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1. Preliminaries

The purpose of this paper is twofold. First we study the motion of zeros of time
dependent orthogonal polynomials. Second we relate the tau function of a Toda
type lattice to the discriminant of the corresponding orthogonal polynomials
which is then related to the free energy of an electrostatic equilibrium problem.
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Both questions will be addressed in Section 3. In order to explain our results we
state general prerequisites in the rest of Section 1 while Section 2 is devoted to
exploring the connection between orthogonal polynomials and Toda lattices.

Given a probability measure u one constructs a unique set of orthonormal poly-
nomials {pnm} with positive leading terms. These polynomials satisfy a three term
recurrence relation (Szegd et al., 1975).

Xpu(X) = @i1Pyiy (%) + 2py (x) + aup, (x), n =0 (1.1)
with

app_y(x) =0, po(x) :=1. (1.2)
Let p be absolutely continuous, supported on [, b] with

1 (x) = w(x) = e (1.3)
and assume that » is differentiable and the integrals

[ = ) an, (14)

exist for n =0, 1,... Then the polynomials {p,(x)} satisfy the differential recur-
rence relation (Chen Y and Ismail, 1997)

Py(x) = 4,(X)p,_1(x) = Bu(x)p,(x), n>0, (1.5)
where
2 b /(x) — o
Aa(x ). [W(yy)f";y)]f /R %y(y)pi(y)wo)dy- (1.6)

When the condition w(x)x" — 0 as x — %00 is not satisfied the right-hand side of
(1.5) will have boundary terms (Chen Y and Ismail, 1997).
Recall that the discriminant of a polynomial f'is defined by:

D(f) =y 2 H (x; — x¢)’, when f= yH(x — X;). (1.7)
1<j<k<n Jj=1
Ismail (1998) proved that the discriminant of p, is given by:

ﬁ An(axilJ)] ﬁalz(ku—zn’ (1.8)

j=1 k=1

D(p,) =

see also Chapter 3 in Ismail (2005). This extends results of Stieltjes and Hilbert
from Jacobi polynomials to general orthogonal polynomials.

Next we state the electrostatic equilibrium problem of a Coulomb gas in one-
dimension. Consider n movable unit charged particles in an electric field with
potential ». The particles interact according to the logarithmic potential
—2ejeyIn |x — y|. In addition the presence of the particles in the external field
creates an additional field whose potential is In 4,(x)/a,, where A4, arise from v
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via (1.3) and (1.6) and the assumptions in (1.4) hold. Ismail (2000) proved that
when »(x) and »(x) + In 4,(x)/a, are convex functions the movable charges will
reach a unique electrostatic equilibrium position where the particles are located
at the zeros of p,(x). He also gave a closed form expression for the energy at equi-
librium. This is reproduced in Ismail (2005).

The partition function associated with the weight function w in (1.3) is

R P
R 1§/</\<n

=
while the tau function is
T:=2Z,/nl. (1.10)

The partition and tau functions are functions of the parameters in ».

2. Orthogonal polynomials and Toda lattice

Lett = (t1,t2,...,ty) with M > 1 and x € R. The #s are time parameters. In this
section we allow » to depend on these time parameters in a specified manner, hence
the recursion coefficients @, and «, depend on t and will be denoted by «,(t) and
o, (t), respectively.

We consider the following time-dependent measure dv(x,t) over an interval
KCR as

dv(x,t) = exp ( Z tix ) du(x), ((t) = / exp ( Z tx > du(x

(2.1)

Assume that {p,(x,t)},” are orthonormal polynomials in x and {P,(x,t)}, are the
corresponding monic polynomials in x orthogonal with respect to v(x,t) over K,
where p, and P, have exact degree n. Let

Ba(t) = ay(t). (22)
From (1.1) and (1.2) it follows that

[Ha, ]pn X, t), /Pz(x t)dv(x,t) Hﬂ (2.3)

The recursion relations for P, and p, are (Andrews et al., 1999):

XP,(x,t) = Py (x,t) + o, (£) Pu(x, t) + B, () Ppy (x,t), 1 =0 (2.4)
and

xpy(%,8) = dn1 (0P, (X, 1) + ()P, (X, t) + an(t)p, 1 (x,1), n =0 (2.5)

n
respectively, where, n = 1, f(t) = ap(t) = 0 and Py(x,t) = py(x,t) =
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Let Q be the semi-infinite matrix

[ Ao (t) 1 O
pr(t) e(t) 1

0=0(t) = : (2.6)

Bu(t) o (t) 1

0

The coefficients a,(t) and f5,(t) in (2.4) satisfy the systems of differential-difference
equations, see Deift et al. (1999), or Toda et al. (1989).

0

0= 52 [0,(0),], 1<I<M, (2.7)

where “dot” denotes the partial derivative withe respect to the time variable #;, A,
means to select the upper triangle part (including entries in the diagonal) of a ma-
trix A.

All systems of equations in (2.7) are called the Toda lattices, since the first one
with ¢, is exactly the Toda lattice (Toda et al., 1989). The first two Toda lattices in
the hierarchy (2.7) are

o) = B0 = Brr(0 3 Bult) = B(O0 (0 = (1) (28)
and
) = B340+ 32(0) = By (O30 + 201 (0),
) ) (2.9)

8, PO = B (02,1 () = o,(8) = B (1)),

where n > 0 and «_(t) = 0. The above time-dependent orthogonal polynomials
play an important role in the study of the Toda lattices (Adler and van Moerbeke,
1995; Chen et al., 1998).

Another important fact is that the orthonormal polynomials {p,(x,t)}, satisfy
the differential-difference relations

ap,,(x,t) = A,(x,t)p,_,(x,t) — B,(x,t)p,(x,t), n>1, (2.10)
provided that the function »(x) determined by
du(x) = e "W dx (2.11)

is twice continuously differentiable for all x in K. Moreover, if v(x, t) has finite mo-
ments of all orders on K = (a,b) CR (when du(x) has unbounded support) and
v(at,t) =v(b",t) =0, then 4, and B, can be computed by Chen Y and Ismail
(1997):
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A,,(x,t)—an(t)/ ”/(x)_”/(y)JFZ“‘:‘StS(XH_yH)pﬁ(y,t)dV(x,t),

xX—y
B =an(p) [ LITIIERm b 28 ) (0, (i)
(2.12)

where ¢/ denotes the derivative of » with respect to x. Here we assumed that those
two integrals exist.

3. Equations of motion for zeros

Note that the three term recurrence relation (2.4) can be rewritten as

XP(x,t) = Q(t)P(x,t), P(x,t) = (Po(x,t), Pi(x,t),..., Py(x,t),.. .)T,

(3.1)
where the semi-infinite matrix Q is defined by (2.6). It then follows that
n+l1
YP(x )= D rlOP(x.0), =1, (3.2)
i=max{0,n—/}

where all rff)l(t) are functions of o;(t) and Bi(t), 0 <j<n+/—1 satisfying
(r(l)A) = Q. For example, when / = 2, we have

Xan(% t) = Pn+2(x7 t) + [0‘n+1(t) + O‘n(t)]PnH + [ﬁnﬂ( ) + O‘i(t)
+ ﬁn(t)]Pn(x’ t) + ﬁn(t)((xn(t) + O‘nfl( ))P,,,I(X, t)
+ By (OB, (O Pya(x, 1) (3-3)

() = B OB, (8), () = B,(0)(0(t) + a1 (1)),
D () = By () + 22(€) + B, (E),
M0 = a8 + (1), 00 = 1.

Let us recall that the dot denotes the partial derivative with respect to
t(1 <1< M). For each 1 < /< M, assume that
Py(x,t) = —P,(x,t) = > () Pi(x, 1), (3.4)

where c,(f),(t) are functions to be determined. The orthogonality relations imply that
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/P(xt)P exp( Zl,x)du 0<ig<n—1.
K

Differentiating this with respect to #;, we obtain

/ [P, (x, ) Pi(x,t) + P,(x,t) Pi(x,t)] exp ( Z z1x>dﬂ

K

—/x]Pn(x,t) xtexp( Zl,x)du 0<ig<n—1,
K

which leads to that

/Pn(x, t)Pi(x, t)dv(x,t) — / xX'P,(x, t)Pi(x,t)dv(x,t) =0, 0<i<n—1.
R K

Using the two expressions (3.2) and (3.4) for x'P,(x, t) and P, (x,t) and the orthog-
onality relations of {P,(x,t)},, it then follows that

{ c,(f),(t) = r,gl),(t), max{0,n— I} <i<n-1,

(3.5)
¢, (t) =0, otherwise.

If we denote by (Q'), the strictly lower triangle part of the semi-infinite matrix Q’,
the above equality is equivalent to

() = (@), (3.6)

Therefore, we have

. AP, (x,1) Ul 0
P, hutell\ Sud A A D) Pi(x, 1), .
(x,t) = o i_m;x{o:n_z} (6 Pi(x, t) (3.7)

which can be written concisely as

P(x,t) = (Q'(t))5, P(x, ). (3.8)

Let us now start to derive the equations of motion for the zeros of the

orthogonal polynomials P,(x,t). Let x,.(t), | <k <n, be n roots of P,(x,t),
that is

Py(x,(t),t) =0, 1<k<n. (3.9)
Differentiating the above equation with respect to ¢, we obtain

0 0x, 1 (t)

_Pl’l 7t P ,t = O

] I S E ACHOR

X=Xp k (t)

Therefore, using (3.7), it follows that
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. n—1 )
8xn.k(t) _ Pn (Xn,k(t)y t) _ Zi:max{o,n—l} V’(L)l(t) Pi<x”~,k(t)7 t) (3 10)
o %Pn(x, t)|x:x,,‘k(t) %Pn(xa t)|x:x,,_k(t) ’

1 < k < n where 1 < /< M. This is the set of equations of motion which describe
the zeros of the time-dependent orthogonal polynomials P,(x,t),n > 0.
Furthermore, using (2.10) and (2.3), we can get

0

— P, (x,t

P, 1)

On the other hand, using the three term recurrence relation (2.4), we have
Pn—Z(xn,k (t)7 t) Pn—l (xn,k (t)’ t)

P, 3(x,x(t), 1) P (x,k(t), t)
=R . : (3.11)

= @, (t) A (x4 (t), €) Py (X (1), 8).

X=Xp k (t)

P] (xn,k (t), t) P2 (Xn"k (t), t)

where the square matrix R of order n — 2 is given by:

s 0
1 Xk (£) —0tn—2(t)
R— Bua(t) Baa(t) (3. 12)
It then follows that
P i(xpi(t),t) = @, (x0i (), ) Puy (xap(t),8), 1<i<n—1, (3.13)

where @, (x,(t),t) =1 and @, (x,x(t),t),2 <i<n—1, are recursively deter-
mined by using the formula (3.11). Therefore, we can now express (3.10) as

n—max{0,n—/} ()
: , (i (), O (¢
axml\(t) _ Zz:l (Pn_,(x Jf( ) )V , ( )’ 1 g k g ”

ot ay (t)An(xn.,k (t)a t)

This will hold, provided that »(x) is twice continuously differentiable in K.
In particular, when / = 1, noting that

(3.14)

P,(x,t) =B, (P, (x,t), n>1,
we have
Pl _ a‘g’fﬂ — A0
! ! (3.15)
8xn.k(t) _ ﬁn( ) n— l(xizk(t) t) _ _ an(t)
ot an () A (X, ) Pt (X0 (0, 8) Au(Xie(8), 1)
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where n > 2 and 1 < k& < n. Then using (2.12), we arrive at

0x
2l — g, v,
dxni(t) 1 (3.16)
dt v (x)—v (y njl‘y s(xs =yt ’
1 fK[ <,ify°)+z" tH — | p2 (v, O)dv(y, 1)
where n > 2, 1 <k <n, du(x) =e*™dx, and p, is the nth orthonormal
polynomial.
When / = 2, note that
Pn(x ) ﬁ (t)ﬂ, () n- 2(x7t) + () (et () + o1 (€)) P (6, 1),

where n > 2. So for n > 2, we can compute that

Oxnic(t) _ an(t)p, 1 ()P 2(xnk() t)  an(t)(o(t) + %1 (1))

ot N n(xnk< ) n—1 xnk() t) A”(X () )

e rrt ol (ORI B L )

xn /» n—1\Xnk (t), t)
B . X i (t) — o6, (t)
Sl [CORUSURURTES e

n( ) + ka(t)
J(xX)—o M stg(xs=1—ys=1) :
&[Qy“+2“xy}]ﬁ@@mmo

In the last step above, we have used

Pya(Xni(8),8) _ Xi(t) = o (1)
Py (Xa(t), ) Bua(®) 7

which is a consequence of the three term recurrence relation (2.4). Thus, we arrive
at

8)(?1 1(t)

o —B; (t)(“l(t) + O‘O(t))7
OXui(t) _ % (t) + Xk (t) (3.18)
812 o M -s—1 s—1 ’
vl(x)—vl(y 15 S('\ - )
Jlme) 2 )

where n > 2 and 1 < k < n.

Example 1. Let M =1 and thus t=1¢ =t Choose K=R and »(x)=x*
Then
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Axt) / T2 = Y0) _;/(y 20, O3,

a,(t) ~ X —

:4/<f+w+fw@nmuﬂ

o0

= 417 4+ a; (6) + % () + @) (t) + x0,(0)]

By(x,t) _ / G e

00 X =Yy

=4 [ 000, 0 00,0

o0

= da,(t)[x + o, (t) 4 o, 1 (1)].

Therefore, the zeros x(t) = x,x(t), 1 < k < n, of P,(x,t) satisfy the following dif-
ferential equation:
dx(t) _ 1 (3.19)
& AR T @0+ A0+ @0 F 3 0%(0] |

Example 2. Let M =2 and thus t = (#,,#,). Consider the same choice of K = R
and »(x) = x* as in Example 1. Obviously

A,(x,t) i i
an(t) o 4[)( + an-H( ) + o ( ) + Cln(t) + xo(n(t)] + 20,
B,(x,t) B
oty = (O + a(t) + o (1))

If n = 1, there is only one zero ay(t) of Pi(x,t) = x — o(t). Obviously, from (2.8)
and (2.9), we have

axal’;l(t) _ 80(;01(1‘:) _ —ﬁl(t), ax([;llz(t) _ ao(;o[gt) _ _ﬂl (t) (OC](t) + OCQ(t))

(3.20)

If n > 2, then the zeros x(t) = x,x(t), 1 <k < n, of P,(x,t) satisfy the following
set of differential equations:

ox(t) 1 o +2
ot N 4[x2(t) + az,, (t) + o2 (t) + a2(t) + x(t)a, (t)] + 21,7 (3.21)
ox(t) %l > Xt + o +2 |
ot 4{[x2(t) + a2 () + o2(t) + a2(t) + x(t)o, ()] + 20}

We also point out that starting from the zeros, we can have the following rep-
resentation for solutions to the Toda lattices:
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_ Xn—1k (t)Pn (xnfl./c (t)st>_Pr1+1 (xn—l.k (t)vt)
(x” (t) - Pn(xnfl.k(t)vt) ’ (3 22)
_ Pugi (g (t).8) ’

ﬁn (t) T Py (x(6),t)0

where k can be any integer between 1 and M. So the zeros can provide direct infor-
mation on the corresponding solutions to the Toda lattices. However, there are
other solutions to the Toda lattices which are not generated from the orthogonal
polynomials (see Maruno K et al., 2004; Ma and You, 2004 for examples in the
case of the Toda lattice).
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