

PAPER

Dynamics of soliton and mixed lump-soliton waves to a generalized Bogoyavlensky-Konopelchenko equation

To cite this article: Hajar F Ismael *et al* 2021 *Phys. Scr.* **96** 035225

View the [article online](#) for updates and enhancements.

You may also like

- [New lump solutions and several interaction solutions and their dynamics of a generalized \(3+1\)-dimensional nonlinear differential equation](#)

Yexuan Feng and Zhonglong Zhao

- [Solitary wave, M-lump and localized interaction solutions to the \(4+1\)-dimensional Fokas equation](#)

Wan-Jun Zhang and Tie-Cheng Xia

- [Dynamical rational solutions and their interaction phenomena for an extended nonlinear equation](#)

Karmina K Ali, Abdullahi Yusuf and Wen-Xiu Ma

RECEIVED
2 November 2020

REVISED
22 December 2020

ACCEPTED FOR PUBLICATION
15 January 2021

PUBLISHED
25 January 2021

Dynamics of soliton and mixed lump-soliton waves to a generalized Bogoyavlensky-Konopelchenko equation

Hajar F Ismael^{1,7} Wen-Xiu Ma^{2,3,4,5,6,*} and Hasan Bulut⁷

¹ Department of Mathematics, Faculty of Science, University Of Zakho, Zakho, Iraq

² Department of Mathematics, Zhejiang Normal University, Jinhua 321004, People's Republic of China

³ Department of Mathematics, King Abdulaziz University, Jeddah 21589, Saudi Arabia

⁴ Department of Mathematics and Statistics, University of South Florida, Tampa, FL 33620, United States of America

⁵ School of Mathematics, South China University of Technology, Guangzhou 510640, People's Republic of China

⁶ School of Mathematical and Statistical Sciences, North-West University, Mafikeng Campus, Mmabatho 2735, South Africa

⁷ Department of Mathematics, Faculty of Science, Firat University, Elazig, Turkey

* Author to whom any correspondence should be addressed.

E-mail: mawx@cas.usf.edu

Keywords: hirota bilinear from, n-soliton solution, m-lump solution, quadratic solution, interaction solution

Abstract

We study dynamics of soliton waves, lump solutions and interaction solutions to a (2+1)-dimensional generalized Bogoyavlensky-Konopelchenko equation, which possesses a Hirota bilinear form. Multi-soliton solutions, one-M-lump solutions, and physical interactions between solitons and 1-M-lump solutions are presented. By using a positive quadratic function, lump solutions and their interaction solutions with kink and solitary waves are also generated. To show dynamical properties and physical behaviors of the resulting solutions, 3D-plots and contour plots at different times are made and analyzed.

1. Introduction

One of the fundamental problems in the theory of differential equations is the Cauchy problem. The problem requires to find a solution to a differential equation that satisfies what is known as the initial values. As classified [1, 2], Laplace's method [3] is used to solve linear ordinary differential equations and the Fourier transform method [4] to find the solution of linear partial differential equations, and in the modern soliton theory, the isomonodromic transform method and the inverse scattering transform method [5, 6] are systematical methods that have been developed to find solutions of nonlinear ordinary and partial differential equations, respectively.

Only the simplest differential equations, usually constant-coefficient and linear, can be explicitly resolved. It is extremely hard to pinpoint exact solutions for nonlinear differential equations. For this purpose, recently some analytic approaches have been reported to construct exact solutions to partial differential equations, for example, the RiemannHilbert method [7], the $\left(\frac{1}{G'}\right)$ -expansion method [8, 9], the Taylor expansion approach [10], the Lie symmetry analysis [11, 12], the $\left(m + \frac{G'}{G}\right)$ -expansion method [13, 14], a transformed rational function method [15], the multiple exp-function method [16, 17], Darboux transformation method [18, 19], the modified auxiliary expansion method [20], the dressing method [21], the Bernoulli sub-equation function method [22–25], the extended sinh-Gordon method [26, 27], the $\left(\frac{G'}{G^2}\right)$ -expansion method [28], the generalized Kudryashov method [29], the Hirota bilinear method [30–32], the Hirota bilinear system and Pfaffian method [33], and the modified extended direct algebraic method [34].

The (2+1)-dimensional Bogoyavlensky-Konopelchenko (BK) equation reads

$$u_{tx} + \alpha(6u_x u_{xx} + u_{xxxx}) + \beta(u_{xxxx} + 3u_x u_{xy} + 3u_{xx} u_y) = 0, \quad (1.1)$$

which was introduced as a (2+1)-dimensional version of the KdV equation in [35] and used to describe the interaction of a long wave propagating along the x -axis and a Riemann wave propagating along the y -axis [36]. In

this paper, we study the following (2+1)-dimensional generalized Bogoyavlensky-Konopelchenko (gBK) equation

$$u_{tx} + \alpha(6u_x u_{xx} + u_{xxxx}) + \beta(u_{xxy} + 3u_x u_{xy} + 3u_{xx} u_y) + \gamma_1 u_{xx} + \gamma_2 u_{xy} + \gamma_3 u_{yy} = 0, \quad (1.2)$$

which is a generalization of equation (1.1). The earlier paper [1] has studied lower-order lumps to the suggested equation. In [2], a few classes of exact and explicit solutions have been reported from different ansätze on solution forms, for example, traveling wave, 2-wave solutions, and polynomial solutions. To investigate equation (1.2), we use the link between u and f :

$$u = 2(\ln f(x, y, t))_x, \quad (1.3)$$

where

$$f_1 = 1 + e^{k_1(x + l_1 y + w_1 t)}, \quad (1.4)$$

$$f_2 = 1 + e^{\Omega_1} + e^{\Omega_2} + e^{\Omega_1 + \Omega_2 + A_{12}}, \quad (1.5)$$

$$f_3 = 1 + e^{\Omega_1} + e^{\Omega_2} + e^{\Omega_3} + e^{\Omega_1 + \Omega_2 + A_{12}} + e^{\Omega_1 + \Omega_3 + A_{13}} + e^{\Omega_2 + \Omega_3 + A_{23}} + e^{\Omega_1 + \Omega_2 + \Omega_3 + A_{123}}, \quad (1.6)$$

$$f_4 = 1 + e^{\Omega_1} + e^{\Omega_2} + e^{\Omega_3} + e^{\Omega_4} + e^{\Omega_1 + \Omega_2 + A_{12}} + e^{\Omega_1 + \Omega_3 + A_{13}} + e^{\Omega_1 + \Omega_4 + A_{14}} + e^{\Omega_2 + \Omega_3 + A_{23}} + e^{\Omega_2 + \Omega_4 + A_{24}} + e^{\Omega_3 + \Omega_4 + A_{34}} + e^{\Omega_1 + \Omega_2 + \Omega_3 + A_{123}} + e^{\Omega_1 + \Omega_2 + \Omega_4 + A_{124}} + e^{\Omega_2 + \Omega_3 + \Omega_4 + A_{234}} + e^{\Omega_1 + \Omega_2 + \Omega_3 + \Omega_4 + A_{1234}}. \quad (1.7)$$

Insert equation (1.3) into equation (1.2), we get

$$2f(\gamma_3 f_{yy} + f_{xt} + \gamma_2 f_{xy} + \gamma_1 f_{xx} + \beta f_{xxy} + \alpha f_{xxxx}) - 2\gamma_3 f_y^2 - 2f_y(\gamma_2 f_x + \beta f_{xxx}) - 2(f_t f_x + \gamma_1 f_x^2 - 3f_{xx}(\beta f_{xy} + \alpha f_{xx}) + f_x(3\beta f_{xxy} + 4\alpha f_{xxx})) = 0. \quad (1.8)$$

The logarithmic variable transformation (1.3) is also a characteristic one in establishing Bell polynomial theories of soliton equations [37]. Equation (1.8) can be rewritten as a Hirota bilinear form as follows

$$(D_x D_t + \alpha D_x^4 + \beta D_x^3 D_y + \gamma_1 D_x^2 + \gamma_2 D_x D_y + \gamma_3 D_y^2) f \cdot f = 0. \quad (1.9)$$

It's obvious that if $f = f(x, y, t)$ in equations (1.4)–(1.7) are solutions of equation (1.5), then $u = 2(\ln f(x, y, t))_x$ will solve equation (1.2).

2. Complex one-, two, and three-soliton solutions

In this section, we construct special complex one-, two-, and three-soliton solutions to the introduced equation. To find complex soliton solutions, we require

$$w_m = -(k_m^2 \alpha + k_m^2 l_m \beta + \gamma_1 + l_m \gamma_2 + l_m^2 \gamma_3), \quad m = 1, 2, 3 \quad (2.1)$$

To determine special complex one-, two-, three-soliton solutions, we take

$$f = i + e^{k_1(x + l_1 y + w_1 t)}, \quad (2.2)$$

$$f = i + e^{\Omega_1} + e^{\Omega_2} + D_{12} e^{\Omega_1 + \Omega_2}, \quad (2.3)$$

$$f = i + e^{\Omega_1} + e^{\Omega_2} + e^{\Omega_3} + D_{12} e^{\Omega_1 + \Omega_2} + D_{13} e^{\Omega_1 + \Omega_3} + D_{23} e^{\Omega_2 + \Omega_3} + D_{123} e^{\Omega_1 + \Omega_2 + \Omega_3}, \quad (2.4)$$

where

$$\Omega_m = k_m(x + l_m y + w_m t) + \alpha_m \quad (m = 1, 2, \dots, N) \quad (2.5)$$

$$D_{mn} = \frac{i(l_m - l_n)^2 \gamma_3 - i(k_m - k_n)(3(k_m - k_n)\alpha + k_m(2l_m + l_n)\beta - k_2(l_m + 2l_n)\beta)}{(k_m + k_n)(3(k_m + k_n)\alpha + k_m(2l_m + l_n)\beta + k_n(l_m + 2l_n)\beta) - (l_m - l_n)^2 \gamma_3}, \quad (2.6)$$

and

$$D_{123} = D_{12} D_{13} D_{23}. \quad (2.7)$$

Plugging equation (2.2) into equation (1.3), we get

$$u = \frac{2k_1 e^{k_1(x + l_1 y - (k_1^2 \alpha + k_1^2 l_1 \beta + \gamma_1 + l_1 \gamma_2 + l_1^2 \gamma_3)t + \alpha_0)}}{i + e^{k_1(x + l_1 y - (k_1^2 \alpha + k_1^2 l_1 \beta + \gamma_1 + l_1 \gamma_2 + l_1^2 \gamma_3)t + \alpha_0)}}. \quad (2.8)$$

This is a complex 1-soliton solution as shown in figure 1.

By inserting equation (2.3) into equation (1.3), we have a complex two-soliton wave solution to the considered equation (see figure 2)

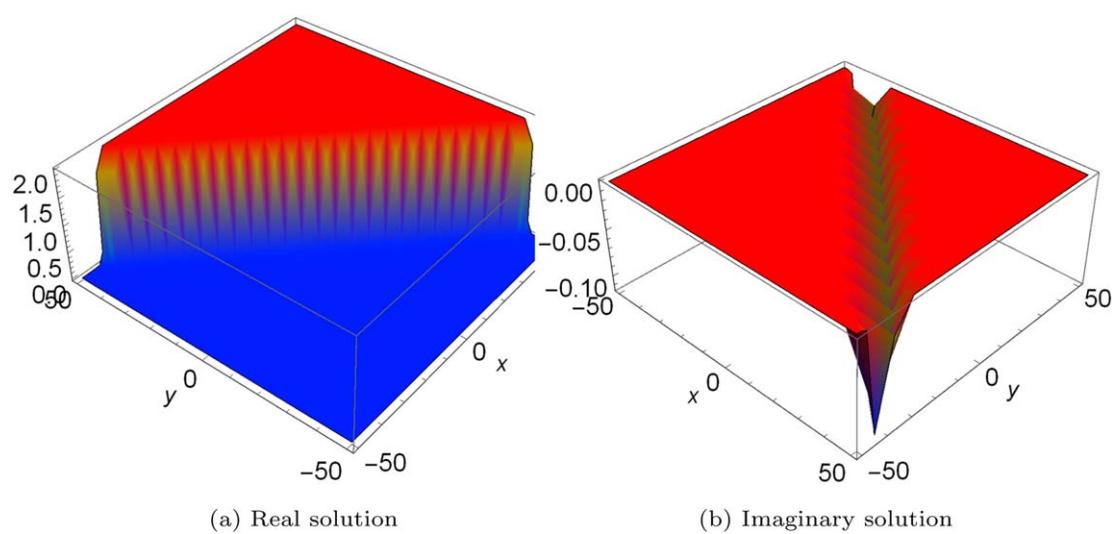


Figure 1. 3D surface of 1-soliton solution plotted under equation (2.6) when $t = 2, l_1 = 1, k_1 = 1, \alpha_1 = 0, \alpha = 1, \beta = 1, \gamma_1 = 1, \gamma_2 = 1, \gamma_3 = 1$.

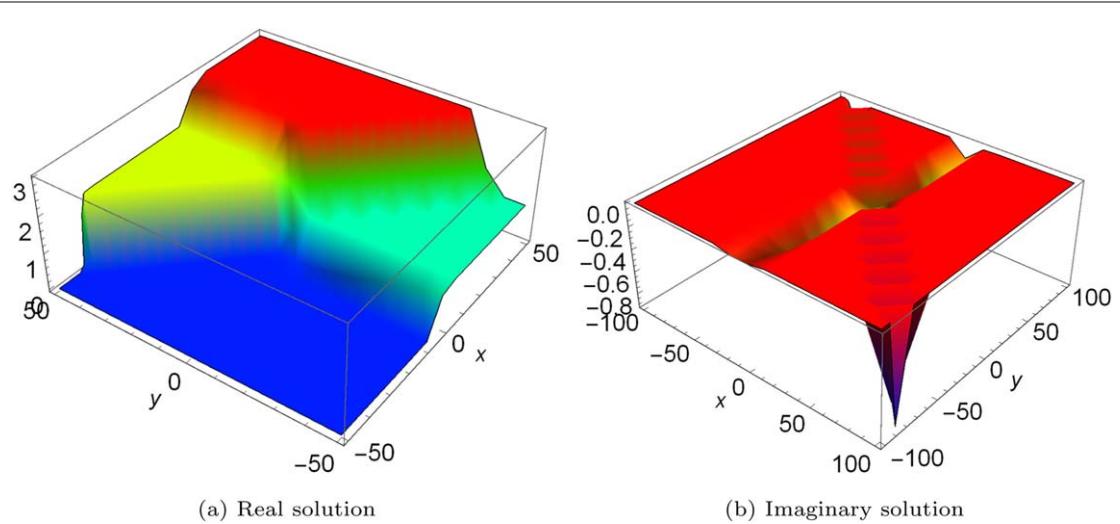


Figure 2. 3D surface of 2-soliton solution plotted under equation (2.7) when $t = 2, l_1 = -0.1, l_2 = 1, k_1 = 0.5, k_2 = 1, \alpha_1 = 0, \alpha_2 = 0, \alpha = 2, \beta = 1, \gamma_1 = 1, \gamma_2 = 1, \gamma_3 = 1$.

$$u = \frac{2(k_1 e^{\Omega_1} + k_2 e^{\Omega_2} + D_{12}(k_1 + k_2) e^{\Omega_1 + \Omega_2})}{i + e^{\Omega_1} + e^{\Omega_2} + D_{12} e^{\Omega_1 + \Omega_2}}. \quad (2.9)$$

Substituting equation (2.4) into equation (1.3), we get

$$u = \frac{2 \left(e^{\theta_1} k_1 + e^{\theta_2} k_2 + D_{12}(k_1 + k_2) e^{\theta_1 + \theta_2} + e^{\theta_3} k_3 + D_{13}(k_1 + k_3) e^{\theta_1 + \theta_3} \right.}{i + e^{\theta_1} + e^{\theta_2} + D_{12} e^{\theta_1 + \theta_2} + e^{\theta_3} + D_{13} e^{\theta_1 + \theta_3} + D_{23} e^{\theta_2 + \theta_3} + D_{12} D_{13} D_{23} e^{\theta_1 + \theta_2 + \theta_3}} \left. + D_{23}(k_2 + k_3) e^{\theta_2 + \theta_3} + D_{12} D_{13} D_{23}(k_1 + k_2 + k_3) e^{\theta_1 + \theta_2 + \theta_3} \right) \quad (2.10)$$

This is a complex 3-soliton solution as seen in figure 3.

3. M-lump solutions

Lump solutions are analytical rational function solutions located in all directions in space. In this portion of the paper, we use a long-wave limit method to construct a rational solution to a gBK equation. consider equation (1.5), where

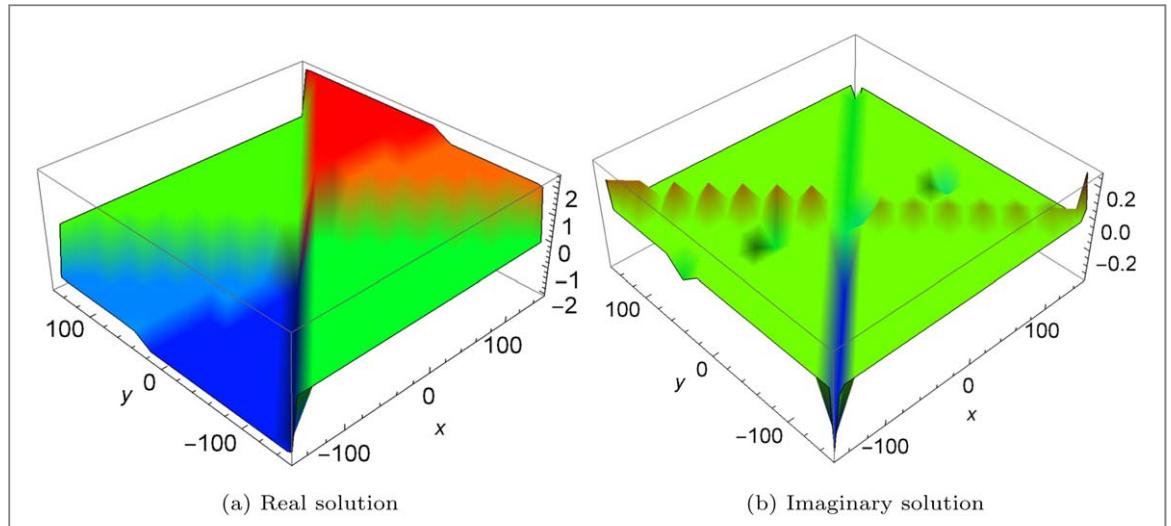


Figure 3. 3D surface of 3-soliton solution plotted under equation (2.8) when $t = 2, l_1 = 1, l_2 = -1, l_3 = 4, k_1 = -1, k_2 = 1, k_3 = 0.3, \alpha_1 = 0, \alpha_2 = -2, \alpha_3 = 5, \alpha = -1, \beta = -1, \gamma_1 = 1, \gamma_2 = 1, \gamma_3 = 1$.

$$e^{A_{mn}} = \frac{(k_m - k_n)(3(k_m - k_n)\alpha + k_m(2l_m + l_n)\beta - k_n(l_m + 2l_n)\beta) - (l_m - l_n)^2\gamma_3}{(k_m + k_n)(3(k_m + k_n)\alpha + k_m(2l_m + l_n)\beta + k_n(l_m + 2l_n)\beta) - (l_m - l_n)^2\gamma_3}. \quad (3.1)$$

Here Ω_1, Ω_2 are given by equation (2.9). Using the long-wave limit method by taking the limit, $k_m \rightarrow 0$, $\frac{k_1}{k_2} = O(1)$, and $e^{\alpha_m} = -1 (m = 1, 2)$ we get

$$f_2 = \Phi_1 \Phi_2 + B_{12}, \quad (3.2)$$

where

$$\Phi_i = x + l_i y + w_i t, \quad (3.3)$$

$$w_i = -(\gamma_1 + l_m \gamma_2 + l_m^2 \gamma_3), \quad (3.4)$$

$$B_{ij} = \frac{6(2\alpha + (l_i + l_j)\beta)}{(l_i - l_j)^2 \gamma_3}, \quad (i < j) \quad (3.5)$$

$$l_{\frac{N}{2}+i} = l_i^*, \quad \left(i = 1, 2, \dots, \frac{N}{2} \right). \quad (3.6)$$

Plugging equation (3.1) with equations (3.3)–(3.7) into equation (3.2) then into equation (1.3), we can construct a one-M-lump solution (see figure 4). Here, $l_1 = a + ib, l_2 = c + id, l_3 = a + ib$ and $l_4 = c - id$.

$$\begin{aligned} u &= 2 \frac{\partial}{\partial x} \log \left((x' + ay')^2 + b^2 y'^2 - \frac{3(\alpha + a\beta)}{b^2 \gamma_3} \right) \\ &= \frac{4(x' + ay')}{(x' + ay')^2 + b^2 y'^2 - \frac{3(\alpha + a\beta)}{b^2 \gamma_3}}, \\ &= \frac{4(x - t\gamma_1 + a(y - t\gamma_2) - a^2 t\gamma_3 + b^2 t\gamma_3)}{(x - t\gamma_1 - (a - ib)(t(\gamma_2 + a\gamma_3 - ib\gamma_3)) - y)(x - t\gamma_1 - (a + ib)(t(\gamma_2 + a\gamma_3 + ib\gamma_3)) - y) - \frac{3(\alpha + a\beta)}{b^2 \gamma_3}}, \end{aligned} \quad (3.7)$$

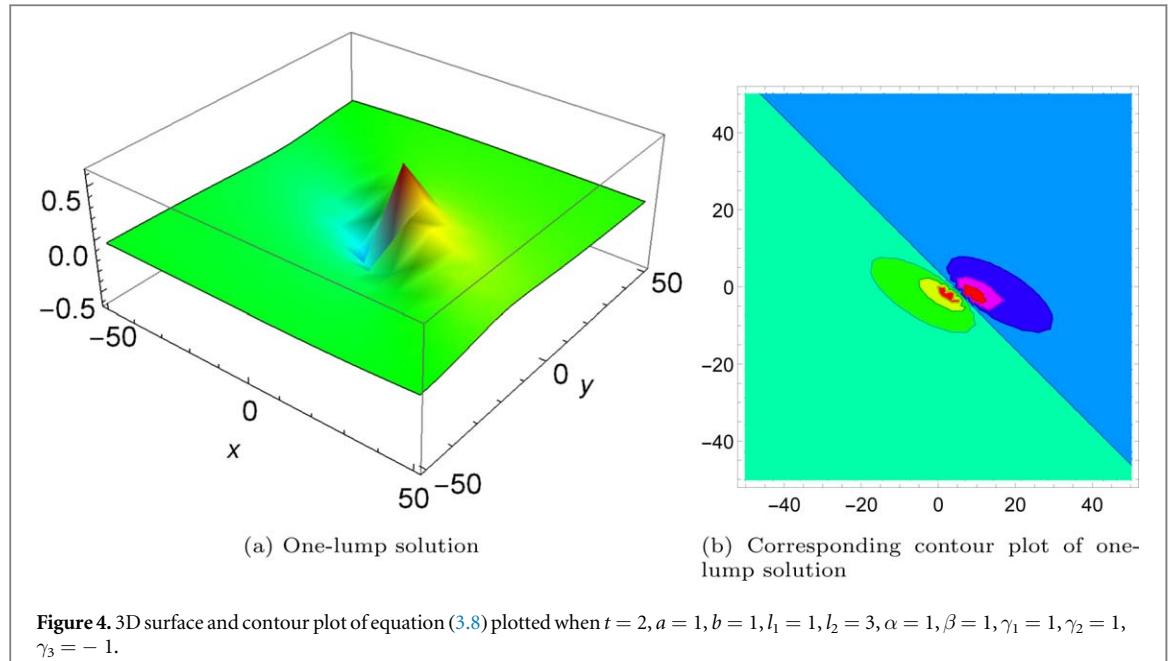
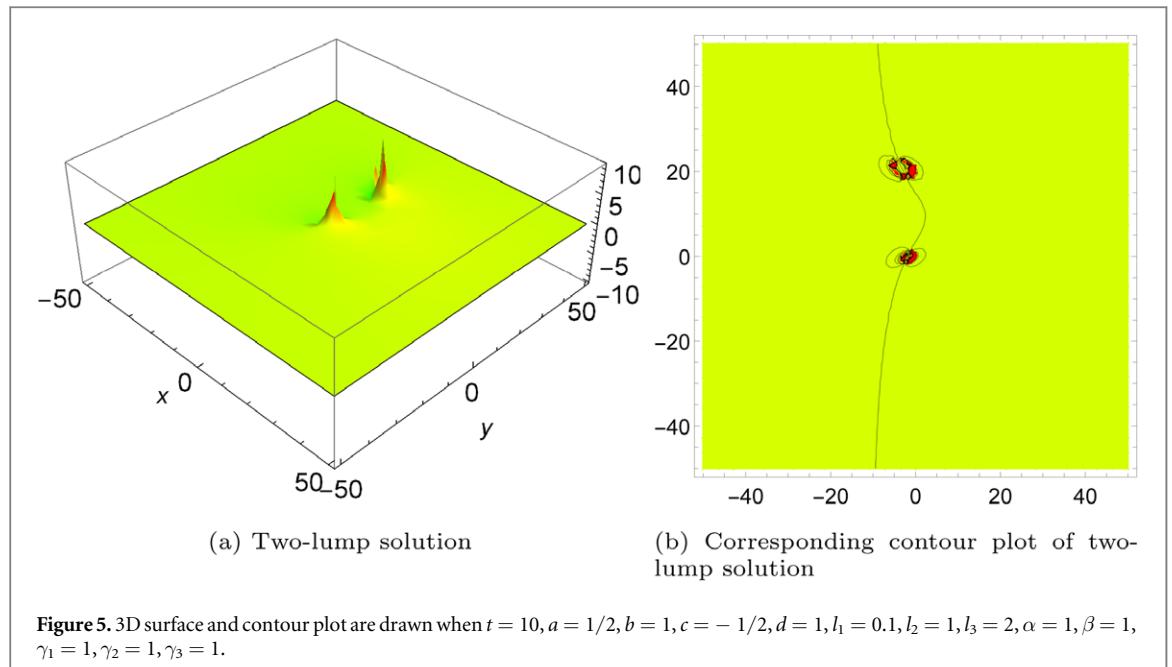
where

$$\begin{aligned} y' &= y - 2a\gamma_3 t - \gamma_2 t, \\ x' &= x + b^2 \gamma_3 t - \gamma_1 t. \end{aligned} \quad (3.8)$$

The rational solution (3.8) is a permanent lump solution that decays as $O\left(\frac{1}{x^2}, \frac{1}{y^2}\right)$ for $|x|, |y| \rightarrow \infty$ and moves with the velocity

$$\begin{aligned} v_x &= 2a\gamma_3 - \gamma_2, \\ v_y &= \gamma_1 - b^2 \gamma_3. \end{aligned} \quad (3.9)$$

To study and reveal a 2-M-lump solution to a gBK equation, consider equation (1.7), $e^{\alpha_m} = -1 (m = 1, 2, 3, 4)$ and taking a limit $k_m \rightarrow 0$, we get



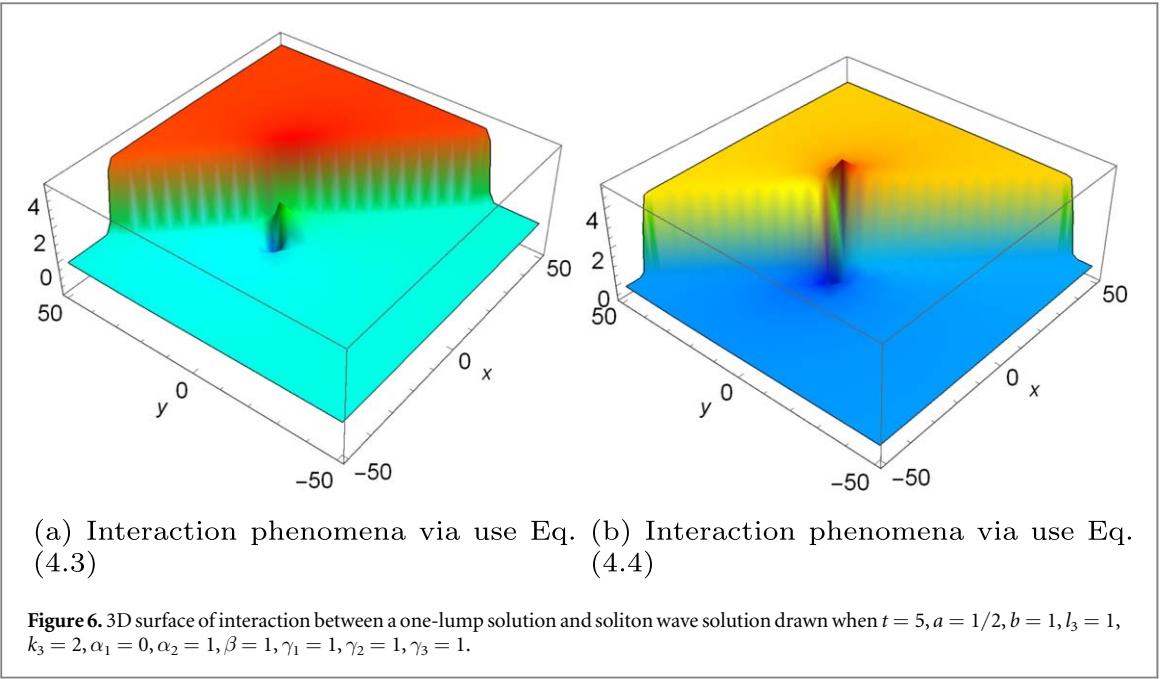
$$f_4 = \Phi_1\Phi_2\Phi_3\Phi_4 + B_{12}\Phi_3\Phi_4 + B_{13}\Phi_2\Phi_4 + B_{14}\Phi_2\Phi_3 + B_{23}\Phi_1\Phi_4 + B_{24}\Phi_1\Phi_3 + B_{34}\Phi_1\Phi_2 + B_{12}B_{34} + B_{13}B_{24} + B_{14}B_{23}. \quad (3.10)$$

Here $\Phi_1, \Phi_2, \Phi_3, \Phi_4, w_i, B_{ij}$ ($i < j$), and $l_{\frac{N}{2}+i}$ are given by equations (3.4)–(3.7), respectively. Plugging equation (3.10) into equation (1.3), as a result, we can obtain a double-M-lump solution to the suggested equation as shown in figure 5.

4. Physical interactions between M-lump solution and soliton wave

In this section, we study the interaction physical phenomena between the 1-M-lump solution and the one-soliton solution. For this purpose, we consider equation (1.6), and take the limit $k_m \rightarrow 0$, ($m = 1, 2$) and $\frac{k_1}{k_2} = O(1)$. As a result, f_3 could be rewritten as follows

$$f_3 = \Phi_1\Phi_2 + B_{12} + \Lambda_1 e^{\Omega_3}, \quad (4.1)$$



where

$$\Lambda_1 = \Phi_1 \Phi_2 + B_{12} + C_{23} \Phi_1 + C_{13} \Phi_2 + C_{13} C_{23}. \quad (4.2)$$

Here Ω_3 is defined in equation (2.5), $\Phi_i (i = 1, 2)$ are defined in equation (3.4), and B_{12} is given in equation (3.6). The constants C_{13}, C_{23} are stated as follows

$$\begin{aligned} \alpha &= -\frac{\beta}{2}(l_1 + l_2) + \frac{(l_1 - l_3)(l_3 - l_2)\gamma_3}{k_3^2}, \\ C_{13} &= -\frac{12(l_2 - l_3)}{k_3(l_1 + 3l_2 - 4l_3)}, \quad C_{23} = -\frac{12(l_1 - l_3)}{k_3(3l_1 + l_2 - 4l_3)}, \end{aligned} \quad (4.3)$$

or

$$\begin{aligned} \alpha &= \frac{(l_1 - l_3)(l_3 - l_2)\gamma_3}{k_3^2} - l_3\beta, \quad C_{13} = -\frac{6(k_3^2\beta + 2(l_3 - l_2)\gamma_3)}{k_3^3\beta - k_3(l_1 + 3l_2 - 4l_3)\gamma_3}, \\ C_{23} &= -\frac{6(k_3^2\beta + 2(l_3 - l_1)\gamma_3)}{k_3^3\beta - k_3(3l_1 + l_2 - 4l_3)\gamma_3}. \end{aligned} \quad (4.4)$$

Substituting equations (4.1), (4.2) and (4.3) into equation (1.3), we get an equation that presents a collision between the 1-M-lump solution and the 1-soliton solution as seen in figure 6.

We can also choose

$$\begin{aligned} \beta &= \frac{(l_1 - l_3)(l_3 - l_2)\gamma_3 - k_3^2\alpha}{k_3^2l_3}, \\ C_{13} &= -\frac{6(k_3^2\alpha + (l_2 - l_3)(l_1 + l_3)\gamma_3)}{k_3(k_3^2\alpha + l_1l_2\gamma_3 + (2l_2 - 3l_3)l_3\gamma_3)}, \\ C_{23} &= -\frac{6(k_3^2\alpha + (l_1 - l_3)(l_2 + l_3)\gamma_3)}{k_3(k_3^2\alpha - 3l_3^2\gamma_3 + l_1(l_2 + 2l_3)\gamma_3)}, \end{aligned} \quad (4.5)$$

or

$$\beta = -\frac{2(k_3^2\alpha + (l_1 - l_3)(l_2 - l_3)\gamma_3)}{k_3^2(l_1 + l_2)}, \quad C_{13} = -\frac{12(l_2 - l_3)}{k_3(l_1 + 3l_2 - 4l_3)}, \quad C_{23} = -\frac{12(l_1 - l_3)}{k_3(3l_1 + l_2 - 4l_3)}. \quad (4.6)$$

Putting equations (4.1), (4.2) and (4.5) into equation (1.3), we can construct other solutions that describe the interaction between the one-lump solution and the 1-soliton wave solution as shown in figure 7.

5. Quadratic solutions

In this portion of the paper, we investigate single-lump solution via a quadratic function. In [38–41], quadratic function solutions and symbolic computation have been used to construct different kinds of exact solutions to

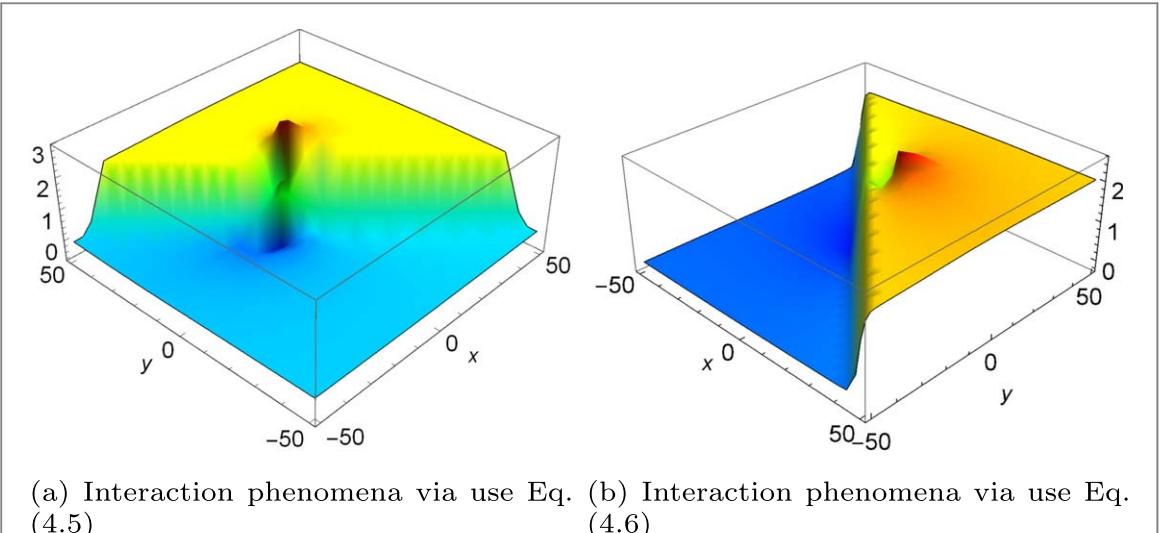


Figure 7. 3D surface of interaction between a one-lump solution and soliton wave solution drawn when $t = 5, a = 1/2, b = 1, l_3 = 1, k_3 = 1, \alpha_1 = 0, \alpha_2 = 1, \alpha = 1, \gamma_1 = 1, \gamma_2 = 1, \gamma_3 = 1$.

many classes of PDEs. Now, we define the solution of the equation (1.4) as follows

$$f(x, y, t) = (a_1x + a_2y + a_3t + a_4)^2 + (b_1x + b_2y + b_3t + b_4)^2 + c_1, \quad (5.1)$$

where a_i, b_i are constants to be determined later. Plugging equation (4.1) into equation (1.4), as a result, we gain a polynomial. Setting the coefficients of the polynomial with the same powers of the independent variables to zero, one can obtain the following cases of solutions:

Case 1: When we have

$$\begin{aligned} a_3 &= -\frac{a_1^3\gamma_1 + a_1b_1^2\gamma_1 + a_1^2a_2\gamma_2 + a_1(a_2^2 - b_2^2)\gamma_3 + a_2b_1(b_1\gamma_2 + 2b_2\gamma_3)}{a_1^2 + b_1^2}, \\ b_3 &= -\frac{a_1^2(b_1\gamma_1 + b_2\gamma_2) + 2a_1a_2b_2\gamma_3 + b_1(b_1^2\gamma_1 + b_1b_2\gamma_2 + (b_2^2 - a_2^2)\gamma_3)}{a_1^2 + b_1^2}, \\ c_1 &= -\frac{3(a_1^2 + b_1^2)^2(a_1^2\alpha + a_1a_2\beta + b_1(b_1\alpha + b_2\beta))}{(a_2b_1 - a_1b_2)^2\gamma_3} \end{aligned} \quad (5.2)$$

and substitute equation (5.2) into equation (5.1), then into equation (1.3), we get

$$u = \frac{2(2a_1(a_1x + a_2y + a_3t + a_4) + 2b_1(b_1x + b_2y + b_3t + b_4))}{c_1 + (a_1x + a_2y + a_3t + a_4)^2 + (b_1x + b_2y + b_3t + b_4)^2}. \quad (5.3)$$

This is a lump solution as present in figure 8 and reported in [1].

Case 2: When we have

$$\begin{aligned} a_1 &= b_1, a_3 = \frac{(b_2^2 - a_2^2 - 2a_2b_2)\gamma_3}{2b_1} - b_1\gamma_1 - a_2\gamma_2, \\ b_3 &= \frac{(a_2^2 - 2a_2b_2 - b_2^2)\gamma_3}{2b_1} - b_1\gamma_1 - b_2\gamma_2, c_1 = -\frac{12b_1^3(2b_1\alpha + (a_2 + b_2)\beta)}{(a_2 - b_2)^2\gamma_3} \end{aligned} \quad (5.4)$$

and plug them into equation (5.1), then into equation (1.3), one can obtain

$$u = \frac{4b_1(2b_1x + (a_2 + b_2)y + (a_3 + b_3)t + a_4 + b_4)}{(a_4 + a_3t + b_1x + a_2y)^2 + (b_4 + b_3t + b_1x + b_2y)^2 - \frac{12b_1^3(2b_1\alpha + (a_2 + b_2)\beta)}{(a_2 - b_2)^2\gamma_3}}. \quad (5.5)$$

equation (5.5) is a lump solution as shown in figure 9.

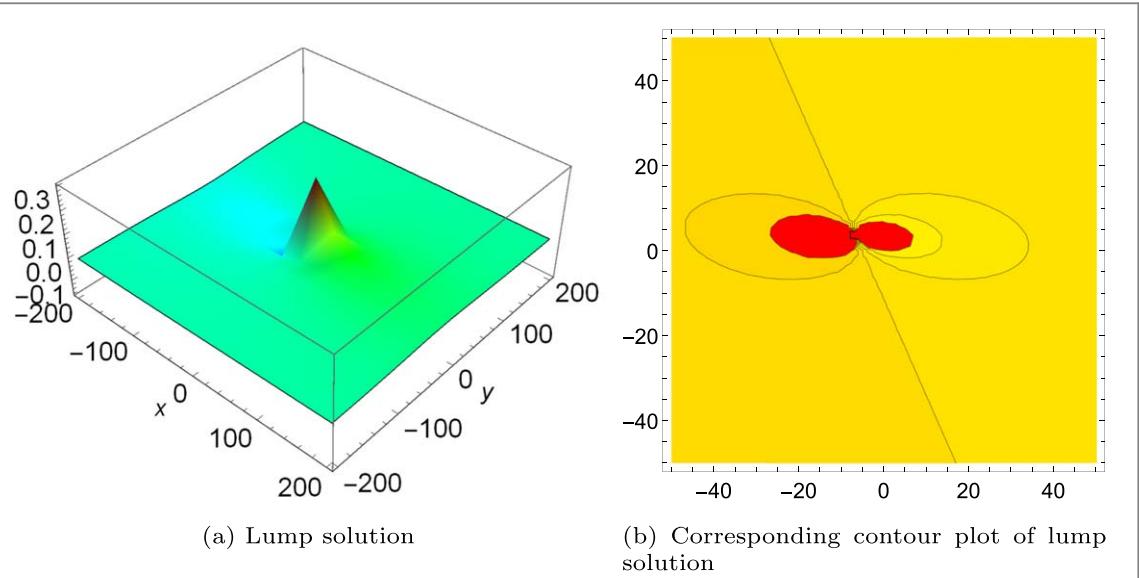


Figure 8. 3D surface and contour plot of equation (5.3) plotted when $t = 2, a_1 = 0.01, a_2 = 1, a_3 = 0.1, a_4 = 0.5, b_1 = 0.5, b_2 = 0.2, b_3 = 0.2, c_1 = 1, \gamma_1 = 1, \gamma_2 = 1, \gamma_3 = 1, \alpha = 0.5, \beta = 1$.

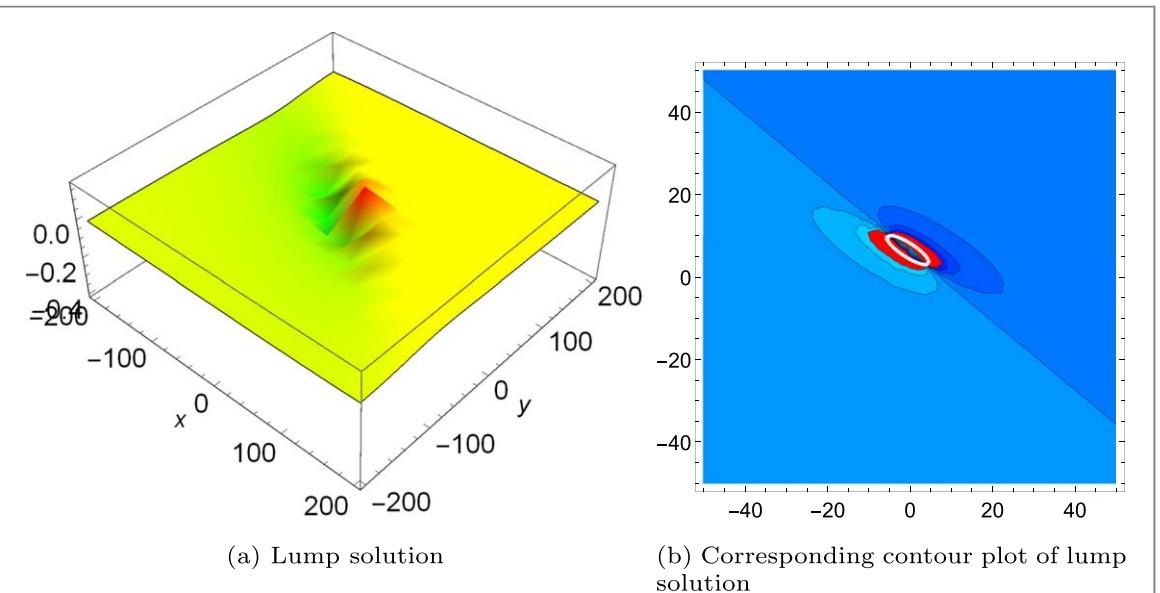


Figure 9. 3D surface and contour plot of equation (5.5) plotted when $t = 2, a_1 = 0.01, a_2 = 1, a_3 = 0.1, a_4 = 0.5, b_1 = 0.5, b_2 = 0.2, b_3 = 0.2, c_1 = 1, \gamma_1 = 1, \gamma_2 = 1, \gamma_3 = 1, \alpha = 0.5, \beta = 1$.

Case 3: In case

$$a_2 = -\frac{a_1\gamma_2 + i\sqrt{a_1(4a_3\gamma_3 + 4a_1\gamma_1\gamma_3 - a_1\gamma_2^2)}}{2\gamma_3}, \quad b_1 = ia_1, \quad b_3 = ia_3,$$

$$b_2 = \frac{\sqrt{a_1(4a_3\gamma_3 + 4a_1\gamma_1\gamma_3 - a_1\gamma_2^2)} - ia_1\gamma_2}{2\gamma_3}, \quad (5.6)$$

and using them into equation (5.1), then into equation (1.3), as a result equation (1.3) has the solution

$$u = \frac{4a_1(a_4 + ib_4)\gamma_3}{(a_4^2 + b_4^2 + c_1 + (2a_3a_4 + 2ia_3b_4)t)\gamma_3 - a_1(a_4 + ib_4)(\gamma_2y - 2\gamma_3x) + (b_4 - ia_4)\sqrt{\phi}y}, \quad (5.7)$$

where $\phi = a_1(4a_3\gamma_3 + 4a_1\gamma_1\gamma_3 - a_1\gamma_2^2) > 0$. The above equation is a complex single-soliton solution to a gBK equation as seen in figure 10.

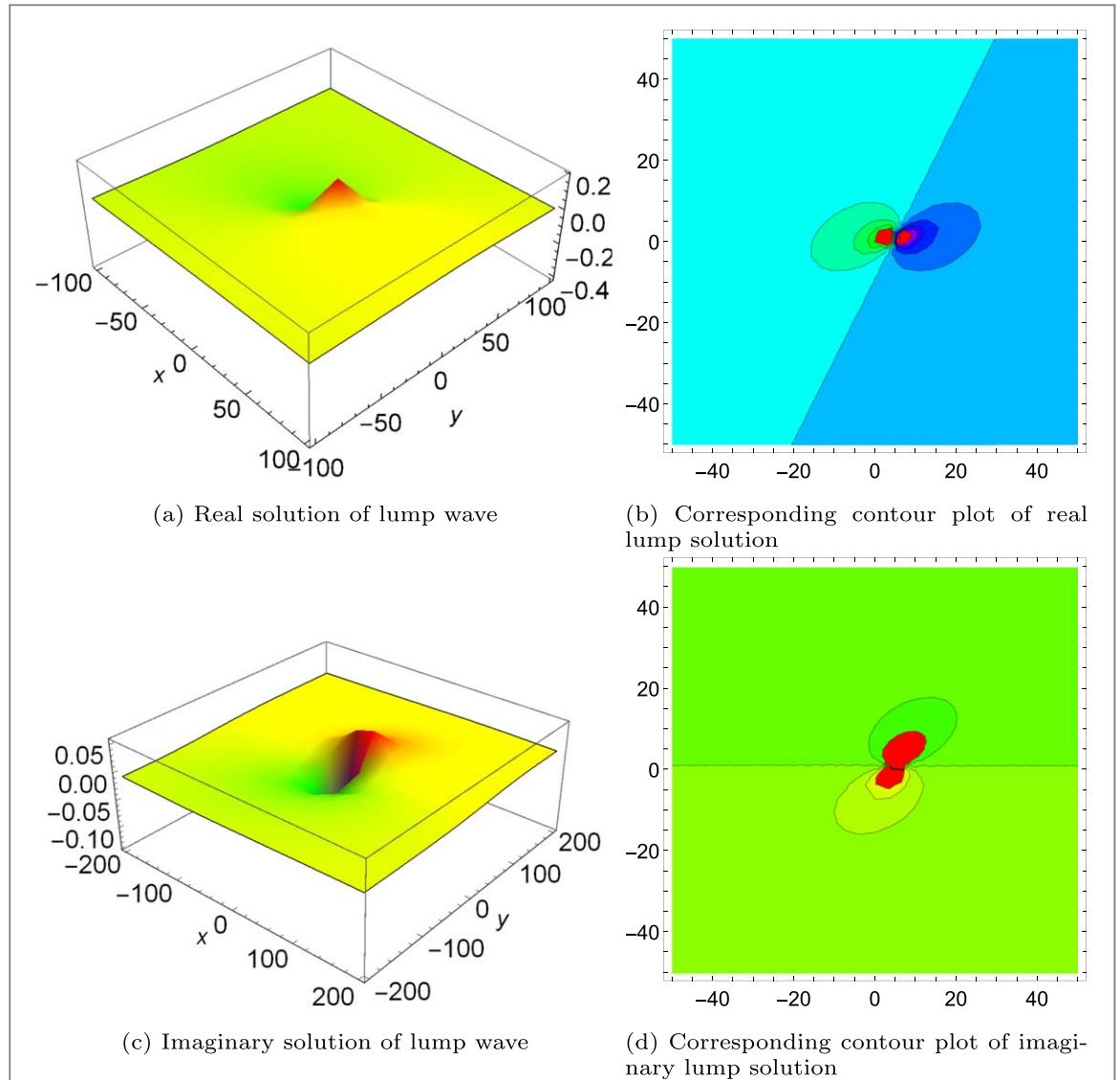


Figure 10. 3D surface and contour plot of equation (5.7) plotted when $t = 2, a_1 = -0.3, a_2 = 1, a_3 = 0.1, a_4 = 0.5, b_1 = 0.5, b_2 = 0.2, b_4 = 0.2, c_1 = 1, \gamma_1 = 2, \gamma_2 = 1, \gamma_3 = 1, \alpha = 1, \beta = 1$.

6. Interactions between single-lump wave and solitary wave

To study the lump waves and their interactions with the solitary waves, we let the solution of equation (1.2), according to equation (1.3), have the form

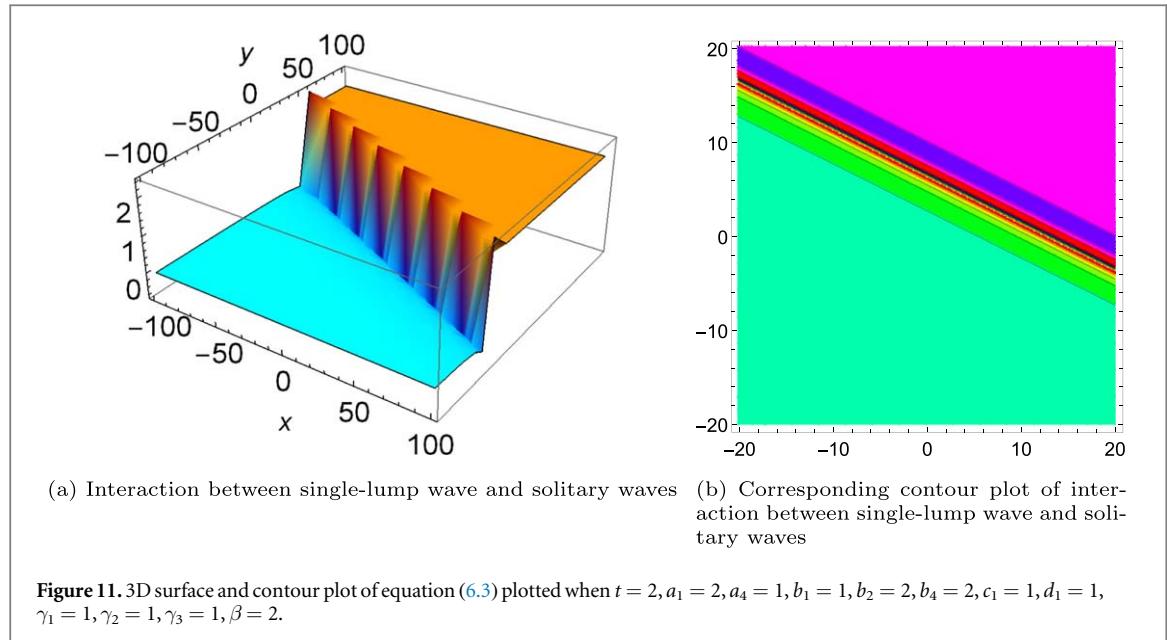
$$f(x, y, t) = e^{c_1 x + c_2 y + c_3 t} + (a_1 x + a_2 y + a_3 t + a_4)^2 + (b_1 x + b_2 y + b_3 t + b_4)^2 + d_1. \quad (6.1)$$

Plugging equation (6.1) with equation (1.3) into equation (1.2), and making all the coefficients of dissimilar powers of t, x, y, \exp and their product equal to zero, we get a system of polynomial equations. By solving the obtained system, we obtain the following cases of solutions:

Case 1: When

$$\begin{aligned} a_2 &= \frac{a_1 b_2}{b_1}, \quad a_3 = -\frac{a_1(b_1^2 \gamma_1 + b_1 b_2 \gamma_2 + b_2^2 \gamma_3)}{b_1^2}, \quad b_3 = -\frac{b_1^2 \gamma_1 + b_1 b_2 \gamma_2 + b_2^2 \gamma_3}{b_1}, \\ c_2 &= \frac{b_2 c_1}{b_1}, \quad c_3 = -\frac{c_1(b_1^2 \gamma_1 + b_1 b_2 \gamma_2 + b_2^2 \gamma_3)}{b_1^2}, \quad \alpha = -\frac{b_2 \beta}{b_1} \end{aligned} \quad (6.2)$$

and we use this case with equation (1.3), a collision physical phenomenon between the 1-soliton wave and the 1-lump solution (see figure 11) will equivalently become



$$u = \frac{2 \left(c_1 e^{c_1 x + \frac{b_2 c_1}{b_1} y + c_3 t} + 2b_1(b_4 + b_1(x - \gamma_1 t) + b_2(y - \gamma_2 t)) - 2b_2^2 \gamma_3 t + 2a_1 \left(a_4 + a_1 x + \frac{a_1 b_2 y}{b_1} - h(t) \right) \right)}{d_1 + e^{c_1 x + \frac{b_2 c_1}{b_1} y + c_3 t} + \left(a_4 + a_1 x + \frac{a_1 b_2 y}{b_1} - h(t) \right)^2 + (b_4 + b_1 x + b_2 y - h(t))^2}, \quad (6.3)$$

$$\text{where } h(t) = \frac{a_1(b_1^2 \gamma_1 + b_1 b_2 \gamma_2 + b_2^2 \gamma_3)t}{b_1^2}.$$

Case 2: When

$$\begin{aligned} a_2 &= \frac{a_1 b_2}{b_1}, \quad a_3 = -\frac{a_1(b_1^2 \gamma_1 + b_1 b_2 \gamma_2 + b_2^2 \gamma_3)}{b_1^2}, \\ b_3 &= -\frac{b_1^2 \gamma_1 + b_1 b_2 \gamma_2 + b_2^2 \gamma_3}{b_1}, \quad b_4 = \frac{a_4 b_1}{a_1}, \quad c_2 = \frac{b_2 c_1}{b_1}, \\ c_3 &= -\frac{c_1(b_1^2 \gamma_1 + b_1 b_2 \gamma_2 + b_2^2 \gamma_3)}{b_1^2}, \quad \beta = -\frac{b_1 \alpha}{b_2} \end{aligned} \quad (6.4)$$

and input the case of the solution with equation (6.1) into equation (1.3), we get

$$u = \frac{2 \left(c_1 e^{c_1 x + \frac{b_2 c_1}{b_1} y + c_3 t} + 2a_1 \left(a_4 + a_1 x + \frac{a_1 b_2 y}{b_1} - f(t) \right) + 2b_1 \left(\frac{a_4 b_1}{a_1} + b_1 x + b_2 y - f(t) \right) \right)}{d_1 + e^{c_1 x + \frac{b_2 c_1}{b_1} y + c_3 t} + \left(a_4 + a_1 x + \frac{a_1 b_2 y}{b_1} - f(t) \right)^2 + \left(\frac{a_4 b_1}{a_1} + b_1 x + b_2 y - f(t) \right)^2}. \quad (6.5)$$

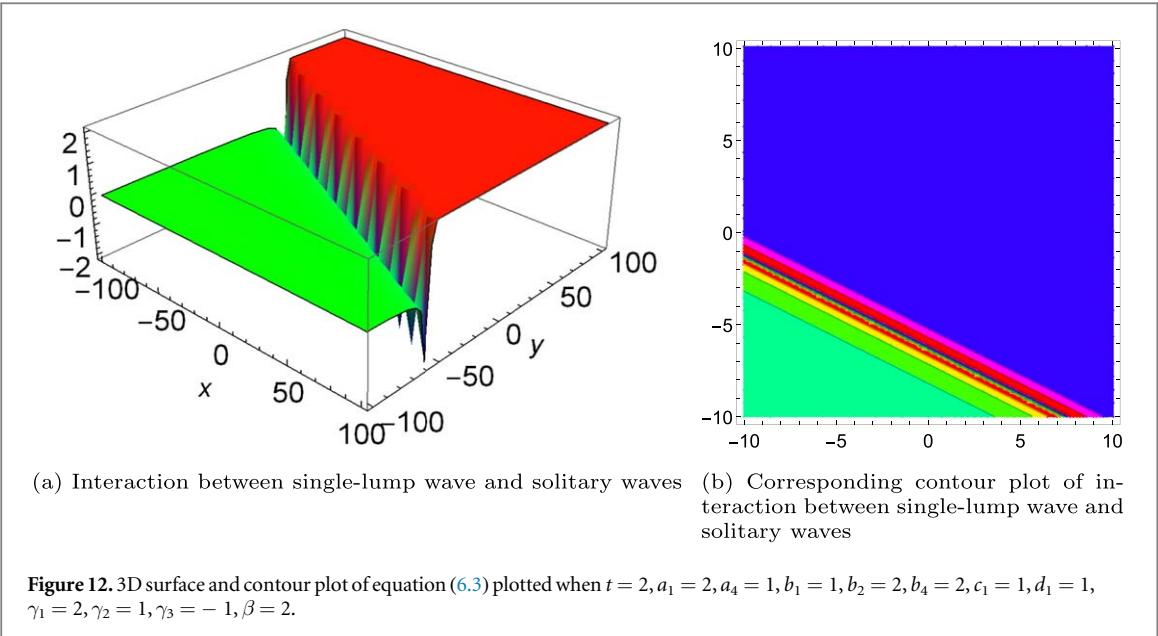
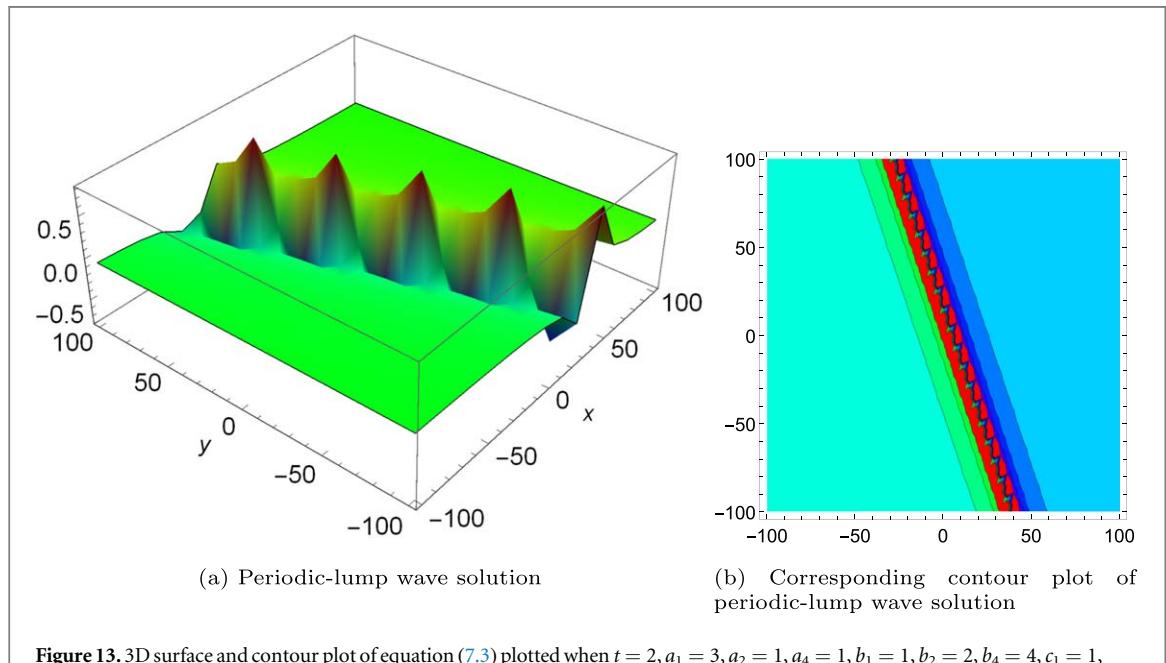
equation (6.5) describes an interaction between the 1-lump solution and the 1-soliton wave as shown in figure 12.

7. Periodic-lump wave solutions

In this portion, we attempt to reveal periodic lump solutions to a gBK equation. Let

$$\begin{aligned} f(x, y, t) &= d_1 + (a_1 x + a_2 y + a_3 t + a_4)^2 + (b_4 + b_3 t + b_1 x + b_2 y)^2 \\ &\quad + \sin(c_1 x + c_2 y + c_3 t), \end{aligned} \quad (7.1)$$

and insert the trial assumption value of the $f(x, y, t)$ with equation (1.3) into equation (1.2), and make all the coefficients of dissimilar powers of t, x, y, \sin, \cos and their product equal to zero, we get a system of polynomial equations. Solving the obtained equations, we can evaluate the unknown value of parameters a_i, b_i, c_i, d_i ($i = 1, 2, 3, 4$) as follows



$$\begin{aligned}
 a_3 &= -\frac{a_1^2\gamma_1 + a_1a_2\gamma_2 + a_2^2\gamma_3}{a_1}, \\
 b_2 &= \frac{a_2b_1}{a_1}, \quad b_3 = -\frac{b_1(a_1^2\gamma_1 + a_1a_2\gamma_2 + a_2^2\gamma_3)}{a_1^2}, \\
 c_2 &= \frac{a_2c_1}{a_1}, \quad c_3 = -\frac{c_1(a_1^2\gamma_1 + a_1a_2\gamma_2 + a_2^2\gamma_3)}{a_1^2}, \quad \alpha = -\frac{a_2\beta}{a_1}.
 \end{aligned} \tag{7.2}$$

Plugging equation (7.2) with equation (7.1) into equation (1.3), we get

$$u = \frac{2\left(2a_1(a_4 + a_1x + a_2y - g(t)) + 2b_1\left(b_4 + b_1x + \frac{a_2b_1y}{a_1} - b_1g(t)\right) + c_1 \cos\left(c_1\left(x + \frac{a_2y}{a_1} - g(t)\right)\right)\right)}{d_1 + (a_4 + a_1x + a_2y - g(t))^2 + \left(b_4 + b_1x + \frac{a_2b_1y}{a_1} - b_1g(t)\right)^2 + \sin\left(c_1\left(x + \frac{a_2y}{a_1} - g(t)\right)\right)}, \tag{7.3}$$

where $g(t) = \frac{(a_1^2\gamma_1 + a_1a_2\gamma_2 + a_2^2\gamma_3)}{a_1^2}t$. Equation (7.3) is a periodic wave solution as seen in figure 13.

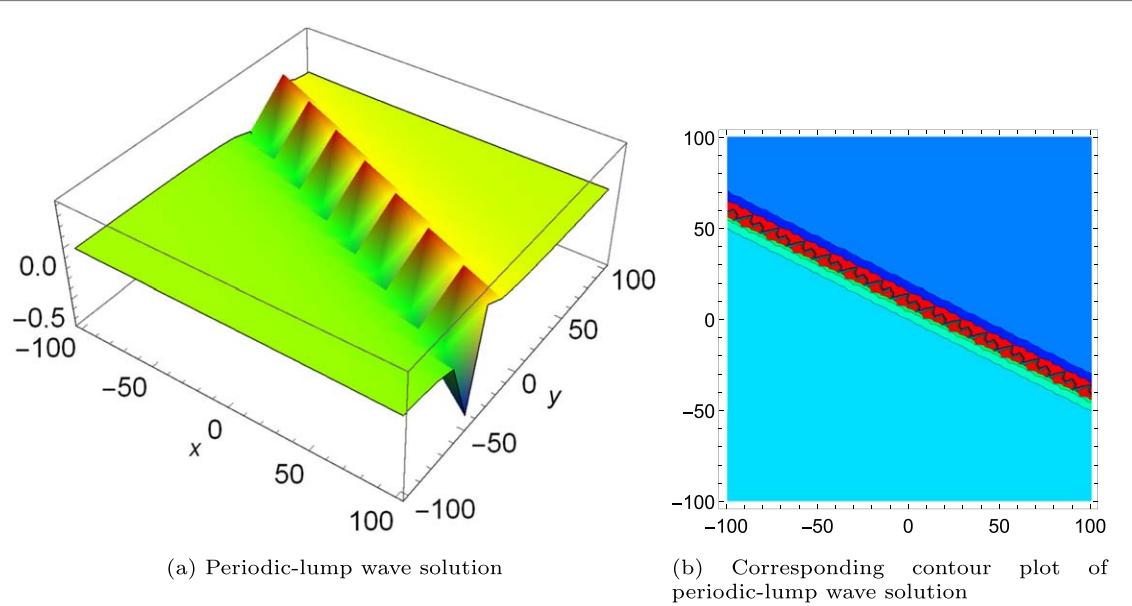


Figure 14. 3D surface and contour plot of equation (7.6) plotted when $t = 2, a_1 = 3, a_2 = 1, a_4 = 1, b_1 = 1, b_2 = 2, b_4 = 4, c_1 = 1, d_1 = 1, \gamma_1 = 2, \gamma_2 = 2, \gamma_3 = 1$.

If the values of a_i, b_i, c_i, d_i ; ($i = 1, 2, 3, 4$) are as follows

$$\begin{aligned} a_2 &= \frac{a_1 b_2}{b_1}, \quad a_3 = -\frac{a_1(b_1^2 \gamma_1 + b_1 b_2 \gamma_2 + b_2^2 \gamma_3)}{b_1^2}, \\ b_3 &= -\frac{b_1^2 \gamma_1 + b_1 b_2 \gamma_2 + b_2^2 \gamma_3}{b_1}, \\ c_2 &= \frac{b_2 c_1}{b_1}, \quad c_3 = -\frac{c_1(b_1^2 \gamma_1 + b_1 b_2 \gamma_2 + b_2^2 \gamma_3)}{b_1^2}, \quad \beta = -\frac{b_1 \alpha}{b_2} \end{aligned} \quad (7.4)$$

and use the case of the solution with equation (7.3) into equation (1.3), we have

$$u = \frac{2 \left(2a_1 \left(a_1 x + \frac{a_1 b_2 y}{b_1} - a_1 h(t) + a_4 \right) + 2b_1 \left(b_1 x + b_2 y - \frac{b_1}{a_1} h(t) + b_4 \right) + c_1 \cos \left(c_1 \left(x + \frac{b_2 y}{b_1} - \frac{1}{a_1} h(t) \right) \right) \right)}{d_1 + \left(a_1 x + \frac{a_1 b_2 y}{b_1} - a_1 h(t) + a_4 \right)^2 + \left(b_1 x + b_2 y - \frac{b_1}{a_1} h(t) + b_4 \right)^2 + \sin \left(c_1 \left(x + \frac{b_2 y}{b_1} - \frac{1}{a_1} h(t) \right) \right)} \quad (7.5)$$

This is a periodic wave solution as shown in figure 14.

When the values of a_i, b_i, c_i, d_i ; ($i = 1, 2, 3, 4$) are as follows

$$\begin{aligned} a_2 &= -\frac{a_1(b_1 \gamma_2 + \sqrt{b_1^2(\gamma_2^2 - 4\gamma_1 \gamma_3)})}{2b_1 \gamma_3}, \quad a_3 = 0, \\ b_2 &= -\frac{b_1 \gamma_2 + \sqrt{b_1^2(\gamma_2^2 - 4\gamma_1 \gamma_3)}}{2\gamma_3}, \quad b_3 = 0, \\ c_2 &= -\frac{c_1(b_1 \gamma_2 + \sqrt{b_1^2(\gamma_2^2 - 4\gamma_1 \gamma_3)})}{2b_1 \gamma_3}, \quad c_3 = 0, \\ \beta &= \frac{b_1 \gamma_2 \alpha - \alpha \sqrt{b_1^2(\gamma_2^2 - 4\gamma_1 \gamma_3)}}{2b_1 \gamma_1}, \end{aligned} \quad (7.6)$$

and insert the case of the solution with equation (7.1) into equation (1.3), we get

$$u = \frac{2 \left(2b_1(b_4 + b_1 x - k(y)) + 2a_1 \left(a_4 + a_1 x - \frac{a_1}{b_1} k(y) \right) + c_1 \cos \left(c_1 x - \frac{c_1}{b_1} k(y) \right) \right)}{d_1 + (b_4 + b_1 x - k(y))^2 + \left(a_4 + a_1 x - \frac{a_1}{b_1} k(y) \right)^2 + \sin \left(c_1 x - \frac{c_1}{b_1} k(y) \right)}, \quad (7.7)$$

where $k(y) = \frac{b_1 \gamma_2 + \sqrt{b_1^2(\gamma_2^2 - 4\gamma_1 \gamma_3)}}{2\gamma_3} y$. Equation (7.7) represents a periodic wave solution as shown in figure 15.

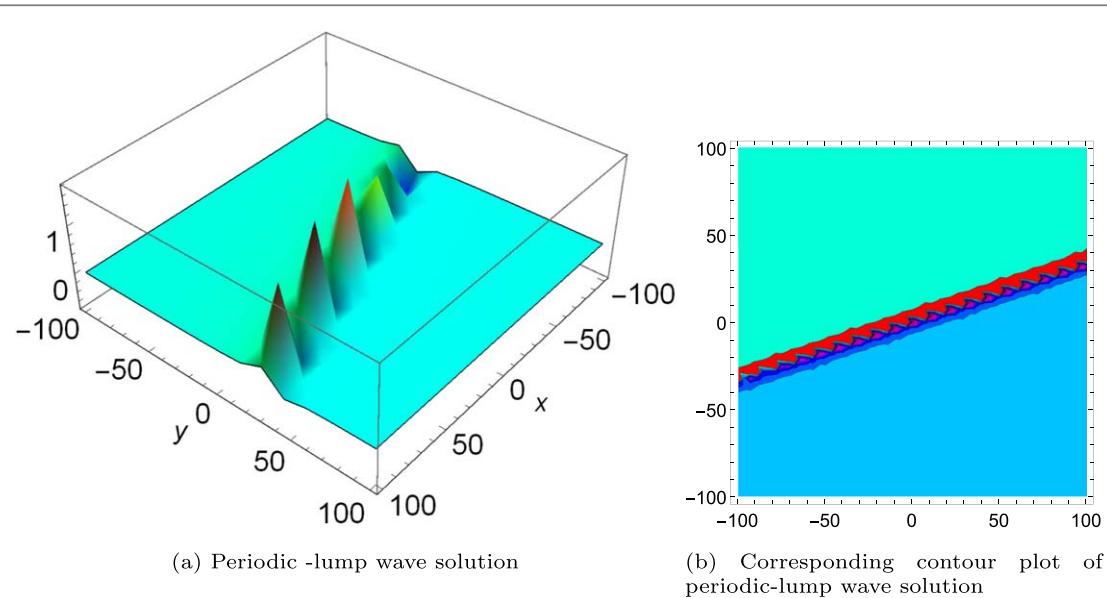


Figure 15. 3D surface and contour plot of equation (7.7) plotted when $t = 2, a_1 = 2, a_2 = 1, a_4 = 1, b_1 = 1, b_2 = 2, b_4 = 4, c_1 = 1, d_1 = 1, \gamma_1 = 0.1, \gamma_2 = 3, \gamma_3 = 1$.

8. Conclusions

The dynamical features of a generalized Bogoyavlensky-Konopelchenko equation in (2+1)-dimensions were explored, based on its Hirota bilinear form. N-soliton waves, M-lump solutions, lump waves, periodic lump waves, mixed kink-lump solitons, and interactions between lump solutions and 1-soliton waves were particularly presented. The long-wave limiting process was performed to construct M-lump solutions and symbolic computations were utilized to generate positive quadratic solutions and their interaction solutions with kink waves and solitary waves. Abundant 3d-plots and contour plots at different times were made and analyzed to explore dynamical and physical phenomena of the presented solutions.

Conflict of interest

The authors declare that they have no conflict of interest.

ORCID iDs

Hajar F Ismael <https://orcid.org/0000-0001-6189-9329>
 Wen-Xiu Ma <https://orcid.org/0000-0001-5309-1493>

References

- [1] Chen S T and Ma W X 2018 Lump solutions to a generalized Bogoyavlensky-Konopelchenko equation *Frontiers of Mathematics in China* **13** 525–34
- [2] Chen S T and Ma W X 2019 Exact solutions to a generalized Bogoyavlensky-Konopelchenko equation via maple symbolic computations *Complexity* **2019** 8787460
- [3] Ince E L 1956 *Ordinary Differential Equations*, (New York: Dover Publ. Inc)
- [4] Evans L C and Gangbo W 1999 *Differential equations methods for the Monge-Kantorovich mass transfer problem (Memoirs of the American Mathematical Society)* 137 (Providence, Rhode Island: American Mathematical Soc) 653
- [5] Novikov S, Manakov S V, Pitaevskii L P and Zakharov V E 1984 *Theory of Solitons: The Inverse Scattering Method* (New York: Consultants Bureau)
- [6] Ablowitz M J and Clarkson P A 1991 *Solitons, Nonlinear Evolution Equations and Inverse Scattering* 149 (Cambridge: Cambridge University Press)
- [7] Zhang Y, Cheng Y and He J 2017 Riemann-Hilbert method and N-soliton for two-component Gerdjikov-Ivanov equation *J. Nonlinear Math. Phys.* **24** 210–23
- [8] Ali K K, Yilmazer R, Yokus A and Bulut H 2020 Analytical solutions for the (3+1)-dimensional nonlinear extended quantum Zakharov-Kuznetsov equation in plasma physics *Physica A* **548** 124327
- [9] Ali K K, Dutta H, Yilmazer R and Noeighdam S 2020 On the new wave behaviors of the Gilson-Pickering equation *Frontiers in Physics* **8** 54

[10] Wang C and Fang H 2020 Various kinds of high-order solitons to the Bogoyavlenskii-Kadomtsev-Petviashvili equation *Phys. Scr.* **95** 035205

[11] Gazizov R K and Ibragimov N H 1998 Lie symmetry analysis of differential equations in finance *Nonlinear Dyn.* **17** 387–407

[12] Liu H, Li J and Liu L 2010 Lie symmetry analysis, optimal systems and exact solutions to the fifth-order KdV types of equations *J. Math. Anal. Appl.* **368** 551–8

[13] Ismael H F, Bulut H and Baskonus H M 2020 Optical soliton solutions to the Fokas-Lenells equation via sine-Gordon expansion method and $(m + (G'/G))$ -expansion method *Pramana-Journal of Physics* **94** 35

[14] Gao W, Ismael H F, Husien A M, Bulut H and Baskonus H M 2020 Optical soliton solutions of the cubic-quartic nonlinear Schrödinger and resonant nonlinear Schrödinger equation with the parabolic law *Applied Sciences* **10** 219

[15] Ma W X and Lee J H 2009 A transformed rational function method and exact solutions to the 3+1 dimensional Jimbo-Miwa equation *Chaos, Solitons Fractals* **42** 1356–63

[16] Ma W X, Huang T and Zhang Y 2010 A multiple exp-function method for nonlinear differential equations and its application *Phys. Scr.* **82** 065003

[17] Wan P, Manafian J, Ismael H F and Mohammed S A 2020 Investigating One-, Two-, and Triple-Wave Solutions via Multiple Exp-Function Method Arising in Engineering Sciences *Advances in Mathematical Physics* **2020**

[18] Geng X and Tam H W 1999 Darboux transformation and soliton solutions for generalized nonlinear Schrödinger equations *J. Phys. Soc. Jpn.* **68** 1508–12

[19] Zha Q L and Li Z B 2008 Darboux transformation and multi-solitons for complex mKdV equation *Chin. Phys. Lett.* **25** 8

[20] Gao W, Ismael H F, Bulut H and Baskonus H M 2020 Instability modulation for the (2+1)-dimension paraxial wave equation and its new optical soliton solutions in Kerr media *Phys. Scr.* **95** 035207

[21] Fokas A S and Zakharov V E 1992 The dressing method and nonlocal Riemann-Hilbert problems *Journal of Nonlinear Science* **2** 109–34

[22] Ismael H F and Bulut H 2020 On the wave solutions of (2, 1)-dimensional time-fractional zoomeron equation *Konuralp Journal of Mathematics* **8** 410–8

[23] Abdulkareem H H, Ismael H F, Panakhov E S and Bulut H 2019 Some novel solutions of the coupled whitham-broer-kaup equations *4th International Conference on Computational Mathematics and Engineering Sciences* (Switzerland AG: Springer Nature) 200–8

[24] Ismael H F and Bulut H 2019 On the solitary wave solutions to the (2+1)-dimensional davey-stewartson equations *4th International Conference on Computational Mathematics and Engineering Sciences* (Switzerland AG: Springer Nature) 156–65

[25] Ali K K, Yilmazer R, Baskonus H M and Bulut H 2020 Modulation instability analysis and analytical solutions to the system of equations for the ion sound and Langmuir waves *Phys. Scr.* **95** 065602

[26] Gao W, Ismael H F, Mohammed S A, Baskonus H M and Bulut H 2019 Complex and real optical soliton properties of the paraxial nonlinear Schrödinger equation in Kerr media with M-fractional *Frontiers in Physics* **7** 197

[27] Dutta H, Günerhan H, Ali K K and Yilmazer R 2020 Exact soliton solutions to the cubic-quartic nonlinear schrödinger equation with conformable derivative *Frontiers in Physics* **8** 62

[28] Raza N, Seadawy A R, Jhangeer A, Butt A R and Arshed S 2020 Dynamical behavior of micro-structured solids with conformable time fractional strain wave equation *Phys. Lett. A* **384** 126683

[29] Barman H K, Seadawy A R, Akbar M A and Baleanu D 2020 Competent closed form soliton solutions to the Riemann wave equation and the Novikov-Veselov equation *Results in Physics* **17** 103131

[30] Ismael H F and Bulut H 2020 Multi soliton solutions, M-lump waves and mixed soliton-lump solutions to the Sawada-Kotera equation in (2+1)-dimensions *Chin. J. Phys.* (<https://doi.org/10.1016/j.cjph.2020.11.016>)

[31] Wang C 2016 Spatiotemporal deformation of lump solution to (2+1)-dimensional KdV equation *Nonlinear Dyn.* **84** 697–702

[32] Ismael H F, Bulut H, Park C and Osman M S 2020 M-lump, N-soliton solutions, and the collision phenomena for the (2+1)-dimensional Date-Jimbo-Kashiwara-Miwa equation *Results in Physics* **19** 103329

[33] Wang C and Fang H 2020 General high-order localized waves to the Bogoyavlenskii-Kadomtsev-Petviashvili equation *Nonlinear Dyn.* **1–17**

[34] Seadawy A R, Arshad M and Lu D 2017 Stability analysis of new exact traveling-wave solutions of new coupled KdV and new coupled Zakharov-Kuznetsov systems *The European Physical Journal Plus* **132** 1–19

[35] Bogoyavlenskii O I 1990 Overturning solitons in new two-dimensional integrable equations *Mathematics of the USSR-Izvestiya* **34** 245

[36] Konopelchenko B G 1993 *Solitons in Multidimensions: Inverse Spectral Transform Method* (Singapore: World Scientific)

[37] Ma W X 2013 Bilinear equations, Bell polynomials and linear superposition principle *Journal of Physics: Conference Series* **411** 012021

[38] Ma W X 2015 Lump solutions to the Kadomtsev-Petviashvili equation *Phys. Lett. A* **379** 1975–8

[39] Wang C, Dai Z and Liu C 2016 Interaction between kink solitary wave and rogue wave for (2+1)-dimensional burgers equation *Mediterranean Journal of Mathematics* **13** 1087–98

[40] Ma W X and Zhou Y 2018 Lump solutions to nonlinear partial differential equations via Hirota bilinear forms *J. Differ. Equ.* **264** 2633–59

[41] Ma W X 2019 Lump and interaction solutions to linear PDEs in 2+1 dimensions via symbolic computation *Mod. Phys. Lett. B* **33** 1950457