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1. INTRODUCTION

In the last few decades, nonlinear evolution (NLE) equations have been considered by a lot
of researchers in the field of mathematical physics. It is known that exact solutions extracted
from NLE equations provide comprehensive information about real-world phenomena. For this
reason, searching for exact solutions of NLE equations plays a vital role in mathematical physics
and is the major topic of many works. An attractive kind of exact solutions is referred to as
rational-type solutions which include soliton, lump, lump-kink, breather-wave, and rogue-wave
solutions. Because of the importance of these types of exact solutions, a wide range of scholars
have devoted their studies to looking for rational-type solutions of nonlinear evolution equations.
For example, Wazwaz and El-Tantawy in [1] exerted the simplified Hirota method to seek solitons of
(3 + 1)-dimensional KP−Boussinesq and BKP−Boussinesq equations. In another work performed
by Manukure et al. [2], lump solutions of a (2 + 1)-dimensional extended Kadomtsev –Petviashvili
equation were obtained by making use of quadratic test functions. Lump-kink solutions to the
KP equation were constructed in [3] by considering an ansatz which is a combination of positive
quadratic and exponential functions. Lan [4] reported breather-wave and rogue-wave solutions
of a generalized (3 + 1)-dimensional B-type Kadomtsev –Petviashvili equation with the variable
coefficient using the homoclinic test technique. For more papers, see [5–36].

The fundamental purpose of the present article is to study a new 3D-HB equation in fluids in
the following form:

uyt + c1(uxxxy + 6uxuy + 3uxyu+ 3uxx

∫
uydx) + c2uyy + c3uzz = 0, (1.1)

or

uyt + c1(uxxxy + 6uxuy + 3uxyu+ 3uxxv) + c2uyy + c3uzz = 0, uy = vx, (1.2)

and to retrieve a bunch of rational-type solutions for it by exerting a number of effective techniques.

It is worthy of note that by considering c3 = 0, the above new 3D-HB equation is reduced to the
2D-HB equation which has been considered by Hua et al. in [37]. Hua and his collaborators extracted
interaction solutions of the 2D-HB equation by utilizing a series of ansatz techniques. Hosseini et
al. [38] also found rational wave solutions of the 2D-HB equation with different structures by means
of a number of useful approaches.

The structure of this paper is as follows: In Section 2, by using the truncated Painlevé expansion,
the Bäcklund transformation and Hirota bilinear form of the new 3D-HB equation are formally
derived. In Section 3, a series of test functions is applied to obtain rational-type solutions of the
new 3D-HB equation. The last section presents the outcomes of the current article.

2. BÄCKLUND TRANSFORMATION AND HIROTA BILINEAR FORM
OF THE MODEL

According to the truncated Painlevé expansion, the Bäcklund transformation of the system (1.2)
can be written as

u =
u0
f2

+
u1
f

+ u2, v =
v0
f2

+
v1
f

+ v2, (2.1)

where f is a function of variables x, y, z, and t. The functions u2 and v2 are arbitrary solutions of
the new 3D-HB equation and u0, u1, v0, and v1 are unknown functions including the derivatives
of f .

Now, by inserting (2.1) into the system (1.2) and solving the resulting system obtained by
equating the coefficients of f−6 and f−3 to zero, we obtain

u0 = −2f2
x , v0 = −2fxfy. (2.2)

Similarly, by considering u2 = v2 = 0, the relations presented in (2.2), and equating the coefficients
of f−5 and f−2 to zero, we arrive at a system of nonlinear PDEs whose solution gives

u1 = 2fxx, v1 = 2fxy.
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Substituting the above results into (2.1) finally results in the following Bäcklund transformation
for the new 3D-HB equation:

u = 2(ln f)xx, v = 2(ln f)xy. (2.3)

Based on the Bäcklund transformation (2.3), Hirota bilinear form corresponding to the new 3D-HB
equation can be written as

B3D−HB(f) := (DyDt + c1D
3
xDy + c2D

2
y + c3D

2
z)f.f = 2(ffyt − fyft + c1(ffxxxy − 3(fxxyfx

− fxyfxx)− fyfxxx) + c2(ffyy − f2
y ) + c3(ffzz − f2

z )) = 0, (2.4)

where Dx,Dy,Dy, and Dz are Hirota’s bilinear operators.

3. RATIONAL-TYPE SOLUTIONS OF THE NEW 3D-HB EQUATION

In the present section, rational-type solutions of the new 3D-HB equation with different
structures are formally established by exerting a number of effective techniques.

3.1. Soliton Solutions

To derive soliton solutions of the governing model, we substitute u = ekix+τiy+ξiz+ςit into the
linear terms of (1.1) and solve the resulting equation for ςi. After that, the dispersion relation ςi
can be written as

ςi = −c1k
3
i τi + c2τ

2
i + c3ξ

2
i

τi
,

and so

θi = kix+ τiy + ξiz −
c1k

3
i τi + c2τ

2
i + c3ξ

2
i

τi
t,

where θi, 1 � i � 3 are phase variables.
Now, by considering the dependent variables

u = R(ln f)xx, v = R(ln f)xy,

and the exponential function

f = 1 + e
k1x+τ1y+ξ1z−

c1k
3
1τ1+c2τ

2
1+c3ξ

2
1

τ1
t
,

we obtain R = 2. Accordingly, the following 1-soliton solution can be obtained:

u = 2

(
ln

(
1 + e

k1x+τ1y+ξ1z−
c1k

3
1τ1+c2τ

2
1+c3ξ

2
1

τ1
t
))

xx

, v = 2

(
ln

(
1 + e

k1x+τ1y+ξ1z−
c1k

3
1τ1+c2τ

2
1+c3ξ

2
1

τ1
t
))

xy

.

Now, we formally take

f = 1 + eθ1 + eθ2 + a12e
θ1+θ2

as the auxiliary function in order to retrieve the following 2-soliton solution:

u = 2(ln f)xx, v = 2(ln f)xy.

It is noted that the phase variables θi, i = 1, 2 are defined as above and the phase shift a12 is given
as

a12 =
−3c1k

2
1k2τ

2
1 τ2 + 3c1k

2
1k2τ1τ

2
2 + 3c1k1k

2
2τ

2
1 τ2 − 3c1k1k

2
2τ1τ

2
2 + c3τ

2
1 ξ

2
2 − 2c3τ1τ2ξ1ξ2 + c3τ

2
2 ξ

2
1

−3c1k21k2τ
2
1 τ2 − 3c1k21k2τ1τ

2
2 − 3c1k1k22τ

2
1 τ2 − 3c1k1k22τ1τ

2
2 + c3τ21 ξ

2
2 − 2c3τ1τ2ξ1ξ2 + c3τ22 ξ

2
1

.

The special 3-soliton solution of the new 3D-HB equation, namely,

u = 2(ln f)xx, v = 2(ln f)xy, f = 1 + eθ1 + eθ2 + eθ3 + a12e
θ1+θ2 + a13e

θ1+θ3+

a23e
θ2+θ3 + a12a13a23e

θ1+θ2+θ3 ,
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where

θi = kix+ τiy + ξiz −
c1k

3
i τi + c2τ

2
i + c3ξ

2
i

τi
t, 1 � i � 3,

aij =
−3c1k

2
i kjτ

2
i τj + 3c1k

2
i kjτiτ

2
j + 3c1kik

2
j τ

2
i τj − 3c1kik

2
j τiτ

2
j + c3τ

2
i ξ

2
j − 2c3τiτjξiξj + c3τ

2
j ξ

2
i

−3c1k2i kjτ
2
i τj − 3c1k2i kjτiτ

2
j − 3c1kik2j τ

2
i τj − 3c1kik2j τiτ

2
j + c3τ2i ξ

2
j − 2c3τiτjξiξj + c3τ2j ξ

2
i

,

1 � i, j � 3,

can be achieved if and only if the following 3-soliton condition is satisfied [39, 40]:∑
μ1,μ2,μ3=±1

P (μ1V1 + μ2V2 + μ3V3)P (μ1V1 − μ2V2)P (μ2V2 − μ3V3)P (μ1V1 − μ3V3)

= 2
∑

(μ1,μ2,μ3)∈S
P (μ1V1 + μ2V2 + μ3V3)P (μ1V1 − μ2V2)P (μ2V2 − μ3V3)P (μ1V1 − μ3V3) = 0,

in which P = yt+ c1x
3y + c2y

2 + c3z
2, Vi = (ki, τi, ξi, ςi), and S = {(1, 1, 1), (1, 1,−1), (1,−1, 1),

(−1, 1, 1)}. The 1-soliton, 2-soliton, and special 3-soliton solutions of the new 3D-HB equation
are presented in Figs. 1–3, presenting the behavior of dispersive waves.

Fig. 1. 1-soliton solution on the x− y plane for k1 = 1, τ1 = −2, ξ1 = 2, c1 = 1, c2 = 1, c3 = 2, z = 1, and t = 1.

Fig. 2. 2-soliton solution on the x− y plane for k1 = 1, τ1 = 2, ξ1 = −1, k2 = −1, τ2 = 1, ξ2 = 2, c1 = −1,
c2 = −2, c3 = 1, z = 1, and t = 1.

3.2. Lump-type Solutions

To retrieve lump-type solutions of the new 3D-HB equation, we exert a test function as follows:

f = g2 + h2 + a11, (3.1)

where

g = a1x+ a2y + a3z + a4t+ a5, h = a6x+ a7y + a8z + a9t+ a10,
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A NEW (3 + 1)-DIMENSIONAL HIROTA BILINEAR EQUATION 387

Fig. 3. Special 3-soliton on the x− y plane for k1 = −1, τ1 = 1, ξ1 = 2, k2 = 1, τ2 = −1, ξ2 = 1, k3 = 1,
τ3 = 1, ξ3 = 1, c1 = 1, c2 = 1, c3 = 1, z = 10, and t = 1.

and ai, 1 � i � 11 are real constants to be computed later. By setting (3.1) in (2.4) and adopting
specific operations, we find the following results:

a1 = −a6a7
a2

, a4 = −a22c2 + a23c3
a2

, a8 =
a3a7
a2

, a9 = −
a7

(
a22c2 + a23c3

)
a22

.

Now, a lump-type solution is obtained as

u = 2(ln f)xx, v = 2(ln f)xy, (3.2)

such that

f =
(
−a6a7

a2
x+ a2y + a3z −

a22c2+a23c3
a2

t+ a5

)2
+

(
a6x+ a7y +

a3a7
a2

z − a7(a
2
2c2+a23c3)

a22
t+ a10

)2

+ a11.

The lump-type solution of the new 3D-HB equation given by (3.2) is demonstrated in Fig. 4 for a
special choice of free parameters.

Fig. 4. Lump-type solution on the x− y plane for a2 = 2, a3 = −1, a5 = −1, a6 = 1, a7 = 1, a10 = −0.5, a11 =
1, c2 = 1, c3 = −1, z = 1, and t = 1.

3.3. Interaction Solutions

To derive interaction solutions of the new 3D-HB equation, we employ the following test function:

f = g2 + h2 + kek1x+k2y+k3z+k4t + a11, (3.3)

where

g = a1x+ a2y + a3z + a4t+ a5, h = a6x+ a7y + a8z + a9t+ a10,
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and ai, 1 � i � 11 and kj , 1 � j � 4 are real constants to be calculated, and k is a positive real
constant. By substituting (3.3) into (2.4) and applying specific operations, we find

a1 = −a6a7
a2

, a4 = −a22c2 + a23c3
a2

, a8 =
a3a7
a2

, a9 = −
a7

(
a22c2 + a23c3

)
a22

,

k2 = 0, k3 = 0, k4 = −c1k
3
1 .

Now we find the following interaction solution:

u = 2(ln f)xx, v = 2(ln f)xy, (3.4)

in which

f =
(
−a6a7

a2
x+ a2y + a3z −

a22c2 + a23c3
a2

t+ a5

)2
+
(
a6x+ a7y +

a3a7
a2

z − a7(a
2
2c2 + a23c3)

a22
t+ a10

)2

+ kek1x−c1k31t + a11.

Three-dimensional and density plots of the interaction solution (3.4) are illustrated in Figs. 5 and 6
for different choices of t.

Fig. 5. Interaction solution on the x− y plane for a2 = −5, a3 = 1, a5 = −1, a6 = 5, a7 = 0.1, a10 = 1, a11 =
1, k = 1, k1 = 1, c1 = −0.2, c2 = 0.2, c3 = 0.1, z = 1, and t = −100.

Fig. 6. Interaction solution on the x− y plane for a2 = −5, a3 = 1, a5 = −1, a6 = 5, a7 = 0.1, a10 = 1, a11 = 1,
k = 1, k1 = 1, c1 = −0.2, c2 = 0.2, c3 = 0.1, z = 1, and t = 1.

It is worthy of note that when −c1k
3
1 > 0 and t → +∞, the lump-type solution vanishes and the

1-soliton solution stays.
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3.4. Breather-wave and Rogue-wave Solutions

To obtain breather-wave solutions of the new 3D-HB equation, we use the following ansatz:

f = e−kg + b0 cos(τh) + b1e
kg, (3.5)

where

g = a1x+ a2y + a3z + a4t+ a5, h = a6x+ a7y + a8z + a9t+ a10.

By setting (3.5) in (2.4) and applying specific operations, we derive

a2 = 0, a4 = −k2a31a7c1 + 2a3a8c3
a7

, a6 = 0, a9 = −τ2a27c2 + τ2a28c3 − k2a23c3
τ2a7

, b1 =
1

4
b20.

Now a breather-wave solution is found as

u = 2(ln f)xx, v = 2(ln f)xy,

where

f = e
−k(a1x+a3z−

k2a31a7c1+2a3a8c3
a7

t+a5) + b0 cos

(
τ

(
a7y + a8z −

τ2a27c2 + τ2a28c3 − k2a23c3
τ2a7

t+ a10

))

+
1

4
b20e

k(a1x+a3z−
k2a31a7c1+2a3a8c3

a7
t+a5).

Now, by assuming b0 = −2, τ = k, and k → 0, the following rogue-wave solution can be obtained:

u(x, y, z, t) =
4a21

θ2 + ν2
− 8a21θ

2

(θ2 + ν2)2
, v(x, y, z, t) = − 8a1a7θν

(θ2 + ν2)2
,

where

θ = a1x+ a3z −
2a3a8c3

a7
t+ a5, ν = a7y + a8z −

a27c2 + a28c3 − a23c3
a7

t+ a10.

The breather-wave and rogue-wave solutions are formally plotted in Fig. 7 for a special choice of
free parameters.

Fig. 7. (a) Breather-wave solution on the x− y plane; (b) Rogue-wave solution on the x− y plane.

4. CONCLUSION

In the present paper, a new (3 + 1)-dimensional Hirota bilinear equation has been developed
and its rational-type solutions have been obtained successfully. In this respect,
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• the truncated Painlevé expansion was utilized to derive the Bäcklund transformation and
Hirota bilinear form of the model;

• soliton solutions were extracted by applying the simplified Hirota method and the 3-soliton
condition;

• the lump-type solution was established by considering two positive quadratic functions as an
ansatz;

• the interaction solution was retrieved by exerting an ansatz composed of two positive
quadratic functions and an exponential function;

• the breather-wave solution and its corresponding rogue-wave solution were constructed by
adopting the homoclinic test technique.

In the end, the interaction of lump-type and 1-soliton solutions was studied and some interesting
and useful results were presented.
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