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Abstract. An integrable coherently coupled nonlinear Schrödinger system describing

the propagation of polarised optical waves in an isotropic medium with a generalized

4 × 4 matrix Ablowitz-Kaup-Newell-Segur-type Lax pair is studied. The corresponding

initial-boundary value problem is reduced to a matrix Riemann-Hilbert problem in the

complex plane. Moreover, it is shown that the associated spectral functions depend on

each other and satisfy a global relationship.
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1. Introduction

The nonlinear Schrödinger (NLS) equation

iqt ± qx x + |q|
2q = 0,

arises in plasma physics, solid-state physics, nonlinear optics and water waves. It describes

the propagation of optical solitons in mono-mode fibers for scalar fields and the depen-

dance of such solitons on the group velocity dispersion (GVD) and the self-phase modu-

lation (SPM) [11]. Since nonlinear phase change comes from the cross-phase modulation
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(XPM) in birefringent or multi-mode fibers, the interaction of several field components at

different frequencies or polarisations has to be taken into account. The dynamic features of

such solitons are usually governed by coupled nonlinear Schrödinger (CNLS) systems [11].

Multicomponent solitons (MSs) are intriguing nonlinear objects where soliton is split into

a number of components. These solitons are called the vector or the multicolour solitons.

Let us note that in optical fibers there are two types of vector solitons — viz. coherently

and incoherently coupled vector solitons [11]. For incoherently coupled vector solitons

the coupling is phase insensitive and special incoherently CNLS system —- the Manakov

system, has the following form

iuζ ±
1

2
uττ + (|u|

2 + |v|2)u = 0,

ivζ ±
1

2
vττ + (|u|

2 + |v|2)v = 0,

(1.1)

where ζ and τ, respectively, refer to the normalised spatial and temporal coordinates, the

sign + or − corresponds to the anomalous dispersion (bright soliton) or normal dispersion

(dark soliton) regime. Besides, |u|2u and |v|2v denote SPM effects, whereas the XPM effects

|u|2v and |v|2u serve as incoherent coupling terms [15].

The initial-boundary value (IBV) problems for the system (1.1) on the half-line have

been recently studied by using the Fokas method [10, 36]. This method can be also em-

ployed to consider the IBV problems for linear and nonlinear integrable evolution PDEs with

2 × 2 Lax pairs [6–8, 20, 21, 35, 42]. Similar to IST on a line, the Fokas approach allows

to express the solutions of IBV problems via solutions of Riemann-Hilbert (RH) problems.

Lenells [22] extended the Fokas approach to IBV problems for integrable nonlinear evolu-

tion equations with 3 × 3 Lax pairs. This stimulated the study of IBV problems with the

Lax pairs of higher-order such as, the Degasperis-Procesi equation [23], the Ostrovsky-

Vakhnenko equation [24], the Sasa-Satsuma equation [37], the three wave equation [38],

the spin-1 Gross-Pitaevskii equation [40] and others [19,25,30]. Integrable equations with

2×2 or 3×3 Lax pairs have been also studied [12–14,42]. In particular, Deift and Zhou [5]

investigated the asymptotic of the solutions by applying the steepest descent method to a

RH problem.

There are also vector solitons associated with coherent CNLS systems. They can be

used as the carriers of the switched information in optical fields [11]. The coupling effects

depend on relative phases of the interacting fields, and coherent interactions usually occur

when the nonlinear medium is weakly anisotropic or low birefringent [11]. Park and Shin

[28] proposed new integrable CNLS equations — viz.

iut + ux x + 2(|u|2 + 2|v|2)u− 2u∗v2 = 0,

ivt + vx x + 2(2|u|2 + |v|2)v − 2v∗u2 = 0,
(1.2)

where u and v denote slowly varying envelopes of two interacting optical modes, x and t

are, respectively, the normalised distance and time, and ∗ means the complex conjugation.

Zhang et al. [41] used the Ablowitz-Kaup-Newell-Segur (AKNS) technology [1] to establish
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other new integrable CNLS equations

iut + ux x + 2(|u|2 − 2|v|2)u− 2u∗v2 = 0,

ivt + vx x + 2(2|u|2 − |v|2)v + 2v∗u2 = 0.
(1.3)

The systems (1.2) and (1.3) are called the coherently coupled NLS (CCNLS) systems. The

different coefficients of the SPM and XPM are the incoherent coupling parameters. The

terms −2u∗v2 and 2v∗u2 in the system (1.3) describe the coherent coupling and govern the

energy exchange between two axes of the fiber [11,41]. Let us note that the systems (1.2)

and (1.3) can be simultaneously derived by using the AKNS technology — cf. Section 2.

The integrability of the CCNLS systems (1.2) and (1.3) have been studied from various

points of view, including works focused on Lax pairs and Painlevé property [28,33], conser-

vation laws [39,41], solitons obtained by the bilinear method [16–18,27–29,33], the Dar-

boux transformation (DT) [9], classical Jacobi elliptic functions [3] and other methods [2].

The addition, propagation and collision of solitons are analysed [18, 33], the existence of

multi-speed solitary wave solutions for CCNLS systems (1.2), (1.3) is established in [34]

and the dynamics of non-linear waves is considered in [26]. However, to the best of our

knowledge, the IBV problems for the CCNLS systems (1.2), (1.3) have not been analysed.

In this work we want to look at the IBV problems for (1.3) on the half-line via a unified

approach. Note that the IBV problems for the system (1.2) can be also constructed.

Let Ω := {0< x <∞, 0< t < T} denote the half-line domain — cf. Fig. 1. We consider

the following IBV problems for (1.3):

Initial values: u0(x) = u(x , 0), v0(x) = v(x , 0),

Dirichlet boundary values: p0(t) = u(0, t), q0(t) = v(0, t),

Neumann boundary values: p1(t) = ux(0, t), q1(t) = vx(0, t).

(1.4)

Here we assume that u0(x) and v0(x) belong to the Schwartz space.

The outline of this paper is as follows. In Section 2, we recall the Lax pairs for systems

(1.2) and (1.3). In Section 3, two sets of eigenfunctions {µ j}
3
1 and {Mn}

4
1

of the Lax pair

Figure 1: The region Ω in the (x , t) plan.



534 B. Hu, T. Xia and W. X. Ma

are used to determine spectral functions satisfying the so-called global relationship. In

Section 4, we show that {u(x , t), v(x , t)} can be expressed in terms of the unique solution

of a 4× 4 matrix RH problem. Our conclusions are in Section 5.

2. The Lax Pairs for Systems (1.2) and (1.3)

In order to obtain systems (1.2) and (1.3), we consider the linear eigenvalue problem

ψx = Fψ = (−iλΛ+ F0)ψ,

ψt = Gψ = (−2iλ2
Λ+ 2λF0 + iG0)ψ,

where

Λ =

�

I2×2 0

0 −I2×2

�

, F0 =

�

0 R

−R† 0

�

,

G0 =

�

RR† Rx

R†
x
−R†R

�

, R=

�

u v

−v u

�

,

(2.1)

and I2×2 is the 2× 2 unit matrix [41]. The compatibility condition Fx − Gt + FG − GF = 0

leads to the following matrix NLS equation — cf. Refs. [4,31,32,43]:

iR t + Rx x + 2RR†R= 0. (2.2)

The system (1.2) has been obtained in [2, 28] by substitution of the term R of (2.1) into

the Eq. (2.2). If “†” denotes the complex conjugation, then (2.2) yields (1.3).

3. Spectral Analysis

The Lax pair for the coherently coupled nonlinear Schrödinger (CCNLS) system (1.3)

can be written as
ψx + iλΛψ = P(x , t)ψ,

ψt + 2iλ2
Λψ = Q(x , t,λ)ψ,

(3.1)

where λ ∈ C is the spectral parameter, Λ is 4× 4 matrix, ψ = ψ(x , t,λ) is 4× 4 or 4× 1

matrix-valued spectral function, F0, G0 are defined by (2.1) and

P(x , t) = F0(x , t), Q(x , t,λ) = 2λF0 + iG0.

3.1. The closed one-form

Introducing a new eigenfunction µ(x , t,λ) by

ψ(x , t,λ) = µ(x , t,λ)e−(iλΛx+2iλ2
Λt),

we rewrite the Lax pair Eq. (3.1) as

µx + iλ[Λ,µ] = P(x , t)µ,

µt + 2iλ2[Λ,µ] = Q(x , t,λ)µ,
(3.2)
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and, consequently,

d(eiλΛ̂x+2iλ2
Λ̂tµ(x , t,λ)) =W (x , t,λ),

where

W (x , t,λ) = e(iλx+2iλ2 t)Λ̂(P(x , t)d x +Q(x , t,λ)d t)µ. (3.3)

By σ̂4 we denote the matrix operator acting on the space of 4× 4 matrices X so that

σ̂4X = [σ4, X ] and exσ̂4 X = exσ4 X e−xσ4 .

3.2. Eigenfunctions µ j

Assume that u(x , t) and v(x , t) are sufficiently smooth functions in the domain Ω =

{0 < x <∞, 0 < t < T}, which decay sufficiently fast as x tends to∞, and let {γ j}
3
1 be

smooth curves connecting the points (x j , t j) and (x , t), where (x1, t1) = (0, T ), (x2, t2) =

(0,0), (x3, t3) = (∞, t) — cf. Fig. 2.

We consider 4× 4 matrix functions {µ j(x , t,λ)}3
1

defined by

µ j(x , t,λ) = I +

∫

γ j

e−(iλx+2iλ2 t)Λ̂Wj(ξ,τ,λ), j = 1,2,3, (3.4)

where I is the 4× 4 identity matrix and Wj are of the form (3.3) with µ replaced by µ j.

If (ξ,τ) ∈ γ j , j = 1,2,3, then the following inequalities hold:

γ1 : x − ξ≥ 0, t −τ ≤ 0,

γ2 : x − ξ≥ 0, t −τ ≥ 0,

γ3 : x − ξ≤ 0, t −τ = 0.

(3.5)

Since the one-form functions Wj are closed, then µ j is independent of the path of in-

tegration. Therefore, integrating over the lines parallel to the axes x and t, we rewrite

Figure 2: The three 
ontours γ1,γ2,γ3 in the (x , t)-domain.
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the Eqs. (3.4) as

µ j(x , t,λ) = I +

∫ x

x j

e−iλ(x−ξ)Λ̂(Pµ j)(ξ, t,λ)dξ

+ e−iλ(x−x j)Λ̂

∫ t

t j

e−2iλ2(t−τ)Λ̂(Qµ j)(x j ,τ,λ)dτ, j = 1,2,3. (3.6)

Let [µ j]k denote the k-th column vector of µ j. The Eq. (3.5) implies that the first, second,

third and fourth columns of the matrix equations (3.4) contain the following exponential

terms

[µ j]1 : e2iλ(x−ξ)+4iλ2(t−τ) and e2iλ(x−ξ)+4iλ2(t−τ),

[µ j]2 : e2iλ(x−ξ)+4iλ2(t−τ) and e2iλ(x−ξ)+4iλ2(t−τ),

[µ j]3 : e−2iλ(x−ξ)−4iλ2(t−τ) and e−2iλ(x−ξ)−4iλ2(t−τ),

[µ j]4 : e−2iλ(x−ξ)−4iλ2(t−τ) and e−2iλ(x−ξ)−4iλ2(t−τ).

In order to describe the domains where the eigenfunctions {µ j(x , t,λ)}31 are bounded, we

introduce the contours Imλ= 0 and Imλ2 = 0 — cf. Fig. 3, which split the complex λ-plane

into four regions

D1 = {λ ∈ C|argλ ∈ (0,π/2)}, D2 = {λ ∈ C|argλ ∈ (π/2,π)},

D3 = {λ ∈ C|argλ ∈ (π, 3π/2)}, D4 = {λ ∈ C|argλ ∈ (3π/2,2π)}.

It is easily seen that the eigenfunctions µ j(x , t,λ)}3
1

are analytic and bounded in the fol-

lowing domains:

µ1 in (D1, D1, D3, D3),

µ2 in (D2, D2, D4, D4),

µ3 in (C−, C−, C+, C+),

where C+ = D1 ∪ D2 and C− = D3 ∪ D4 are the upper and lower half-planes, respectively.

Figure 3: The sets Dn, n = 1, 2, 3, 4, whi
h de
ompose the 
omplex λ−plane.
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The subsets Dn, n= 1,2,3,4 have the following properties:

D1 = {λ ∈ C|Rea1 = Rea2 > Rea3 = Rea4, Reb1 = Reb2 > Reb3 = Reb4},

D2 = {λ ∈ C|Rea1 = Rea2 > Rea3 = Rea4, Reb1 = Reb2 < Reb3 = Reb4},

D3 = {λ ∈ C|Rea1 = Rea2 < Rea3 = Rea4, Reb1 = Reb2 > Reb3 = Reb4},

D4 = {λ ∈ C|Rea1 = Rea2 < Rea3 = Rea4, Reb1 = Reb2 < Reb3 = Reb4},

where ai(λ) and bi(λ) are the diagonal elements of the matrices −iλΛ and −2iλ2
Λ, re-

spectively.

We note that µ1(x , t,λ) and µ2(x , t,λ) are entire functions of λ and in the regions of

the boundedness, we have

µ j(x , t,λ) = I + O (1/λ), λ→∞, j = 1,2,3.

In fact, µ1(0, t,λ) is bounded in the region (D1∪D3, D1∪D3, D2∪D4, D2∪D4) and µ2(0, t,λ)

in the region (D2 ∪ D4, D2 ∪ D4, D1 ∪ D3, D1 ∪ D3).

3.3. Matrix-valued functions Mn

For each n = 1,2,3,4, the solution Mn(x , t,λ) of the Eq. (3.2) satisfies the integral

equation

(Mn(x , t,λ))i j = δi j +

∫

γn
i j

(e−(iλx+2iλ2 t)Λ̂Wn(ξ,τ,λ))i j , i, j = 1,2,3,4, (3.7)

where Wn(x , t,λ) is obtained from (3.3) if µ is replaced by Mn and the contours γn
i j
(λ),

λ ∈ Dn, n, i, j = 1,2,3,4 are defined by

γn
i j =







γ1, if Re ai(λ)< Re a j(λ), Re bi(λ)≥ Re b j(λ),

γ2, if Re ai(λ)< Re a j(λ), Re bi(λ)< Re b j(λ),

γ3, if Re ai(λ)≥ Re a j(λ).

Thus

γ1 =







γ3 γ3 γ3 γ3

γ3 γ3 γ3 γ3

γ2 γ2 γ3 γ3

γ2 γ2 γ3 γ3





 , γ2 =







γ3 γ3 γ3 γ3

γ3 γ3 γ3 γ3

γ1 γ1 γ3 γ3

γ1 γ1 γ3 γ3





 ,

γ3 =







γ3 γ3 γ1 γ1

γ3 γ3 γ1 γ1

γ3 γ3 γ3 γ3

γ3 γ3 γ3 γ3





 , γ4 =







γ3 γ3 γ2 γ2

γ3 γ3 γ2 γ2

γ3 γ3 γ3 γ3

γ3 γ3 γ3 γ3





 .

The following proposition shows that Mn can be represented as a Riemann-Hilbert prob-

lem.
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Proposition 3.1. For each n = 1,2,3,4 and λ ∈ Dn, the function Mn(x , t,λ) is well defined

by the Eq. (3.7). If (x , t) is fixed, then Mn is analytic and bounded in the domain Dn except

for a possible discrete set of singularities {λ j}, where the corresponding Fredholm determinant

vanishes. Moreover, Mn admits continuous and bounded extension to the axis Reλ and

Mn(x , t,λ) = I + O (1/λ) , λ→∞.

Proof. The analyticity and boundedness of Mn have been established in Ref. [22]. Sub-

stituting the expansion

M = M0 +
M (1)

λ
+

M (2)

λ2
+ · · · , λ→∞, (3.8)

into the Lax pair (3.2) and equating the coefficients at λ j leads to the relation (3.8).

3.4. The jump matrices

New spectral functions Sn(λ), n= 1,2,3,4 are defined by

Sn(λ) = Mn(0,0,λ), λ ∈ Dn, n= 1,2,3,4.

Let M(x , t,λ) be a sectionally analytic continuous function on the Riemann λ-sphere coin-

ciding with Mn(x , t,λ) for λ ∈ Dn. Then M(x , t,λ) satisfies the jump conditions

Mn(x , t,λ) = Mm(x , t,λ)Jm,n(x , t,λ), λ ∈ D̄n ∩ D̄m, n, m = 1,2,3,4, n 6= m,

where

Jm,n(x , t,λ) = e−(iλx+2iλ2 t)Λ̂[S−1
m (λ)Sn(λ)].

3.5. Adjugated eigenfunctions

Let us now show that the minors of the matrices µ j(x , t,λ), j = 1,2,3 are also bounded

and analytic. We recall that if mi j(B) denotes the i j-minor of B, then the cofactor matrix

BA of a 4× 4 matrix B is

BA =







m11(B) −m12(B) m13(B) −m14(B)

−m21(B) m22(B) −m23(B) m24(B)

m31(B) −m32(B) m33(B) −m34(B)

−m41(B) m42(B) −m43(B) m44(B)





 ,

and (BA)T B = adj(B)B = detB, where T denotes the transposition operation.

It follows from the Eq. (3.2) that the matrix-valued functions µA satisfies the Lax pair

µA
x − iλ[Λ,µA] = −P(x , t)TµA,

µA
t
− 2iλ2[Λ,µA] = −Q(x , t,λ)TµA.
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Then the eigenfunctions µA
j
(x , t,λ), j = 1,2,3 can be written as

µA
j (x , t,λ) = I −

∫ x

x j

eiλ(x−ξ)Λ̂(PµA
j )(ξ, t,λ)dξ

− eiλ(x−x j)Λ̂

∫ t

t j

e2iλ2(t−τ)Λ̂(QµA
j )(x j,τ,λ)dτ.

Hence, the adjugated eigenfunctionsµA
j

are analytic and bounded in the following domains:

µA
1 in (D4, D4, D2, D2),

µA
2 in (D3, D3, D1, D1),

µA
3 in (C+, C+, C−, C−).

In fact, µA
1(0, t,λ) is bounded in the region (D2∪D4, D2∪D4, D1∪D3, D1∪D3) and µA

2(0, t,λ)

in the region (D1 ∪ D3, D1 ∪ D3, D2 ∪ D4, D2 ∪ D4).

3.6. The symmetry of eigenfunctions

Let us write the 4× 4 matrix X = (X i j)4×4 as

X =

�

X̃11 X̃12

X̃21 X̃22

�

, (3.9)

where

X̃11 =

�

X11 X12

X21 X22

�

, X̃12 =

�

X13 X14

X23 X24

�

,

X̃21 =

�

X31 X32

X41 X42

�

, X̃22 =

�

X33 X34

X43 X44

�

.

Set Z± = diag (±1,±1,∓1,∓1). Noting that

F(x , t,λ) = −iλΛ+ P(x , t), G(x , t,λ) = 2iλ2
Λ+Q(x , t,λ),

Z±(F(x , t, λ̄))Z± = −F(x , t,λ)T , Z±(G(x , t, λ̄))Z± = −G(x , t,λ)T ,

and the functions F(x , t,λ) and G(x , t,λ) are symmetric, we obtain the symmetry of the

eigenfunctions µ(x , t,λ)— viz.

(µ̃(x , t,λ))11 = Z−1(µ̃(x , t, λ̄))22Z−1, (µ̃(x , t,λ))12 = (µ̃(x , t, λ̄))
T

21
,

with Z−1 := diag (1,−1).
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According to Ref. [8], the eigenfunctions ψ(x , t,λ) and µ(x , t,λ) of the respective Lax

pairs (3.1) and (3.2) satisfy the same symmetric relations

ψ−1(x , t,λ) = Z±(ψ(x , t, λ̄))
T

Z±, µ−1(x , t,λ) = Z±(µ(x , t, λ̄))Z±.

Moreover, in the domain where µ(x , t,λ) is bounded, it satisfies the relation

µ(x , t,λ) = I + O (1/λ), λ→∞,

so that det [µ(x , t,λ)] = 1 since t r(F(x , t,λ)) = t r(G(x , t,λ) = 0.

3.7. Spectral functions and the jump matrix computation

Let us define 4× 4 matrix spectral functions s(λ),S(λ) and S′(λ) by

µ3(x , t,λ) = µ2(x , t,λ)e−(iλx+2iλ2 t)Λ̂s(λ),

µ1(x , t,λ) = µ2(x , t,λ)e−(iλx+2iλ2 t)Λ̂S(λ),

µ3(x , t,λ) = µ1(x , t,λ)e−(iλx+2iλ2 t)Λ̂S′(λ).

(3.10)

Taking into account the equation µ2(0,0,λ) = I , we can write

s(λ) = µ3(0,0,λ), S(λ) = µ1(0,0,λ) = e2iλ2 T Λ̂µ−1
2
(0, T,λ),

S′(λ) = µ−1
1 (0,0,λ)µ3(0,0,λ) = S−1(λ)s(λ) = e2iλ2 T Λ̂µ−1

3 (0, T,λ),
(3.11)

and display the connections of the functions µ j with each other in Fig. 4. Note that the

functions s(λ),S(λ) and S′(λ) depend on each other. Therefore, here we consider only two

of them — e.g. s(λ) and S(λ). It follows from (3.6), (3.11) that

s(λ) = I −

∫ ∞

0

eiλξΛ̂(Pµ3)(ξ, 0,λ)dξ,

S(λ) = I −

∫ T

0

e2iλ2τΛ̂(Qµ1)(0,τ,λ)dτ =

�

I +

∫ T

0

e2iλ2τΛ̂(Qµ2)(0,τ,λ)dτ

�−1

,

(3.12)

Figure 4: The relations among the dependent eigenfun
tions µ j(x , t , k), j = 1, 2, 3.
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where µ j(0, t,λ), j = 1,2 and µ3(x , t,λ), 0 < x <∞, 0 < t < T satisfy the Volterra

integral equations

µ1(0, t,λ) = I−

∫ T

t

e−2iλ2(t−τ)Λ̂(Qµ1)(0,τ,λ)dτ,

λ ∈ (D1 ∪ D3, D1 ∪ D3, D2 ∪ D4, D2 ∪ D4),

µ2(0, t,λ) = I+

∫ T

0

e−2iλ2(t−τ)Λ̂(Qµ2)(0,τ,λ)dτ,

λ ∈ (D2 ∪ D4, D2 ∪ D4, D1 ∪ D3, D1 ∪ D3),

µ3(x , 0,λ) = I−

∫ ∞

x

e−iλ(x−ξ)Λ̂(Pµ3)(ξ, 0,λ)dξ, λ ∈ (C−, C−, C+, C+).

(3.13)

Thus, the Eqs. (3.12), (3.13) show that s(λ) and S(λ) are determined by U(x , 0,λ) and

V (0, t,µ) — i.e. by the initial u0(x), v0(x) and boundary p0(t), q0(t), p1(t), q1(t) data.

Indeed, the eigenfunctions µ3(x , 0,λ) and µ j(0, t,λ), j = 1,2 satisfy the x and t-parts of

the Lax pair (3.2) at t = 0 and x = 0, respectively. Thus, for the x -part we have

µx(x , 0,λ) + iλ[Λ,µ(x , 0,λ)] = P(x , t = 0)µ(x , 0,λ),

lim
x→∞

µ(x , 0,λ) = I , 0< x <∞,

and for the t part

µt(0, t,λ) + 2iλ2[Λ,µ(0, t,λ)] = Q(x = 0, t)µ(0, t,λ), 0< t < T,

lim
t→0
µ(0, t,λ) = µ(0,0,λ) = I , lim

t→T
µ(0, t,λ) = µ(0, T,λ) = I .

Besides, using the properties of {µ j}
3
1 and {µA

j
}31, we note that s(λ), S(λ), sA(λ) and SA(λ)

are bounded in the following regions:

s(λ) in (C−, C−, C+, C+),

S(λ) in (D1 ∪ D3, D1 ∪ D3, D2 ∪ D4, D2 ∪ D4),

sA(λ) in (C+, C+, C−, C−),

SA(λ) in (D2 ∪ D4, D2 ∪ D4, D1 ∪ D3, D1 ∪ D3).

Proposition 3.2. The matrix-valued functions Sn(x , t,λ), n= 1,2,3,4 defined by

Mn(x , t,λ) = µ2(x , t,λ)e−(iλx+2iλ2 t)Λ̂Sn(λ), λ ∈ Dn, (3.14)
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can be expressed with s(λ) and S(λ) elements as follows

S1(λ) =

















m22(s)

n33,44(s)

m21(s)

n33,44(s)
s13 s14

m12(s)

n33,44(s)

m11(s)

n33,44(s)
s23 s24

0 0 s33 s34

0 0 s43 s44

















, S2(λ) =















S
(2)

11
S
(2)

12
s13 s14

S
(2)

21
S
(2)

22
s23 s24

S
(2)

31
S
(2)

32
s33 s34

S
(2)

41
S
(2)

42
s43 s44















,

S4(λ) =

















s11 s12 0 0

s21 s22 0 0

s31 s32

m44(s)

n11,22(s)

m43(s)

n11,22(s)

s41 s42

m34(s)

n11,22(s)

m33(s)

n11,22(s)

















, S3(λ) =















s11 s12 S
(3)

13
S
(3)

14

s21 s22 S
(3)

23
S
(3)

24

s31 s32 S
(3)
33

S
(3)
34

s41 s42 S
(3)
43

S
(3)
44















,

(3.15)

with ni1 j1,i2 j2(X ) denoting the determinant of the sub-matrix

X =

�

X i1 j1 X i1 j2

X i2 j1 X i2 j2

�

,

while

S
(2)

1 j
=

n1 j,2(3− j)(S)m2(3− j)(s) + n1 j,3(3− j)(S)m3(3− j)(s) + n1 j,4(3− j)(S)m4(3− j)(s)

∆([S]1[S]2[s]3[s]4)
,

S
(2)

2 j
=

n2 j,1(3− j)(S)m1(3− j)(s) + n2 j,3(3− j)(S)m3(3− j)(s) + n2 j,4(3− j)(S)m4(3− j)(s)

∆([S]1[S]2[s]3[s]4)
,

S
(2)

3 j
=

n3 j,1(3− j)(S)m1(3− j)(s) + n3 j,2(3− j)(S)m3(3− j)(s) + n3 j,4(3− j)(S)m4(3− j)(s)

∆([S]1[S]2[s]3[s]4)
,

S
(2)

4 j
=

n4 j,1(3− j)(S)m1(3− j)(s) + n4 j,2(3− j)(S)m3(3− j)(s) + n4 j,3(3− j)(S)m3(3− j)(s)

∆([S]1[S]2[s]3[s]4)
,

if j = 1,2,

S
(3)

1 j
=

n1 j,2(7− j)(S)m2(7− j)(s) + n1 j,3(7− j)(S)m3(7− j)(s) + n1 j,4(7− j)(S)m4(7− j)(s)

∆([s]1[s]2[S]3[S]4)
,

S
(3)

2 j
=

n2 j,1(7− j)(S)m1(7− j)(s) + n2 j,3(7− j)(S)m3(7− j)(s) + n2 j,4(7− j)(S)m4(7− j)(s)

∆([s]1[s]2[S]3[S]4)
,

S
(3)

3 j
=

n3 j,1(7− j)(S)m1(7− j)(s) + n3 j,2(7− j)(S)m2(7− j)(s) + n3 j,4(7− j)(S)m4(7− j)(s)

∆([s]1[s]2[S]3[S]4)
,

S
(3)

4 j
=

n4 j,1(7− j)(S)m1(7− j)(s) + n4 j,2(7− j)(S)m2(7− j)(s) + n4 j,3(7− j)(S)m3(7− j)(s)

∆([s]1[s]2[S]3[S]4)
,
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if j = 3,4, and

∆([S]1[S]2[s]3[s]4) := det(n([S]1, [S]2, [s]3, [s]4)),

∆([s]1[s]2[S]3[S]4) := det(n([s]1, [s]2, [S]3, [S]4)),

with [·] j denoting the j-th column of the corresponding matrix s or S.

3.8. Residue conditions

We recall that µ2(x , t,λ) is an entire function, and according to (3.14), the function

M(x , t,λ) has singularities at the same points as Sn, n= 1,2,3,4. Let {λ j}
L
1 denote possible

zeros of M(x , t,λ).

Assumption 3.1. Assume that the points {λ j}
L
1 satisfy the following conditions:

• The function n33,44(s)(λ) has at most n1 simple zeros {λ j}
n1

1
in D1.

• The function ∆([S]1[S]2[s]3[s]4)(λ) has at most n2 − n1 ≥ 0 simple zeros {λ j}
n2

n1+1

in D2.

• The function ∆([s]1[s]2[S]3[S]4)(λ) has at most n3 − n2 ≥ 0 simple zeros {λ j}
n3

n2+1

in D3.

• The function n11,22(s)(λ) has at most N − n3 ≥ 0 simple zeros {λ j}
L
n3+1 in D4.

• All these zeros are different and neither of the functions n11,22(s)(λ), n33,44(s)(λ),

∆([S]1[S]2[s]3[s]4)(λ) and ∆([s]1[s]2[S]3[S]4)(λ) have zeros on the boundaries of

Dn, n= 1,2,3,4.

Let X = (X i j)4×4 be a 4× 4 matrix. We define the matrix eθσ̂4 X by

eθσ̂4 X := eθσ4 X e−θσ4 =









X11 X12 X13e2θ X14e2θ

X21 X22 X23e2θ X24e2θ

X31e−2θ X32e−2θ X33 X34

X41e−2θ X42e−2θ X43 X44








.

Proposition 3.3. Let {Mn(x , t,λ)}4
1

be the eigenfunctions (3.7). If the points {λ j}
L
1

satisfies

Assumption 3.1, then

Resλ=λ j
[M1(x , t,λ)]k =

m2(3−k)(s)(λ j)s24(λ j)−m1(3−k)(s)(λ j)s14(λ j)

˙n33,44(s)(λ j)n13,24(s)(λ j)
[M1]3eθ31(λ j)

+
m1(3−k)(s)(λ j)s13(λ j)−m2(3−k)(s)(λ j)s23(λ j)

˙n33,44(s)(λ j)n13,24(s)(λ j)
[M1]4eθ31(λ j),

1≤ j ≤ n1, λ j ∈ D1, k = 1,2. (3.16)



544 B. Hu, T. Xia and W. X. Ma

Resλ=λ j
[M2(x , t,λ)]k =

S
(2)

1k
(λ j)s24(λ j)− S

(2)

2k
(λ j)s14(λ j)

˙∆([S]1[S]2[s]3[s]4)(λ j)n11,22(s)(λ j)
[M2]3eθ31(λ j)

+
S
(2)

2k
(λ j)s13(λ j)− S

(2)

1k
(λ j)s23(λ j)

˙∆([S]1[S]2[s]3[s]4)(λ j)n11,22(s)(λ j)
[M2]4eθ31(λ j),

n1 + 1≤ j ≤ n2, λ j ∈ D2, k = 1,2. (3.17)

Resλ=λ j
[M3(x , t,λ)]k =

S
(3)

1k
(λ j)s22(λ j)− S

(3)

2k
(λ j)s12(λ j)

˙∆([s]1[s]2[S]3[S]4)(λ j)n11,22(s)(λ j)
[M3]1eθ13(λ j)

+
S
(3)

2k
(λ j)s11(λ j)− S

(3)

1k
(λ j)s21(λ j)

˙∆([s]1[s]2[S]3[S]4)(λ j)n11,22(s)(λ j)
[M3]2eθ13(λ j),

n2 + 1≤ j ≤ n3, λ j ∈ D3, k = 3,4. (3.18)

Resλ=λ j
[M4(x , t,λ)]k =

m4(7−k)(s)(λ j)s42(λ j)−m3(7−k)(s)(λ j)s32(λ j)

˙n11,22(s)(λ j)n31,42(s)(λ j)
[M4]1eθ13(λ j)

+
m3(7−k)(s)(λ j)s31(λ j)−m4(7−k)(s)(λ j)s41(λ j)

˙n11,22(s)(λ j)n31,42(s)(λ j)
[M4]2eθ13(λ j),

n3 + 1≤ j ≤ L, λ j ∈ D4, k = 3,4, (3.19)

where ḟ = d f /dλ and θi j have the form

θi j(x , t,λ) = (li − l j)x − (zi − z j)t, i, j = 1,2,3,4,

so that

θ12 = θ21 = θ34 = θ43 = 0,

θ13 = θ14 = θ23 = θ24 = −2iλx − 4iλ2t,

θ31 = θ41 = θ32 = θ42 = 2iλx + 4iλ2 t.

Proof. Let us start with the relation (3.19). Writing the expression (3.14) for n= 4, we

obtain that

M4(x , t,λ) = µ2(x , t,λ)e−(iλx+2iλ2 t)Λ̂S4,

where S4 is defined in (3.15). The matrix M4(x , t,λ) has the following columns

[M4]1 = [µ2]1s11 + [µ2]2s21 + [µ2]3s31eθ31 + [µ2]4s41eθ31 , (3.20)

[M4]2 = [µ2]1s12 + [µ2]2s22 + [µ2]3s32eθ31 + [µ2]4s42eθ31 , (3.21)

[M4]3 = [µ2]3
m44(s)

n11,22(s)
+ [µ2]4

m34(s)

n11,22(s)
, (3.22)

[M4]4 = [µ2]3
m43(s)

n11,22(s)
+ [µ2]4

m33(s)

n11,22(s)
. (3.23)
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If λ j ∈ D4 is a simple zero of n11,22(s)(λ), then solving the Eqs. (3.20), (3.21) for [µ2]3,

[µ2]4 and substituting the solutions in (3.22) and (3.23), we obtain that

[M4]3 =
m44(s)s42 −m34(s)s32

n11,22(s)n31,42(s)
[M4]1eθ13 +

m34(s)s31 −m44(s)s41

n11,22(s)n13,24(s)
[M4]2eθ13

+
m24(s)[µ2]1 +m14(s)[µ2]2

n31,42(s)
eθ13 ,

[M4]4 =
m43(s)s42 −m33(s)s32

n11,22(s)n31,42(s)
[M4]1eθ13 +

m33(s)s31 −m43(s)s41

n11,22(s)n31,42(s)
[M4]2eθ13

+
m23(s)[µ2]1 +m13(s)[µ2]2

n31,42(s)
eθ13 .

Calculating the residues of these functions at λ j, we arrive at the formula (3.19). The

representations (3.16)-(3.18) can be derived analogously.

3.9. The global relationship

The spectral functions S(λ) and s(λ) are not independent. Thus the Eqs. (3.10), (3.11)

yield

µ3(x , t,λ) = µ1(x , t,λ)e−(iλx+2iλ2 t)Λ̂S−1(λ)s(λ),

since µ1(0, T,λ) = I . Therefore, we obtain the global relation

S−1(λ)s(λ) = e2iλ2 T Λ̂c(T,λ) = e2iλ2 T Λ̂µ3(0, T,λ),

where

c(T,λ) = µ3(0, T,λ) = I −

∫ ∞

0

eiλξΛ̂(Uµ3)(ξ, T,λ)dξ, λ ∈ (C−, C−, C+, C+).

4. Riemann-Hilbert Problem

In Section 3, we defined a sectionally analytic function M(x , t,λ) that satisfies a RH

problem formulated in terms of initial and boundary values. The solution of system (1.3)

can be determined from the solutions of this RH problem.

Theorem 4.1. If {u(x , t), v(x , t)} is a sufficiently smooth and fast decaying (as x tens to

∞) solution of the system (1.3) in the domain Ω, then it can be reconstructed from the ini-

tial values {u0(x), v0(x)} and the boundary values {p0(t),q0(t), p1(t),q1(t)} of (1.4). More

precisely, using the initial and boundary data, we establish the spectral functions s(λ) and

S(λ) of (3.10) and define the jump matrix Jm,n(x , t,λ). If the zeros {λ j}
L
1

of the func-

tions n33,44(s)(λ), ∆([S]1[S]2[s]3[s]4)(λ), ∆([s]1[s]2[S]3[S]4)(λ) and n11,22(s)(λ) satisfy

Assumption 3.1, then

u(x , t) = −2i lim
λ→∞

(λM(x , t,λ))24 ,

v(x , t) = −2i lim
λ→∞

(λM(x , t,λ))14 ,
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where

• M(x , t,λ) is a sectionally meromorphic on the Riemann λ-sphere and has jumps on the

contours D̄n ∩ D̄m, n, m = 1,2,3,4 — cf. Fig. 3.

• On contours D̄n∩D̄m, n, m = 1,2,3,4 the function M(x , t,λ) satisfies the jump condition

Mn(x , t,λ) = Mm(x , t,λ)Jm,n(x , t,λ), λ ∈ D̄n ∩ D̄m, n 6= m.

• M(x , t,λ) = I + O (1/λ), λ→∞.

• The function M(x , t,λ) satisfies the residue condition of Proposition 3.3.

The proof of this theorem is similar to the corresponding proof in Ref. [37].

5. Conclusions

We considered IBV problems for a coherently coupled NLS system on the half-line. Ap-

plying the Fokas unified transform method for nonlinear evolution equations in the form of

Lax isospectral deformations and continuous spectra of the corresponding Lax operators,

we reduce the initial problem to a matrix Riemann-Hilbert problem in the complex plane.

Other integrable equations with 4× 4 matrix Lax pairs can be discussed elsewhere.
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