÞdmðy; tÞ

¼ 4

Z 1

�1
ðx2 þ xyþ y2Þpnðy; tÞpn�1ðy; tÞdmðy; tÞ

¼ 4anðtÞ½xþ anðtÞ þ an�1ðtÞ�:

Therefore, the zeros xðtÞ ¼ xn;kðtÞ; 1 6 k 6 n, of Pnðx; tÞ satisfy the following dif-
ferential equation:
dxðtÞ
dt
¼ � 1

4½x2ðtÞ þ a2nþ1ðtÞ þ a2
nðtÞ þ a2nðtÞ þ xðtÞanðtÞ�

: ð3:19Þ
Example 2. Let M ¼ 2 and thus t ¼ ðt1; t2Þ. Consider the same choice of K ¼ R

and vðxÞ ¼ x4 as in Example 1. Obviously
Anðx; tÞ
anðtÞ

¼ 4½x2 þ a2nþ1ðtÞ þ a2
nðtÞ þ a2nðtÞ þ xanðtÞ� þ 2t2;

Bnðx; tÞ
anðtÞ

¼ 4anðtÞ½xþ anðtÞ þ an�1ðtÞ�:
If n ¼ 1, there is only one zero a0ðtÞ of P1ðx; tÞ ¼ x� a0ðtÞ. Obviously, from (2.8)
and (2.9), we have
@x1;1ðtÞ
@t1

¼ @a0ðtÞ
@t1

¼ �b1ðtÞ;
@x1;1ðtÞ
@t2

¼ @a0ðtÞ
@t2

¼ �b1ðtÞða1ðtÞ þ a0ðtÞÞ:

ð3:20Þ
If n P 2, then the zeros xðtÞ ¼ xn;kðtÞ, 1 6 k 6 n, of Pnðx; tÞ satisfy the following
set of differential equations:
@xðtÞ
@t1

¼ � 1

4½x2ðtÞ þ a2nþ1ðtÞ þ a2
nðtÞ þ a2nðtÞ þ xðtÞanðtÞ� þ 2t2

;

@xðtÞ
@t2

¼ � anðtÞ þ xðtÞ
4f½x2ðtÞ þ a2nþ1ðtÞ þ a2

nðtÞ þ a2nðtÞ þ xðtÞanðtÞ� þ 2t2g
:

ð3:21Þ
We also point out that starting from the zeros, we can have the following rep-
resentation for solutions to the Toda lattices:
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anðtÞ ¼ xn�1;kðtÞPnðxn�1;kðtÞ;tÞ�Pnþ1ðxn�1;kðtÞ;tÞ
Pnðxn�1;kðtÞ;tÞ

;

bnðtÞ ¼ �
Pnþ1ðxn;kðtÞ;tÞ
Pn�1ðxn;kðtÞ;tÞ

;

8<
: ð3:22Þ
where k can be any integer between 1 andM. So the zeros can provide direct infor-
mation on the corresponding solutions to the Toda lattices. However, there are
other solutions to the Toda lattices which are not generated from the orthogonal
polynomials (see Maruno K et al., 2004; Ma and You, 2004 for examples in the
case of the Toda lattice).
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