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Abstract. An integrable coherently coupled nonlinear Schrodinger system describing
the propagation of polarised optical waves in an isotropic medium with a generalized
4 x 4 matrix Ablowitz-Kaup-Newell-Segur-type Lax pair is studied. The corresponding
initial-boundary value problem is reduced to a matrix Riemann-Hilbert problem in the
complex plane. Moreover, it is shown that the associated spectral functions depend on
each other and satisfy a global relationship.
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1. Introduction
The nonlinear Schrodinger (NLS) equation
gy £ qux + |q|2q =0,

arises in plasma physics, solid-state physics, nonlinear optics and water waves. It describes
the propagation of optical solitons in mono-mode fibers for scalar fields and the depen-
dance of such solitons on the group velocity dispersion (GVD) and the self-phase modu-
lation (SPM) [11]. Since nonlinear phase change comes from the cross-phase modulation
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(XPM) in birefringent or multi-mode fibers, the interaction of several field components at
different frequencies or polarisations has to be taken into account. The dynamic features of
such solitons are usually governed by coupled nonlinear Schrédinger (CNLS) systems [11].
Multicomponent solitons (MSs) are intriguing nonlinear objects where soliton is split into
a number of components. These solitons are called the vector or the multicolour solitons.

Let us note that in optical fibers there are two types of vector solitons — viz. coherently
and incoherently coupled vector solitons [11]. For incoherently coupled vector solitons
the coupling is phase insensitive and special incoherently CNLS system —- the Manakov
system, has the following form

1
iuy + Euﬂ +(Jul?>+ vPu=0,
. 1 , , (1.1)
ivg e+ (P + VPV =0,

where ¢ and 7, respectively, refer to the normalised spatial and temporal coordinates, the
sign + or — corresponds to the anomalous dispersion (bright soliton) or normal dispersion
(dark soliton) regime. Besides, |u|?u and |v|?v denote SPM effects, whereas the XPM effects
|u|?>v and |v|?u serve as incoherent coupling terms [15].

The initial-boundary value (IBV) problems for the system (1.1) on the half-line have
been recently studied by using the Fokas method [10,36]. This method can be also em-
ployed to consider the IBV problems for linear and nonlinear integrable evolution PDEs with
2 x 2 Lax pairs [6-8, 20,21, 35,42]. Similar to IST on a line, the Fokas approach allows
to express the solutions of IBV problems via solutions of Riemann-Hilbert (RH) problems.
Lenells [22] extended the Fokas approach to IBV problems for integrable nonlinear evolu-
tion equations with 3 x 3 Lax pairs. This stimulated the study of IBV problems with the
Lax pairs of higher-order such as, the Degasperis-Procesi equation [23], the Ostrovsky-
Vakhnenko equation [24], the Sasa-Satsuma equation [37], the three wave equation [38],
the spin-1 Gross-Pitaevskii equation [40] and others [19,25,30]. Integrable equations with
2 x 2 or 3 x 3 Lax pairs have been also studied [12-14,42]. In particular, Deift and Zhou [5]
investigated the asymptotic of the solutions by applying the steepest descent method to a
RH problem.

There are also vector solitons associated with coherent CNLS systems. They can be
used as the carriers of the switched information in optical fields [11]. The coupling effects
depend on relative phases of the interacting fields, and coherent interactions usually occur
when the nonlinear medium is weakly anisotropic or low birefringent [11]. Park and Shin
[28] proposed new integrable CNLS equations — viz.

iu, +u, +2(Jul? + 2|v|»)u —2u*v? =0,

(1.2)

Ve + iy +2(2Jul? + |v2)v —2v*u? =0,
where u and v denote slowly varying envelopes of two interacting optical modes, x and t
are, respectively, the normalised distance and time, and * means the complex conjugation.
Zhang et al. [41] used the Ablowitz-Kaup-Newell-Segur (AKNS) technology [1] to establish
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other new integrable CNLS equations

iu, +u, +2(Jul? = 2|v|»)u —2u*v? =0,

(1.3)
v, + v, + 221 = vP)v + 2viu? = 0.

The systems (1.2) and (1.3) are called the coherently coupled NLS (CCNLS) systems. The
different coefficients of the SPM and XPM are the incoherent coupling parameters. The
terms —2u*v? and 2v*u? in the system (1.3) describe the coherent coupling and govern the
energy exchange between two axes of the fiber [11,41]. Let us note that the systems (1.2)
and (1.3) can be simultaneously derived by using the AKNS technology — cf. Section 2.

The integrability of the CCNLS systems (1.2) and (1.3) have been studied from various
points of view, including works focused on Lax pairs and Painlevé property [28,33], conser-
vation laws [39,41], solitons obtained by the bilinear method [16-18,27-29,33], the Dar-
boux transformation (DT) [9], classical Jacobi elliptic functions [3] and other methods [2].
The addition, propagation and collision of solitons are analysed [18,33], the existence of
multi-speed solitary wave solutions for CCNLS systems (1.2), (1.3) is established in [34]
and the dynamics of non-linear waves is considered in [26]. However, to the best of our
knowledge, the IBV problems for the CCNLS systems (1.2), (1.3) have not been analysed.
In this work we want to look at the IBV problems for (1.3) on the half-line via a unified
approach. Note that the IBV problems for the system (1.2) can be also constructed.

Let Q:={0 < x < 00,0 < t < T} denote the half-line domain — cf. Fig. 1. We consider
the following IBV problems for (1.3):

Initial values: ug(x) =u(x,0), vo(x)=v(x,0),
Dirichlet boundary values: po(t) =u(0,t), qo(t)=v(0,t), (1.4)
Neumann boundary values: p1(t) =u,(0,t), q.(t)=v,(0,¢).

Here we assume that uy(x) and vy(x) belong to the Schwartz space.
The outline of this paper is as follows. In Section 2, we recall the Lax pairs for systems
(1.2) and (1.3). In Section 3, two sets of eigenfunctions {,u]-}‘;’ and {Mn}‘l1r of the Lax pair

(0.1}

x Y

(0.0}

Figure 1: The region € in the (x,t) plan.
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are used to determine spectral functions satisfying the so-called global relationship. In
Section 4, we show that {u(x,t),v(x,t)} can be expressed in terms of the unique solution
of a 4 x 4 matrix RH problem. Our conclusions are in Section 5.

2. The Lax Pairs for Systems (1.2) and (1.3)

In order to obtain systems (1.2) and (1.3), we consider the linear eigenvalue problem

Yy =Fp =(—1AA+Fo Y,
Y, = G = (=2iA2A + 2AF, + Gy,

[ Iax2 0 _ 0 R
A‘( 0 —I, )° T\ —r" 0 )’
([ RR" R, o u v
GO_(R;*; —R*R)’ R‘(—v u)’

and I, is the 2 x 2 unit matrix [41]. The compatibility condition F, —G, + FG—GF =0
leads to the following matrix NLS equation — cf. Refs. [4,31,32,43]:

where

2.1)

iR, +R,, + 2RR'/R = 0. (2.2)

The system (1.2) has been obtained in [2, 28] by substitution of the term R of (2.1) into
the Eq. (2.2). If “§” denotes the complex conjugation, then (2.2) yields (1.3).

3. Spectral Analysis

The Lax pair for the coherently coupled nonlinear Schrédinger (CCNLS) system (1.3)

can be written as
P, +20A%AY = Q(x, t, Ay,

where A € C is the spectral parameter, A is 4 x 4 matrix, ¢ = (x,t,A)is4x4or4x1
matrix-valued spectral function, F,, G, are defined by (2.1) and

3.1)

P(X, t):Fo(X, t), Q(X, t,A)ZZAFo‘i‘lGo.

3.1. The closed one-form
Introducing a new eigenfunction u(x,t,A) by
Yx, 1) = px, £, A)e (A0,
we rewrite the Lax pair Eq. (3.1) as

Py +IA[A, u] = P(x, t)u,

) (3.2)
pe +2iA[A, u] = Q(x, t, My,
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and, consequently,
d(eilf\x+2isz\t‘u(x, t, A)) = W(x, t: A’))

where
W(x,t,A) = eW+2220A(p(x Ydx +Q(x, t, A)d t)u. (3.3)

By 64 we denote the matrix operator acting on the space of 4 x 4 matrices X so that

64X =[04,X] and e*94X =e*74Xe %4,

3.2. Eigenfunctions y;

Assume that u(x,t) and v(x, t) are sufficiently smooth functions in the domain Q =
{0 < x < 00,0 <t < T}, which decay sufficiently fast as x tends to oo, and let {yj}f be
smooth curves connecting the points (x;, t;) and (x, t), where (xq,t1) = (0,T), (x2,t2) =
(0,0), (x3,t3) = (o0, t) — cf. Fig. 2.

We consider 4 x 4 matrix functions {u;(x, t, A)}f defined by

—(i iA2HOA .
;u’j(xa t: A') =1 +J e (iAx-+2iA t)AWj(gz Tzl)a .] = 1:2) 3: (34)
i

where [ is the 4 x 4 identity matrix and W; are of the form (3.3) with u replaced by u;.
If (§,7) €7}, j = 1,2,3, then the following inequalities hold:

y1: x—§>0, t—7<0,
yo: x—E>0, t—T1>0, (3.5)
y3: x—§<0, t—71=0.

Since the one-form functions W; are closed, then u; is independent of the path of in-
tegration. Therefore, integrating over the lines parallel to the axes x and t, we rewrite

Figure 2: The three contours y;,7,,75 in the (x, t)-domain.
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the Egs. (3.4) as

X

ui(x, 6, ) =1+ J e A=ON Py (&, 1, 1)dE

Xj

t
+ g Ax=x;A J e_zilz(t_T)A(Q,uj)(xj, T,A)dt, j=1,2,3. (3.6)
t

J

Let [u;], denote the k-th column vector of u;. The Eq. (3.5) implies that the first, second,
third and fourth columns of the matrix equations (3.4) contain the following exponential

terms

. eZi?L(x—E)+4iAZ(t—T) eZi?L(x—{)+4iAZ(t—T)

and

eZi?L(x—E)+4iAZ(t—T)

]

[ u; ]2 . and eZi?L(x—E)+4iAZ(t—T),
]
]

. e—ZiA(x—é)—Ari?Lz(t—T) e—ZiA(x—é)—Ari?Lz(t—T)

and

. e—2il(x—§)—4il2(t—'r) e—2il(x—§)—4il2(t—'r).

and

In order to describe the domains where the eigenfunctions {u;(x,t, )\)}:f are bounded, we
introduce the contours ImA = 0 and ImA? = 0 — cf. Fig. 3, which split the complex A-plane
into four regions

D, ={A eClargA € (0,t/2)}, Dy={A € ClargA e (n/2,m)},
Dy ={A eCl|argA € (n,37/2)}, D4={A e ClargA € (3n/2,2m)}.

It is easily seen that the eigenfunctions u;(x, ¢, A)}:f are analytic and bounded in the fol-
lowing domains:

py in (Dy,Dy,Ds3,D3),

py in (Da,Dz,Dy4,Dy),

pz in (C_,C_,C4,CL),

where C, = D; UD, and C_ = D3 U D, are the upper and lower half-planes, respectively.

Figure 3: The sets D,,n=1,2,3,4, which decompose the complex A—plane.
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The subsets D,,, n = 1,2, 3,4 have the following properties:

D; = {A € C|Rea; = Rea, > Reaz =Rea,, Reb; =Reb, > Reb; =Reb,},

D, = {1 € C|Rea; = Rea, > Reaz =Rea,, Reb; =Reb, <Reb; =Reb,},

D3 = {1 € C|Rea; = Rea, < Reaz =Rea,, Reb; =Reb, > Reb; =Reb,},

D, ={A € C|Rea; = Rea, < Rea; =Rea,, Reb; =Reb, < Reb; =Reb,},
where a;(A) and b;(1) are the diagonal elements of the matrices —iAA and —2iA2%A, re-
spectively.

We note that u,(x, t,A) and u,(x,t, A) are entire functions of A and in the regions of

the boundedness, we have

uilx,t,A) =I1+0(1/1), A— oo, j=1,2,3.

In fact, u1(0, t, A) is bounded in the region (D, UD5, D; UD5, D, UD,, D, UD,) and u4(0, t,A)
in the region (D2 U D4, D2 U D4, D]_ U D3, D]_ U D3)
3.3. Matrix-valued functions M,

For each n = 1,2,3,4, the solution M, (x,t,A) of the Eq. (3.2) satisfies the integral
equation

(Mo (x, 6, )y =85+ | (T 2W0Mw (2,0, 2)), 1,/ =1,2,3,4, (3.7)
i

where W,(x,t,A) is obtained from (3.3) if u is replaced by M, and the contours Y?j(l),
AeD,, n,i,j=1,2,3,4 are defined by

er-lj =1 712 if Req;(A)<Reaj(1), Reb;(1) <Reb;(A),
&Y if Re ai(l) > Re a](k).

Thus
[ Y3 Y3 Y3 T3 \ [ Y3 Y3 Y3 V3 \
yl= Ys T3 V3 T3 , = Ys T3 T3 Vs ’
Y2 Y2 Y3 V3 Y1 Y1 V3 V3
Y2 Y2 Y3 T3 j \ Y1 Y1 V3 V3 )
[ Y3 Y3 Y1 11 \ [ Y3 Y3 Y2 V2 \
v = Ys T3 "1 T . rt= Y3 Y3 T2 T2 |
Y3 Y3 Y3 T3 Y3 Y3 V3 V3
Y3 Y3 Y3 V3 } \ Y3 Y3 V3 V3 )

The following proposition shows that M,, can be represented as a Riemann-Hilbert prob-
lem.
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Proposition 3.1. For each n = 1,2,3,4 and A € D,, the function M, (x,t,A) is well defined
by the Eq. (3.7). If (x,t) is fixed, then M,, is analytic and bounded in the domain D, except
for a possible discrete set of singularities {A;}, where the corresponding Fredholm determinant
vanishes. Moreover, M,, admits continuous and bounded extension to the axis Re A and

M,(x,t,A)=1+0(1/A), A— oo.

Proof. The analyticity and boundedness of M,, have been established in Ref. [22]. Sub-
stituting the expansion

MO @
M=MO+T+7+"', A — 00, (3.8)

into the Lax pair (3.2) and equating the coefficients at A/ leads to the relation (3.8). O

3.4. The jump matrices

New spectral functions S,(1), n = 1,2, 3,4 are defined by
S.(A)=M,(0,0,A), A€D, n=1,2,3,4.

Let M(x, t,A) be a sectionally analytic continuous function on the Riemann A-sphere coin-
ciding with M, (x,t,A) for A € D,,. Then M(x, t, 1) satisfies the jump conditions

Mn(xztza'):Mm(xztzl)‘]m,n(x:tzl)a A'GDnﬁ'Dm:v n5m=1:2)354)n#m5

where ' L
Jm,n(xﬁ t, A) — e—(llx-ﬁ-le t)A[S;l(A)Sn(A)]

3.5. Adjugated eigenfunctions

Let us now show that the minors of the matrices u j(x, t,A), j=1,2,3 are also bounded
and analytic. We recall that if m;;(B) denotes the ij-minor of B, then the cofactor matrix
B” of a 4 x 4 matrix B is

my1(B) —myp(B)  my3(B) —my4(B)
—my(B)  myy(B) —my3(B)  myu(B)

m31(B) —mgy(B)  mg3(B) —mgy(B) |’
—my(B)  mu(B) —myu3(B)  myu(B)

B =

and (B*)" B = adj(B) B = detB, where T denotes the transposition operation.
It follows from the Eq. (3.2) that the matrix-valued functions u” satisfies the Lax pair

‘U,é - lA[A3 .U'A] = _P(X’ t)T A,
pt = 2022 [A, u] = —Q(x, t, 1) pt.
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Then the eigenfunctions ,u?(x, t,A), j =1,2,3 can be written as
X

Wi, 6, 2) =1 - J e ONPUAYE, £, A)dE

Xj

t
— plAle=x;j)A f ezilz(t_T)A(QM?)(xj, T,A)dT.
t

i
Hence, the adjugated eigenfunctions ,u‘;.‘ are analytic and bounded in the following domains:

.u’;‘ in (D4, D4, Dy, D),
‘Ué in (D3,D3)D1>Dl):
ps in (Cy,Cp,C_,CL).

In fact, u‘i‘(O, t, A) is bounded in the region (D,UD,, D,UD,4, D; UD3, D; UD3) and ufz‘(O, t,A)
in the region (Dl U D3, Dl U D3, D2 U D4, D2 U D4)

3.6. The symmetry of eigenfunctions

Let us write the 4 x 4 matrix X = (X;;)4x4 as

X1 X )
X = ~ ~ 5 (39)
( Xo1 Xop

where

Set Z, = diag(+1,£1,¥1,F1). Noting that

F(x,t,A) =—iAA+P(x,t), G(x,t,A)=2iA%A+Q(x,t,A),
Z:I:(F(x3 t, i))Z:I: = _F(X’ t, A‘)T’ Z:I:(G(X’ t, i‘))Z:l: = —G(X, t, A)T’

and the functions F(x,t,A) and G(x,t,A) are symmetric, we obtain the symmetry of the
eigenfunctions u(x, t, A) — viz.

(.a'(xﬁ t’ A‘))11 = Z_l(.a'(x, t; i'))ZZZ_lﬁ (‘ljl,(x, t; A’))lZ = (ACL(X’ t’ i));’

with Z7! := diag(1,—-1).
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According to Ref. [8], the eigenfunctions 1(x, t,A) and u(x, t, A) of the respective Lax
pairs (3.1) and (3.2) satisfy the same symmetric relations

—_T _—
w_l(X, t: A') = Z;t(l/)(X, t: A')) Z:l:: ;u’_l(x) t: A') = Z:i:(;u’(x) t: A'))Z:l:
Moreover, in the domain where u(x, t, A) is bounded, it satisfies the relation
ulx,t,A)=I+0(1/1), A— oo,

so that det[u(x,t,A)] =1 since tr(F(x,t,A)) = tr(G(x,t,A) =0.

3.7. Spectral functions and the jump matrix computation
Let us define 4 x 4 matrix spectral functions s(1),S(1) and S’(1) by
AU’B(X’ t, A‘) = “2(-)(3 t, A’)e_(il)ﬁ_mlz t)AS(A‘),
pp(x, £, 2) = p(x, £, A~ Ax+200Rg (2, (3.10)
ps(x, £,2) = pa (x, 6, e 2005 (),
Taking into account the equation u,(0,0,A) = I, we can write
s = p3(0,0,2), S(V) = p1(0,0,2) = T Au;1(0,7, 1), G.11)
$'(A) = 171(0,0, (0,0, A) = S (A)s(A) = e2 ¥ TAy (0, T, 1), '

and display the connections of the functions u; with each other in Fig. 4. Note that the
functions s(1),S(A) and S’(1) depend on each other. Therefore, here we consider only two
of them — e.g. s(A) and S(A). It follows from (3.6), (3.11) that

S(A) =1—- J eiAEA(Pnu’S)(ga O, A')d g)
0

. . L (3.12)
NOES —J M A Quy)(0,7,A)d T = [I +J 27 A Quy) (0,7, M)d T |
0 0
¢ A
Hy S'(A)
S(A
oy s Hq
i ;

Figure 4: The relations among the dependent eigenfunctions ui(x, t,k),j=1,2,3.
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where u;(0,t,4), j = 1,2 and us(x,t,A), 0 < x < 00, 0 < t < T satisfy the Volterra
integral equations

_ A
nu’l(OJ t, A') =1I- e_ZLXZ(t_T)A(Qnu’l)(OJ T, A')dTJ
Jt
A € (D1 UD3,D; UDs3, Dy UDy, Dy U D),
(T
MZ(O’ t, A') =1+ 6_211 (t_T)A(Qnu’Z)(OJ T, A')dT:v (313)
Jo
YIS (DZ UD4’D2 L‘I1)4’l)1 UDB’Dl UDB)’
[ . A
‘U/3(x, OJ A') =1I- e_ll(x_g)A(Plu’S)(gy OJ A')d g: A’ € (C—J C—J C+J C+)'
J

Thus, the Egs. (3.12), (3.13) show that s(A) and S(A) are determined by U(x,0,A) and
V(0,t,u) — i.e. by the initial ug(x),vy(x) and boundary py(t), qo(t), p;(t), q;(t) data.
Indeed, the eigenfunctions us(x,0,4) and u;(0,t,A), j = 1,2 satisfy the x and t-parts of
the Lax pair (3.2) at t =0 and x = 0, respectively. Thus, for the x-part we have

Au’x(x: 0) A') + lA[A, ‘u’(xz 0) A'):l = P(x) t= O)AU’(x) OJ A')J
xlinoiou(x,o,)\) =], 0<x<oo,

and for the t part

(0, 6,2) + 2iA%[A, u(0,£,A)] = Q(x = 0, )u(0,£,2), 0<t<T,
}in%u(O, t,A)=pu(0,0,A) =1, limu(0,¢,4) =p(0,T,A) = 1.

Besides, using the properties of {,uj}f and {u’]‘.‘ ?, we note that s(1), S(1), s*(1) and SA4(1)
are bounded in the following regions:

s(A) in (C_,C_,C,,C,),
S(A) in (Dl UD3,D1 UD3,D2 UD4, D2 UD4),

SA(A) in (C+) C+, C_, C—):
SA(A,) in (DZ UD4,D2 UD4,D1 UD3,D1 UD3).

Proposition 3.2. The matrix-valued functions S,(x,t,A), n =1,2,3,4 defined by

M, (x, t, 1) = py(x, t, A)e (Ax+2iA20Ag 3y pep, (3.14)
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can be expressed with s(A) and S(A) elements as follows

$1(A) =

S4(A) =

Moy(s) my; (s)

2 <@
S13 S14 \ S S S S
n33,44(5) n33,44(5) 1;) 2;) 13 14 \
mqo(s mqq(s S S S s
12(5) 11(5) s s S,(A) = 21 20 523 924
( ) ( ) 23 24 > 2 (2) (2) 5
n33,g4 ’ n33’34 ’ S31 S3y 533 S34
S33 S34 2 @
\ 0 0 S43  Sa4 ] Si Spp S43 Saa )
S S 0 0 3 3
( S11 S12 0 0 \ s11 S1o 553) 554)
21 S22 ) ) Jrag
s s Myq(S My3(S 5.0 So1 S22 Syg o4
31 S32 =
nyp00(s) nype0(s) |7 73 Sa1 53 ng;) Sg? ’
s s Mma,(s) ms3(s) R
\ T g 00)  nypga(s) ) Sa Saz Siz Sas
(3.15)

with nyyj; j2j2(X) denoting the determinant of the sub-matrix

while
s =
S5 =
s =

(2) _
84]' =

ifj=12
s =
S5 =
S5 =

(3) _
S4j =

Xij1 Xije
Xioj1 Xiojo

x=( )

Ny 23—j)(8)May—j)(s) + 11 33— (SIMa3—j) (8) + 11 43—y (SImaz—j) (s)

A([S]1[S12ls150s14) ’
Ny 1(3—7)(SIMy 3y (8) + Ngj 33—y (SIMaz—j) (8) + Ngj 43—j) (SIMyz—j) (s)
A([S]1[S12ls150s14) ’
n3;j 13—j)(S)My—j)(s) + ngj 23—)(SIMa3—j) (s) + N3 43—y (SIM4z—j)(s)
A([S]1[S12ls150s14) ’
14j,13-7) ()M (3 (8) + 14 23— ) (SIMz(3—)(8) + 14 53—y (SIMz(3—j) (s)
A([S]1[S]als]sls14) ’

Ny o7—)(8)Ma—j)(s) + 11j 37— (SIma7—jy (8) + 11 47—y (SImac7—j) (s)
A([s]i[s]2[S150S14) ’
12j,1(7—7)(S)M1(7—1)(8) + N3 37— (SIMa7—y(8) + N3 47—y (SIMy(7—j) (s)
A([s]i[s]2[S150S14) ’
ng;j1(7—j)(S)myz—j)(s) + ngj 27— (SIMaz—jy (s) + n3j 47—y (S Imac7—j)(s)
A([s]i[s]2[S150S14) ’
14,1(7—)(S)My7—j)(8) + N4 27—y (SIMa7—iy (8) + Ny4j 37—y (SImg7—j) (5)

A([s]1[s12[S150514) ’
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if j =3,4, and

A([S]1[S]2[s15[s14) := det(n([S];,[S 15, [s13,[s14)),
A([s]i[s]2[S15[S14) := det(n([s]y, [s]2, [S 13, [S 1)),

with [-]; denoting the j-th column of the corresponding matrix s or S.

3.8. Residue conditions

We recall that u,(x,t,A) is an entire function, and according to (3.14), the function
M(x, t, A) has singularities at the same pointsas S, n = 1,2, 3, 4. Let {AJ-}% denote possible
zeros of M(x, t,A).

Assumption 3.1. Assume that the points {Aj}% satisfy the following conditions:

¢ The function ng; 44(s)(A) has at most n; simple zeros {PLJ-}Tl11 in D;.

ny

e The function A([S];[S].[s]3[s]4)(A) has at most n, —n; > 0 simple zeros {)»j}n1+1

in Dz.

e The function A([s];[s]2[S]3[S14)(A) has at most n; —n, > 0 simple zeros {Aj}zzﬂ
in D3.

e The function n; 55(s)(A) has at most N —ng > 0 simple zeros {Aj}ﬁgﬂ in Dy.

e All these zeros are different and neither of the functions ny; 55(s)(A), ns3 44(s)(A),
A([S]1[S]a[s]3ls]4)(A) and A([s];[s]2[S13[S14)(A) have zeros on the boundaries of
D, n=1,23,4.

Let X = (X;j)4x4 be a 4 x 4 matrix. We define the matrix ef%4X by

X1 X12 Xlseze X14€29
Xo1 Xo Xo3e2?  Xo4e??
X362 X3pe™2 Xa X34
Xpe 2 Xppe 0 Xy X4

e994x 1= ¢094x 094 =

Proposition 3.3. Let {M,(x,t, 7L)}‘1‘ be the eigenfunctions (3.7). If the points {Aj}% satisfies
Assumption 3.1, then
m2(3—k)(5)(}'j )524(%’) - m1(3—k)(5)(7tj )514(75')
n33,44(.5)()\'j)n13,24(s)(kj)
+ ml(B—k)(S)(Aj )51‘3(%’) - mz(g—k)(s)()\j )523()\1)
n33,44(3)(7tj)n13,24(5)(lj)
1<j<n, AjeD;, k=12 (3.16)

Res;_ [M;(x,t, )] = [M, J5e1 %)

(M, ]46931(%),
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Res, (M 2], = SO =S5O0 6
' A([S]1[SL2s15[s14)(A)n11,22(s)(A)
Se (A ))s13(A) =S (0)s25(2)

A([S]l[5]2[5]3[3]4)@]’)“11,22(5)(%)

n+1<j<ny, A;€Dy;, k=1,2. (3.17)

[M, ]46931(%)’

SO (A))522 (A1) =82 (A)s15 (1) |
Resz:lj M £ )= A([S]l[5]2[313[5]4)(9\1)”11,22(5)(%)[Mg]leels(%)
Sg’()(lj)Su(lj)—Sgi)(lj)Sm(lj) M, ], ¢80
A([shi[s12[S1[S18)(ADn11,20(5)(A5) ’
n,+1<j<ns;, A;€D;, k=34 (3.18)

My(7—i)(8)(A)s42(A) — m37—_i) (s)(A)s32(A5)

- [M] 613(2;)
”11,22(3)(%')n31,42(5)(1j) 4he

ReSl:)LJ_ [M4(x, t, A'):lk =

N m3(7—k)(5)(kj )53'1 (Aj) - m4(7—k)(5)(7tj )541(%) [M4]26913(7LJ'),
n11,22(3)(7tj)n31,42(5)(1j)
n3+1S]SL, Aj€D4, k:3,4, (319)

where f =df /d ) and 0;; have the form
eij(x’tﬁk):(li_lj)x_(zi_zj)t’ i,j:1,2,3,4,
so that
O12 = 091 = 034 = 043 =0,
913 = 914 = 923 = 924 =—2iAx —4i12t,
931 = 941 = 932 = 942 =2iAx + 41121'

Proof. Let us start with the relation (3.19). Writing the expression (3.14) for n =4, we
obtain that | o
My(x, t,A) = uy(x, t, A)e(iAx+2i% t)AS4’

where S, is defined in (3.15). The matrix M,(x, t, ) has the following columns

[My]1 = [alis11 + [Malasor + [HaJss31€% + [uglasae®, (3.20)

[My]o = [a]i512 + [Malasos + (U Jss30e% + [Ug]4s42%, (3.21)
My4(s) M4(s)

M = + 5 3.22

(M43 =[uzls M112205) [M2]4n11’22(s) ( )
Mys(s) ms3(s)

Myl = + . 3.23

[ 4]4 [uals n11,22(5) [M2]4 n11,22(5) ( )
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If A; € D, is a simple zero of nj; 2,(s)(4), then solving the Egs. (3.20), (3.21) for [u,]s,
[uy]4 and substituting the solutions in (3.22) and (3.23), we obtain that

My4(8)s45 — M34(s)s3y M34(8)s31 — Mys(s)s4y

[M,]; = [M,]1e%: + [M,]5e%
M n11,22(3)n31,42(5) 1 “11,22(3)n13,24(3) 42
+ Moy (s)[ug ]y + m14(5)[l/«2]2eg13,
n31,42(5)
Ma3(8)S49 — mas(s)s M3 (s)sq; — mys(s)s
[M4:|4 — 43( ) 42 33( ) 32 [M4]1€913 + 33( ) 31 43( ) 41 [M4]2€913

n11,22(3)n31,42(5) “11,22(3)n31,42(3)
+ mo3(s)lpz]s + m13(5)[l/«2]26913

n31,42(5)

Calculating the residues of these functions at )Lj, we arrive at the formula (3.19). The
representations (3.16)-(3.18) can be derived analogously. O

3.9. The global relationship

The spectral functions S(A) and s(A) are not independent. Thus the Egs. (3.10), (3.11)
yield )
pa(e, £,2) = py (3, £, A)e” A2 OAG T ()5 1),

since u,(0, T,A) = I. Therefore, we obtain the global relation
STIA)s(A) = X TAc(T, 1) = 2 TA (0, T, 1),

where
oo

C(T) A') = Au’3(05 T) A') =I1- J eilfA(U‘ug)(g, T: A')d g) Ae (C—) C—) C+> C+)
0

4. Riemann-Hilbert Problem

In Section 3, we defined a sectionally analytic function M(x, t,A) that satisfies a RH
problem formulated in terms of initial and boundary values. The solution of system (1.3)
can be determined from the solutions of this RH problem.

Theorem 4.1. If {u(x,t),v(x,t)} is a sufficiently smooth and fast decaying (as x tens to
00) solution of the system (1.3) in the domain €, then it can be reconstructed from the ini-
tial values {ug(x), vo(x)} and the boundary values {py(t),qo(t), p1(t),q1(t)} of (1.4). More
precisely, using the initial and boundary data, we establish the spectral functions s(A) and
S(A) of (3.10) and define the jump matrix Jp, ,(x,t,A). If the zeros {Aj}% of the func-
tions nz3 44(s)(A), A([S]1[S]als]5[s14)(A), A([s]1[s]2[S15[S14)(A) and nyq 25(s)(A) satisfy
Assumption 3.1, then
u(x, t) =—2i ll_i)n;o(AM(x, t,A))24,

v(x,t) =—2i lim (AM(x,t,A))14,
A— 00
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where

e M(x,t,A) is a sectionally meromorphic on the Riemann A-sphere and has jumps on the
contours D,ND,,, n,m=1,2,3,4 — cf. Fig. 3.

e On contours D,ND,,, n,m = 1,2,3, 4 the function M (x, t, A) satisfies the jump condition

M (x,t,A) = My (x, t, A n(x, t,4), A€ D,ND,,, n#m.

e M(x,t,A)=1+0(1/A), A — oco.
e The function M(x, t,A) satisfies the residue condition of Proposition 3.3.

The proof of this theorem is similar to the corresponding proof in Ref. [37].

5. Conclusions

We considered IBV problems for a coherently coupled NLS system on the half-line. Ap-
plying the Fokas unified transform method for nonlinear evolution equations in the form of
Lax isospectral deformations and continuous spectra of the corresponding Lax operators,
we reduce the initial problem to a matrix Riemann-Hilbert problem in the complex plane.
Other integrable equations with 4 x 4 matrix Lax pairs can be discussed elsewhere.
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