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1 INTRODUCTION

It is known that super integrable systems provide interesting and important models in the supersymmetry theory.
Supersymmetry originated in the 1970s when physicists have proposed simple models with supersymmetric colors in
string models and mathematical physics. After that, Wess and Zumino1 applied supersymmetry to the four-dimensional
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space-time. Unfortunately, the supersymmetry partners of any particle have not been found so far, and it is generally
believed that this symmetry is spontaneous rupture. To unify two kinds of particles with different spin and statistical
properties—Boson and Fermion—theoretical physicists proposed the concept of hyperspace in the study of unified field
theory and quantum field theory. Inspired by this, mathematicians developed the super analysis, hypergeometric, and
superalgebra.

Because of the importance of supersymmetry in physics (especially in the exploration of the relationship between
supersymmetric conformal field and chord theory), which have aroused growing attentions by many mathematicians
and physicists to study of super integrable systems associated with Lie superalgebra, many classical soliton equations
have been extended to be the super completely integrable system. For example, the super Ablowitz-Kaup-Newell-Segur
(AKNS) hirearchy,2-10 super Dirac hierarchy,4,11-13 super Kaup-Newell (KN) hierarchy,14-16 and others.17-26 Among those,
Hu27 and Ma4 have made a great contribution. Hu27 proposed the super-trace identity at the first time, which is an effec-
tive tool to constructing super Hamiltonian structures of super integrable systems. Ma gave the proof of the super-trace
identity in 2008, and a lot of the super Hamiltonian structures of the super integrable systems are established by using
of the super-trace identity.4 Recently, the study of integrable couplings of the well-known integrable hierarchy associated
with enlarging matrix Lie superalgebra has also aroused growing attentions by many mathematicians and physicists.28-34

Meanwhile, the research of super integrable couplings generalizes the classical integrable couplings theory and provides
clues toward complete classification of super integrable systems.35-41

In literature,30 You considered that an enlarged super AKNS matrix spectral problem is given by

𝜙x = M𝜙,M =

⎛⎜⎜⎜⎜⎝
𝜆 p 0 r 𝛼
q −𝜆 s 0 𝛽
0 0 𝜆 p + r 0
0 0 q + s −𝜆 0
𝛽 −𝛼 −𝛽 𝛼 0

⎞⎟⎟⎟⎟⎠
, 𝜙 =

⎛⎜⎜⎜⎜⎝
𝜙1
𝜙2
𝜙3
𝜙4
𝜙5

⎞⎟⎟⎟⎟⎠
,u =

⎛⎜⎜⎜⎜⎜⎝

p
q
𝛼
𝛽
r
s

⎞⎟⎟⎟⎟⎟⎠
, (1)

where 𝜆 is the spectral parameter; p, q, r, and s are even potentials, and 𝛼 and 𝛽 are odd ones. Take 𝛼 = 𝛽 = 0, the
hierarchy (1) reduces to a nonlinear integrable couplings of the classical AKNS hierarchy,35 whose super Hamiltonian
structure is furnished by super-trace identity. Recently, Shen et al.42 considered a generalized spatial spectral problem of
AKNS integrable coupling as follows:

𝜙x = U𝜙,U =
⎛⎜⎜⎜⎝
𝜆 + 𝜔 p 0 r

q −𝜆 − 𝜔 s 0
0 0 𝜆 + 𝜔 p
0 0 q −𝜆 − 𝜔

⎞⎟⎟⎟⎠ , 𝜙 =
⎛⎜⎜⎜⎝
𝜙1
𝜙2
𝜙3
𝜙4

⎞⎟⎟⎟⎠ ,u =
⎛⎜⎜⎜⎝

p
q
r
s

⎞⎟⎟⎟⎠ , (2)

where 𝜔 = 𝜖(ps + qr); 𝜆 is the spectral parameter; and p, q, r, and s are commuting variables. Obviously, when 𝜖 = 0, this
generalized spatial spectral problem (2) is reduced to a new case of AKNS integrable couplings,43 whose bi-Hamiltonian
structures were constructed by using the component-trace identity in.42 Inspired by those spatial spectral problems, in
this paper, we would like to construct nonlinear super integrable couplings of a generalized super AKNS hirearchy.

The rest of this paper is organized as follows. In Section 2, we will review the Lie superalgebra sl(2,1) enlarged to the
Lie superalgebra sl (4,1). In Section 3, we will construct a generalization of the super AKNS integrable coupling hierarchy
from zero curvature equations, based on the above-mentioned generalized spatial spectral problem (1). In Section 4, the
super bi-Hamiltonian form will be presented for the obtained super integrable couplings of the generalized super AKNS
hierarchy by making use of the super-trace identity. For the sake of convenience, we will use the mathematical software
Maple to deal with some complicated symbolic computations. And Section 5 is devoted to conclusions and discussions.

2 ENLARGEMENT OF A LIE SUPERALGEBRA

In this section, we recalled the Lie superalgebra sl(2,1) enlarged to the Lie superalgebra sl(4,1).28-34 Consider that the Lie
superalgebra sl(2,1) is given by
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E1 =

( 1 0 0
0 −1 0
0 0 0

)
,E2 =

( 0 1 0
0 0 0
0 0 0

)
,E3 =

( 0 0 0
1 0 0
0 0 0

)
,

E4 =

( 0 0 1
0 0 0
0 −1 0

)
,E5 =

( 0 0 0
0 0 1
1 0 0

)
,

where E1,E2,E3 are even elements and E4,E5 are odd ones; and [., .] and [., .]+ denote the commutator and the
anticommutator, which satisfy the following operational relations:

[E1,E2] = 2E2, [E1,E3] = −2E3, [E2,E3] = E1,

[E1,E4] = [E2,E5] = E4, [E1,E5] = [E4,E3] = −E5, [E2,E4] = [E3,E5] = 0,
[E4,E4]+ = −2E2, [E5,E5]+ = 2E3, [E4,E5]+ = [E5,E4]+ = E1.

(3)

Then the corresponding loop superalgebra is defined by

sl(2, 1) = sl(2, 1)⊗C[𝜆, 𝜆−1]. (4)

Let us enlarge the Lie superalgebra sl(2,1) to the Lie superalgebra sl(4,1) with a basis

e1 =

⎛⎜⎜⎜⎜⎝
1 0 0 0 0
0 −1 0 0 0
0 0 1 0 0
0 0 0 −1 0
0 0 0 0 0

⎞⎟⎟⎟⎟⎠
, e2 =

⎛⎜⎜⎜⎜⎝
0 1 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0

⎞⎟⎟⎟⎟⎠
, e3 =

⎛⎜⎜⎜⎜⎝
0 0 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 0 0

⎞⎟⎟⎟⎟⎠
,

e4 =

⎛⎜⎜⎜⎜⎝
0 0 1 0 0
0 0 0 −1 0
0 0 1 0 0
0 0 0 −1 0
0 0 0 0 0

⎞⎟⎟⎟⎟⎠
, e5 =

⎛⎜⎜⎜⎜⎝
0 0 0 1 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0

⎞⎟⎟⎟⎟⎠
e6 =

⎛⎜⎜⎜⎜⎝
0 0 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 0 0

⎞⎟⎟⎟⎟⎠
e7 =

⎛⎜⎜⎜⎜⎝
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 −1 0 1 0

⎞⎟⎟⎟⎟⎠
e8 =

⎛⎜⎜⎜⎜⎝
0 0 0 0 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
1 0 −1 0 0

⎞⎟⎟⎟⎟⎠
.

Similarly, here, e1, e2, e3, e4, e5, e6 are even elements and e7, e8 are odd ones; [., .] and [., .]+ denote the commutator and the
anticommutator, which satisfy the following operational relations:

[e1, e2] = 2e2, [e1, e3] = −2e3, [e1, e5] = −[e2, e4] = [e4, e5] = 2e5, [e2, e3] = e1,

[e1, e6] = −[e3, e4] = [e4, e6] = −2e6, [e1, e7] = [e2, e8] = e7, [e1, e8] = −[e3, e7] = −e8,

[e2, e6] = −[e3, e5] = [e5, e6] = e4, [e1, e4] = [e2, e5] = [e2, e7] = [e3, e6] = [e3, e8] = 0,
[e4, e7] = [e4, e8] = [e5, e7] = [e5, e8] = [e6, e7] = [e6, e8] = 0

[e7, e8]+ = e1 − e4, [e7, e7]+ = 2e5 − 2e2, [e8, e8]+ = 2e3 − 2e6.

(5)

Define a loop superalgebra corresponding to the Lie superalgebra sl(4,1) and denote by

sl(4, 1) = sl(4, 1)⊗C[𝜆, 𝜆−1] = ei𝜆
m, ei ∈ sl(4, 1), i = 1, 2, … , 8;m = 0,±1,±2, … (6)

The corresponding commutative and anticommutative relations are defined as

[ei𝜆
m, ej𝜆

n] = [ei, ej]𝜆m+n,∀ei, ej ∈ sl(4, 1). (7)
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3 NONLINEAR GENERALIZED SUPER INTEGRABLE COUPLINGS OF THE
SUPER AKNS HIERARCHY

In this section, we shall construct nonlinear integrable couplings of a generalized super AKNS hierarchy from an enlarging
matrix Lie superalgebra. Consider the following spatial spectral problem

𝜙x = M𝜙,M =

⎛⎜⎜⎜⎜⎝
𝜆 + h p 0 r 𝛼

q −𝜆 − h s 0 𝛽
0 0 𝜆 + h p + r 0
0 0 q + s −𝜆 − h 0
𝛽 −𝛼 −𝛽 𝛼 0

⎞⎟⎟⎟⎟⎠
, 𝜙 =

⎛⎜⎜⎜⎜⎝
𝜙1
𝜙2
𝜙3
𝜙4
𝜙5

⎞⎟⎟⎟⎟⎠
,u =

⎛⎜⎜⎜⎜⎜⎝

p
q
𝛼
𝛽
r
s

⎞⎟⎟⎟⎟⎟⎠
, (8)

where h = 𝜇(ps+ qr+ rs− 2𝛼𝛽) with 𝜇 being an arbitrary even constant; 𝜆 is the spectral parameter; p, q, r, and s are even
potentials; and 𝛼 and 𝛽 are odd potentials. Obviously, the spatial spectral problem (8) with 𝜇 = 0 reduces to the standard
nonlinear integrable couplings of super AKNS hierarchy case.30

To derive super integrable couplings of a generalized super integrable hierarchy associated with the spatial spectral
problem (8), we must solve the stationary zero curvature equation

Nx = [M,N], (9)

where

N =

⎛⎜⎜⎜⎜⎝
A B E F 𝜌
C −A G −E 𝛿
0 0 A + E B + F 0
0 0 C + G −A − E 0
𝛿 −𝜌 −𝛿 𝜌 0

⎞⎟⎟⎟⎟⎠
, (10)

in which the corresponding A,B,C,E,F,G are even elements and 𝜌, 𝛿 are odd elements.
Substituting M in (8) and N in (10) into Equation 9 yields

⎧⎪⎪⎪⎨⎪⎪⎪⎩

Ax = pC − qB − 𝛼𝛿 + 𝛽𝜌,
Bx = 2𝜆B − 2pA − 2𝛼𝜌 + 2hB,
Cx = −2𝜆C + 2qA + 2𝛽𝛿 − 2hC,
Ex = (p + r)G + rC − sB − (q + s)F − 𝛼𝛿 − 𝛽𝜌,
Fx = 2𝜆F − 2(p + r)E − 2rA + 2𝛼𝜌 + 2hF,
Gx = −2𝜆G + 2(q + s)E + 2sA − 2𝛽𝛿 − 2hG,
𝜌x = 𝜆𝜌 + p𝛿 − 𝛼A − 𝛽B + h𝜌,
𝛿x = −𝜆𝛿 + 𝛽A − 𝛼C + q𝜌 − h𝛿.

(11)

Choosing

A =
n∑

m≥0
am𝜆

−m,B =
n∑

m≥0
bm𝜆

−m,C =
n∑

m≥0
cm𝜆

−m,E =
n∑

m≥0
em𝜆

−m,

F =
n∑

m≥0
fm𝜆

−m,G =
n∑

m≥0
gm𝜆

−m, 𝜌 =
n∑

m≥0
𝜌m𝜆

−m, 𝛿 =
n∑

m≥0
𝛿m𝜆

−m

(12)

and comparing the coefficients of the same powers of 𝜆 in Equation 11, we have

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

am,x = pcm − qbm + 𝛼𝛿m + 𝛽𝜌m,
em,x = rcm − sbm + (p + r)gm − (q + s)fm − 𝛼𝛿m − 𝛽𝜌m,

bm+1 = 1
2

bm,x + pam + 𝛼𝜌m − hbm,

cm+1 = − 1
2

cm,x + qam + 𝛽𝛿m − hcm,

fm+1 = 1
2

fm,x + ram + (p + r)em − 𝛼𝜌m − hfm,

gm+1 = − 1
2

gm,x + sam + (q + s)em − 𝛽𝛿m − hgm,

𝜌m+1 = 𝜌m,x + 𝛼am + 𝛽bm − p𝛿m − h𝜌m,
𝛿m+1 = −𝛿m,x + 𝛽am − 𝛼cm + q𝜌m − h𝛿m,

(13)
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which results in the recurrence relations{ (cm+1, bm+1, 𝛿m+1, 𝜌m+1, gm+1, fm+1)T = L(cm, bm, 𝛿m, 𝜌m, gm, fm)T ,
am = 𝜕−1(rcm − qbm + 𝛼𝛿m + 𝛽𝜌m),
em = 𝜕−1(rcm − sbm − 𝛼𝛿m − 𝛽𝜌m + (p + r)gm − (q + s)fm),

(14)

where the recursion operator L has the following form

L =

( L1 L2 0
L3 L4 0
L5 −L2 L6

)
, (15)

with

L1 =

(
q𝜕−1p − 1

2
𝜕 − h −q𝜕−1q

p𝜕−1p −p𝜕−1q + 1
2
𝜕 − h

)
,L2 =

(
q𝜕−1𝛼 + 𝛽 q𝜕−1𝛽

p𝜕−1𝛼 p𝜕−1𝛽 + 𝛼

)
,

L3 =
(
𝛽𝜕−1p − 𝛼 −𝛽𝜕−1q
𝛼𝜕−1p −𝛼𝜕−1q + 𝛽

)
,L4 =

(
𝛽𝜕−1𝛼 − 𝜕 − h 𝛽𝜕−1𝛽 + q
𝛼𝜕−1𝛼 − p 𝛼𝜕−1𝛽 + 𝜕 − h

)
,

L5 =
(

s𝜕−1p + (q + s)𝜕−1r −s𝜕−1q − (q + s)𝜕−1s
r𝜕−1p + (p + r)𝜕−1r −r𝜕−1q − (p + r)𝜕−1s

)
,

L6 =

(
(q + s)𝜕−1(p + r) − 1

2
𝜕 − h −(q + s)𝜕−1(q + s)

(p + r)𝜕−1(p + r) −(p + r)𝜕−1(q + s) + 1
2
𝜕 − h

)
.

Upon choosing the initial conditions a0 = e0 = 1, b0 = c0 = e0 = f0 = g0 = 𝜌0 = 𝛿0 = 0, all other aj, bj, cj, 𝜌j, 𝛿j(j ≥ 1) can
be worked out uniquely by the recurrence relations (14) and by using of symbolic computation software (Maple). We list
the first three sets as follows:

a1 = e1 = 0, b1 = p, c1 = q, f1 = p + r, g1 = q + s, 𝜌1 = 𝛼, 𝛿1 = 𝛽,

a2 = −1
2
(pq + 2𝛼𝛽), b2 = 1

2
px − hp, c2 = −1

2
qx − hq,

e2 = −
(

ps + qr + rs + 1
2

pq − 𝛼𝛽

)
, f2 = 1

2
px +

1
2

rx − hp − hr,

g2 = −1
2

qx −
1
2

sx − hq − hs, 𝜌2 = 𝛼x − h𝛼, 𝛿2 = −𝛽x − h𝛽,

a3 = 1
4
(pqx − pxq) + 𝛼𝛽x − 𝛼x𝛽 + h(pq + 2𝛼𝛽),

b3 = 1
4

pxx −
1
2

hxp − hpx −
1
2
(pq + 2𝛼𝛽)p + 𝛼𝛼x + h2p,

c3 = 1
4

qxx +
1
2

hxq + hqx −
1
2
(pq + 2𝛼𝛽)q − 𝛽𝛽x + h2q,

e3 = 1
2

(
psx − pxs + qxr − qrx + rsx − rxs + 1

2
pqx −

1
2

pxq
)

− (𝛼𝛽x − 𝛼x𝛽) + 2h
(

ps + qr + rs + 1
2

pq − 𝛼𝛽

)
,

f3 = 1
4

pxx +
1
2

rxx −
1
2

hx(p + 2r) − hpx − 2hrx −
1
2
(pq + 2𝛼𝛽)r

− 𝛼𝛼x + h2(p + 2r) − (p + r)
(1

2
pq + ps + qr + rs − 𝛼𝛽

)
,

g3 = 1
4

qxx +
1
2

sxx +
1
2

hx(q + 2s) + hqx + 2hsx −
1
2
(pq + 2𝛼𝛽)s

+ 𝛽𝛽x + h2(q + 2s) − (q + s)
(1

2
pq + ps + qr + rs − 𝛼𝛽

)
,

𝜌3 = 𝛼xx − hx𝛼 − 2h𝛼x −
1
2
(pq + 2𝛼𝛽)𝛼 + h2𝛼 + 1

2
px𝛽 + p𝛽x,

𝛿3 = 𝛽xx + hx𝛽 + 2h𝛽x −
1
2
(pq + 2𝛼𝛽)𝛽 + h2𝛽 + 1

2
qx𝛼 + q𝛼x.
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Let us consider the spectral problem (8) with the following auxiliary spectral problem:

𝜙tn = N(n)𝜙,

where

N(n) = N(n)
+ + Δn =

n∑
m=0

⎛⎜⎜⎜⎜⎜⎝

am bm em fm 𝜌m
cm −am gm −em 𝛿m
0 0 am + em bm + fm 0
0 0 cm + gm −am − em 0
𝛿m −𝜌m −𝛿m 𝜌m 0

⎞⎟⎟⎟⎟⎟⎠
𝜆n−m + Δn, (16)

with 𝛥n being the modification term. We set

Δn =

⎛⎜⎜⎜⎜⎝
a b e f k
c −a g e l
0 0 a b 0
0 0 c −a 0
l −k −l k 0

⎞⎟⎟⎟⎟⎠
,

and substitute Equations 8 and 16 into the following zero curvature equation

Mtn − N(n)
x + [M,N(n)] = 0, (17)

where n ≥ 0. Making use of Equation 11 yields

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

htn = ax, b = c = e = f = g = k = l = 0,
ptn = bn,x + 2pan + 2𝛼𝜌n − 2hbn + 2pa = 2bn+1 + 2pa,
qtn = cn,x − 2qan − 2𝛽𝛿n + 2hcn − 2qa = −2cn+1 − 2qa,
𝛼tn = 𝜌n,x + 𝛼an + 𝛽bn − p𝛿n − h𝜌n + 𝛼a = 𝜌n+1 + 𝛼a,
𝛽tn = 𝛿n,x − 𝛽an + 𝛼cn − q𝜌n + h𝛿n − 𝛽a = −𝛿n+1 − 𝛽a,
rtn = fn,x + 2ran − 2𝛼𝜌n − 2(p + r)en − 2hfn + 2ra = 2fn+1 + 2ra,
stn = gn,x − 2san + 2𝛽𝛿n − 2(q + s)en + 2hgn − 2sa = −2gn+1 − 2sa,

(18)

which guarantees the following identity:

(ps + qr + rs − 2𝛼𝛽)tn = −2(rcn+1 − sbn+1 + (p + r)gn+1 − (q + s)fn+1

− 𝛼𝛿n+1 − 𝛽𝜌n+1) = −2en+1,x.
(19)

Choosing a = −2𝜇en+1, we can obtain the following hierarchy:

utn =

⎛⎜⎜⎜⎜⎜⎜⎝

p
q
𝛼

𝛽

r
s

⎞⎟⎟⎟⎟⎟⎟⎠tn

=

⎛⎜⎜⎜⎜⎜⎜⎝

2bn+1 − 4𝜇pen+1
−2cn+1 + 4𝜇qen+1
𝜌n+1 − 2𝜇𝛼en+1
−𝛿n+1 + 2𝜇𝛽en+1
2fn+1 − 4𝜇ren+1
−2gn+1 + 4𝜇sen+1

⎞⎟⎟⎟⎟⎟⎟⎠
,n ≥ 0. (20)
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When n = 2 in Equation 20, we obtain the first nontrivial flow as follows

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

pt2 =
1
2

pxx − p2q − 2p𝛼𝛽 + 2𝛼𝛼x + 𝜇(ppxq − ppxs − 3prqx − 3prsx + prxq + prxs
−2pxqr − 2pxsr − p2qx − 3p2sx + 4p𝛼𝛽x − 4p𝛼x𝛽 + 4px𝛼𝛽) − 2𝜇2p(2p2sq + 2pq2r
+3q2r2 + 3s2r2 + 3p2s2 + 6ps2r + 6sqr2 + 8psqr) + 16𝜇2p𝛼𝛽(ps + qr + sr + 1

2
pq),

qt2 = − 1
2

qxx + pq2 + 2q𝛼𝛽 + 2𝛽𝛽x + 𝜇(pqxq + pqsx − 3qspx − 3qsrx + qrqx + qrsx

−2psqx − 2srqx − q2px − 3q2rx − 4q𝛼𝛽x + 4q𝛼x𝛽 + 4qx𝛼𝛽) + 2𝜇2q(2p2sq + 2pq2r
+3q2r2 + 3s2r2 + 3p2s2 + 6ps2r + 6sqr2 + 8psqr) − 16𝜇2q𝛼𝛽(ps + qr + sr + 1

2
pq),

𝛼t2 = 𝛼xx + 1
2
𝛼qx + q𝛼x − 1

2
pq𝛼 + 𝜇( 1

2
𝛼qpx − 1

2
𝛼pqx − 2𝛼psx − 2𝛼rsx

−2𝛼rqx − 2ps𝛼x − 2qr𝛼x − 2sr𝛼x + 2𝛼𝛼x𝛽) − 𝜇2𝛼(2p2sq + 2pq2r
+3q2r2 + 3s2r2 + 3p2s2 + 6ps2r + 6sqr2 + 8psqr),

𝛽t2 = −𝛽xx − 1
2

px𝛽 − p𝛽x + 1
2

pq𝛽 + 𝜇( 1
2
𝛽pqx − 1

2
𝛽qpx − 2𝛽spx − 2𝛽srx

−2𝛽qrx − 2ps𝛽x − 2qr𝛽x − 2sr𝛽x + 2𝛼𝛽x𝛽) + 𝜇2𝛽(2p2sq + 2pq2r
+3q2r2 + 3s2r2 + 3p2s2 + 6ps2r + 6sqr2 + 8psqr),

rt2 = rxx + 1
2

pxx − p2q + 2p𝛼𝛽 − 2𝛼𝛼x − 2r2s − 2qr2 − 2p2s − 4psr − 4pqr + 𝜇(−3pspx

−2prqx − pqrx − qrpx − 5prsx − 5psrx − 2srpx − 4qrrx − 4srrx − 4r2qx

−4r2sx − p2sx + 4px𝛼𝛽 + 4r𝛼𝛽x − 4r𝛼x𝛽 + 4rx𝛼𝛽) + 8𝜇2𝛼𝛽(r2q + r2s − p2s)
−2𝜇2(pq2r2 − p3s2 + 2r3q2 + 2r3s2 + 3ps2r2 + 4r3qs + 4r2psq),

st2 = −sxx − 1
2

qxx + pq2 − 2q𝛼𝛽 − 2𝛽𝛽x + 2rs2 + 2rq2 + 2ps2 + 4pqs + 4qrs𝜇(−3qrqx

−2srqx − pqsx − psqx − 5qrsx − 5qsrx − 2sqpx − 4pssx − 4rssx − 4s2px

−4s2rx − q2rx + 4qx𝛼𝛽 − 4s𝛼𝛽x + 4s𝛼x𝛽 + 8sx𝛼𝛽) − 8𝜇2𝛼𝛽(r2s + p2s − r2q)
+2𝜇2(qp2s2 − q3r2 + 2s3r2 + 2s3p2 + 3qs2r2 + 4s3pr + 4s2prq),

(21)

whose Lax pair consists of M and N(2). M is defined by (8) and N(2)

N(2) =

⎛⎜⎜⎜⎜⎜⎜⎝

N(2)
11 N(2)

12 N(2)
13 N(2)

14 N(2)
15

N(2)
21 −N(2)

11 N(2)
23 −N(2)

13 N(2)
25

0 0 N(2)
33 N(2)

34 0
0 0 N(2)

43 −N(2)
33 0

N(2)
25 −N(2)

15 −N(2)
25 N(2)

15 0

⎞⎟⎟⎟⎟⎟⎟⎠
. (22)

with

N(2)
11 = 𝜆2 − 1

2
(pq + 2𝛼𝛽),N(2)

12 = p𝜆 + 1
2

px − hp,N(2)
13 = 𝜆2 −

(
ps + qr + rs + 1

2
pq − 𝛼𝛽

)
,

N(2)
14 = (p + 2r)𝜆 + 1

2
px +

1
2

rx − hp − hr,N(2)
15 = 𝛼𝜆 + 1

2
𝛼x − h𝛼,N(2)

21 = q𝜆 − 1
2

qx − hq,

N(2)
23 = (q + 2s)𝜆 − 1

2
qx −

1
2

sx − hq − hs,N(2)
25 = 𝛽𝜆 − 1

2
𝛽x − h𝛽,

N(2)
33 = 2𝜆2 − (ps + qr + rs + pq),N(2)

34 = 2(p + r)𝜆 + px +
1
2

rx − 2hp − hr,

N(2)
43 = 2(q + s)𝜆 − qx −

1
2

sx − 2hq − hs.

4 SUPER BI-HAMILTONIAN STRUCTURES

In what follows, we shall find super bi-Hamiltonian structures of the nonlinear super integrable couplings of a generalized
super AKNS hirearchy (20). To this end, we shall apply the super variational identities, which were discussed in Ma et al.36
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𝛿

𝛿u ∫ Str
(

N 𝜕M
𝜕𝜆

)
dx =

(
𝜆−𝛾

𝜕

𝜕𝜆
𝜆𝛾
)

Str
(
𝜕M
𝜕u

N
)
, (23)

where Str denotes the super trace. It is not difficult to find that

Str
(

N 𝜕M
𝜕𝜆

)
= 4A + 2E, Str

(
𝜕M
𝜕p

N
)

= 2C + G + 2𝜇s(2A + E),

Str
(
𝜕M
𝜕q

N
)

= 2B + F + 2𝜇r(2A + E), Str
(
𝜕M
𝜕𝛼

N
)
= 2𝛿 + 4𝜇𝛽(2A + E),

Str
(
𝜕M
𝜕𝛽

N
)

= −2𝜌 − 4𝜇𝛼(2A + E), Str
(
𝜕M
𝜕r

N
)
= C + G + 2𝜇(q + s)(2A + E),

Str
(
𝜕M
𝜕s

N
)
= B + F + 2𝜇(p + r)(2A + E).

(24)

Substituting Equation 24 into 23 and comparing the coefficient of 𝜆−n−2 of both sides of Equation 23 yield

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝛿

𝛿p
𝛿

𝛿q
𝛿

𝛿𝛼
𝛿

𝛿𝛽

𝛿

𝛿r
𝛿

𝛿s

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
∫ (4an+2 + 2en+2)dx = (𝛾 − n − 1)

⎛⎜⎜⎜⎜⎜⎜⎝

2cn+1 + gn+1 + 2𝜇s(2an+1 + en+1)
2bn+1 + fn+1 + 2𝜇r(2an+1 + en+1)

2𝛿n+1 + 4𝜇𝛽(2an+1 + en+1)
−2𝜌n+1 − 4𝜇𝛼(2an+1 + en+1)

cn+1 + gn+1 + 2𝜇(q + s)(2an+1 + en+1)
bn+1 + fn+1 + 2𝜇(p + r)(2an+1 + en+1)

⎞⎟⎟⎟⎟⎟⎟⎠
. (25)

The identity with n = 0 tells 𝛾 = 0. Thus, we have

⎛⎜⎜⎜⎜⎜⎜⎝

2cn+1 + gn+1 + 2𝜇s(2an+1 + en+1)
2bn+1 + fn+1 + 2𝜇r(2an+1 + en+1)

2𝛿n+1 + 4𝜇𝛽(2an+1 + en+1)
−2𝜌n+1 − 4𝜇𝛼(2an+1 + en+1)

cn+1 + gn+1 + 2𝜇(q + s)(2an+1 + en+1)
bn+1 + fn+1 + 2𝜇(p + r)(2an+1 + en+1)

⎞⎟⎟⎟⎟⎟⎟⎠
= 𝛿H̃n+1

𝛿u
, (26)

where H̃n+1 = −2 ∫ 2an+2+en+2

n+1
dx. Moreover, a direct calculation yields to the following recursive relationship

⎛⎜⎜⎜⎜⎜⎜⎝

cn+1
bn+1
𝛿n+1
𝜌n+1
gn+1
fn+1

⎞⎟⎟⎟⎟⎟⎟⎠
= R

⎛⎜⎜⎜⎜⎜⎜⎝

2cn+1 + gn+1 + 2𝜇s(2an+1 + en+1)
2bn+1 + fn+1 + 2𝜇r(2an+1 + en+1)

2𝛿n+1 + 4𝜇𝛽(2an+1 + en+1)
−2𝜌n+1 − 4𝜇𝛼(2an+1 + en+1)

cn+1 + gn+1 + 2𝜇(q + s)(2an+1 + en+1)
bn+1 + fn+1 + 2𝜇(p + r)(2an+1 + en+1)

⎞⎟⎟⎟⎟⎟⎟⎠
, (27)

where R is given by

R =
⎛⎜⎜⎝

R11 R12 R13
R21 R22 R23
R31 R32 R33

⎞⎟⎟⎠
with

R11 =
(

1 + 2𝜇q𝜕−1p −2𝜇q𝜕−1q
2𝜇p𝜕−1p 1 − 2𝜇p𝜕−1q

)
,R12 =

(
𝜇q𝜕−1𝛼 −𝜇q𝜕−1𝛽

𝜇p𝜕−1𝛼 −𝜇p𝜕−1𝛽

)
,
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R13 =
(
−1 + 2𝜇q𝜕−1r −2𝜇q𝜕−1s

2𝜇p𝜕−1r −1 − 2𝜇p𝜕−1s

)
,R21 =

(
−2𝜇𝛽𝜕−1p 2𝜇𝛽𝜕−1q
−2𝜇𝛼𝜕−1p 2𝜇𝛼𝜕−1q

)
,

R22 =

( 1
2
− 𝜇𝛽𝜕−1𝛼 𝜇𝛽𝜕−1𝛽

−𝜇𝛼𝜕−1𝛼 − 1
2
+ 𝜇𝛼𝜕−1𝛽

)
,R23 =

(
−2𝜇𝛽𝜕−1r 2𝜇𝛽𝜕−1s
−2𝜇𝛼𝜕−1r 2𝜇𝛼𝜕−1s

)
.

R31 =
(
−1 − 2𝜇(2q + s)𝜕−1p 2𝜇(2q + s)𝜕−1q
−2𝜇(2p + r)𝜕−1p −1 + 2𝜇(2p + r)𝜕−1q

)
,

R32 =
(
−𝜇(2q + s)𝜕−1𝛼 𝜇(2q + s)𝜕−1𝛽

−𝜇(2p + r)𝜕−1𝛼 𝜇(2p + r)𝜕−1𝛽

)
,

R33 =
(

2 − 2𝜇(2q + s)𝜕−1r 2𝜇(2q + s)𝜕−1s
−2𝜇(2p + r)𝜕−1r 2 + 2𝜇(2p + r)𝜕−1s

)
.

Thus, the hierarchy (20) possesses the following super Hamiltonian structure

utn = Q

⎛⎜⎜⎜⎜⎜⎜⎝

cn+1
bn+1
𝛿n+1
𝜌n+1
gn+1
fn+1

⎞⎟⎟⎟⎟⎟⎟⎠
= QR

⎛⎜⎜⎜⎜⎜⎜⎝

2cn+1 + gn+1 + 2𝜇s(2an+1 + en+1)
2bn+1 + fn+1 + 2𝜇r(2an+1 + en+1)

2𝛿n+1 + 4𝜇𝛽(2an+1 + en+1)
−2𝜌n+1 − 4𝜇𝛼(2an+1 + en+1)

cn+1 + gn+1 + 2𝜇(q + s)(2an+1 + en+1)
bn+1 + fn+1 + 2𝜇(p + r)(2an+1 + en+1)

⎞⎟⎟⎟⎟⎟⎟⎠
= J 𝛿H̃n

𝛿u
, (28)

where

Q =
⎛⎜⎜⎝

Q11 Q12 Q13
Q21 Q22 Q23
Q31 Q32 Q33

⎞⎟⎟⎠
with

Q11 =
(

−4𝜇p𝜕−1r 2 + 4𝜇p𝜕−1s
−2 + 4𝜇q𝜕−1r −4𝜇q𝜕−1s

)
,Q12 =

(
4𝜇p𝜕−1𝛼 4𝜇p𝜕−1𝛽

−4𝜇q𝜕−1𝛼 −4𝜇q𝜕−1𝛽

)
,

Q13 =
(
−4𝜇p𝜕−1(p + r) 4𝜇p𝜕−1(q + s)
4𝜇q𝜕−1(p + r) −4𝜇q𝜕−1(q + s)

)
,Q21 =

(
−2𝜇𝛼𝜕−1r 2𝜇𝛼𝜕−1s
2𝜇𝛽𝜕−1r −2𝜇𝛽𝜕−1s

)
,

Q22 =
(

2𝜇𝛼𝜕−1𝛼 1 + 2𝜇𝛼𝜕−1𝛽

−1 − 2𝜇𝛽𝜕−1𝛼 −2𝜇𝛽𝜕−1𝛽

)

Q23 =
(
−2𝜇𝛼𝜕−1(p + r) 2𝜇𝛼𝜕−1(q + s)
2𝜇𝛽𝜕−1(p + r) −2𝜇𝛽𝜕−1(q + s)

)
,Q31 =

(
−4𝜇r𝜕−1r 4𝜇r𝜕−1s
4𝜇s𝜕−1r −4𝜇s𝜕−1s

)
,

Q32 =
(

4𝜇r𝜕−1𝛼 4𝜇r𝜕−1𝛽

−4𝜇s𝜕−1𝛼 −4𝜇s𝜕−1𝛽

)
,Q33 =

(
−4𝜇r𝜕−1(p + r) 2 + 4𝜇r𝜕−1(q + s)

−2 + 4𝜇s𝜕−1(p + r) −4𝜇s𝜕−1(q + s)

)
,

and

J = QR =
⎛⎜⎜⎝

J1 J2 −J1
0 J3 J4
−J1 −J2 J5

⎞⎟⎟⎠
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with

J1 =
(

8𝜇p𝜕−1p 2 − 4𝜇p𝜕−1q
−2 − 8𝜇q𝜕−1p 8𝜇q𝜕−1q

)
, J2 =

(
4𝜇p𝜕−1𝛼 −4𝜇p𝜕−1𝛽

−4𝜇q𝜕−1𝛼 4𝜇q𝜕−1𝛽

)
,

J3 =

(
0 − 1

2

− 1
2

0

)
, J4 =

(
−4𝜇𝛼𝜕−1(p + r) 4𝜇𝛼𝜕−1(q + s)
4𝜇𝛽𝜕−1(p + r) −4𝜇𝛽𝜕−1(q + s)

)
,

J5 =
(

−8𝜇r𝜕−1(p + r) − 8𝜇p𝜕−1r 4 + 8𝜇r𝜕−1(q + s) + 8𝜇p𝜕−1s
−4 + 8𝜇s𝜕−1(p + r) + 8𝜇q𝜕−1r −8𝜇s𝜕−1(q + s) − 8𝜇q𝜕−1s

)
.

It could be proved that J is a super Hamiltonian operator.
Specially, by making use of the recursive relationship (14), the hierarchy (20) possesses the following super

bi-Hamiltonian structure

utn = QL

⎛⎜⎜⎜⎜⎜⎜⎝

cn
bn
𝛿n
𝜌n
gn
fn

⎞⎟⎟⎟⎟⎟⎟⎠
= QLR

⎛⎜⎜⎜⎜⎜⎜⎝

2cn + gn + 2𝜇s(2an + en)
2bn + fn + 2𝜇r(2an + en)

2𝛿n + 4𝜇𝛽(2an + en)
−2𝜌n − 4𝜇𝛼(2an + en)

cn + gn + 2𝜇(q + s)(2an + en)
bn + fn + 2𝜇(p + r)(2an + en)

⎞⎟⎟⎟⎟⎟⎟⎠
= P𝛿H̃n−1

𝛿u
,n ≥ 2. (29)

where the second compatible super Hamiltonian operator P = QLR = (Pij)6×6, i, j = 1, 2, … , 6 is given by

P11 = 2p𝜕−1p − 4𝜇p𝜕−1p
(1

2
𝜕 + h

)
+ 2𝜇(𝜕 − 2h)p𝜕−1p − 4𝜇2pΔ𝜕−1p,

P12 = −2p𝜕−1q − 4𝜇p𝜕−1q
(1

2
𝜕 − h

)
− 2𝜇(𝜕 − 2h)p𝜕−1q + 4𝜇2pΔ𝜕−1q,

P13 = p𝜕−1𝛼 − 2𝜇p𝜕−1𝛼(𝜕 + h) + 𝜇(𝜕 − 2h)p𝜕−1𝛼 − 2𝜇2pΔ𝜕−1𝛼,

P14 = −𝛼 − p𝜕−1𝛽 − 2𝜇p𝜕−1𝛽(𝜕 − h) − 𝜇(𝜕 − 2h)p𝜕−1𝛽 + 2𝜇2pΔ𝜕−1𝛽,

P15 = −2p𝜕−1p + 4𝜇p𝜕−1(2p + r)
(1

2
𝜕 + h

)
+ 2𝜇(𝜕 − 2h)p𝜕−1r − 4𝜇2pΔ𝜕−1r,

P16 = 2p𝜕−1q + 4𝜇p𝜕−1(2q + s)
(1

2
𝜕 − h

)
− 2𝜇(𝜕 − 2h)p𝜕−1s + 4𝜇2pΔ𝜕−1s,

P21 = −2q𝜕−1p + 4𝜇q𝜕−1p
(1

2
𝜕 + h

)
+ 2𝜇(𝜕 + 2h)q𝜕−1p + 4𝜇2qΔ𝜕−1p,

P22 = 2q𝜕−1q + 4𝜇q𝜕−1q
(1

2
𝜕 − h

)
− 2𝜇(𝜕 + 2h)q𝜕−1q − 4𝜇2qΔ𝜕−1q,

P23 = −𝛽 − q𝜕−1𝛼 + 2𝜇q𝜕−1𝛼(𝜕 + h) + 𝜇(𝜕 + 2h)q𝜕−1𝛼 + 2𝜇2qΔ𝜕−1𝛼,

P24 = q𝜕−1𝛽 + 2𝜇q𝜕−1𝛽(𝜕 − h) − 𝜇(𝜕 + 2h)q𝜕−1𝛽 − 2𝜇2qΔ𝜕−1𝛽,

P25 = 2q𝜕−1p − 4𝜇q𝜕−1(2p + r)
(1

2
𝜕 + h

)
+ 2𝜇(𝜕 + 2h)q𝜕−1r + 4𝜇2qΔ𝜕−1r,

P26 = −2q𝜕−1q − 4𝜇q𝜕−1(2q + s)
(1

2
𝜕 − h

)
− 2𝜇(𝜕 + 2h)q𝜕−1s − 4𝜇2qΔ𝜕−1s,

P31 = 𝛼𝜕−1p − 2𝜇𝛼𝜕−1p
(1

2
𝜕 + h

)
+ 4𝜇𝛽p𝜕−1p − 2𝜇(𝜕 − h)𝛼𝜕−1p − 2𝜇2𝛼Δ𝜕−1p,

P32 = 𝛽 − 𝛼𝜕−1q − 2𝜇𝛼𝜕−1q
(1

2
𝜕 − h

)
− 4𝜇𝛽p𝜕−1q + 2𝜇(𝜕 − h)𝛼𝜕−1q + 2𝜇2𝛼Δ𝜕−1q,

P33 = −1
2

p + 1
2
𝛼𝜕−1𝛼 − 𝜇𝛼𝜕−1𝛼(𝜕 + h) + 2𝜇𝛽p𝜕−1𝛼 − 𝜇(𝜕 − h)𝛼𝜕−1𝛼 − 𝜇2𝛼Δ𝜕−1𝛼,

P34 = 1
2

h − 1
2
𝜕 − 1

2
𝛼𝜕−1𝛽 − 𝜇𝛼𝜕−1𝛽(𝜕 − h) − 2𝜇𝛽p𝜕−1𝛽 + 𝜇(𝜕 − h)𝛼𝜕−1𝛽 + 𝜇2𝛼Δ𝜕−1𝛽,

P35 = −𝛼𝜕−1p + 2𝜇𝛼𝜕−1(2p + r)
(1

2
𝜕 + h

)
+ 4𝜇𝛽p𝜕−1r − 2𝜇(𝜕 − h)𝛼𝜕−1r − 2𝜇2𝛼Δ𝜕−1r,

P36 = −𝛽 + 𝛼𝜕−1q + 2𝜇𝛼𝜕−1(2q + s)
(1

2
𝜕 − h

)
− 4𝜇𝛽p𝜕−1s + 2𝜇(𝜕 − h)𝛼𝜕−1s + 2𝜇2𝛼Δ𝜕−1s,
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P41 = 𝛼 − 𝛽𝜕−1p + 2𝜇𝛽𝜕−1p
(1

2
𝜕 + h

)
+ 4𝜇𝛼q𝜕−1p − 2𝜇(𝜕 + h)𝛽𝜕−1p + 2𝜇2𝛽Δ𝜕−1p,

P42 = 𝛽𝜕−1q + 2𝜇𝛽𝜕−1q
(1

2
𝜕 − h

)
− 4𝜇𝛼q𝜕−1q + 2𝜇(𝜕 + h)𝛽𝜕−1q − 2𝜇2𝛽Δ𝜕−1q,

P43 = 1
2

h + 1
2
𝜕 − 1

2
𝛽𝜕−1𝛼 + 𝜇𝛽𝜕−1𝛼(𝜕 + h) + 2𝜇𝛼q𝜕−1𝛼 − 𝜇(𝜕 + h)𝛽𝜕−1𝛼 + 𝜇2𝛽Δ𝜕−1𝛼,

P44 = 1
2

q + 1
2
𝛽𝜕−1𝛽 + 𝜇𝛽𝜕−1𝛽(𝜕 − h) − 2𝜇𝛼q𝜕−1𝛽 + 𝜇(𝜕 + h)𝛽𝜕−1𝛽 − 𝜇2𝛽Δ𝜕−1𝛽,

P45 = −𝛼 + 𝛽𝜕−1p − 2𝜇𝛽𝜕−1(2p + r)
(1

2
𝜕 + h

)
+ 4𝜇𝛼q𝜕−1r − 2𝜇(𝜕 + h)𝛽𝜕−1r + 2𝜇2𝛽Δ𝜕−1r,

P46 = −𝛽𝜕−1q − 2𝜇𝛽𝜕−1(2q + s)
(1

2
𝜕 − h

)
− 4𝜇𝛼q𝜕−1s + 2𝜇(𝜕 + h)𝛽𝜕−1s − 2𝜇2𝛽Δ𝜕−1s,

P51 = −2p𝜕−1p − 4𝜇r𝜕−1p
(1

2
𝜕 + h

)
− 2𝜇(𝜕 − 2h)[(2p + r)𝜕−1p] − 4𝜇2rΔ𝜕−1p,

P52 = −𝜕 + 2h + 2p𝜕−1q − 4𝜇r𝜕−1q
(1

2
𝜕 − h

)
+ 2𝜇(𝜕 − 2h)[(2p + r)𝜕−1q] + 4𝜇2rΔ𝜕−1q,

P53 = −p𝜕−1𝛼 − 2𝜇r𝜕−1𝛼(𝜕 + h) − 𝜇(𝜕 − 2h)[(2p + r)𝜕−1𝛼] − 2𝜇2rΔ𝜕−1𝛼,

P54 = p𝜕−1𝛽 − 2𝜇r𝜕−1𝛽(𝜕 − h) + 𝜇(𝜕 − 2h)[(2p + r)𝜕−1𝛽] + 2𝜇2rΔ𝜕−1𝛽,

P55 = 2(2p + r)𝜕−1p + 2(p + r)𝜕−1r + 4𝜇r𝜕−1(2p + r)
(1

2
𝜕 + h

)
− 2𝜇(𝜕 − 2h)[(2p + r)𝜕−1r] − 4𝜇2rΔ𝜕−1r,

P56 = 2𝜕 − 4h + 2(2q + s)𝜕−1q + 2(q + s)𝜕−1s + 4𝜇r𝜕−1(2q + s)
(1

2
𝜕 − h

)
+ 2𝜇(𝜕 − 2h)[(2p + r)𝜕−1s] + 4𝜇2rΔ𝜕−1s,

P61 = −𝜕 − 2h + 2q𝜕−1p + 4𝜇s𝜕−1p
(1

2
𝜕 + h

)
− 2𝜇(𝜕 + 2h)[(2q + s)𝜕−1p] + 4𝜇2sΔ𝜕−1p,

P62 = −2q𝜕−1q − 4𝜇s𝜕−1q
(1

2
𝜕 − h

)
+ 2𝜇(𝜕 + 2h)[(2q + s)𝜕−1q] − 4𝜇2sΔ𝜕−1q,

P63 = −p𝜕−1𝛼 − 2𝜇s𝜕−1𝛼(𝜕 + h) − 𝜇(𝜕 + 2h)[(2q + s)𝜕−1𝛼] + 2𝜇2sΔ𝜕−1𝛼,

P64 = p𝜕−1𝛽 − 2𝜇s𝜕−1𝛽(𝜕 − h) + 𝜇(𝜕 + 2h)[(2q + s)𝜕−1𝛽] − 2𝜇2sΔ𝜕−1𝛽,

P65 = 2𝜕 + 4h + 2(2p + r)𝜕−1p + 2(p + r)𝜕−1r + 4𝜇s𝜕−1(2q + s)
(1

2
𝜕 + h

)
− 2𝜇(𝜕 + 2h)[(2q + s)𝜕−1r] + 4𝜇2sΔ𝜕−1r,

P66 = 2𝜕 − 4h + 2(2q + s)𝜕−1q + 2(q + s)𝜕−1s + 4𝜇s𝜕−1(2q + s)
(1

2
𝜕 − h

)
+ 2𝜇(𝜕 + 2h)[(2q + s)𝜕−1s] − 4𝜇2sΔ𝜕−1s,

with
Δ = 𝜕−1(2q + s)𝜕p + 𝜕−1(2p + r)𝜕q + 𝜕−1(q + s)𝜕r + 𝜕−1(p + r)𝜕s + 2𝜕−1𝛽𝜕𝛼 − 2𝜕−1𝛼𝜕𝛽.

5 CONCLUSION AND DISCUSSIONS

In this paper, we presented an approach for constructing nonlinear super integrable couplings of super soliton equations
through enlarging matrix Lie superalgebras. We took the Lie algebra sl(2, 1) as an example to illustrate the introduced idea
to extend Lie superalgebras. Based on the enlarged Lie superalgebra sl(4, 1), we worked out nonlinear integrable couplings
for a generalized super AKNS soliton hierarchy. The presented method in this paper can be applied to other generalized
super integrable hierarchies, which will be our future problems to construct super integrable couplings.
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