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Abstract
This study, highlights the exact optical soliton solutions in the context of optical physics, centering on
the intricateHamiltonian amplitude equationwith bifurcation and sensitivity analysis. This equation
is pivotal in optics which underpins the understanding of opticalmanifestations, encompassing
solitons, nonlinear consequences, andwave interactions. Applying an analytical expansion approach,
we extract diverse optical solutions, having trigonometric, hyperbolic, and rational functions. Next,
we utilize concepts from the principle of planar dynamical systems to investigate the bifurcation
processes and chaotic behaviors present in this derived system. Additionally, we use the Runge–Kutta
scheme to carry out a thorough sensitivity analysis of the dynamical system. It has been verified
through this analytical process that small variations in beginning conditions have negligible effects on
the stability of the solution using bifurcation analysis. Validation viaMathematica software ensures
the accuracy of thesefindings. Furthermore, we employ dynamic visualizations, such as 2D, 3D, and
contour plots, to illustrate various soliton patterns, including kink,multi-kink, single periodic,multi-
periodic, singular, and semi-bell-shaped configurations. These visual representations provide a
glimpse into the fascinating behavior of optical phenomena. The solutions obtained via this proposed
method showcase its efficacy, dependability, and simplicity in comparison to various alternative
approaches.

1. Introduction

The study of optical solitons offers a captivating avenue of exploration, especially when delving into the
subtleties of soliton transmissionwithin opticalfibers and the intricate interactions between intense laser
radiation and plasmas. Additionally, solitons are vital formaintainingminimal distortion during long-distance
data transmission in opticalfiber communications, crucial for high-speed telecommunications networks. They
also play a pivotal role in nonlinear optical devices, enabling precise signalmanipulation and processing,
particularly in optical switches,modulators, and amplifiers (Manafian 2016, Biswas 2018, Tariq et al 2018,
Hossain et al 2024b). TheHamiltonian amplitude equation (HAE), amultifaceted nonlinear partial differential
equation extensively used in optics, serves as a fundamentalmathematical tool (Wadati et al 1992). It is
extremely important for simulating awide variety of optical phenomena, includingwave propagation, optical
solitons generation, and complex nonlinear phenomena in optical fibers and related instruments. Researchers
highly prioritizeHAE because it illuminates the dynamics of optical waves across various scenarios. These
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scenarios encompass the generation of advanced optical solitons, the discovery of interactions among optical
waves, and the analysis of how light pulses propagate through nonlinear opticalmaterials.Within the field of
optics, the study of theHAE assumes paramount importance, especially when it comes to designing and
evaluating optical systems and equipment. Its relevance extends to critical domains such as laser technology and
optical communication networks, where nonlinear effects andwave interactions wield substantial influence.

To uncover exact solutions for different nonlinear equations (NLEs) likeHAE, researchers employ several
methods including the unifiedmethod (Fokas and Lenells 2012, Abdel-Gawad andOsman 2015), the
transformed rational functionmethod (Maand Lee 2009) the extended direct algebraicmethod (Gao et al 2020,
Shahzad et al 2023), Lie groupmethod (Buckwar and Luchko 1998, Jafari et al 2015), Hirota’s bilinearmethod
(Zhou et al 2006, Liu et al 2019), the exp(−j(ξ))-expansionmethod (Roshid et al 2014, Raza et al 2019),
the generalizedKudryshovmethod (Islam et al 2015,Habib et al 2019), the variational iterationmethod
(Abdel-Gawad andOsman 2013, Seadawy 2015), the Backlund transformmethod (Yuan et al 2011), the sine–
Gordon expansionmethod (Kumar et al 2017, Ali et al 2020), the Cole–Hopf transformationmethod (Salas
andGmez S 2010), the auxiliary equationmethod (Zhang 2013, Islam et al 2023), the homotopy-perturbation
method (Cveticanin 2006), the tanh–functionmethod (Parkes andDuffy 1996, Fan 2000), homogeneous
balancemethod (Wang et al 1996, Fan andZhang 1998), Hirota bilinear formulationwithN- soliton
(Ma2020 2021), the ( /G G)-expansionmethod (Wang et al 2008, Zayed andGepreel 2009, Khan et al 2023), the
fractional approach (Tandel et al 2022), the (G′/G2)-expansionmethod (Islam et al 2022), multiple exp-function
method (Ma et al 2010,Ma andZhu 2012), the tanh–cothmethod (Kumar and Pankaj 2015,Mamun et al 2022)
andmany others.

Recently, some researchers (Teh et al 1997, Yomba 2005, Taghizadeh andMirzazadeh 2011, Bekir and
San 2012, Kumar et al 2012,Mirzazadeh 2014, 2015) have investigated the behavior of theHAE through some
methodologies such as the Riccati equation approach,He’s semi-inversemethod combinedwith the ansatz
approach, thefirst integral technique, themodified simple equationmethod, the functional variable approach,
the Jacobi elliptic functionmethod, the Lie classicalmethod, and the ( /G G)-expansion approach.

Although thesemethods have succeeded in deriving exact solutions for theHAE, themajority of these
methods rely on single-variable approaches, resulting in nearly identical solutions. To address this limitation, we
aim to employ a highly valuable and beneficial technique known as the double / /G G G, 1( )-expansionmethod,
whichwas extensively utilized to unveil exact solutions of several physicalmodels by numerous researchers
(Zayed andAlurrfi 2014, Inan et al 2015,Miah et al 2017, AkherChowdhury et al 2021, Akbar et al 2023, Ali et al
2023, Iqbal et al 2023,Mohanty et al 2023, Vivas-Cortez et al 2023,Hossain et al 2024a). Thismethod centers on
expressing solutions as power series, where the coefficients are determined via two variables, /G G and /G1 .The
approach involves determining these coefficients inserting the series into the equation and then similar
coefficients of similar terms.Nevertheless, no one has investigated optical solutions utilizing the
/ /G G G, 1( )-expansion approach for theHAEup to this point. This study aims to derive optical soliton

solutions forHAEusing the / /G G G, 1( ) expansion approach. The paper is organized as follows: (i) section 2
presents an overview of themethodology utilized, (ii) section 3 applies the / /G G G, 1( ) expansion approach to
theHAE and derives the necessary solutions, (iii) section 4 illustrates the bifurcation analysis forHAE,while
section 5 offers a sensitivity analysis for the stability of solutions, (iv) section 6 delves into the examination of
dynamic depictions, highlighting the fascinating behaviors of various solidarities via 3D, 2D, and contour
displays, (v) Finishing remarks are provided in section 7, followed by a list of references in the concluding
section.

2.Discussion about themethod ( / /G G G, 1˙ - expansion scheme)

This section presents the essential procedures for using the two variables ( /G G, /G1 )-expansion approach to
the analysis of theNLEs (Rasid et al 2023, Yue et al 2023). To facilitate the derivation of exact solutions, this
method introduces a linear ordinary differential equation, expressed as follows:

G G , 1z l z a+ =̈ ( ) ( ) ( )

where the symbol ‘.’ stands for the differentiation concerning z and the variablesmight correspond to as follows:


Q

G

G
R

G
, and

1
. 2

z
z z

= =
( )
( ) ( )

( )

It is supplied the subsequent relationships as:

 Q Q R R QR, and , 32 a l= - + - = - ( )

whereQ andR is the function of .z
The outcome of equation (1)mentioned above depends onλ and can be categorized as follows:
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Instance1:Whenλ is positive.
The general solution (GS) of equation (1) for this case can be represented in the followingmanner:

/G C Dsin cos , 4z z l z l a l= + +( ) ( ) ( ) ( )

which yields

⎜ ⎟⎛
⎝

⎞
⎠

R
Q R

A

2
, 52

2

2 2

a l
l a

l=
- +

-
( )

where A C D2 2= + stands for the subtraction of the squares of arbitrary constants C and D.
Instance2:Whenλ is negative.
TheGS of equation (1) for this case can be expressed as follows:

/G C h D hsin cos , 6z z l z l a l= - + - +( ) ( ) ( ) ( )

resulting in:

⎜ ⎟⎛
⎝

⎞
⎠

R
Q R

B

2
, 72

2

2 2
l

a l
l a

= -
- +

+
( )

where B C D2 2= - stands for the sumof the squares of arbitrary constants C and D.
Instance3:Whenλ is equal to zero.
For this case, equation (1) yields theGS as follows:

G C D
2

, 8
2

z
az

z= + +( ) ( )

which provides:

⎜ ⎟⎛
⎝

⎞
⎠

R
Q R

C D

2

2
. 92

2

2

a
a

=
-
-

( )

Let us now assume that the general representation ofNLEswith three variables (x, y, and t) is as follows:

S , , , , , , , , , 0. 10x xx y yy xy t tt xt ¼¼¼ =( ) ( )        

In this context, S is a polynomial function that depends on the variables and ,x x
= ¶

¶
  ,y y

= ¶
¶

 

,t t
= ¶

¶
  ,xx x

2

2= ¶
¶

  ,yy y

2

2= ¶
¶

  ,tt t

2

2= ¶
¶

  ,xt x t
= ¶

¶ ¶
 

xy x y
= ¶

¶ ¶
  and so on.

To transform this equation, introduce a newwave variable z with the following relationships:

x t e dx t x bt, , , and . 11i z h b z m= = - = -h( ) ( ) ( ) ( ) 

Applying this transformation to equation (10) yields:

T , , , , 0. 12¼¼¼ =( ̈ ⃛ ) ( )   

In this context,T denotes the polynomial incorporatingH and its ordinary derivatives.
Let us consider theGS of equation (12) as follows:

a a Q b Q R 13
j

M

j
j

j

M

j
j

0
1 1

1å åz z z z= + +
= =

-( ) ( ) ( ) ( ) ( )

where a ,0 a ,j and b j M1, 2, 3, ,j = ¼¼¼( ) are the unknown coefficients satisfying the condition
a b 0M M

2 2+ ¹ and the parameterM is the balanced number, and it is always positive. Now,we need tofind these
arbitrary constants (a ,0 aj and bj) using the above-mentionedmethodwith the subsequent steps:

Step I: Applying the homogeneous balancemethod to obtain the balance numberM (Miah et al 2017).
Step II: By substituting the value ofM into equation (13) and later replacing this in equation (12), by

employing equations (3) and (5) (for instance I), the left-hand side of equation (12) transforms a polynomial that
encompassesQ andR. In this polynomial, the degree attributed toR does not exceed 1, and the degree ofQ varies
from zero to any number (integer). Equating the coefficients of each termwith similar powers results in a set of
algebraic equations that involves the variables aj (for j= 0, 1, 2,K,M), bj (for j= 1, 2, 3,K,M),λ (where
λ> 0), .a

Step III: Then solving the set of equations found in step II, we figure out the values of aj, bj,λ (whereλ> 0),
and .a Subsequently, by substituting these values, alongwith aj (for j= 0, 1, 2,K,M), bj (for j= 0, 1, 2,K,M),λ,
and a into the transformed equation (13), we can derive the optical solutions in terms of trigonometric
functions. Ultimately, this process yields the optical solution of the desiredHAE.

3

Phys. Scr. 99 (2024) 075231 MNHossain et al



Step IV: Apply analogousmethodologies as outlined in sections I and II, which yield precise solutions
expressed in terms of hyperbolic and rational functions, providing further insights into (Miah et al 2020, Rasid
et al 2023, Yue et al 2023)

3. Applications of themethod

In this portion, we utilize the above-mentioned technique to perform an analytical analysis of theHAE as
outlined in the reference (Zafar et al 2020). The nonlinear complex formof this equation is as follows:

i 2 0, 1, 14x tt xt
2k k+ + - e = = | | ( )    

where ‘i’ is the imaginary unit (i 1= - ), and(x, t) signifies the complex function.However, the last termof
equation (14) indicates that the nonlinear Schrödinger equation exhibits ill-posed behavior.

Now, using the transformation outlined in equations (11), and (14) into the following ordinary differential
format:

b b d d 2 0, real part 152 2 2 3m b b k+ - + + + =( ) ̈ ( ) ( ) ( )  H H

and

bd b1 2 0. imaginary part 16e b b+ + + =( ) ( ) ( ) 

Applying the balancing principle, we found the value ofMwas 1.With this balance number, we can express
theGS of equation (15) as follows:

a a Q b R , 170 1 1z z z= + +( ) ( ) ( ) ( )

where a ,0 a ,1 and b1 are unknown coefficients that require to be determined.
Subsequently, we implemented the three distinct cases as outlined in section 2.
Instance I: 0l > (For trigonometric solutions)
The necessary solution can be obtained by substituting equation (17) into equation (16) and applying

equations (2) and (3), and changing the left side of equation (16) to a polynomial that includesQ andR. The
coefficients a ,0 a ,1 b ,1 α,λ and d are involved in a set of algebraic equations that are obtained by equating eachs
coefficient of this polynomial to zero. After solving these algebraic systems, the arbitrary constants take on the
following values:

a a
b b

b
b b A

0,
2

,
2

,0 1 1

2 2m e
k

m e a l
k l

= = 
- +

= 
- + - +

d
b b

and
2

2 1
18

2 2 2 2b lm lm
b

=
- + +

+( )
( )



Now, using these values in equation (17), which yields:

/

b b C D

C D2

cos sin

sin cos
z

m e
k

l
z l z l

z l z l a l
= 

- + -
+ +

( ) ( ( ) ( ))
( ) ( )

H

/

b b A

C D2

1

sin cos
, 19

2 2m e a l
k l z l z l a l


- + - +

+ +( ) ( )
( )

where b 0< and b 0.e+ >
Upon restoring equation (19) to its first formusing equation (11), yields:

⎜ ⎟⎜ ⎟
⎛
⎝

⎛
⎝

⎞
⎠

⎞
⎠x t e,

i
b b

x t
2

2 1

2 2 2 2

=
b lm lm

b
b

- + +
+

-
( ) ( )




⎜
⎛
⎝ /

b b C x bt D x bt

C x bt D x bt2

cos sin

sin cos

m e
k

l
m l m l

m l m l a l


- + - - -
- + - +

( ( ( ) ) ( ( ) ))
( ( ) ) ( ( ) )

⎟
⎞

⎠/
b b A

C x bt D x bt2

1

sin cos
, 20

2 2m e a l
k l m l m l a l


- + - +

- + - +( ( ) ) ( ( ) )
( )

where b 0< and b 0.e+ >
In particular, when bothα andD are equal to zero, butC is not equal to zero, equation (20) yields:

⎜
⎛
⎝

⎜ ⎟⎜ ⎟
⎛
⎝

⎛
⎝

⎞
⎠

⎞
⎠x t e

b b
x bt,

2
cot

i
b b

x t
2

2 1

2 2 2 2

m e
k

l m l= 
- +

-
b lm lm

b
b

- + +
+

-
( ) ( ( ) )( )



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⎟
⎞
⎠

b b
x bt

2
cosec , 21

m el
k l

m l
- +

-( ( ) ) ( )

where b 0< and b 0.e+ >
Similarly, if bothα andC to zero butD is not equal to zero, equation (20) yields:

⎜
⎛
⎝

⎜ ⎟⎜ ⎟
⎛
⎝

⎛
⎝

⎞
⎠

⎞
⎠x t e

b b
x bt,

2
tan

i
b b

x t
2

2 1

2 2 2 2

m e
k

l m l= 
- +

-
b lm lm

b
b

- + +
+

-
( ) ( ( ) )( )


H

⎟
⎞
⎠

b b
x bt

2
sec , 22

m el
k l

m l
- +

-( ( ) ) ( )

where b 0< and b 0.e+ >
Instance II: 0l < (For hyperbolic solutions)
Similarly, we follow the procedure outlined in instance I to determine the coefficients' values, leading to the

following results:

a a
b b

b
b b B

0,
2

,
2

,0 1 1

2 2m e
k

m e a l
k l

= = 
- +

= 
- + +

-

Figure 1.Phase diagrams showing the bifurcations of the suggested systemunder different conditions for w1 and w :2 (a) w 01 > and
w 0,2 < (b) w 01 < and w 0,2 < (c) w 01 > and w 0,2 > (d) w 01 < and w 0,2 > depending on various parameter values.
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d
b b

and
2

2 1
. 23

2 2 2 2b lm lm
b

=
- + +

+( )
( )



Using these in equation (17), yields:

/

b b C h D h

C h D h2

cos sin

sin cos
z

m e
k

l
z l z l

z l z l a l
= 

- +
-

- + -
- + - +

( ) ( ( ) ( ))
( ) ( )



/

b b B

C h D2

1

sin cos
, 24

2 2m e a l
k l z l z l a l


- + +

- - + - +( ) ( )
( )

where b 0< and b 0.e+ >
Going back to its initial formusing transformation variables, we obtain:

⎜ ⎟⎜ ⎟
⎛
⎝

⎛
⎝

⎞
⎠

⎞
⎠x t e,

i
b b

x t
2

2 1

2 2 2 2

=
b lm lm

b
b

- + +
+

-
( ) ( )




⎜
⎛
⎝ /

b b C h x bt D h x bt

C h x bt D h x bt2

cos sin

sin cos

m e
k

l
m l m l

m l m l a l


- +
-

- - + - -
- - + - - +

( ( ( ) ) ( ( ) ))
( ( ) ) ( ( ) )

⎟
⎞

⎠/
b b B

C h x bt D h x bt2

1

sin cos
, 25

2 2m e a l
k l m l m l a l


- + +

- - - + - - +( ( ) ) ( ( ) )
( )

where b 0< and b 0.e+ >

Figure 2. 2D visualizations of chaoticmotion for equation (32)with different parameter values as: (a) 1a = and /2,q p= (b) 2a =
and /2,q p= (c) 6a = and /2,q p= (d) 20a = and /2q p= .
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Whenα andD are both set to zero, butC is not equal to zero, equation (25) simplifies as follows:

⎜ ⎟⎜ ⎟
⎛
⎝

⎛
⎝

⎞
⎠

⎞
⎠x t e,

i
b b

x t
2

2 1

2 2 2 2

=
b lm lm

b
b

- + +
+

-
( ) ( )




⎜
⎛
⎝

b b
h x bt

2
cot

m e
k

l m l
- +

- - -( ( ) )

⎟
⎞

⎠

b b
h x bt

2
cosec , 26

2m e l
k l

m l
- +

-
- -( ( ) ) ( )

where b 0< and b 0.e+ >
Instance III: 0l = (For rational solutions)
Oncemore, we adhere to the procedure delineated in instance I to deduce the coefficients’ values, resulting

in the following outcomes:

a a
b b

b
b b C D

0,
2

,
2

2
,0 1 1

2m e
k

m e a
k

= = 
- +

= 
- + -

dand
1

. 27
2b
b

=
-
+( )

( )


Figure 3. 2D visualizations of chaoticmotion for equation (32)with different parameter values as: (a) 1a = and ,q p= (b) 5a =
and ,q p= (c) 10a = and ,q p= (d) 15a = and q p= .
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Now, upon substituting these values into equation (17), which yields:

b b C

C D

b b C D

C D2

2

2
, 28

2

2

2

2 2z
m e

k
az

z

m e a

k z
= 

- + +

+ +


- + -

+ +az az
( ) ( )

where b 0< and b 0.e+ >
Returning to its original formusing transformation variables, we obtain:

⎛

⎝
⎜

⎜ ⎟⎜ ⎟
⎛
⎝

⎛
⎝

⎞
⎠

⎞
⎠x t e
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2
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b
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-
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2

1
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2

2

m e a
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
- + -

+ - +a m - ( ( ))
( )

( ( ))

where b 0< and b 0.e+ >
If bothα andD are set to zero, butC is not equal to zero, equation (29) simplifies to as follows:

⎜ ⎟
⎛
⎝

⎞
⎠

⎜ ⎟⎜ ⎟
⎛
⎝

⎛
⎝

⎞
⎠

⎞
⎠x t e

b b

x bt
,

1
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i x t
1

2

m e
k m

= 
- +

-

b
b

b-
+

-
( )

( ( ))
( )( ) 

where b 0< and b 0.e+ >

Figure 4. 2D visualizations of chaoticmotion for equation (32)with different parameters values as, (a) 1a = and 2 ,q p= (b) 5a =
and 2 ,q p= (c) 10a = and 2 ,q p= (d) 15a = and 2q p= .
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4. Bifurcation analysis

In this section, we conduct a crucial analysis of the governing equation known as bifurcation analysis. To do this,
we attain the planar dynamical systemof equation (15) as follows (Raza et al 2022, Rahman et al 2024):

dH

d
R

dR

d
w H w H, , 311

3
2

z z
= = + ( )

where w ,k

b b1
2

2 2=
m

-
+( ) and w .d d

b b2
 2

2 2= b
m
+ + b

+( )


By introducing theHamilton canonical equations H
R

¢ = ¶
¶
 and R

H
¢ = -¶

¶
 in equation (31), the

correspondingHamiltonian function is as follows:

H R
R w H w H

h,
2 4 2

,
2

1
4

2
2

= - - =( )

where h is constant (Hamiltonian). To derive equilibriumpoints, we consider the following systemof equations,
R 0= and w H w H 0.1

3
2+ =

Solving this system, we obtain three equilibriumpoints (EPs), such as e 0, 0 ,1 = ( ) ⎛
⎝

⎞
⎠

e i , 0w

w
2

2

1
= and

⎛
⎝

⎞
⎠

e i , 0 .w

w
3

2

1
= - The Jacobian determinant of the dynamical system:

D H R
w H w

w H w,
0 1

3 0
3 .

1
2

2
1

2
2=

+
= - -( )

Wehave three conditions for equilibriumpoints, (i) the equilibriumpoint is a saddle if D H R, 0.<( ) (ii)
the equilibriumpoint is a center if D H R, 0.>( ) (iii) the equilibriumpoint is a cuspid if D H R, 0.=( )

Case 1:When, w 01 > and w 0,2 < for the choices of arbitrary constants, k 1,= - 1,m = 1,= d 2,= -
b 2= - and 1,b = we ascertained three equilibriumpoints as 0,0 ,( ) 1.2247,0( ) and 1.2247,0 .-( ) We
discovered from figure 1(a) that, 0,0( ) is the center point, 1.2247,0( ) and 1.2247,0-( ) both are saddle points.

Figure 5.The state variables versus time are numerically demonstratedwith initial values varying for the parameters, k 3,= 1,m =
1,= d 5,= - b 2= and 7b = .
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Case 2:When, w 01 < and w 0,2 < for the choices of arbitrary constants, k 1,= 1,m = 1,= d 2,= -
b 2= and 1,b = we found one equilibriumpoint as 0,0 .( ) Wediscovered fromfigure 1(b) that, 0, 0( ) is the
center point.

Case 3:When, w 01 > and w 0,2 > for the choices of arbitrary constants, k 1,= - 1,m = 1,= d 2,=
b 2= and 1,b = we found only one equilibriumpoint as 0,0 .( ) Wediscovered fromfigure 1(c) that, 0,0( ) is the
saddle point.

Case 4:When, w 01 < and w 0,2 > for the choices of arbitrary constants, k 1,= 1,m = 1,= d 2,=
b 2= - and 1,b = we found three equilibriumpoints as 0,0 ,( ) 1.5811,0( ) and 1.5811,0 .-( ) Wediscovered
fromfigure 1(d) that, 0,0( ) is the saddle point, 1.5811,0( ) and 1.5811,0-( ) both are center points. All points
(saddle and center) aremarked in red color in allfigures. These stable points (saddle and center) are very
important to expressmany physical phenomena in optical physics andmodern engineering.

5. Chaotic analysis

Here, we inserted a perturbation term in the planar dynamical system equation (31) for chaotic analysis. Let us
consider the dynamical systemwith the perturbation term as follows (Raza et al 2022, Rahman et al 2024):

dH

d
R

dR

d
w H w H t, cos , 321

3
2

z z
a q= = + + ( ) ( )

where w ,k

b b1
2

2 2=
m

-
+( ) and w ,d d

b b2
2

2 2= b b
m
+ +

+( )



tcosa q( ) is the perturbation term, 0a ¹ is the amplitude of

the system and 0q ¹ is the frequency of the system.Weused this perturb term to explore the system’s sensitivity
to small changes and uncover the underlyingmechanisms driving chaotic behavior. This perturbation term is
known as a time-varying external forcing perturbation term. Sincewe focus on optical solutions context of

Figure 6.Graphical representations of the solutions x t,| ( ) | of equation (20) for b .01,= - 1,l = 0.1,e =
C1, 0.1, 1, 1k m a= = = = and D 1:= (a)A3Ddepiction (b)A2Ddepiction and (c)Contour depiction.
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optical solitons, perturbation terms can significantly influence their behavior. Optical solitons are localizedwave
packets that canmaintain their shape and amplitudewhile propagating over long distances in certain nonlinear
opticalmedia. However, this perturbation terms play a significant role in shaping the behavior and dynamics of
optical solitons, impacting their stability, interactions, and applications in nonlinear optical systems.We
introduced 2Dphase portraits of equation (32)with the constant values for allfigures (figures 2–4) as k 3,=

1,m = 1,= d 5,= - b 2,= and 7.b = For the clear observation of the chaoticmotions, we extracted phase
portraits for the different values of .a

6. Sensitivity analysis

Here, we examine the sensitivity of the dynamical systemdescribed by equation (8) using the popular and
effective Runge–Kuttamethod. To do this, we apply the Runge–Kuttamethod to solve the following dynamical
system (Raza et al 2022, Rahman et al 2024):

dH

d
R

dR

d
w H w H, , 331

3
2

z z
= = + ( )

The parameters have the following values, k 3,= 1,m = 1,= d 5,= - b 2= and 7b = and the
system’s initial conditions are considered by, (a) H 0 0.1=( ) and R 0;= (b) H 0 0=( ) and R 0.1;= (c)
H 0 0.2=( ) and R 0;= (d) H 0 0=( ) and R 0.2.=

Figure 5 shows the outcomes that this efficient strategy produced. Class R dynamics are represented by the
red curves and class H dynamics are shownby the blue curves. It is evident from thefigures that even slight
modifications to the starting conditions have a significant impact on the system’s dynamics.

Figure 7.Graphical representations of the solutions x t,| ( ) | of equation (21) for b .4, 4,l= - = 5, 1e k= = and 1:m =
(a)A3Ddepiction (b)A2Ddepiction and (c)Contour depiction.
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7.Graphical representation and physical interpretations

In this segment, we leveraged the advanced computational capabilities ofMathematica to elucidate distinct
graphical patterns exhibited by theHAE.Our presentation includes a variety of graphical representations,
including contour plots, 2D graphics, and 3D visualizations. These depictions span a diverse range of parameter
values for each relevant variable, aiming to provide a comprehensive insight into the graphical nuances of the
HAE across a broad parameter space. Specific constants associatedwith each graph are outlined in the
corresponding figure captions. Additionally, detailed discussions on various soliton types are provided for each
figure.

Figure 6 is derived from equation (20) and visually shows the singular kink soliton pattern. This solution
representation holds practical relevance in crafting optical components, designing fiber amplifiers, and
developing nonlinear optical devices such as soliton-based frequency combs and optical switches. Additionally,
the use of singular solitons proves helpful for the seamless and reliable transmission of information in optical
communication systems, ensuring efficiency and stability over extended distances without succumbing to
dispersion-induced distortions.

Figure 7, derived from equation (21), exemplifies one of the particular solutions stemming from
equation (20), effectively showcasing the solutions’ inherentmulti-periodic kink characteristics. In optical
physics, amulti-periodic kink is seen as awaveformwithmultiple kink-like shapes appearing within one period.
These intricate patterns arise from complex interactions within the opticalmedium, like self-focusing and
spatialmodulation.Multi-periodic kinks can represent localizedwave packets or waveguidemodes with
complex spatial variations, presenting potential applications in optical communication and signal processing.
Understanding these phenomena thoroughly is vital for utilizing their potential in nonlinear optics and
advancing optical technology.

Figure 8.Graphical representations of the solutions x t,| ( ) | of equation (22) for b .1, 2,l= - = 1, 1e k= = and 2:m = (a)A
3Ddepiction (b)A2Ddepiction and (c)Contour depiction.

12

Phys. Scr. 99 (2024) 075231 MNHossain et al



Figure 8, arising from equation (22), illustrates a specific solution derived from equation (20), effectively
highlighting the solutions’ inherent singularmulti-periodic behavior. Solitons featuring intricate periodic
behavior offer potential applications in nonlinear frequency conversion, fiber sensors, and cutting-edge optical
imaging techniques. Their distinctive properties pave theway for advancements across diverse optical
technologies, underscoring their versatility and substantial impact on the field.

Figure 9, generated from equation (26), portrays a particular solution obtained from equation (25),
effectively emphasizing singular kink soliton characteristics with singularity. These solitons have potential
applications in optical physics, playing a crucial role in signal processing, fiber amplifiers, and ensuring stable
information transmissionwithin optical communication systems. Their significance lies in contributing to the
advancement of optical technologies.

Figure 10, derived from equation (30), depicts a specific solution derived from equation (29), effectively
highlighting a semi-bell-shaped pattern with singularity characterized by a specific periodicity. In the field
of optical physics, the semi-bell-shaped pattern with a singularity soliton denotes a focused wave packet
characterized by high localized energy. This unique pattern arises due to strong nonlinear interactions
occurring within the optical medium, where the singularity soliton component significantly influences the
formation of a distinct peak in intensity. These optical phenomena have wide-ranging implications across
various applications, including optical communication, signal processing, and laser physics. They offer
promising pathways for technological progress and furthering our understanding of the fundamental
relationship between light andmatter.

Figure 9.Graphical representations of the solutions x t,| ( ) | of equation (26) for b 1, 1, 2, 1l e k= - = - = = and 1:m = (a)A
3Ddepiction (b)A2Ddepiction and (c)Contour depiction.
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8. Comparison

In this section, we delve into the novelty and scientific contributions of our paper through a comparative analysis
of the findings presented by (Badshah et al 2023). This comparison is structured into two distinct sections,
meticulously examining the parallels and disparities between our respective studies. By elucidating both the
commonalities and divergences, we aim to provide a comprehensive understanding of the unique insights
offered by our research in relation to existing literature.

8.1. Commonalities

a. Both studies center on the HAE, a crucial nonlinear complex model employed to analyze wave packet
dynamics, particularly phenomena such as soliton propagation and interactions.

b. Both studies aim to obtain precise exact solutions by employing analytical techniques.

8.2.Dissimilarity anduniqueness

a. (Badshah et al 2023) utilized a one-variable method to obtain exact solutions, while this study employs a two-
variablemethod ( ( /G G, /G1 )-expansion technique).

b. This study incorporates analyses of chaotic behavior, bifurcations, and sensitivity, whichwere not included in
(Badshah et al 2023) ’s study.

c. While they exclusively obtain singular and periodic bell-shaped solitons, this study encompasses a broader
range, including kink,multi-kink, semi-bell shape, periodic, and singular solitons.

Figure 10.Graphical representations of the solutions x t,| ( ) | of equation (30) for b 4, 5, 1e k= - = = and 3:m = (a)A3D
depiction (b)A2Ddepiction and, (c)AContour depiction.
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d. This study presents amore diverse range of graphical representations, including 2D, 3D, and contour plots of
exact solutions, as well as chaotic visualization, phase diagrams, and sensitivity diagramswith respect to time.
In contrast, (Badshah et al 2023) utilized only 3D and 2Ddiagrams.

e. While our study places significant emphasis on the physical interpretation of diverse solitons within the
context of optical physics, this aspect was not emphasized in thework by (Badshah et al 2023).

9. Conclusion

An application of the double ( /G G, /G1 )-expansion technique technique has led to the successful
derivation of a diverse set of exact optical solutions for the HAE, a fundamental model governing optical
soliton dynamics within optical fiber theory. Our analytical study is focused on exploring various nonlinear
wave structures within themodel equation, resulting in the generation of novel traveling pulse responses.
These solutions possess versatile forms, such as trigonometric, hyperbolic, and rational functions.

The complex dynamics of the equation has been revealed through amethodical derivation of the related
dynamical system via the Galilean transformation, together with a careful examination of bifurcation
processes and chaotic behavior utilizing planar dynamical system theory. The stability of the solutions was
effectively demonstrated by conducting sensitivity analysis, which was carried out using the Runge–Kutta
method, even in the face of slight variations in the beginning circumstances. Also, these stable solutions
encompass a wide range of behaviors, including single periodic, multi-periodic, singular soliton, and semi-
bell-shaped patterns, across various values of the relevant variables.We firmly assert that those newly
uncovered optical solutions hold great promise in the progression of optical physics, with implications for
both light and electron optics. Notably, the optical soliton solutions derived from this method underscore
its efficacy, reliability, and simplicity when compared to solutions by various alternative techniques with
bifurcation and sensitivity analysis, which aremore attractive tomodern researchers.

This research illuminates the potential of thementioned technique in unraveling intricate optical
phenomena and contributes valuable insights into the broader domain of optical physics. The novel
findings in this study provide valuable contributions to the understanding of nonlinear dynamic
phenomena. Utilizing the diverse range of soliton solutions serves as a versatile toolset applicable to various
aspects of optical physics. These advancements hold promise for driving progress in telecommunications,
signal processing, nonlinear optics, and optical imaging.
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