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This paper aims to consider a (2 + 1)-dimensional nonlinear evolution equation and
its lump solutions. By using symbolic computation, two classes of lump solutions are

presented. For two specific chosen examples, we will show three-dimensional plots and

density plots to exhibit dynamical features of the lump solution, which are made by
Maple plot tools.
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1. Introduction

Solvable partial differential equations always involve constant coefficients, and

they are linear. However, it is difficult to solve partial differential equations with

variable coefficients or nonlinear terms via analytic ways. Nevertheless, soliton
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theory provides some methods to solve nonlinear partial differential equations.1,2

The Hirota bilinear method, historically developed for integrable equations, is an

essential method to get soliton solutions and lump solutions because of its simplic-

ity and directness.3,4

Soliton solutions are analytic and exponentially localized in all directions in

time and space, and lump solutions are a class of rational function solutions that

are localized in all directions in space,5 which can be derived from taking long

wave limits of soliton equations.6 Also, lump solutions are originated from solving

integrable equations in (2 + 1) dimensions (see, for example, Refs. 7–9). Long wave

limits of N -soliton solutions can produce special lumps as envelope solutions.10

Many existing studies on (2 + 1)-dimensional integrable equations show abundance

of lump solutions (see, for example, Refs. 7 and 8), which include BKP equation,11

the (2 + 1)-dimensional Ito equation,12 the Davey–Stewartson equation II,10 the

Ishimori-I equation,13 the KP equation with a self-consistent source,14 and the

second KP equation.15 In order to compute lump solutions, a significant step is

to find a positive quadratic function solution to Hirota bilinear equation.16 Then

from the solutions of such positive quadratic function, we are able to compute

lump solutions to nonlinear partial differential equations through the logarithmic

transformations.

In the Hirota bilinear formulation, we have a (2 + 1)-dimensional partial differ-

ential equation with a variable u, which connects with a Hirota bilinear differential

equation

P (Dx, Dy, Dt)f · f = 0,

where P is a polynomial and Dx, Dy, Dt are Hirota’s bilinear derivatives. The

dependent variable u is often defined by one of the logarithmic transforms

u = 2(ln f)x, u = 2(ln f)xx.

Then soliton solutions can be formulated as

f =
∑
µ=0,1

exp

 N∑
i=1

µiξi +
∑
i<j

µiµjaij

,
where

ξi = kix+ liy − wit+ ξi,0, 1 ≤ i ≤ N,

and ki, li, wi, 1 ≤ i ≤ N , satisfy the corresponding dispersion relations. Also, ξi,0,

1 ≤ i ≤ N , are arbitrary phase shifts.

In this paper, we propose a combined fourth-order nonlinear evolution equation

in (2 + 1) dimensions and determine its lump solutions. Our combined nonlinear

equation contains all second-order linear terms to ensure that our equation processes

lump solutions. Also, the nonlinear equation contains three types of nonlinear terms

that include two types of the ‘2 + 2’-type terms and one ‘3 + 1’-type term, which

never appear in recent research. Symbolic computation is conducted in Maple to
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compute and simplify the lump solution expression. We analyze its coefficients for

two specific examples of the nonlinear equation and illustrate the corresponding

specific lump solutions using three-dimensional plots and density plots to show the

structures of our solutions.

2. A Combined Nonlinear PDE and its Lump Solutions

2.1. Combined fourth-order nonlinear model

We would like to consider a general combined fourth-order nonlinear partial differ-

ential equation in (2 + 1) dimensions as

P (u) = α1[4utuxt + uxutt + uxxk + uxxtt] + α2[3(uxuy)x + uxxxy]

+α3[4uyuxy + uxuyy + uxxv + uxxyy]

+ δ1uyt + δ2uxx + δ3uxt + δ4uxy + δ5uyy + δ6utt = 0, (1)

where kx = utt, vx = uyy, and αi and δj are arbitrary constant with 1 ≤ i ≤ 3,

1 ≤ j ≤ 6. The coefficients αi, 1 ≤ i ≤ 3 correspond to three combinations of

fourth-order derivative terms, and δj , 1 ≤ j ≤ 6 correspond to all linear second-

order derivative terms.

When α1 = 0, α2 = 1, α3 = 0, δ3 = δ5 = 1 and the other δj ’s are all zero,

Eq. (1) obtains an equation that processes lump solutions named the generalized

Calogero–Bogoyavlenskii–Schiff equation:

3(uxuy)x + uxxxy + uxt + uyy = 0, (2)

which possesses a Hirota bilinear form under u = 2(ln f)x:

(D3
xDy +DxDt +D2

y)f · f = 0. (3)

Generally, under the logarithmic transformation

u = 2(ln f)x = 2
fx
f
,

vx = 2(ln f)yy =
2(fyyf − f2y )

f2
,

kx = 2(ln f)tt =
2(fttf − f2t )

f2
.

(4)

We can transform Eq. (1) into the Hirota bilinear form

B(f) = (α1D
2
xD

2
t + α2D

3
xDy + α3D

2
xD

2
y

+ δ1DyDt + δ2D
2
x + δ3DxDt + δ4DxDy + δ5D

2
y + δ6D

2
t )f · f = 0. (5)

Precisely, the actual relation between the bilinear equation and the combined

nonlinear equation states P (u) = (B(f)
f2 )x, where u, v, k satisfy (4). Therefore, if f
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solves the bilinear equation (5), then u = 2(ln f)x solves our combined nonlinear

equation (1).

This combined fourth-order nonlinear equation has three types of fourth-order

derivative term and all linear second-order derivative terms. If α1 6= 0 and α3 6= 0,

the equation contains two ‘2+2’-type fourth-order term (like D2
xD

2
y) which is barely

mentioned in the past.

2.2. Lump solutions

In this section, we compute lump solutions to the nonlinear partial differential

equation (1) through symbolic computation.

A crucial step in finding lump solutions is to determine positive quadratic solu-

tions, and so we start with

f = (a1x+ a2y + a3t+ a4)2 + (a5x+ a6y + a7t+ a8)2 + a9, (6)

where ai, 1 ≤ i ≤ 9, are constant parameters to be determined, which generate

lump solutions to our combined fourth-order nonlinear equation (1).

2.2.1. The case of δ6 = 0

First, we consider the case of δ6 = 0 for our combined nonlinear equation (1).

Through symbolic computation, it directly gives us a solution to the parameters

a3 = − b1
(a1δ3 + a2δ1)2 + (a5δ3 + a6δ1)2

,

a7 = − b2
(a1δ3 + a2δ1)2 + (a5δ3 + a6δ1)2

,

a9 = − b3α1 + b4α2 + b5α3

(a1a6 − a2a5)2(δ21δ2 − δ1δ2δ4 + δ23δ5)((a1δ3 + a2δ1)2 + (a5δ3 + a6δ1)2)

(7)

and all other a′is are arbitrary. The above constants bi, 1 ≤ i ≤ 5, are defined as

follows:

b1 = [((a21 − a25)a2 + 2a1a5a6)δ2 + a1(a22 + a26)δ4 + a2(a22 + a26)δ5]δ1

+ [a1(a21 + a25)δ2 + a2(a21 + a25)δ4 + ((a22 − a26)a1 + 2a2a5a6)δ5]δ3,

b2 = [(−a21a6 + 2a1a2a5 + a25a6)δ2 + (a22a5 + a5a
2
6)δ4 + (a22a6 + a36)δ5]δ1

+ [(a21a5 + a35)δ3δ2 + (a21a6 + a25a6)δ4 + (2a1a2a6 − a22a5 + a5a
2
6)δ5]δ3,

b3 = [(a21 + a25)2p1δ
2
2 + (6(a22 + a26)(a21 + a25)p2δ4 + 2(a22 + a26)(a21 + a25)p3δ5)δ2

+ 3(a22 + a26)2(a21 + a25)2δ24 + 6(a22 + a26)2p2δ4δ5 + (a22 + a26)2p1δ
2
5 ]δ21

+ [6(a21 + a25)2p2δ3δ
2
2 + (4(a21 + a25)2p1δ4 + 4p2p3)δ5)δ2δ3

+ (6(a22 + a26)(a21 + a25)p2δ
2
4 + 4(a22 + a26)(a21 + a25)p3δ4δ5

+ 2(a22 + a26)(a1a2 + a5a6)p3δ
2
5)δ3]δ1
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+ 3(a21 + a25)4δ22δ
2
3 + (6(a21 + a25)2p2δ4 + 6(a21 + a25)2p4δ5)δ2δ

2
3

+ ((a21 + a25)2p1δ
2
4 + 2p2p3δ4δ5 + p5δ

2
5)δ23 ,

b4 = 3p2((a1δ3 + a2δ1)2 + (a5δ3 + a6δ1)2)2,

b5 = p1((a22 + a26)δ21 + 2(a1a2 + a5a6)δ1δ3 + (a21 + a25)δ23), (8)

where

p1 = 3a21a
2
2 + a21a

2
6 + 4a1a2a5a6 + a22a

2
5 + 3a25a

2
6,

p2 = (a21 + a25)(a1a2 + a5a6),

p3 = 3a21a
2
2 − a21a26 + 8a1a2a5a6 − a22a25 + 3a25a

2
6,

p4 = (a1a2 − a1a6 + a2a5 + a5a6)(a1a2 + a1a6 − a2a5 + a5a6),

p5 = 3a41a
4
2 − 2a41a

2
2a

2
6 + 3a41a

4
6 + 16a31a

3
2a5a6 − 16a31a2a5a

3
6 + 44a21a

2
2a

2
5a

2
6

− 2a21a
4
2a

2
5 − 2a21a

2
5a

4
6 − 16a1a

3
2a

3
5a6 + 16a1a2a

3
5a

3
6

+ 3a42a
4
5 − 2a22a

4
5a

2
6 + 3a45a

4
6. (9)

The simplification of presenting the formulas in (7)–(9) has been conducted with

Maple. Based on the above solution formulas, we need to ensure that the above

solutions present a lump, and so we require

(δ1 + δ3)2(δ21δ2 − δ1δ2δ4 + δ23δ5) 6= 0 (10)

to generate lump solutions to the nonlinear equation (1).

2.2.2. The case of δ5 = 0

Second, we will consider the case of δ5 = 0 for Eq. (1). The same direct symbolic

computation provides us with a set of solutions for the parameters, which are

a2 = − c1
(a1δ4 + a3δ1)2 + (a5δ4 + a7δ1)2

,

a6 = − c2
(a1δ4 + a3δ1)2 + (a5δ4 + a7δ1)2

,

a9 =
−c3α1 + 3c4α2 − c5α3

(a1a7 − a3a5)2(δ21δ2 − δ1δ3δ4 + δ24δ6)((a3δ1 + a1δ4)2 + (a7δ1 + a5δ4)2)
,

(11)

and all other a′is are arbitrary. The involved constants c′is, 1 ≤ i ≤ 5, are defined

as follows:

c1 = [a1(a23 + a27)δ3 + (a21a3 + 2a1a5a7 − a3a25)δ2 + a3(a23 + a27)δ6]δ1

+ [a3(a21 + a25)δ3 + (a1a
2
3 − a1a27 + 2a3a5a7)δ6 + a1(a21 + a25)δ2]δ4,

c2 = [a5(a23 + a27)δ3 + (−a21a7 + 2a1a3a5 + a7a
2
5)δ2 + a7(a23 + a27)δ6]δ1

+ [a7(a21 + a25)δ3 + (2a1a3a7 − a23a5 + a5a
2
7)δ6 + a5(a21 + a25)δ2]δ4
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c3 = (a23 + a27)2q3δ
4
1 + 4(a23 + a27)(a1a3 + a5a7)q3δ

3
1δ4 + 2q3δ

2
1δ

2
4

+ 4q2q3δ1δ
3
4 + (a21 + a25)2q3δ

4
4 ,

c4 = [(a23 + a27)(a21 + a25)q2δ2 + (a23 + a27)2(a21 + a25)2δ3 + (a23 + a27)2q2δ6]δ31

+ [(a21 + a25)2q3δ2δ4 + 3(a23 + a27)(a21 + a25)q2δ3δ4 + (a23 + a27)(a21 + a25)q4δ4δ6]δ21

+ [3(a21 + a25)2q2δ2δ
2
4 + (a21 + a25)2q3δ3δ

2
4 + q2q4δ

2
4δ6]δ1

+ (a21 + a25)4δ2δ
3
4 + (a21 + a25)2q2δ3δ

3
4 + (a21 + a25)2q1δ

3
4δ6,

c5 = [(a21 + a25)2q3δ
2
2 + (6(a23 + a27)(a21 + a25)q2δ3 + 2(a23 + a27)(a21 + a25)q4δ6)δ2

+ 3(a23 + a27)2(a21 + a25)2δ23 + 6(a23 + a27)2q2δ3δ6 + (a23 + a27)2q3δ
2
6 ]δ21

+ [6(a21 + a25)2q2δ
2
2δ4 + (4(a21 + a25)2q3δ3δ4 + 4q2q4δ6δ4)δ2

+ 6(a23 + a27)(a21 + a25)q2δ4δ
2
3 + 4(a23 + a27)(a21 + a25)q4δ3δ4δ6

+ 2(a23 + a27)(a1a3 + a5a7)q4δ4δ
2
6 ]δ1

+ 3(a21 + a25)4δ22δ
2
4 + (6(a21 + a25)2q2δ3δ

2
4 + 6(a21 + a25)2q1δ

2
4δ6)δ2

+ (a21 + a25)2q3δ
2
3δ

2
4 + 2q2q4δ3δ

2
4δ6 + q5δ

2
4δ

2
6 , (12)

where

q1 = (a1a3 − a1a7 + a3a5 + a5a7)(a1a3 + a1a7 − a3a5 + a5a7),

q2 = (a21 + a25)(a1a3 + a5a7),

q3 = 3a21a
2
3 + a21a

2
7 + 4a1a3a5a7 + a23a

2
5 + 3a25a

2
7,

q4 = 3a21a
2
3 − a21a27 + 8a1a3a5a7 − a23a25 + 3a25a

2
7,

q5 = 3a41a
4
3 − 2a41a

2
3a

2
7 + 3a41a

4
7 + 16a31a

3
3a5a7 − 16a31a3a5a

3
7 − 2a21a

4
3a

2
5

+ 44a21a
2
3a

2
5a

2
7 − 2a21a

2
5a

4
7 − 16a1a

3
3a

3
5a7 + 16a1a3a

3
5a

3
7

+ 3a43a
4
5 − 2a23a

4
5a

2
7 + 3a45a

4
7. (13)

All the above formulas from (11) to (13) have been simplified directly through

Maple process. For δ5 = 0, we need to check when the solutions are lumps, and so

we need the basic condition

(δ1 + δ4)2(δ21δ2 − δ1δ3δ4 + δ24δ6) 6= 0. (14)

Also, for this case, we need to check when the set of the proceed parameters

gives lumps, and thus we compute

a1a6 − a2a5

=

(a1a7 − a3a5)((a21δ2 + δ2a
2
5 − δ6(a23 + a27))δ1

− δ4(a21δ3 + 2a1a3δ6 + a25δ3 + 2a5a7δ6))

(a1δ4 + a3δ1)2 + (a5δ4 + a7δ1)2
. (15)
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It follows that a1a6 − a2a5 6= 0 if and only if{
a1a7 − a3a5 6= 0, δ21 + δ24 6= 0,

(a21δ2 + δ2a
2
5 − δ6(a23 + a27))δ1 − δ4(a21δ3 + 2a1a3δ6 + a25δ3 + 2a5a7δ6) 6= 0.

(16)

Both a1a6−a2a5 6= 0 and a9 > 0 assure that the corresponding set of parameters

will present lump solutions.

2.2.3. Equivalence between two cases of solutions

When δ5 = δ6 = 0, we have two sets of parameters that process lumps, determined

by Secs. 2.2.1 and 2.2.2. Also, we show the equivalence between these two cases of

corresponding lump solutions.

When taking δ5 = δ6 = 0, the combined equation (1) becomes

P (u) = α1[4utuxt + uxutt + uxxk + uxxtt] + α2[3(uxuy)x + uxxxy]

+α3[4uyuxy + uxuyy + uxxv + uxxyy] + δ1uyt

+ δ2uxx + δ3uxt + δ4uxy = 0. (17)

So, the related Hirota bilinear form becomes

B(f) = (α1D
2
xD

2
t + α2D

3
xDy + α3D

2
xD

2
y

+ δ1DyDt + δ2D
2
x + δ3DxDt + δ4DxDy)f · f = 0. (18)

For the first class of the lump solutions defined by (7) with (8) (9), we have

a3 = − d1
(a1δ3 + a2δ1)2 + (a5δ3 + a6δ1)2

,

a7 = − d2
(a1δ3 + a2δ1)2 + (a5δ3 + a6δ1)2

,

a9 = − d3α1 + d4α2 + d5α3

(a1a6 − a2a5)2(δ21δ2 − δ1δ2δ4)((a1δ3 + a2δ1)2 + (a5δ3 + a6δ1)2)
,

(19)

where

d1 = [((a21 − a25)a2 + 2a1a5a6))δ2 + a1(a22 + a26)δ4]δ1

+ [a1(a21 + a25)δ2 + a2(a21 + a25)δ4]δ3,

d2 = [(−a21a6 + 2a1a2a5 + a25a6)δ2 + (a22a5 + a5a
2
6)δ4]δ1

+ [(a21a5 + a35)δ3δ2 + (a21a6 + a25a6)δ4]δ3,

d3 = [(a21 + a25)2p1δ
2
2 + (6(a22 + a26)(a21 + a25)p2δ4)δ2 + 3(a22 + a26)2(a21 + a25)2δ24 ]δ21

+ [6(a21 + a25)2p2δ
2
2δ3 + 6(a22 + a26)(a21 + a25)p2δ3δ

2
4 ]δ1

+ 3(a21 + a25)4δ22δ
2
3 + 6(a21 + a25)2p2δ2δ

2
3δ4 + (a21 + a25)2p1δ

2
3δ

2
4 ,
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d4 = 3p2((a1δ3 + a2δ1)2 + (a5δ3 + a6δ1)2)2,

d5 = p1((a22 + a26)δ21 + 2(a1a2 + a5a6)δ1δ3 + (a21 + a25)δ23)

(20)

with pi, 1 ≤ i ≤ 5, given by (9).

Furthermore, the set of parameters by (11) with (12) (13) is

a2 = − e1
(a1δ4 + a3δ1)2 + (a5δ4 + a7δ1)2

,

a6 = − e2
(a1δ4 + a3δ1)2 + (a5δ4 + a7δ1)2

,

a9 =
−e3α1 + 3e4α2 − e5α3

(a1a7 − a3a5)2(δ21δ2 − δ1δ3δ4)((a3δ1 + a1δ4)2 + (a7δ1 + a5δ4)2)
,

(21)

where

e1 = [a1(a23 + a27)δ3 + (a21a3 + 2a1a5a7 − a3a25)δ2]δ1

+ [a3(a21 + a25)δ3 + a1(a21 + a25)δ2]δ4,

e2 = [a5(a23 + a27)δ3 + (−a21a7 + 2a1a3a5 + a7a
2
5)δ2]δ1

+ [a7(a21 + a25)δ3 + a5(a21 + a25)δ2]δ4,

e3 = (a23 + a27)2q3δ
4
1 + 4(a23 + a27)(a1a3 + a5a7)q3δ

3
1δ4

+ 2q3δ
2
1δ

2
4 + 4q2q3δ1δ

3
4 + (a21 + a25)2q3δ

4
4 ,

e4 = [(a23 + a27)(a21 + a25)q2δ2 + (a23 + a27)2(a21 + a25)2δ3]δ31

+ [(a21 + a25)2q3δ2δ4 + 3(a23 + a27)(a21 + a25)q2δ3δ4]δ21

+ [3(a21 + a25)2q2δ2δ
2
4 + (a21 + a25)2q3δ3δ

2
4 ]δ1

+ (a21 + a25)4δ2δ
3
4 + (a21 + a25)2q2δ3δ

3
4 ,

e5 = [(a21 + a25)2q3δ
2
2 + 6(a23 + a27)(a21 + a25)q2δ2δ3 + 3(a23 + a27)2(a21 + a25)2δ23 ]δ21

+ [6(a21 + a25)2q2δ
2
2δ4 + (4(a21 + a25)2q3δ3δ4)δ2 + 6(a23 + a27)(a21 + a25)q2δ4δ

2
3 ]δ1

+ 3(a21 + a25)4δ22δ
2
4 + (6(a21 + a25)2q2δ3δ

2
4)δ2 + (a21 + a25)2q3δ

2
3δ

2
4 , (22)

with qi, 1 ≤ i ≤ 5, given by (13).

A straightforward symbolic computation can show that the above two classes

of lump solutions ((19–(20)) and ((21)–(22)) are equivalent to each other. Further-

more, we have

a1a6 − a2a5 =
(a21 + a25)(a1a7 − a3a5)(δ1δ2 − δ3δ4)

(a1δ4 + a3δ1)2 + (a5δ4 + a7δ1)2
(23)

2250087-8
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and

a1a7 − a3a5 =
(a21 + a25)(a1a6 − a2a5)(δ1δ2 − δ3δ4)

(a1δ4 + a3δ1)2 + (a5δ4 + a7δ1)2
. (24)

Therefore, when

δ21δ2 − δ1δ2δ4 6= 0, (25)

the two sets determine the absolutely same values for all the parameters and thus

they process the same lump solutions.

3. Examples in Two Cases

3.1. Example in the case δ6 = 0

We first consider the case of δ6 = 0, and choose

α1 = 1, α2 = 1, α3 = 2, δ1 = 1, δ2 = 2, δ3 = 0, δ4 = 2, δ5 = 3.

(26)

Then we get our specific combined nonlinear equation

P (u) = 4utuxt + uxutt + uxxk + uxxtt

+ 3(uxuy)x + uxxxy + 2[4uyuxy + uxuyy + uxxv + uxxyy]

+uyt + 2uxx + 2uxy + 3uyy = 0, (27)

where kx = utt and vx = uyy. Therefore, under the logarithmic transformation in

(4), the Hirota bilinear form becomes

(D2
xD

2
t +D3

xDy + 2D2
xD

2
y +DyDt + 2D2

x + 2DxDy + 3D2
y)f · f = 0. (28)

Furthermore, associated with

a1 = 4, a2 = −2, a4 = 5, a5 = 2, a6 = 4, a8 = 6, (29)

the transformations in (4) with (6) provide a specific lump solution to our first

specific combined nonlinear equation (27):

u1 =
2(−80t+ 40x+ 64)

(−6t+ 4x− 2y + 5)2 + (−8t+ 2x+ 4y + 6)2 − 150
,

v1 =
80

(−6t+ 4x− 2y + 5)2 + (−8t+ 2x+ 4y + 6)2 − 150

− 2(−40t+ 40y + 28)2

[(−6t+ 4x− 2y + 5)2 + (−8t+ 2x+ 4y + 6)2 − 150]2
,

k1 =
400

(−6t+ 4x− 2y + 5)2 + (−8t+ 2x+ 4y + 6)2 − 150

− 2(200t− 80x− 40y − 156)2

[(−6t+ 4x− 2y + 5)2 + (−8t+ 2x+ 4y + 6)2 − 150]2
. (30)
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Fig. 1. (Color online) Profiles of u1 when t = 0, 5, 10: 3d plots (top) and density plots (bottom).

Figure 1 presents three three-dimensional plots and density plots of the above

lump solutions u1 at three different times.

3.2. Example in the case δ5 = 0

For the case of δ5 = 0, we take

α1 = 1, α2 = 1, α3 = 2, δ1 = 1, δ2 = 2, δ3 = 0, δ4 = 2, δ6 = 3,

(31)

which leads to another particular combined nonlinear equation

P (u) = 4utuxt + uxutt + uxxk + uxxtt + 3(uxuy)x + uxxxy

+ 2[4uyuxy + uxuyy + uxxv + uxxyy]

+uyt + 2uxx + 2uxy + 3utt = 0, (32)

where kx = utt and vx = uyy. Under the logarithmic transformations in (4), the

above nonlinear equation also has a Hirota bilinear form

(D2
xD

2
t +D3

xDy + 2D2
xD

2
y +DyDt + 2D2

x + 2DxDy + 3D2
t )f · f = 0. (33)

Furthermore, associated with

a1 = 4, a3 = −2, a4 = 5, a5 = 2, a7 = 4, a8 = 2, (34)

2250087-10
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Fig. 2. (Color online) Profiles of v2 when t = 0, 5, 10: 3d plots (top) and density plots (bottom).

Fig. 3. (Color online) Profiles of k2 when t = 0, 5, 10: 3d plots (top) and density plots (bottom).
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the transformations in (4) with (6) present a specific lump solution to our second

specific combined nonlinear equation (32):

u2 =
2(40x+ 16y + 48)

(−2t+ 4x+ 2y + 5)2 + (4t+ 2x+ 2)2 − 162
7

,

v2 =
16

(−2t+ 4x+ 2y + 5)2 + (4t+ 2x+ 2)2 − 162
7

− 2(−8t+ 16x+ 8y + 20)2[
(−2t+ 4x+ 2y + 5)2 + (4t+ 2x+ 2)2 − 162

7

]2 ,
k2 =

80

(−2t+ 4x+ 2y + 5)2 + (4t+ 2x+ 2)2 − 162
7

− 2(40t− 8y − 4)2[
(−2t+ 4x+ 2y + 5)2 + (4t+ 2x+ 2)2 − 162

7

]2 . (35)

Similarly, we use Figs. 2 and 3 to show three three-dimensional plots and density

plots of the lump functions v2 and k2, respectively, at three different times.

4. Concluding Remarks

By using symbolic computation and the Hirota bilinear method, we have presented

two classes of lump solutions to a combined fourth-order nonlinear equation in (1),

including two types of nonlinear terms in (2+1) dimensions. The results of our study

present a new example of (2 + 1)-dimensional combined nonlinear equations that

process lump solutions. Also, we use three-dimensional plots of our two specific lump

solutions in the two cases of the combined nonlinear equation to show the structure

of the lump solutions. The simplification process, the plots, and the solutions are

directly made by Maple. It is important to remark that the three nonlinear terms

can be merged into the considered nonlinear equation (1). The terms D2
xD

2
y and

D2
xD

2
t reflect a new and more complex structure of the solutions. However, these

types of terms (‘2 + 2’-type terms) have been rarely mentioned in the past. In this

paper, we combined two ‘2 + 2’-type terms and one ‘3 + 1’-type term, which never

happened in the past research.

This study shows the richness and variation of nonlinear partial differential equa-

tions that possess lump solutions. It is a commonly known fact that many nonlinear

waves can be described by interaction solutions between lump solutions and soliton

solutions.17 Furthermore, there are lots of studies showing the existence of inter-

action solutions between lump solutions and lump-kind solutions and other kinds

of exact solutions to nonlinear equations18 and nonlinear integrable equations.19,20

Since the interaction properties involve much more complicated mathematical com-

putations, further researches for interaction and lump solutions for partial differen-

tial equations are meaningful.
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