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Abstract
We study dynamics of solitonwaves, lump solutions and interaction solutions to a (2+1)-dimensional
generalized Bogoyavlensky-Konopelchenko equation, which possesses aHirota bilinear form.Multi-
soliton solutions, one-M-lump solutions, and physical interactions between solitons and 1-M-lump
solutions are presented. By using a positive quadratic function, lump solutions and their interaction
solutionswith kink and solitarywaves are also generated. To showdynamical properties and physical
behaviors of the resulting solutions, 3D-plots and contour plots at different times aremade and
analyzed.

1. Introduction

One of the fundamental problems in the theory of differential equations is the Cauchy problem. The problem
requires tofind a solution to a differential equation that satisfieswhat is known as the initial values. As classified
[1, 2], Laplace’smethod [3] is used to solve linear ordinary differential equations and the Fourier transform
method [4] tofind the solution of linear partial differential equations, and in themodern soliton theory, the
isomonodromic transformmethod and the inverse scattering transformmethod [5, 6] are systematicalmethods
that have been developed tofind solutions of nonlinear ordinary and partial differential equations, respectively.

Only the simplest differential equations, usually constant-coefficient and linear, can be explicitly resolved. It
is extremely hard to pinpoint exact solutions for nonlinear differential equations. For this purpose, recently
some analytic approaches have been reported to construct exact solutions to partial differential equations, for

example, the RiemannHilbertmethod [7], the ( )¢G

1 -expansionmethod [8, 9], the Taylor expansion approach

[10], the Lie symmetry analysis [11, 12], the ( )+ ¢m G

G
-expansionmethod [13, 14], a transformed rational

functionmethod [15], themultiple exp-functionmethod [16, 17], Darboux transformationmethod [18, 19], the
modified auxiliary expansionmethod [20], the dressingmethod [21], the Bernoulli sub-equation function
method [22–25], the extended sinh-Gordonmethod [26, 27], the ( )¢G

G2 -expansionmethod [28], the generalized

Kudryashovmethod [29], theHirota bilinearmethod [30–32], theHirota bilinear system and Pfaffianmethod
[33], and themodified extended direct algebraicmethod [34].

The (2+1)-dimensional Bogoyavlensky-Konopelchenko (BK) equation reads

( )
( ) ( )

a
b

+ +
+ + + =

u u u u
u u u u u

6
3 3 0, 1.1

tx x xx xxxx

xxxy x xy xx y

whichwas introduced as a (2+1)-dimensional version of theKdV equation in [35] and used to describe the
interaction of a longwave propagating along the x-axis and aRiemannwave propagating along the y-axis [36]. In
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this paper, we study the following (2+1)-dimensional generalized Bogoyavlensky-Konopelchenko (gBK)
equation

( ) ( )
( )

a b
g g g
+ + + + +

+ + + =
u u u u u u u u u

u u u

6 3 3

0, 1.2
tx x xx xxxx xxxy x xy xx y

xx xy yy1 2 3

which is a generalization of equation (1.1). The earlier paper [1] has studied lower-order lumps to the suggested
equation. In [2], a few classes of exact and explicit solutions have been reported fromdifferent ansätze on
solution forms, for example, travelingwave, 2-wave solutions, and polynomial solutions. To investigate
equation (1.2), we use the link between u and f:

( ( )) ( )=u f x y t2 ln , , , 1.3x

where

( )( )= + + +f 1 e , 1.4k x l y w t
1

1 1 1

( )= + + +W W W +W +f e e e1 , 1.5A
2

1 2 1 2 12

( )
= + + + + +

+ +

W W W W +W + W +W +

W +W + W +W +W +

f e e e e e

e e

1

, 1.6

A A

A A
3

1 2 3 1 2 12 1 3 13

2 3 23 1 2 3 123

( )

= + + + + + + + +

+ + + + +
+

W W W W W +W + W +W + W +W + W +W +

W +W + W +W + W +W +W + W +W +W + W +W +W +

W +W +W +W +

f e e e e e e e e

e e e e e

e

1

. 1.7

A A A A

A A A A A

A

4
1 2 3 4 1 2 12 1 3 13 1 4 14 2 3 23

2 4 24 3 4 34 1 2 3 123 1 2 4 124 2 3 4 234

1 2 3 4 1234

Insert equation (1.3) into equation (1.2), we get

( ) ( )

( ( ) ( )) ( )

g g g b a g g b

g b a b a

+ + + + + - - +

- + - + + + =

f f f f f f f f f f f

f f f f f f f f f

2 2 2

2 3 3 4 0. 1.8

yy xt xy xx xxxy xxxx y y x xxx

t x x xx xy xx x xxy xxx

3 2 1 3
2

2

1
2

The logarithmic variable transformation (1.3) is also a characteristic one in establishing Bell polynomial theories
of soliton equations [37]. Equation (1.8) can be rewritten as aHirota bilinear form as follows

( ) ( )a b g g g+ + + + + =D D D D D D D D D f f. 0. 1.9x t x x y x x y y
4 3

1
2

2 3
2

It’s obvious that if f= f (x, y, t) in equations (1.4)–(1.7)are solutions of equation (1.5), then ( ( ))=u f x y t2 ln , , x

will solve equation (1.2).

2. Complex one-, two, and three-soliton solutions

In this section, we construct special complex one-, two-, and three-soliton solutions to the introduced equation.
Tofind complex soliton solutions, we require

( ) ( )a b g g g= - + + + + =w k k l l l m, 1, 2, 3 2.1m m m m m m
2 2

1 2
2

3

Todetermine special complex one-, two-, three-soliton solutions, we take

( )( )= + + +f i e , 2.2k x l y w t1 1 1

( )= + + +W W W +Wf e e D ei , 2.3121 2 1 2

( )= + + + + + + +W W W W +W W +W W +W W +W +Wf e e e D e D e D e D ei , 2.412 13 23 1231 2 3 1 2 1 3 2 3 1 2 3

where

( ) ( ) ( )aW = + + + = ¼k x l y w t m N1, 2, , 2.5m m m m m

( ) ( )( ( ) ( ) ( ) )
( )( ( ) ( ) ( ) ) ( )

( )g a b b
a b b g

=
- - - - + + - +
+ + + + + + - -

D
i l l i k k k k k l l k l l

k k k k k l l k l l l l

3 2 2

3 2 2
, 2.6mn

m n m n m n m m n m n

m n m n m m n n m n m n

2
3 2

2
3

and

( )=D D D D . 2.7123 12 13 23

Plugging equation (2.2) into equation (1.3), we get

( )
( ( ) )

( ( ) )
=

+

a b g g g a

a b g g g a

+ - + + + + +

+ - + + + + +
u

k2 e

i e
. 2.8

k x l y k k l l l t

k x l y k k l l l t

1
1 1 1

2
1

2
1 1 1 2 1

2
3 0

1 1 1
2

1
2

1 1 1 2 1
2

3 0

This is a complex 1-soliton solution as shown infigure 1.
By inserting equation (2.3) into equation (1.3), we have a complex two-solitonwave solution to the

considered equation (see figure 2)

2
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( ( ) ) ( )=
+ + +
+ + +

W W W +W

W W W +W
u

k k D k k

D

2 e e e

i e e e
. 2.91 2 12 1 2

12

1 2 1 2

1 2 1 2

Substituting equation (2.4) into equation (1.3), we get

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

( ) ( )
( ) ( )

( )=

+ + + + + +
+ + + + +

+ + + + + + +

q q q q q q q

q q q q q

q q q q q q q q q q q q

+ +

+ + +

+ + + + +
u

k k D k k k D k k

D k k D D D k k k

D D D D D D

2
e e e e e

e e

i e e e e e e e
. 2.10

1 2 12 1 2 3 13 1 3

23 2 3 12 13 23 1 2 3

12 13 23 12 13 23

1 2 1 2 3 1 2

2 3 1 2 3

1 2 1 2 3 1 3 2 3 1 2 3

This is a complex 3-soliton solution as seen infigure 3.

3.M-lump solutions

Lump solutions are analytical rational function solutions located in all directions in space. In this portion of the
paper, we use a long-wave limitmethod to construct a rational solution to a gBK equation. consider
equation (1.5), where

Figure 1. 3D surface of 1-soliton solution plotted under equation (2.6)when t = 2, l1 = 1, k1 = 1,α1 = 0,α = 1,β = 1, γ1 = 1,
γ2 = 1, γ3 = 1.

Figure 2. 3D surface of 2-soliton solution plotted under equation (2.7)when t = 2, l1 = − 0.1, l2 = 1, k1 = 0.5, k2 = 1,α1 = 0,
α2 = 0,α = 2,β = 1, γ1 = 1, γ2 = 1, γ3 = 1.

3
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( )( ( ) ( ) ( ) ) ( )
( )( ( ) ( ) ( ) ) ( )

( )a b b g
a b b g

=
- - + + - + - -
+ + + + + + - -

e
k k k k k l l k l l l l

k k k k k l l k l l l l

3 2 2

3 2 2
. 3.1A m n m n m m n n m n m n

m n m n m m n n m n m n

2
3

2
3

mn

HereΩ1,Ω2 are given by equation (2.9). Using the long-wave limitmethod by taking the limit, km→ 0,
( )= O 1k

k
1

2
, and ( )= - =ae m1 1, 2m we get

( )= F F +f B , 3.22 1 2 12

where

( )F = + +x l y w t, 3.3i i i

( ) ( )g g g= - + +w l l , 3.4i m m1 2
2

3

( ( ) )
( )

( ) ( )
a b

g
=

+ +

-
<B

l l

l l
i j

6 2
, 3.5ij

i j

i j
2

3

⎜ ⎟⎛
⎝

⎞
⎠ ( )= =+l l i

N
, 1, 2 ,..,

2
. 3.6i iN

2
*

Plugging equation (3.1)with equations (3.3)–(3.7) into equation (3.2) then into equation (1.3), we can construct
a one-M-lump solution (see figure 4.Here, l1= a+ ib, l2= c+ id, l3= a+ ib and l4= c− id.

⎛
⎝⎜

⎞
⎠⎟

( )

( ) ( )

( )
( )

( ( ) )
( ( )( ( )) )( ( )( ( )) )

( )

( )

a b
g

g g g g

g g g g g g g g

=
¶
¶

¢ + ¢ + ¢ -
+

=
¢ + ¢

¢ + ¢ + ¢ -

=
- + - - +

- - - + - - - - + + + - -

a b
g

a b
g

+

+

3.7

u
x

x ay b y
a

b

x ay

x ay b y

x t a y t a t b t

x t a b t a b y x t a b t a b y

2 log
3

4
,

4

i i i i
,

a

b

a

b

2 2 2
2

3

2 2 2 3

1 2
2

3
2

3

1 2 3 3 1 2 3 3
3

2
3

2
3

where

( )
g g
g g

¢ = - -
¢ = + -

y

x x b t t

y 2a t t,

. 3.8

3 2

2
3 1

The rational solution (3.8) is a permanent lump solution that decays as ( )O ,
x y

1 1
2 2 for ∣ ∣ ∣ ∣  ¥x y, andmoves

with the velocity

( )
g g

g g
= -
= -

v a

v b

2 ,

. 3.9
x

y

3 2

1
2

3

To study and reveal a 2-M-lump solution to a gBK equation, consider equation (1.7), ( )= - =ae m1 1, 2, 3, 4m

and taking a limit km→ 0, we get

Figure 3. 3D surface of 3-soliton solution plotted under equation (2.8)when t = 2, l1 = 1, l2 = − 1, l3 = 4, k1 = − 1, k2 = 1, k3 = 0.3,
α1 = 0,α2 = − 2,α3 = 5,α = − 1,β = − 1, γ1 = 1, γ2 = 1, γ3 = 1.

4

Phys. Scr. 96 (2021) 035225 HF Ismael et al



( )
= F F F F + F F + F F + F F + F F

+ F F + F F + + +
f B B B B

B B B B B B B B . 3.10
4 1 2 3 4 12 3 4 13 2 4 14 2 3 23 1 4

24 1 3 34 1 2 12 34 13 24 14 23

HereΦ1,Φ2,Φ3,Φ4,wi, ( )<B i jij , and +l iN
2

are given by equations (3.4)–(3.7), respectively. Plugging
equation (3.10) into equation (1.3), as a result, we can obtain a double-M-lump solution to the suggested
equation as shown infigure 5.

4. Physical interactions betweenM-lump solution and solitonwave

In this section, we study the interaction physical phenomena between the 1-M-lump solution and the one-
soliton solution. For this purpose, we consider equation (1.6), and take the limit ( ) =k m0, 1, 2m and

( )= O 1k

k
1

2
. As a result, f3 could be rewritten as follows

( )= F F + + L Wf B e , 4.13 1 2 12 1 3

Figure 4. 3D surface and contour plot of equation (3.8) plottedwhen t = 2, a = 1, b = 1, l1 = 1, l2 = 3,α = 1,β = 1, γ1 = 1, γ2 = 1,
γ3 = − 1.

Figure 5. 3D surface and contour plot are drawnwhen t = 10, a = 1/2, b = 1, c = − 1/2, d = 1, l1 = 0.1, l2 = 1, l3 = 2,α = 1,β = 1,
γ1 = 1, γ2 = 1, γ3 = 1.

5
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where

( )L = F F + + F + F +B C C C C . 4.21 1 2 12 23 1 13 2 13 23

HereΩ3 is defined in equation (2.5), ( )F =i 1, 2i are defined in equation (3.4), andB12 is given in equation (3.6).
The constantsC13,C23 are stated as follows

( ) ( )( )

( )
( )

( )
( )

( )

a
b g

=- + +
- -

=-
-

+ -
= -

-
+ -

l l
l l l l

k

C
l l

k l l l
C

l l

k l l l

2
,

12

3 4
,

12

3 4
, 4.3

1 2
1 3 3 2 3

3
2

13
2 3

3 1 2 3
23

1 3

3 1 2 3

or

( )( ) ( ( ) )
( )

( ( ) )
( )

( )

a
g

b
b g

b g
b g

b g

=
- -

- = -
+ -

- + -

=-
+ -

- + -

l l l l

k
l C

k l l

k k l l l

C
k l l

k k l l l

,
6 2

3 4
,

6 2

3 4
. 4.4

1 3 3 2 3

3
2 3 13

3
2

3 2 3

3
3

3 1 2 3 3

23
3

2
3 1 3

3
3

3 1 2 3 3

Substituting equations (4.1), (4.2)and (4.3)into equation (1.3), we get an equation that presents a collision
between the 1-M-lump solution and the 1-soliton solution as seen infigure 6.

We can also choose

( )( )

( ( )( ) )
( ( ) )

( ( )( ) )
( ( ) )

( )

b
g a

a g
a g g
a g

a g g

=
- - -

=-
+ - +

+ + -

=-
+ - +

- + +

l l l l k

k l

C
k l l l l

k k l l l l l

C
k l l l l

k k l l l l

,

6

2 3
,

6

3 2
, 4.5

1 3 3 2 3 3
2

3
2

3

13
3

2
2 3 1 3 3

3 3
2

1 2 3 2 3 3 3

23
3

2
1 3 2 3 3

3 3
2

3
2

3 1 2 3 3

or

( ( )( ) )
( )

( )
( )

( )
( )

( )b
a g

= -
+ - -

+
= -

-
+ -

= -
-

+ -
k l l l l

k l l
C

l l

k l l l
C

l l

k l l l

2
,

12

3 4
,

12

3 4
. 4.63

2
1 3 2 3 3

3
2

1 2
13

2 3

3 1 2 3
23

1 3

3 1 2 3

Putting equations (4.1), (4.2)and (4.5)into equation (1.3), we can construct other solutions that describe the
interaction between the one-lump solution and the 1-solitonwave solution as shown infigure 7.

5.Quadratic solutions

In this portion of the paper, we investigate single-lump solution via a quadratic function. In [38–41], quadratic
function solutions and symbolic computation have been used to construct different kinds of exact solutions to

Figure 6. 3D surface of interaction between a one-lump solution and solitonwave solution drawnwhen t = 5, a = 1/2, b = 1, l3 = 1,
k3 = 2,α1 = 0,α2 = 1,β = 1, γ1 = 1, γ2 = 1, γ3 = 1.
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many classes of PDEs.Now,we define the solution of the equation (1.4) as follows

( ) ( ) ( ) ( )= + + + + + + + +f x y t a x a y a t a b x b y b t b c, , , 5.11 2 3 4
2

1 2 3 4
2

1

where ai, bi are constants to be determined later. Plugging equation (4.1) into equation (1.4), as a result, we gain a
polynomial. Setting the coefficients of the polynomial with the same powers of the independent variables to zero,
one can obtain the following cases of solutions:

Case 1:Whenwe have

( ) ( )

( ) ( ( ) )

( ) ( ( ))
( )

( )

g g g g g g

g g g g g g

a b a b
g

=-
+ + + - + +

+

=-
+ + + + + -

+

=-
+ + + +

-

a
a a b a a a a b a b b b

a b

b
a b b a a b b b b b b a

a b

c
a b a a a b b b

a b a b

2
,

2 3
,

3
5.2

3
1
3

1 1 1
2

1 1
2

2 2 1 2
2

2
2

3 2 1 1 2 2 3

1
2

1
2

3
1
2

1 1 2 2 1 2 2 3 1 1
2

1 1 2 2 2
2

2
2

1
2

1
2

1
1
2

1
2 2

1
2

1 2 1 1 2

2 1 1 2
2

3

and substitute equation (5.2) into equation (5.1), then into equation (1.3), we get

( ( ) ( ))
( ) ( )

( )=
+ + + + + + +

+ + + + + + + +
u

a a x a y a t a b b x b y b t b

c a x a y a t a b x b y b t b

2 2 2
. 5.31 1 2 3 4 1 1 2 3 4

1 1 2 3 4
2

1 2 3 4
2

This is a lump solution as present infigure 8 and reported in [1] .
Case 2:Whenwe have

( )

( ) ( ( ) )
( )

( )

g
g g

g
g g

a b
g

= =
- -

- -

=
- -

- - = -
+ +
-

a b a
b a a b

b
b a

b
a a b b

b
b b c

b b a b

a b

,
2 3

2
,

2

2
,

12 2
5.4

1 1 3
2

2
2

2
2 2

1
1 1 2 2

3
2

2
2 2 2

2
3

1
1 1 2 2 1

1
3

1 2 2

2 2
2

3

and plug them into equation (5.1), then into equation (1.3), one can obtain

( ( ) ( ) )

( ) ( )
( )

( ( ) )
( )

=
+ + + + + +

+ + + + + + + - a b
g

+ +
-

u
b b x a b y a b t a b

a a t b x a y b b t b x b y

4 2
. 5.5

b b a b

a b

1 1 2 2 3 3 4 4

4 3 1 2
2

4 3 1 2
2 12 21

3
1 2 2

2 2
2

3

equation (5.5) is a lump solution as shown infigure 9.

Figure 7. 3D surface of interaction between a one-lump solution and solitonwave solution drawnwhen t = 5, a = 1/2, b = 1, l3 = 1,
k3 = 1,α1 = 0,α2 = 1,α = 1, γ1 = 1, γ2 = 1, γ3 = 1.
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Case 3: In case

( )

( )
( )

g g g g g

g

g g g g g
g

=-
+ + -

= =

=
+ - -

a
a i a a a a

b a b a

b
a a a a a

4 4

2
, i , i ,

4 4 i

2
, 5.6

2
1 2 1 3 3 1 1 1 2

2

3
1 1 3 3

2
1 3 3 1 1 3 1 2

2
1 2

3

3

and using them into equation (5.1), then into equation (1.3), as a result equation (1.3) has the solution

( )
( ( ) ) ( )( ) ( )

( )g
g g g f

=
+

+ + + + - + - + -
u

a a b

a b c a a a b t a a b y x b a y

4 i

2 2i i 2 i
, 5.71 4 4 3

4
2

4
2

1 3 4 3 4 3 1 4 4 2 3 4 4

where ( )f g g g g= + - >a a a a4 4 01 3 3 1 1 3 1 2
2 . The above equation is a complex single-soliton solution to a gBK

equation as seen infigure 10.

Figure 8. 3D surface and contour plot of equation (5.3) plottedwhen t = 2, a1 = 0.01, a2 = 1, a3 = 0.1, a4 = 0.5, b1 = 0.5, b2 = 0.2,
b4 = 0.2, c1 = 1, γ1 = 1, γ2 = 1, γ3 = 1,α = 0.5,β = 1.

Figure 9. 3D surface and contour plot of equation (5.5) plottedwhen t = 2, a1 = 0.01, a2 = 1, a3 = 0.1, a4 = 0.5, b1 = 0.5, b2 = 0.2,
b4 = 0.2, c1 = 1, γ1 = 1, γ2 = 1, γ3 = 1,α = 0.5,β = 1.
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6. Interactions between single-lumpwave and solitarywave

To study the lumpwaves and their interactions with the solitary waves, we let the solution of equation (1.2),
according to equation (1.3), have the form

( ) ( )
( ) ( )

= + + + +
+ + + + +

+ +f x y t a x a y a t a

b x b y b t b d

, , e

. 6.1

c x c y c t
1 2 3 4

2

1 2 3 4
2

1

1 2 3

Plugging equation (6.1)with equation (1.3) into equation (1.2), andmaking all the coefficients of dissimilar
powers of t x y, , , exp and their product equal to zero, we get a systemof polynomial equations. By solving the
obtained system, we obtain the following cases of solutions:

Case 1:When

( )

( ) ( )

g g g g g g

g g g
a

b

= = -
+ +

= -
+ +

= = -
+ +

= -

a
a b

b
a

a b b b b

b
b

b b b b

b

c
b c

b
c

c b b b b

b

b

b

, ,
1

,

1
, , 6.2

2
1 2

1
3

1 1
2

1 1 2 2 2
2

3

1
2 3

1
2

1 2 2 2
2

3

1

2
2 1

3
1 1

2
1 1 2 2 2

2
3

1
2

2

1

andwe use this case with equation (1.3), a collision physical phenomenon between the 1-solitonwave and the
1-lump solution (see figure 11)will equivalently become

Figure 10. 3D surface and contour plot of equation (5.7) plottedwhen t = 2, a1 = − 0.3, a2 = 1, a3 = 0.1, a4 = 0.5, b1 = 0.5,
b2 = 0.2, b4 = 0.2, c1 = 1, γ1 = 2, γ2 = 1, γ3 = 1,α = 1,β = 1.
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( )( )
( )

( )

( ( ) ( )) ( )

( ) ( ( ))

g g g
=

+ + - + - - + + + -

+ + + + - + + + -

+ +

+ +

6.3

u
c b b b x t b y t b t a a a x h t

d a a x h t b b x b y h t

2 e 2 2 2

e
,

c x y c t a b y

b

c x y c t a b y

b

1 1 4 1 1 2 2 2
2

3 1 4 1

1 4 1

2

4 1 2
2

b c
b

b c
b

1
2 1
1 3 1 2

1

1
2 1
1 3 1 2

1

where ( ) ( )= g g g+ +
h t

a b b b b t

b

1 1
2

1 1 2 2 2
2

3

1
2 .

Case 2:When

( )

( ) ( )

g g g

g g g

g g g
b

a

= = -
+ +

=-
+ +

= =

=-
+ +

= -

a
a b

b
a

a b b b b

b

b
b b b b

b
b

a b

a
c

b c

b

c
c b b b b

b

b

b

, ,

, , ,

, 6.4

2
1 2

1
3

1 1
2

1 1 2 2 2
2

3

1
2

3
1
2

1 1 2 2 2
2

3

1
4

4 1

1
2

2 1

1

3
1 1

2
1 1 2 2 2

2
3

1
2

1

2

and input the case of the solutionwith equation (6.1) into equation (1.3), we get

⎛
⎝⎜

⎞
⎠⎟( ) ( )

( ) ( )
( ) ( )

( ) ( )
( )=

+ + + - + + + -

+ + + + - + + + -

+ +

+ +
u

c a a a x f t b b x b y f t

d a x f t b x b y f t

2 2 2

e
. 6.5

c x y c t a b y

b

a b

a

c x y c t a b y

b

a b

a

1e 1 4 1 1 1 2

1 4 1

2

1 2

2

b c
b

b c
b

1
2 1
1 3 1 2

1

4 1

1

1
2 1
1 3 1 2

1

4 1

1

equation (6.5) describes an interaction between the 1-lump solution and the 1-solitonwave as shown in
figure 12.

7. Periodic-lumpwave solutions

In this portion, we attempt to reveal periodic lump solutions to a gBK equation. Let

( ) ( ) ( )
( ) ( )

= + + + + + + + +
+ + +

f x y t d a x a y a t a b b t b x b y

c x c y c t

, ,

sin , 7.1
1 1 2 3 4

2
4 3 1 2

2

1 2 3

and insert the trial assumption value of the ( )f x y t, , with equation (1.3) into equation (1.2), andmake all the
coefficients of dissimilar powers of t x y, , , sin,cos and their product equal to zero, we get a systemof polynomial
equations. Solving the obtained equations, we can evaluate the unknown value of parameters

( )=a b c d i, , , ; 1, 2, 3, 4i i i 1 as follows

Figure 11. 3D surface and contour plot of equation (6.3) plottedwhen t = 2, a1 = 2, a4 = 1, b1 = 1, b2 = 2, b4 = 2, c1 = 1, d1 = 1,
γ1 = 1, γ2 = 1, γ3 = 1,β = 2.
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( )

( ) ( )

g g g

g g g

g g g
a

b

=-
+ +

= = -
+ +

= = -
+ +

= -

a
a a a a

a

b
a b

a
b

b a a a a

a

c
a c

a
c

c a a a a

a

a

a

,

, ,

, , . 7.2

3
1
2

1 1 2 2 2
2

3

1

2
2 1

1
3

1 1
2

1 1 2 2 2
2

3

1
2

2
2 1

1
3

1 1
2

1 1 2 2 2
2

3

1
2

2

1

Plugging equation (7.2)with equation (7.1) into equation (1.3), we get

⎜ ⎟⎛
⎝

⎞
⎠( )

( )
( ) ( )
( ) ( )

( ( )) ( ) ( )

( ( )) ( ) ( )

( )

=
+ + - + + + - + + -

+ + + - + + + - + + -
u

a a a x a y g t b b b x b g t c c x g t

d a a x a y g t b b x b g t c x g t

2 2 2 cos

sin
,

7.3

a b y

a

a y

a

a b y

a

a y

a

1 4 1 2 1 4 1 1 1 1

1 4 1 2
2

4 1 1

2

1

2 1

1

2

1

2 1

1

2

1

where ( ) ( )= g g g+ +
g t t

a a a a

a

1
2

1 1 2 2 2
2

3

1
2 . Equation (7.3) is a periodic wave solution as seen in figure 13.

Figure 12. 3D surface and contour plot of equation (6.3) plottedwhen t = 2, a1 = 2, a4 = 1, b1 = 1, b2 = 2, b4 = 2, c1 = 1, d1 = 1,
γ1 = 2, γ2 = 1, γ3 = − 1,β = 2.

Figure 13. 3D surface and contour plot of equation (7.3) plottedwhen t = 2, a1 = 3, a2 = 1, a4 = 1, b1 = 1, b2 = 2, b4 = 4, c1 = 1,
d1 = 1, γ1 = 1, γ2 = 2, γ3 = 1.
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If the values of ( )=a b c d i, , , ; 1, 2, 3, 4i i i 1 are as follows

( )

( ) ( )

g g g

g g g

g g g
b

a

= = -
+ +

=-
+ +

= = -
+ +

= -

a
a b

b
a

a b b b b

b

b
b b b b

b

c
b c

b
c

c b b b b

b

b

b

, ,

,

,
3

, 7.4

2
1 2

1
3

1 1
2

1 1 2 2 2
2

3

1
2

3
1
2

1 1 2 2 2
2

3

1

2
2 1

1
3

1 1
2

1 1 2 2 2
2

1

1

22

and use the case of the solutionwith equation (7.3) into equation (1.3), we have

⎜ ⎟⎛
⎝

⎞
⎠( )

( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

( )

=
+ - + + + - + + + -

+ + - + + + - + + + -
u

a a x a h t a b b x b y h t b c c x h t

d a x a h t a b x b y h t b c x h t

2 2 2 cos

sin

7.5

a b y

b

b

a

b y

b a

a b y

b

b

a

b y

b a

1 1 1 4 1 1 2 4 1 1
1

1 1 1 4

2

1 2 4

2

1
1

1 2

1

1

1

2

1 1

1 2

1

1

1

2

1 1

This is a periodic wave solution as shown infigure 14.
When the values of ( )=a b c d i, , , ; 1, 2, 3, 4i i i 1 are as follows

( ( ) )

( )

( ( ) )

( )
( )

g g g g
g

g g g g
g

g g g g
g

b
g a a g g g

g

=-
+ -

=

=-
+ -

=

=-
+ -

=

=
- -

a
a b b

b
a

b
b b

b

c
c b b

b
c

b b

b

4

2
, 0,

4

2
, 0,

4

2
, 0,

4

2
, 7.6

2
1 1 2 1

2
2

2
1 3

1 3
3

2
1 2 1

2
2

2
1 3

3
3

2
1 1 2 1

2
2

2
1 3

1 3
3

1 2 1
2

2
2

1 3

1 1

and insert the case of the solutionwith equation (7.1) into equation (1.3), we get

( )( ) ( )
( ) ( )

( ( )) ( ) ( )

( ( )) ( ) ( )
( )=

+ - + + - + -

+ + - + + - + -
u

b b b x k y a a a x k y c c x k y

d b b x k y a a x k y c x k y

2 2 2 cos

sin
, 7.7

a

b

c

b

a

b

c

b

1 4 1 1 4 1 1 1

1 4 1
2

4 1

2

1

1

1

1

1

1

1

1

1

where ( ) ( )
=

g g g g

g

+ -
k y y

b b 4

2

1 2 1
2

2
2

1 3

3

. Equation (7.7) represents a periodic wave solution as shown infigure 15.

Figure 14. 3D surface and contour plot of equation (7.6) plottedwhen t = 2, a1 = 3, a2 = 1, a4 = 1, b1 = 1, b2 = 2, b4 = 4, c1 = 1,
d1 = 1, γ1 = 2, γ2 = 2, γ3 = 1.
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8. Conclusions

The dynamical features of a generalized Bogoyavlensky-Konopelchenko equation in (2+1)-dimensions were
explored, based on itsHirota bilinear form.N-solitonwaves,M-lump solutions, lumpwaves, periodic lump
waves,mixed kink-lump solitons, and interactions between lump solutions and 1-solitonwaves were
particularly presented. The long-wave limiting process was performed to constructM-lump solutions and
symbolic computations were utilized to generate positive quadratic solutions and their interaction solutions
with kinkwaves and solitary waves. Abundant 3d-plots and contour plots at different timesweremade and
analyzed to explore dynamical and physical phenomena of the presented solutions.
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