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Abstract

This study, highlights the exact optical soliton solutions in the context of optical physics, centering on
the intricate Hamiltonian amplitude equation with bifurcation and sensitivity analysis. This equation
is pivotal in optics which underpins the understanding of optical manifestations, encompassing
solitons, nonlinear consequences, and wave interactions. Applying an analytical expansion approach,
we extract diverse optical solutions, having trigonometric, hyperbolic, and rational functions. Next,
we utilize concepts from the principle of planar dynamical systems to investigate the bifurcation
processes and chaotic behaviors present in this derived system. Additionally, we use the Runge—Kutta
scheme to carry out a thorough sensitivity analysis of the dynamical system. It has been verified
through this analytical process that small variations in beginning conditions have negligible effects on
the stability of the solution using bifurcation analysis. Validation via Mathematica software ensures
the accuracy of these findings. Furthermore, we employ dynamic visualizations, such as 2D, 3D, and
contour plots, to illustrate various soliton patterns, including kink, multi-kink, single periodic, multi-
periodic, singular, and semi-bell-shaped configurations. These visual representations provide a
glimpse into the fascinating behavior of optical phenomena. The solutions obtained via this proposed
method showcase its efficacy, dependability, and simplicity in comparison to various alternative
approaches.

1. Introduction

The study of optical solitons offers a captivating avenue of exploration, especially when delving into the
subtleties of soliton transmission within optical fibers and the intricate interactions between intense laser
radiation and plasmas. Additionally, solitons are vital for maintaining minimal distortion during long-distance
data transmission in optical fiber communications, crucial for high-speed telecommunications networks. They
also play a pivotal role in nonlinear optical devices, enabling precise signal manipulation and processing,
particularly in optical switches, modulators, and amplifiers (Manafian 2016, Biswas 2018, Tariq et al 2018,
Hossain et al 2024b). The Hamiltonian amplitude equation (HAE), a multifaceted nonlinear partial differential
equation extensively used in optics, serves as a fundamental mathematical tool (Wadati et al 1992). Itis
extremely important for simulating a wide variety of optical phenomena, including wave propagation, optical
solitons generation, and complex nonlinear phenomena in optical fibers and related instruments. Researchers
highly prioritize HAE because it illuminates the dynamics of optical waves across various scenarios. These
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scenarios encompass the generation of advanced optical solitons, the discovery of interactions among optical
waves, and the analysis of how light pulses propagate through nonlinear optical materials. Within the field of
optics, the study of the HAE assumes paramount importance, especially when it comes to designing and
evaluating optical systems and equipment. Its relevance extends to critical domains such as laser technology and
optical communication networks, where nonlinear effects and wave interactions wield substantial influence.

To uncover exact solutions for different nonlinear equations (NLEs) like HAE, researchers employ several
methods including the unified method (Fokas and Lenells 2012, Abdel-Gawad and Osman 2015), the
transformed rational function method (Ma and Lee 2009) the extended direct algebraic method (Gao et al 2020,
Shahzad et al 2023), Lie group method (Buckwar and Luchko 1998, Jafari et al 2015), Hirota’s bilinear method
(Zhou et al 2006, Liu et al 2019), the exp(—p(&))-expansion method (Roshid et al 2014, Raza et al 2019),
the generalized Kudryshov method (Islam et al 2015, Habib et al 2019), the variational iteration method
(Abdel-Gawad and Osman 2013, Seadawy 2015), the Backlund transform method (Yuan et al 2011), the sine—
Gordon expansion method (Kumar et al 2017, Ali et al 2020), the Cole-Hopf transformation method (Salas
and Gmez S 2010), the auxiliary equation method (Zhang 2013, Islam et al 2023), the homotopy-perturbation
method (Cveticanin 2006), the tanh—function method (Parkes and Dufty 1996, Fan 2000), homogeneous
balance method (Wang et al 1996, Fan and Zhang 1998), Hirota bilinear formulation with N- soliton
(Ma 2020 2021), the (G/G)-expansion method (Wang et al 2008, Zayed and Gepreel 2009, Khan et al 2023), the
fractional approach (Tandel et al 2022), the (G’ /G?)-expansion method (Islam et al 2022), multiple exp-function
method (Ma et al 2010, Ma and Zhu 2012), the tanh—coth method (Kumar and Pankaj 2015, Mamun ef al 2022)
and many others.

Recently, some researchers (Teh et al 1997, Yomba 2005, Taghizadeh and Mirzazadeh 2011, Bekir and
San 2012, Kumar et al 2012, Mirzazadeh 2014, 2015) have investigated the behavior of the HAE through some
methodologies such as the Riccati equation approach, He’s semi-inverse method combined with the ansatz
approach, the first integral technique, the modified simple equation method, the functional variable approach,
the Jacobi elliptic function method, the Lie classical method, and the (G/G)-expansion approach.

Although these methods have succeeded in deriving exact solutions for the HAE, the majority of these
methods rely on single-variable approaches, resulting in nearly identical solutions. To address this limitation, we
aim to employ a highly valuable and beneficial technique known as the double (G/G, 1/G)-expansion method,
which was extensively utilized to unveil exact solutions of several physical models by numerous researchers
(Zayed and Alurrfi 2014, Inan etal 2015, Miah et al 2017, Akher Chowdhury et al 2021, Akbar et al 2023, Ali et al
2023, Igbal eral 2023, Mohanty et al 2023, Vivas-Cortez et al 2023, Hossain et al 2024a). This method centers on
expressing solutions as power series, where the coefficients are determined via two variables, G/Gand1/G. The
approach involves determining these coefficients inserting the series into the equation and then similar
coefficients of similar terms. Nevertheless, no one has investigated optical solutions utilizing the
(G/G, 1/G)-expansion approach for the HAE up to this point. This study aims to derive optical soliton
solutions for HAE using the (G/G, 1/G) expansion approach. The paper is organized as follows: (i) section 2
presents an overview of the methodology utilized, (ii) section 3 applies the (G/G, 1/G) expansion approach to
the HAE and derives the necessary solutions, (iii) section 4 illustrates the bifurcation analysis for HAE, while
section 5 offers a sensitivity analysis for the stability of solutions, (iv) section 6 delves into the examination of
dynamic depictions, highlighting the fascinating behaviors of various solidarities via 3D, 2D, and contour
displays, (v) Finishing remarks are provided in section 7, followed by a list of references in the concluding
section.

2. Discussion about the method (G/G, 1/G- expansion scheme)

This section presents the essential procedures for using the two variables (G/G, 1/G)-expansion approach to
the analysis of the NLEs (Rasid et al 2023, Yue et al 2023). To facilitate the derivation of exact solutions, this
method introduces a linear ordinary differential equation, expressed as follows:

G + AG(Q) = )

where the symbol *.” stands for the differentiation concerning ¢ and the variables might correspond to as follows:

C© ind =L

_ 60 __! 2)
G(©) GO
It is supplied the subsequent relationships as:
Q=-Q*+aR— ), and R=—QR, 3)

where Qand R is the function of (.
The outcome of equation (1) mentioned above depends on A and can be categorized as follows:
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Instancel: When \is positive.
The general solution (GS) of equation (1) for this case can be represented in the following manner:

G(¢) = Csin((VX) + Deos(CVA) + a/\, (4)
which yields
Q% — 2aR + )\
RR=|——F—" " |\ 5
( AN — o? ) ®
where A = C? 4+ D? stands for the subtraction of the squares of arbitrary constants C and D.
Instance2: When ) is negative.
The GS of equation (1) for this case can be expressed as follows:
G({) = Csinh(¢v—=A) + Dcosh(CN—=X) + a/A, (6)
resulting in:
Q%? — 2aR + )\
REP= N —0u0——"|, 7
( BX + a2 ) n
where B = C? — D? stands for the sum of the squares of arbitrary constants C and D.
Instance3: When A is equal to zero.
For this case, equation (1) yields the GS as follows:
2
G(() = % +CC+ D, ®)
which provides:
Q? — 2aR
R2 =] —\. 9
( Cc? — 2aD) ©)
Let us now assume that the general representation of NLEs with three variables (x, y, and t) is as follows:
S(H, Hy, Haxs Hys Hyys Hays Hes Hirs Hatseevnnnne. ) =0. (10)
In this context, S is a polynomial function that depends on the variables H and H, = %—f, H, = 60—7;,
OH O*H O*H 0*H OH OH
H, = (8_t’ Hax = R H,, = 0 Hy = ErE Ha = R Hy = @andsoon-
To transform this equation, introduce a new wave variable ¢ with the following relationships:
H(x, t) = e"H((), n=dx— Bt, and (= pu(x — bt). (11)
Applying this transformation to equation (10) yields:
T(H, H, H, Hy........ ) =0. (12)
In this context, T'denotes the polynomial incorporating 5 and its ordinary derivatives.
Let us consider the GS of equation (12) as follows:
H(O = ao + Y a;Q/(Q) + 3 5, QT (OR() (13)
j=1 j=1
where ag, aj,and b;(j = 1, 2, 3,......... ,M) are the unknown coefficients satisfying the condition

ay; + by = 0and the parameter M is the balanced number, and it is always positive. Now, we need to find these
arbitrary constants (a¢, a; and bj) using the above-mentioned method with the subsequent steps:

Step I: Applying the homogeneous balance method to obtain the balance number M (Miah et al 2017).

Step II: By substituting the value of M into equation (13) and later replacing this in equation (12), by
employing equations (3) and (5) (for instance I), the left-hand side of equation (12) transforms a polynomial that
encompasses Q and R. In this polynomial, the degree attributed to R does not exceed 1, and the degree of Q varies
from zero to any number (integer). Equating the coefficients of each term with similar powers results in a set of
algebraic equations that involves the variables a; (forj =0, 1,2, ..., M), b; (forj=1,2,3, ..., M), A(where
A>0), a.

Step III: Then solving the set of equations found in step II, we figure out the values of a;, b;, A (where A > 0),
and «. Subsequently, by substituting these values, along with a; (forj =0, 1,2, ..., M), b (forj =0, 1,2, ..., M), A,
and « into the transformed equation (13), we can derive the optical solutions in terms of trigonometric
functions. Ultimately, this process yields the optical solution of the desired HAE.

3
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Step IV: Apply analogous methodologies as outlined in sections I and II, which yield precise solutions
expressed in terms of hyperbolic and rational functions, providing further insights into (Miah et al 2020, Rasid
etal 2023, Yueetal 2023)

3. Applications of the method

In this portion, we utilize the above-mentioned technique to perform an analytical analysis of the HAE as
outlined in the reference (Zafar et al 2020). The nonlinear complex form of this equation is as follows:

iHy + He + 26 THPH — eHy = 0, k= £1, (14)

where 7’is the imaginary unit i = v —1),and H (x, t) signifies the complex function. However, the last term of
equation (14) indicates that the nonlinear Schrodinger equation exhibits ill-posed behavior.

Now, using the transformation outlined in equations (1 1), and (14) into the following ordinary differential
format:

P2(b? + eb)H — (d+ B* + deB) A + 2kH? = 0, (real part) (15)
and
(1 + bde + Be + 2bB3)H = 0. (imaginary part) (16)

Applying the balancing principle, we found the value of M was 1. With this balance number, we can express
the GS of equation (15) as follows:

H() = ap + ;Q(C) + biR(C), (17)

where ay, a;, and b, are unknown coefficients that require to be determined.

Subsequently, we implemented the three distinct cases as outlined in section 2.

InstanceI: A > 0 (For trigonometric solutions)

The necessary solution can be obtained by substituting equation (17) into equation (16) and applying
equations (2) and (3), and changing the left side of equation (16) to a polynomial that includes Q and R. The
coefficients ag, aj, by, &, Aand d are involved in a set of algebraic equations that are obtained by equating eachs
coefficient of this polynomial to zero. After solving these algebraic systems, the arbitrary constants take on the
following values:

apo=0, aq==

pN—b b+ e b :ip\/—b Jb+e J—a? + AX
2JE > 1 Zﬁﬁ >

Y 2y,,2 2
and d — 206% + b*Ap* + bedp (18)
2(1 + €6)
Now, using these values in equation (17), which yields:
H(C) = :l:,u\/—b Nb+ e Jx (C cos (V) — Dsin (CV M)
2JR Csin(CVA) + Dcos(CVA) + a/X
pN—b Jb+e a2+ AX 1
+ s (19)
2R Csin(CVA) + Dcos(CVN) + a/A
whereb < Oand b + ¢ > 0.
Upon restoring equation (19) to its first form using equation (1 1), yields:
[ =282+ b2\ +behp? }
Hx, 1) = e(( S t)
iu\/—b Nb+ € Jr (C cos (u(x — bt)JX) — Dsin (u(x — bt)J )
2VR Csin (u(x — bt)\'A) + Dcos (ju(x — b)) + a/ A
uN=b Jb+e J-a?+ AN 1
N G
2VR Csin(u(x — bt)vA) + D cos (u(x — br)v ) + a/A

whereb < 0and b + ¢ > 0.
In particular, when both o and D are equal to zero, but Cis not equal to zero, equation (20) yields:

; =232+ b2\ +bep? e ) el e
Hix, 1) = e (( 2(1+¢0) ) o (:I:’u bsz e VX cot (pu(x — bt)vA)
K

4
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(© (d)

Figure 1. Phase diagrams showing the bifurcations of the suggested system under different conditions for w; and w,: (a) w; > 0and
w, < 0,(b) w; < 0and w, < 0, (c) w; > Oand w, > 0,(d) w; < 0and w, > 0, depending on various parameter values.

:I:/”N_b Nb+ e
2VRVA

cosec((x — bt) «/X)), (21

whereb < Oand b + ¢ > 0.
Similarly, ifboth w and Cto zero but D is not equal to zero, equation (20) yields:

(( —2324+ b2 A2+ bedp?

H(x, t) = ¢ 2(1+¢0) )x_m) (:i: K _bsz e VX tan (u(x — b))
K

iu\/__b btel sec (p(x — bt)\/X)), (22)
NN
whereb < 0and b + ¢ > 0.
InstanceII: A < 0 (For hyperbolic solutions)
Similarly, we follow the procedure outlined in instance I to determine the coefficients' values, leading to the
following results:

N=b Jb+e b

[— 2 2
a0 = 0, a1::|:’u 1::*:” b Jb+¢e Va —i—B)\)
2JVR 2VRN=A
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Figure 2. 2D visualizations of chaotic motion for equation (32) with different parameter values as: (a) « = 1and 0 = 7/2,(b) a = 2
and 0 = 7/2,(c)a =6and @ = 7/2,(d) « = 20and 0 = 7/2.

032 2y,,2 2
and d — 2B + b*Ap "v‘bf/\ﬂ. (23)
2(1 + €0)
Using these in equation (17), yields:
H(C) = iu\/—b Vb + € Jx (Ccosh(CN—A) + Dsinh({V—A))
2K Csinh({~J—A) + Dcosh(CN—MN) + a/ A
La=b Jb+¢e Ja?+ BX 1 24
2JEA = A Csinh((\/f)\)+Dcos(C\/f/\)+oz/)\’
whereb < Oand b + ¢ > 0.
Goingback to its initial form using transformation variables, we obtain:
[ =284 b\ +bedp? p
Hix, t) = e{( 2(1+65) )xi‘dt)
iu\/—b Vb + ¢ Jx (Ccosh(u(x — bt)vy—A) + Dsinh(u(x — bt)v—N))
N Csinh(u(x — bt)y—X) + Dcosh(u(x — bt)v—A) + a/\
L=b Jb+e Ja?+ BX 1 25)
2V =N Csinh(u(x — b)y—X) + Dcosh(u(x — b)ON—N) + a/X )

whereb < 0and b + ¢ > 0.
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(c) (d)

Figure 3. 2D visualizations of chaotic motion for equation (32) with different parameter valuesas: (a) « = land 0 = m,(b)a = 5
andd = 7,(c)a = 10and § = 7, (d) @« = 15and 6 = 7.

When «and D are both set to zero, but Cis not equal to zero, equation (25) simplifies as follows:

; 2324 b2 AP be? Bt
H(X, t) —_— 2(1+¢€0) !

(i’“ szﬁvb € 2N coth(ulx — b)N—X)

uN=b b+e e
+
2VRN=A

cosech(u(x — bt)\/—)\)), (26)

whereb < 0andb + ¢ > 0.

Instance III: \ = 0 (For rational solutions)

Once more, we adhere to the procedure delineated in instance I to deduce the coefficients’ values, resulting
in the following outcomes:

uN—b b+ e puN—b Jb+e JC*—2aD
a0:0, alzi ,blzi )
2JK 2JR
>
an dz—ﬁ. (27)
(1 + €06)
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(c) (d)

Figure 4. 2D visualizations of chaotic motion for equation (32) with different parameters values as, (a) « = land § = 27, (b) a = 5
and 0 = 27, (c) « = 10and § = 27, (d) « = 15and 0 = 2.

Now, upon substituting these values into equation (17), which yields:

_ — 2 _
H(C)Ziu\/ b Jb+¢ 2ozC—}—C L b \/bj—g JC 2aD, 28)
2VE 4+ C+D 2RSS+ CC+ D
whereb < 0and b + ¢ > 0.
Returning to its original form using transformation variables, we obtain:
(( —-p?
Hx, t) = el((m)x_‘%) b Jbte alptx = b)) + €
2VE AP | Cu(x — b)) + D
_ 2 _
iu\/ b Jb+¢e C*—2aD _ 1 ’ 29)
NG QWEIOE 4 C(u(x — bt)) + D
whereb < 0and b + ¢ > 0.
Ifboth avand D are set to zero, but Cis not equal to zero, equation (29) simplifies to as follows:
(( -8 —
il ——— |x—0 _
Hx, t) =e ((“*@3)) I) + 4 b bte ! ) (30)
JE (p(x — bt))

whereb < 0and b + ¢ > 0.
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Figure 5. The state variables versus time are numerically demonstrated with initial values varying for the parameters, k = 3, u = 1,
e=1,d=—-5b=2and 3=7.

4. Bifurcation analysis

In this section, we conduct a crucial analysis of the governing equation known as bifurcation analysis. To do this,
we attain the planar dynamical system of equation (15) as follows (Raza et al 2022, Rahman et al 2024):

dH dR
— =R, = wH? 4+ wyH, €20)
d¢ dC
=2k _ d+pB*+deB
where w; = T and w, = e
By introducing the Hamilton canonical equations H' = 2—7; and R’ = — Z—Z in equation (31), the
corresponding Hamiltonian function is as follows:
R? H* H?
HH, R == 2 Wl
2 4 2

where h is constant (Hamiltonian). To derive equilibrium points, we consider the following system of equations,
R =0and w;H?® + w,H = 0.

Solving this system, we obtain three equilibrium points (EPs), suchas e; = (0, 0), e, = (i \/E R 0) and

e = (— i \/Zj? R O). The Jacobian determinant of the dynamical system:

0 1
D(H, R) = ‘3W1H2—|—W2 0 = —3W1H2— w).
We have three conditions for equilibrium points, (i) the equilibrium pointis asaddle if D(H, R) < 0. (ii)
the equilibrium pointis a center if D (H, R) > 0. (iii) the equilibrium pointis a cuspidif D(H, R) = 0.
Case 1: When, w; > 0and w, < 0, for the choices of arbitrary constants, k = —1, u = l,e=1,d = =2,
b = —2and B = 1, we ascertained three equilibrium points as (0,0), (1.2247,0) and (—1.2247,0). We
discovered from figure 1(a) that, (0,0) is the center point, (1.2247,0) and (—1.2247,0) both are saddle points.
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(b)

0.006

0.004F
— 0.002f -
~ f=
k\ \. 1 1 5:
T 40 =

-0.002F

-0.004F

-0.006

Figure 6. Graphical representations of the solutions |H(x, t)lof equation (20) for b = —.01, A = 1, = 0.1,
k=1, =01, a=1,C=land D = 1:(a) A3D depiction (b) A 2D depiction and (c) Contour depiction.

Case 2: When, w; < 0and w, < 0, for the choices of arbitrary constants, k = 1, u = 1,e = 1,d = -2,
b = 2and 8 = 1, we found one equilibrium pointas (0,0). We discovered from figure 1(b) that, (0, 0)isthe
center point.

Case 3: When, w; > 0and w, > 0, for the choices of arbitrary constants, k = —1, u = 1, e = 1,d = 2,
b = 2and 8 = 1, we found only one equilibrium point as (0,0). We discovered from figure 1(c) that, (0,0) is the
saddle point.

Case4: When, w; < 0and w, > 0, for the choices of arbitrary constants, k = 1,y = 1,e = 1,d = 2,
b = —2and B = 1, we found three equilibrium points as (0,0), (1.5811,0) and (—1.5811,0). We discovered
from figure 1(d) that, (0,0) is the saddle point, (1.5811,0) and (—1.5811,0) both are center points. All points
(saddle and center) are marked in red color in all figures. These stable points (saddle and center) are very
important to express many physical phenomena in optical physics and modern engineering.

5. Chaotic analysis

Here, we inserted a perturbation term in the planar dynamical system equation (31) for chaotic analysis. Let us
consider the dynamical system with the perturbation term as follows (Raza et al 2022, Rahman et al 2024):

dH dR
— =R, — =wH*4+ w,H+ «a cosf(t), 32
i i 1 2 () (32)
_ —2k d+ 2 +de j3 . . . .
where w; = It and w, = TR eh) « cos(f t)isthe perturbation term, o = 0 is the amplitude of

the system and 6 = 0 is the frequency of the system. We used this perturb term to explore the system’s sensitivity
to small changes and uncover the underlying mechanisms driving chaotic behavior. This perturbation term is
known as a time-varying external forcing perturbation term. Since we focus on optical solutions context of

10
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X
Figure 7. Graphical representations of the solutions |H(x, t)lofequation 21)forb = —4, A\ =4,e =5, k = landpy = 1:
(a) A 3D depiction (b) A 2D depiction and (c) Contour depiction.

optical solitons, perturbation terms can significantly influence their behavior. Optical solitons are localized wave
packets that can maintain their shape and amplitude while propagating over long distances in certain nonlinear
optical media. However, this perturbation terms play a significant role in shaping the behavior and dynamics of
optical solitons, impacting their stability, interactions, and applications in nonlinear optical systems. We
introduced 2D phase portraits of equation (32) with the constant values for all figures (figures 2—4) as k = 3,
uw=1,e=1,d= —5,b= 2,and 8 = 7.For the clear observation of the chaotic motions, we extracted phase

portraits for the different values of c.

6. Sensitivity analysis

Here, we examine the sensitivity of the dynamical system described by equation (8) using the popular and
effective Runge—Kutta method. To do this, we apply the Runge—Kutta method to solve the following dynamical

system (Raza et al 2022, Rahman et al 2024):

dH = R, d—R = W1H3 + W2H, (33)

dc o dC

The parameters have the following values, k = 3, 4 = 1,e = 1,d = —5,b = 2and § = 7 and the
system’s initial conditions are considered by, (a) H(0) = 0.1and R = 0;(b) H(0) = 0 and R = 0.1;(¢c)
H(@0) =0.2and R = 0;(d) H(0) = 0and R = 0.2.

Figure 5 shows the outcomes that this efficient strategy produced. Class R dynamics are represented by the
red curves and class H dynamics are shown by the blue curves. It is evident from the figures that even slight
modifications to the starting conditions have a significant impact on the system’s dynamics.
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7. Graphical representation and physical interpretations

In this segment, we leveraged the advanced computational capabilities of Mathematica to elucidate distinct
graphical patterns exhibited by the HAE. Our presentation includes a variety of graphical representations,
including contour plots, 2D graphics, and 3D visualizations. These depictions span a diverse range of parameter
values for each relevant variable, aiming to provide a comprehensive insight into the graphical nuances of the
HAE across a broad parameter space. Specific constants associated with each graph are outlined in the
corresponding figure captions. Additionally, detailed discussions on various soliton types are provided for each
figure.

Figure 6 is derived from equation (20) and visually shows the singular kink soliton pattern. This solution
representation holds practical relevance in crafting optical components, designing fiber amplifiers, and
developing nonlinear optical devices such as soliton-based frequency combs and optical switches. Additionally,
the use of singular solitons proves helpful for the seamless and reliable transmission of information in optical
communication systems, ensuring efficiency and stability over extended distances without succumbing to
dispersion-induced distortions.

Figure 7, derived from equation (21), exemplifies one of the particular solutions stemming from
equation (20), effectively showcasing the solutions’ inherent multi-periodic kink characteristics. In optical
physics, a multi-periodic kink is seen as a waveform with multiple kink-like shapes appearing within one period.
These intricate patterns arise from complex interactions within the optical medium, like self-focusing and
spatial modulation. Multi-periodic kinks can represent localized wave packets or waveguide modes with
complex spatial variations, presenting potential applications in optical communication and signal processing.
Understanding these phenomena thoroughly is vital for utilizing their potential in nonlinear optics and
advancing optical technology.
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Figure 8, arising from equation (22), illustrates a specific solution derived from equation (20), effectively
highlighting the solutions’ inherent singular multi-periodic behavior. Solitons featuring intricate periodic
behavior offer potential applications in nonlinear frequency conversion, fiber sensors, and cutting-edge optical
imaging techniques. Their distinctive properties pave the way for advancements across diverse optical
technologies, underscoring their versatility and substantial impact on the field.

Figure 9, generated from equation (26), portrays a particular solution obtained from equation (25),
effectively emphasizing singular kink soliton characteristics with singularity. These solitons have potential
applications in optical physics, playing a crucial role in signal processing, fiber amplifiers, and ensuring stable
information transmission within optical communication systems. Their significance lies in contributing to the
advancement of optical technologies.

Figure 10, derived from equation (30), depicts a specific solution derived from equation (29), effectively
highlighting a semi-bell-shaped pattern with singularity characterized by a specific periodicity. In the field
of optical physics, the semi-bell-shaped pattern with a singularity soliton denotes a focused wave packet
characterized by high localized energy. This unique pattern arises due to strong nonlinear interactions
occurring within the optical medium, where the singularity soliton component significantly influences the
formation of a distinct peak in intensity. These optical phenomena have wide-ranging implications across
various applications, including optical communication, signal processing, and laser physics. They offer
promising pathways for technological progress and furthering our understanding of the fundamental
relationship between light and matter.
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8. Comparison

In this section, we delve into the novelty and scientific contributions of our paper through a comparative analysis
of the findings presented by (Badshah et al 2023). This comparison is structured into two distinct sections,
meticulously examining the parallels and disparities between our respective studies. By elucidating both the
commonalities and divergences, we aim to provide a comprehensive understanding of the unique insights
offered by our research in relation to existing literature.

8.1. Commonalities
a. Both studies center on the HAE, a crucial nonlinear complex model employed to analyze wave packet
dynamics, particularly phenomena such as soliton propagation and interactions.

b. Both studies aim to obtain precise exact solutions by employing analytical techniques.

8.2. Dissimilarity and uniqueness
a. (Badshah et al2023) utilized a one-variable method to obtain exact solutions, while this study employs a two-
variable method ((G/G, 1/G)-expansion technique).

b. This study incorporates analyses of chaotic behavior, bifurcations, and sensitivity, which were not included in
(Badshah et al 2023)’s study.

c. While they exclusively obtain singular and periodic bell-shaped solitons, this study encompasses a broader
range, including kink, multi-kink, semi-bell shape, periodic, and singular solitons.

14



10P Publishing

Phys. Scr. 99 (2024) 075231 M N Hossain et al

d. This study presents a more diverse range of graphical representations, including 2D, 3D, and contour plots of
exact solutions, as well as chaotic visualization, phase diagrams, and sensitivity diagrams with respect to time.
In contrast, (Badshah et al 2023) utilized only 3D and 2D diagrams.

e. While our study places significant emphasis on the physical interpretation of diverse solitons within the
context of optical physics, this aspect was not emphasized in the work by (Badshah et al 2023).

9. Conclusion

An application of the double (G/G, 1/G)-expansion technique technique has led to the successful
derivation of a diverse set of exact optical solutions for the HAE, a fundamental model governing optical
soliton dynamics within optical fiber theory. Our analytical study is focused on exploring various nonlinear
wave structures within the model equation, resulting in the generation of novel traveling pulse responses.
These solutions possess versatile forms, such as trigonometric, hyperbolic, and rational functions.

The complex dynamics of the equation has been revealed through a methodical derivation of the related
dynamical system via the Galilean transformation, together with a careful examination of bifurcation
processes and chaotic behavior utilizing planar dynamical system theory. The stability of the solutions was
effectively demonstrated by conducting sensitivity analysis, which was carried out using the Runge-Kutta
method, even in the face of slight variations in the beginning circumstances. Also, these stable solutions
encompass a wide range of behaviors, including single periodic, multi-periodic, singular soliton, and semi-
bell-shaped patterns, across various values of the relevant variables. We firmly assert that those newly
uncovered optical solutions hold great promise in the progression of optical physics, with implications for
both light and electron optics. Notably, the optical soliton solutions derived from this method underscore
its efficacy, reliability, and simplicity when compared to solutions by various alternative techniques with
bifurcation and sensitivity analysis, which are more attractive to modern researchers.

This research illuminates the potential of the mentioned technique in unraveling intricate optical
phenomena and contributes valuable insights into the broader domain of optical physics. The novel
findings in this study provide valuable contributions to the understanding of nonlinear dynamic
phenomena. Utilizing the diverse range of soliton solutions serves as a versatile toolset applicable to various
aspects of optical physics. These advancements hold promise for driving progress in telecommunications,
signal processing, nonlinear optics, and optical imaging.
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