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Abstract

We study dynamics of soliton waves, lump solutions and interaction solutions to a (2+1)-dimensional
generalized Bogoyavlensky-Konopelchenko equation, which possesses a Hirota bilinear form. Multi-
soliton solutions, one-M-lump solutions, and physical interactions between solitons and 1-M-lump
solutions are presented. By using a positive quadratic function, lump solutions and their interaction
solutions with kink and solitary waves are also generated. To show dynamical properties and physical
behaviors of the resulting solutions, 3D-plots and contour plots at different times are made and
analyzed.

1. Introduction

One of the fundamental problems in the theory of differential equations is the Cauchy problem. The problem
requires to find a solution to a differential equation that satisfies what is known as the initial values. As classified
[1,2], Laplace’s method [3] is used to solve linear ordinary differential equations and the Fourier transform
method [4] to find the solution of linear partial differential equations, and in the modern soliton theory, the
isomonodromic transform method and the inverse scattering transform method [5, 6] are systematical methods
that have been developed to find solutions of nonlinear ordinary and partial differential equations, respectively.
Only the simplest differential equations, usually constant-coefficient and linear, can be explicitly resolved. It
is extremely hard to pinpoint exact solutions for nonlinear differential equations. For this purpose, recently
some analytic approaches have been reported to construct exact solutions to partial differential equations, for

example, the RiemannHilbert method [7], the (é)-expansion method [8, 9], the Taylor expansion approach

[10], the Lie symmetry analysis [11, 12], the (m + GE/)-expansion method [13, 14], a transformed rational

function method [15], the multiple exp-function method [16, 17], Darboux transformation method [18, 19], the
modified auxiliary expansion method [20], the dressing method [21], the Bernoulli sub-equation function
method [22-25], the extended sinh-Gordon method [26, 27], the (%)—expansion method [28], the generalized
Kudryashov method [29], the Hirota bilinear method [30-32], the Hirota bilinear system and Pfaffian method
[33], and the modified extended direct algebraic method [34].

The (241)-dimensional Bogoyavlensky-Konopelchenko (BK) equation reads
Upe + 0(OUy Uy + i)

+ Btxexy + Uity + Sugu,) = 0, (1.1)

which was introduced as a (2+1)-dimensional version of the KdV equation in [35] and used to describe the
interaction of along wave propagating along the x-axis and a Riemann wave propagating along the y-axis [36]. In
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this paper, we study the following (2+1)-dimensional generalized Bogoyavlensky-Konopelchenko (gBK)
equation

Upe + (Ol Ux + Usoer) + (U + Stxtiyy + Stigctd)

F YU + Yoty + Y3l = 0, (1.2)
which is a generalization of equation (1.1). The earlier paper [1] has studied lower-order lumps to the suggested
equation. In [2], a few classes of exact and explicit solutions have been reported from different ansétze on

solution forms, for example, traveling wave, 2-wave solutions, and polynomial solutions. To investigate
equation (1.2), we use the link between u and f:

u=2(Inf, y, ) (1.3)

where
f =14 ehtrhymn, (1.4)
fr =14 e+ e 4 httin (1.5)

f'3 =1 + te + eQz + e$23 + e§21+ﬂz+A12 + 6521+£23+A13
+ et +Ax + eQI+Qz+Q3+A|23’ (1.6)

f‘4:1 + te + eQZ + eQ3+ 694 + te+Qz+A12 + eQ]“rQ3“rA]3+ te+Q4+A14 + eQz+Q3+A23
+ et Q+Ax + oSBTt QutAy + e+ +Q3+An; + et L+ Qi +Any + ST+ + A,
+ eﬂl+S22+Qg+Q4+A1234. (17)

Insert equation (1.3) into equation (1.2), we get
A (S, + fu + 1Sy + 1fin + By + o) = 207 — 2, (i fe + Bi)
— S+ nfE — By + af) + F(36f, + 4af,) = 0. (1.8)

The logarithmic variable transformation (1.3) is also a characteristic one in establishing Bell polynomial theories
of soliton equations [37]. Equation (1.8) can be rewritten as a Hirota bilinear form as follows

(Dth + an4 + ﬂstDy + Vlez + ’YZDxD}/ + ’73Dy2)f'f: 0. (19)

It’s obvious that if f = f(x, y, f) in equations (1.4)—(1.7)are solutions of equation (1.5), then u = 2(Inf (x, y, 1)),
will solve equation (1.2).

2. Complex one-, two, and three-soliton solutions

In this section, we construct special complex one-, two-, and three-soliton solutions to the introduced equation.
To find complex soliton solutions, we require

Wi = —(kp2a + kB + 1+ Luva + Ln2ys), m=1,2,3 2.1
To determine special complex one-, two-, three-soliton solutions, we take
f=1i4 elbthytmn, (2.2)
f=i+ el + e Dpefhtiy (2.3)
F=i+ el + e% + b + Dpet® 4 Dysel+h 4 Dyse®t % 4 Dpyyet s (2.4)
where
Q= k(x + Ly + Wt) + g (m =1, 2,..,N) (2.5)
il = 1 = it — k)Gl = k)t kRl + )8 — kol + 20)8) 06
ke + k) Gl + k) + k@l + 1) 8 + kn(n + 21) ) — (I — 1)
and
D123 = D12 D13 Das. 2.7)

Plugging equation (2.2) into equation (1.3), we get

2k ek (x+hy—(KPa+kh B+ + L+ L5 t+ag)

U= . 2.8
i+ ekl(x+llJ/*(k120+k12115+’)’1+ll"/2+112’Y3)f+040) 2.8)

This is a complex 1-soliton solution as shown in figure 1.
By inserting equation (2.3) into equation (1.3), we have a complex two-soliton wave solution to the
considered equation (see figure 2)
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-50 -0 50 -50
(a) Real solution (b) Imaginary solution

Figure 1. 3D surface of 1-soliton solution plotted under equation (2.6) whent = 2,I; = 1,k; = 1,y =0, =1,=1,7, =1,
Y=Ly =1

100 -100

(a) Real solution (b) Imaginary solution

Figure 2. 3D surface of 2-soliton solution plotted under equation (2.7) whent = 2,I; = — 0.1,, = 1,k; = 0.5,k = 1,y = 0,
a=0a=2=Ln=L,n=L3=1L

2(kiet + ke + Dy (k + ket t)
U= .
i+ e 4 e 4 Dpetht

(2.9)

Substituting equation (2.4) into equation (1.3), we get

ek + ek, + Dia(k + ky)eh 0 + ePoks + Dys(k + ks)efrt
2
+Ds3(ky + k3)e?t% + Dy;DisDys (ki + ky + ks)e? o2t

u= . (2.10)
i+ et + et + D12e91+0z + ebs + D13et91+93 + D23e92+03 + D12D13D23e91+92+93

This is a complex 3-soliton solution as seen in figure 3.

3. M-lump solutions

Lump solutions are analytical rational function solutions located in all directions in space. In this portion of the
paper, we use along-wave limit method to construct a rational solution to a gBK equation. consider
equation (1.5), where
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(a) Real solution (b) Imaginary solution

Figure 3. 3D surface of 3-soliton solution plotted under equation (2.8) whent =2,y = 1,L = — 1, =4,k; = — Lk, = 1,k3 = 0.3,
o =0,0pb=—-2,3=5a=—-1LF=-1,mn=Ln=1Lyn=1

eAmn _ (km — kn)(3(km — kn)a + km(ZZm + ln)ﬂ — kn(lm + 2ln)ﬂ) — (lm — ln)273

= . (3.1)
(km + kn)(3(km + kn)a + km(ZIm + ln)ﬁ + kn(lm + Zln)ﬁ) - (Zm - ln)z'y_’)
Here €24, €2, are given by equation (2.9). Using the long-wave limit method by taking the limit, k,,, — 0,
% = O(1),and e® = —1(m = 1, 2) we get
f, = &P, + Bi, 3.2)
where
O = x + Ly + wit, (3.3)
wi=—(n+ lwy + lm273)’ (3.4)
6Qa + (i + 1)) .
§ = —,  (i<j) (3.5)
i = ;)3
Iy =15 (i =1, 2%) (3.6)

Plugging equation (3.1) with equations (3.3)—(3.7) into equation (3.2) then into equation (1.3), we can construct
aone-M-lump solution (see figure 4. Here, [y =a +ib,,, =c+id, s =a+iband [, = c — id.

u = zilog ' + ay")? + bYy'? — 3o+ aB)
Ox b2y,
B 4(x" + ay’)
o 2 2,2 _ 3a+aB)’
(xl+ﬂy/) +b}// _bz—’yz,
7 4(x — ty, + aly — ty,) — a’ty; + b’ry)
(x = 1 = (@ — D)t (3 + a7, = 1b7) = Y)x — 1 — (@ + D)t (3 + a7, + ibyy) — ) — 220
3.7)
where
y =y — 2ayst — mat,
x' = x + b¥yst — t. (3.8)
The rational solution (3.8) is a permanent lump solution that decays as O (%, %) for |x|, |y| — oo and moves
with the velocity
Ve = 2473 — V2
v =m — b*s. (3.9)
To study and reveal a 2-M-lump solution to a gBK equation, consider equation (1.7), e*» = —1(m = 1, 2, 3, 4)

and taking a limit k,,, — 0, we get
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(a) One-lump solution (b) Corresponding contour plot of one-
lump solution

Figure 4. 3D surface and contour plot of equation (3.8) plotted whent =2,a=1,b=1,, = 1, L =3,a=1,8=1,y =17 =1,
=1

5050

40 20 0 20 40
(a) Two-lump solution (b) Corresponding contour plot of two-
lump solution

Figure 5. 3D surface and contour plotaredrawn whent = 10,a =1/2,b=1,c=—-1/2,d=1,, =0.1,L =1, =2,a=1,4=1,
Mm=Lrn=Lyu=1

fi=019,P3%, + By P3P, + B3P, P4 + Bia®, P35 + Bz 01y
+ By ®1®3 + B34 1P, + B12Bsy + Bi3Bay + BiaBas. (3.10)
Here &y, ®,, ®3, $4, w;, Bji(i < j),and Iy, ;aregiven by equations (3.4)—(3.7), respectively. Plugging

equation (3.10) into equation (1.3), as a result, we can obtain a double-M-lump solution to the suggested
equation as shown in figure 5.

4. Physical interactions between M-lump solution and soliton wave

In this section, we study the interaction physical phenomena between the 1-M-lump solution and the one-
soliton solution. For this purpose, we consider equation (1.6), and take the limit k,, — 0, (m = 1, 2) and
LRS! (1). Asaresult, f; could be rewritten as follows

k
=9, + B, + Ase's, 4.1)
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50

-50 "-50 -50 “_50

(a) Interaction phenomena via use Eq. (b) Interaction phenomena via use Eq.
(4.3) (4.4)

Figure 6. 3D surface of interaction between a one-lump solution and soliton wave solution drawn whent = 5,a = 1/2,b=1,l; =1,
ks=2,0=0,=1,=1L,mn=1L,%n=1L,1i=1

where
A= &P, + By + Cos® + Ci3P, + Gi3Caa. (4.2)

Here 25 is defined in equation (2.5), ®;(i = 1, 2) are defined in equation (3.4), and B, is given in equation (3.6).
The constants C, 3, C,3 are stated as follows

5] (h— 55— b)ys
@ 5 (h+bh) K2
12(h, — 1 12(h — 1
Cs= _(2—3)’ ;= _#’ (4.3)
ks(h + 3L — 4l3) k(3L + L, — 4l3)
or
L — L) —1 6(k;? 2(l; — 1
a:(l 3)(32 2)%—l3,8,C13:— 3(35-{' (5 = h)ys) i
ks kB — ks(h + 3L — 4l3) 3
2 _
Cp=— 6(ks*8 + 2(l — h)7s) (4.4)

kB — ksBh + b — 4l3)7ys

Substituting equations (4.1), (4.2)and (4.3)into equation (1.3), we get an equation that presents a collision
between the 1-M-lump solution and the 1-soliton solution as seen in figure 6.

We can also choose
8= (h —BL)Y(5— L)y — ks’
ksl ’
Cis = — 6(ks>a + (b — B)(h + B)73)
k3(k32a —+ 1112’73 —+ (212 — 313)13"}/3)
2 _
Cps = — 6(k23 a+ (l; BY(h + 5)73) , (4.5)
ks(ks*oe — 3l3%ys + h(L + 213)7y3)
or
2(k32 L—5)Y, -1 12(l, — 1 12(h — 1
g=— (k°a + (h = B)(h 3)’)’3)’(;13:_ (L = 1) Cps = — (h—15h) (4.6)

k(b + L) ks(h + 3L — 4l3)° ks(3h + b — 4l3)

Putting equations (4.1), (4.2)and (4.5)into equation (1.3), we can construct other solutions that describe the
interaction between the one-lump solution and the 1-soliton wave solution as shown in figure 7.

5. Quadratic solutions

In this portion of the paper, we investigate single-lump solution via a quadratic function. In [38—41], quadratic
function solutions and symbolic computation have been used to construct different kinds of exact solutions to

6
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-50 -50 50_50

(a) Interaction phenomena via use Eq. (b) Interaction phenomena via use Eq.
(4.5) (4.6)

Figure 7. 3D surface of interaction between a one-lump solution and soliton wave solution drawn whent = 5,a = 1/2,b =1, =1,
k=lLa=0m=lLa=1,n=1Ln=1L13=1

many classes of PDEs. Now, we define the solution of the equation (1.4) as follows

f&x 1) = (x + apy + ast + as)* + (bix + byy + bst + by)* + ¢, (5.1)

where a;, b; are constants to be determined later. Plugging equation (4.1) into equation (1.4), as a result, we gain a
polynomial. Setting the coefficients of the polynomial with the same powers of the independent variables to zero,

one can obtain the following cases of solutions:
Case 1: When we have

_atn + ab’y + atayy, + al@’ — b?)ys + abi(biys + 2b273)

az =
3 a2 + b2
b — a (b + baa) + 2aarborys + bi(bi*y + bibyys + (02 — a)73)
3— ) ) >
a” + b]
o= 3@+ b @’a + sl 4 bibia + b)) 52)

(a0, — 61152)273

and substitute equation (5.2) into equation (5.1), then into equation (1.3), we get

2Qa(ax + ay + ast + ay) + 2b1(b1x + bzy + b3t + b4))
u= . (5.3)
a+ (ax + ayy + ast + ag)* + (hix + byy + byt + by)?

This is alump solution as present in figure 8 and reported in [1].

Case 2: When we have
b2 — a2 — 2a,0,)73
a=by, a3 = . o b a2b2)y — bim — @7
1
2 _2a,by — by? 1263 (2b b
by — (a2 by — )y biyi — byyay ¢ = — 222 (2bja + (az + b2)B) (5.4)
2b, (ay — by)*y3

and plug them into equation (5.1), then into equation (1.3), one can obtain

4b,(2bix + (a + by)y + (as + b3)t + a4 + by) (5.5)
(04 + l13t + blx —+ azy)z —+ (b4 + b3t —+ blx —+ bz}’)z — 12b13(2(h1a4;7(;1227+ 52)8)
a; — b3)™y3

u =

equation (5.5) is a lump solution as shown in figure 9.

7
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40 1

20~ 1

200 -200 40 20 o 20 40

(a) Lump solution (b) Corresponding contour plot of lump
solution

Figure 8. 3D surface and contour plot of equation (5.3) plotted when t = 2,a; = 0.01,4, = 1,a3 = 0.1,a4 = 0.5,b; = 0.5,b, = 0.2,
by=02,c=Lvn=L%n=Lv=La=0503=1

-40 -20 0 20 40

(a) Lump solution (b) Corresponding contour plot of lump
solution

Figure 9. 3D surface and contour plot of equation (5.5) plotted when t = 2,a; = 0.01,4, = 1,a3 = 0.1,a4 = 0.5,b; = 0.5,b, = 0.2,
by=02c=1Lvm=1Lvn=1Ly=1,a=050=1.

Case 3:In case
a: + iai(4asys + damy, — e . .
a; = — , by = iay, by = ias,
273
a1(4azys + 4a —ay?) —ia
by = Jai(4asys MY — @Y2) 1’72’ 5.:6)
273
and using them into equation (5.1), then into equation (1.3), as a result equation (1.3) has the solution
4ay(as + iby)ys G.7)

u= ,
(a2 + b + o + Qazay + 2iasb)t)ys — a(as + iby) (2y — 273%) + (by — iag) [Py

where ¢ = a;(4a37y; + 4a1Y,7y; — @17,2) > 0. The above equation is a complex single-soliton solution to a gBK
equation as seen in figure 10.
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(a) Real solution of lump wave (b) Corresponding contour plot of real
lump solution

20 40

(¢) Imaginary solution of lump wave (d) Corresponding contour plot of imagi-
nary lump solution

Figure 10. 3D surface and contour plot of equation (5.7) plotted when t = 2,4, = — 0.3,a, = 1,45 = 0.1,a4 = 0.5, b, = 0.5,
b, =02,b,=02,c5=1,v1=2m=Lyu=La=16=1

6. Interactions between single-lump wave and solitary wave

To study the lump waves and their interactions with the solitary waves, we let the solution of equation (1.2),
according to equation (1.3), have the form

f(x, y, t) = e Tertal 4 (qx + ayy + ast + ay)?
+ (blx + bz}/ + b3t + b4)2 + d]. (61)

Plugging equation (6.1) with equation (1.3) into equation (1.2), and making all the coefficients of dissimilar
powers of ¢, x, y, exp and their product equal to zero, we get a system of polynomial equations. By solving the
obtained system, we obtain the following cases of solutions:

Case 1: When
_aby  a(bPn + bibays + byys) by — byl + bibyy, + b?ys
a)y = ——, a3z = — > U3 — — 5
bl b12 bl
P S a(i’y + bibays + bzzfya)) 0o bf ©62)
bl by? by

and we use this case with equation (1.3), a collision physical phenomenon between the 1-soliton wave and the
1-lump solution (see figure 11) will equivalently become

9
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100 -20 -10 0 10 20
(a) Interaction between single-lump wave and solitary waves (b) Corresponding contour plot of inter-

action between single-lump wave and soli-
tary waves

Figure 11. 3D surface and contour plot of equation (6.3) plotted whent = 2,a; = 2,a, = 1,b; = 1,b, = 2,by, = 2,¢; = 1,d, = 1,
N=Lrn=1Lv= L,B=2.

bye
2(c1e“"+%}’+‘3' + 2by(by + bi(x — 1) + ba(y — 1)) — 2byr + 2a1(a4 + ajx + % - h(t)))
u =
bye 2 >
dy 4 eax i rrat (a4 +oax + % - h(t)) + (by + bix + byy — h())?

(6.3)

b2y, + bibyy, + by’ )t
where h(t) = abry lszz Ca
1

Case2: When

_aby _a(b’n + bibyys 4 bPy)
) =——0a3 = — >

bl b12
bi*y + bibyya + ba?ys by — asby by
— 5 4 —_— C

> 2 —

bl a b_l’

2, 2,
o= albrm+ blbbj’h bt 5 _b;_o‘ (6.4)
1 2

by =

and input the case of the solution with equation (6.1) into equation (1.3), we get

baer
2(cf;"+ W (e e+ = F©)) + 2 (S + bt by — f(t)))
u= o ) 5 ) R (65)
dy+ e ety (a4 2 @)+ (S b+ by — £0)

1

equation (6.5) describes an interaction between the 1-lump solution and the 1-soliton wave as shown in
figure 12.

7. Periodic-lump wave solutions

In this portion, we attempt to reveal periodic lump solutions to a gBK equation. Let

f(x, y, t) =di + (ax + ayy + ast + ag)?> + (by + byt + bix + byy)?
+ sin(ax + ay + at), (7.1)

and insert the trial assumption value of the f (x, y, t) with equation (1.3) into equation (1.2), and make all the
coefficients of dissimilar powers of £, x, y, sin,cos and their product equal to zero, we get a system of polynomial
equations. Solving the obtained equations, we can evaluate the unknown value of parameters

a;, b;, ¢;, di; (i = 1, 2, 3, 4) as follows

10
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107

100 10 ‘ ‘ ]
1007 -10 -5 0 5 10
(a) Interaction between single-lump wave and solitary waves (b) Corresponding contour plot of in-

teraction between single-lump wave and
solitary waves

Figure 12. 3D surface and contour plot of equation (6.3) plotted whent = 2,a; = 2,a, = 1,b; = 1,b, = 2,by, = 2,¢; = 1,d; = 1,
Nn=2v%=Lyu=—10=2.

100¢
50
0
-50
-100 -100 _109100 -50 0 50 100
(a) Periodic-lump wave solution (b) Corresponding contour plot of

periodic-lump wave solution

Figure 13. 3D surface and contour plot of equation (7.3) plotted whent = 2,a; = 3,4, = L,ay, = 1,b; = 1, b, = 2,by = 4,¢; = 1,
d=lLm=1L7%n=21=1L

_a'n+ amy + a4’y

as =
aq
by = a b by = — bi(a®y + @ary, + a2273)
a ’ 1112 ’
2 2
czzﬂ,gz—Cl(a171+ala§72+a273),a=—%. 7.2)
a m a

Plugging equation (7.2) with equation (7.1) into equation (1.3), we get

Z(Zal(a4 + ax + ay — g(t)) + 2b1(b4 + bix + % — blg(t)) + ¢ cos (cl(x + % — g(t))))
u =

2 b
di+ (as + ax + ayy — g(t))Z + (b4 + bix + % — blg(t)) + sin(cl(x + % — g(t)))
(7.3)

a2y, + ayaxy, + ax®
where g(t) = @+ @, +a7;) ‘:272 27
1

't Equation (7.3) is a periodic wave solution as seen in figure 13.

11



10P Publishing

Phys. Scr. 96 (2021) 035225 HF Ismael etal

100

50

4 -100" : : : g
100 100 -100 -50 0 50 100

(a) Periodic-lump wave solution (b) Corresponding contour plot of
periodic-lump wave solution

Figure 14. 3D surface and contour plot of equation (7.6) plotted whent = 2,a; = 3,a, = l,a, = 1,b; = 1,b, = 2,by = 4,¢; = 1,
dy = Lm=27%=27=1

Ifthevaluesof a;, b;, ¢;, dj; (i = 1, 2, 3, 4) areas follows

_aiby (b’ + bibyys + ba?ys)

) =—>0a3 = — >

b b?
by = — by + bibays + b2’y

by ’
2 2

CZ:@’Q:_Cl(b1’71+blbz’}’2+bz’y3))ﬂ:_b1_0¢ (7.4)

b b12 b,

and use the case of the solution with equation (7.3) into equation (1.3), we have

2(2a1(a1x " m:}/ — ah(t) + a4) i zbl(blx + oy — Lh(o) + b4) 1 g cos (cl(x + ”;—1’ - ailh(t))))

u =

dy + (alx n m:lzy — ah(t) + a4)2 N (blx + by — Z—ih(t) + 54)2 + sin (cl(x + ”bLly - uilh(t)))

(7.5)
This is a periodic wave solution as shown in figure 14.
When the valuesof a;, b;, ¢;, di; (i = 1, 2, 3, 4) areas follows
a(byys + b2 (72* — 4my3))
= - y d3 = 0)
2b1ys
b Vb2 (72? — 4
b~ b + Vb1 N73) b=,
273
o albiy 4 bR — 4ns)) I
- > L3 — Uy
2b1y;
5= by — aybi* (7,2 — 4m173) ’ 7.6)
2171’)/1

and insert the case of the solution with equation (7.1) into equation (1.3), we get

2(2171(174 + bix — k() + 2a1(a4 + ax — Z—ik(y)) + ¢ cos (clx - ;—llk(y)))
u = P bl (7'7)
dy + (by + bix — k() + (a4 + ax — Z—ik(y)) + sin (clx — ;—‘lk(y))

b+ blz('Yzz — 47

P ) y. Equation (7.7) represents a periodic wave solution as shown in figure 15.
3

where k(y) =

12
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Figure 15. 3D surface and contour plot of equation (7.7) plotted when t = 2,a; = 2,a, = l,a, = 1,b; = 1,b, = 2,b, = 4,¢; = 1,
di=1,7m=01,7=3v=1

8. Conclusions

The dynamical features of a generalized Bogoyavlensky-Konopelchenko equation in (241)-dimensions were
explored, based on its Hirota bilinear form. N-soliton waves, M-lump solutions, lump waves, periodic lump
waves, mixed kink-lump solitons, and interactions between lump solutions and 1-soliton waves were
particularly presented. The long-wave limiting process was performed to construct M-lump solutions and
symbolic computations were utilized to generate positive quadratic solutions and their interaction solutions
with kink waves and solitary waves. Abundant 3d-plots and contour plots at different times were made and
analyzed to explore dynamical and physical phenomena of the presented solutions.
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