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This paper aims to consider a (2 + 1)-dimensional nonlinear evolution equation and
its lump solutions. By using symbolic computation, two classes of lump solutions are
presented. For two specific chosen examples, we will show three-dimensional plots and
density plots to exhibit dynamical features of the lump solution, which are made by
Maple plot tools.
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1. Introduction

Solvable partial differential equations always involve constant coefficients, and
they are linear. However, it is difficult to solve partial differential equations with
variable coefficients or nonlinear terms via analytic ways. Nevertheless, soliton

*Corresponding author.

2250087-1


http://dx.doi.org/10.1142/S0217984922500877
mailto:jingweihe@usf.edu
mailto:mawx@cas.usf.edu

J. W. He & W. X. Ma

theory provides some methods to solve nonlinear partial differential equations.'?
The Hirota bilinear method, historically developed for integrable equations, is an
essential method to get soliton solutions and lump solutions because of its simplic-
ity and directness.®*

Soliton solutions are analytic and exponentially localized in all directions in
time and space, and lump solutions are a class of rational function solutions that
are localized in all directions in space,” which can be derived from taking long
wave limits of soliton equations.® Also, lump solutions are originated from solving
integrable equations in (24 1) dimensions (see, for example, Refs. 7-9). Long wave
limits of N-soliton solutions can produce special lumps as envelope solutions.!?
Many existing studies on (24 1)-dimensional integrable equations show abundance
of lump solutions (see, for example, Refs. 7 and 8), which include BKP equation,'!
the (2 + 1)-dimensional Ito equation,'? the Davey—Stewartson equation II,'° the
Ishimori-I equation,'® the KP equation with a self-consistent source,'* and the
second KP equation.!® In order to compute lump solutions, a significant step is
to find a positive quadratic function solution to Hirota bilinear equation.'® Then
from the solutions of such positive quadratic function, we are able to compute
lump solutions to nonlinear partial differential equations through the logarithmic
transformations.

In the Hirota bilinear formulation, we have a (2 + 1)-dimensional partial differ-
ential equation with a variable u, which connects with a Hirota bilinear differential
equation

P(Dz, Dy, Di)f - f =0,

where P is a polynomial and D,,D,,D; are Hirota’s bilinear derivatives. The
dependent variable u is often defined by one of the logarithmic transforms

u=2(Inf)z, u=2(nf)..

Then soliton solutions can be formulated as

N
F=00 exp | Y b+ pipjais |,
i=1

p=0.1 i<j
where
§i=kix +Liy—wit+&o0, 1<i1<N,

and k;, l;, w;, 1 <1 < N, satisfy the corresponding dispersion relations. Also, &; 0,
1 < i < N, are arbitrary phase shifts.

In this paper, we propose a combined fourth-order nonlinear evolution equation
in (2 + 1) dimensions and determine its lump solutions. Our combined nonlinear
equation contains all second-order linear terms to ensure that our equation processes
lump solutions. Also, the nonlinear equation contains three types of nonlinear terms
that include two types of the ‘2 + 2’-type terms and one ‘3 + 1’-type term, which
never appear in recent research. Symbolic computation is conducted in Maple to
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compute and simplify the lump solution expression. We analyze its coefficients for
two specific examples of the nonlinear equation and illustrate the corresponding
specific lump solutions using three-dimensional plots and density plots to show the
structures of our solutions.

2. A Combined Nonlinear PDE and its Lump Solutions
2.1. Combined fourth-order nonlinear model

We would like to consider a general combined fourth-order nonlinear partial differ-
ential equation in (2 + 1) dimensions as

P(u) = a1 [dugtipy + gty + Ugnk 4 Uggre] + 22 [3(Ugtly) s + Uspay)
+ asduytzy + Uglyy + Uza¥ + Ugayy]
+ 51uyt + 52“11 + 63uxt + 64uacy + 55uyy + 56utt = Oa (1)

where ky = uy, vo = Uyy, and a; and J; are arbitrary constant with 1 < ¢ < 3,
1 < j < 6. The coefficients «;, 1 < i < 3 correspond to three combinations of
fourth-order derivative terms, and ¢;, 1 < j < 6 correspond to all linear second-
order derivative terms.

When oy =0, ap = 1, ag = 0, 03 = 65 = 1 and the other J;’s are all zero,
Eq. (1) obtains an equation that processes lump solutions named the generalized
Calogero—Bogoyavlenskii—Schiff equation:

3(Ugly)z + Upgay + Uzt + Uyy = 0, (2)

which possesses a Hirota bilinear form under v = 2(In f),:

(D}Dy + DDy + D) f - f=0. (3)
Generally, under the logarithmic transformation
Ja
u=2(Inf), =2,
(In f) 7

2(fyyf = £3)

vy =2(In f)yy = #v (4)

f

2 _ f£2

ky =2(In f)u = (ftt‘;z Ji ).

We can transform Eq. (1) into the Hirota bilinear form
B(f) = (a1 DD} + az D3 Dy + asD.D;,
+ 61Dy Dy + 62D2 + 03D, Dy + 64Dy Dy + 05D + 66 D7) f - f = 0. (5)

Precisely, the actual relation between the bilinear equation and the combined
nonlinear equation states P(u) = (B)g ))x, where u, v, k satisfy (4). Therefore, if f
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solves the bilinear equation (5), then u = 2(In f), solves our combined nonlinear
equation (1).

This combined fourth-order nonlinear equation has three types of fourth-order
derivative term and all linear second-order derivative terms. If oy # 0 and a3 # 0,
the equation contains two ‘2+2’-type fourth-order term (like D2 D7) which is barely
mentioned in the past.

2.2. Lump solutions

In this section, we compute lump solutions to the nonlinear partial differential
equation (1) through symbolic computation.

A crucial step in finding lump solutions is to determine positive quadratic solu-
tions, and so we start with

[ =(a12 + agy + ast + as)® + (a5x + agy + art + as)” + ag, (6)

where a;, 1 < i < 9, are constant parameters to be determined, which generate
lump solutions to our combined fourth-order nonlinear equation (1).

2.2.1. The case of 66 =0

First, we consider the case of d¢ = 0 for our combined nonlinear equation (1).
Through symbolic computation, it directly gives us a solution to the parameters

by
4= (a163 + a251)2 + (a563 + a661)2’
ba
= — , 7
ar (a163 + a251)2 + ((1563 + a661)2 ( )
bsaq 4+ byas + byag
ag = —

(a1a6 — 0@&5)2(5%52 — 515254 + 5%55)(((1153 + 0251)2 + (a553 + a551)2)

and all other a}s are arbitrary. The above constants b;, 1 < ¢ < 5, are defined as
follows:

b = [((af — a3)az + 2a1a506)d2 + a1(a3 + ag)ds + az(a3 + ag)ds]o
+[a1(a? + a2)ds + az(ai + a2)ds + ((a3 — ad)ay + 2asa5a6)d5)03,
by = [(—alag + 2a1aza5 + a2ag)ds + (a3as + asai)ds + (a3a6 + ai)ds)o
+[(afas + a3)830s + (aias + aZas)ds + (2a1a2a6 — ajas + azag)ds]os,
bs = [(af + a3)*p103 + (6(a3 + a)(at + a3)p20s + 2(a3 + ag)(ai + a3)psds)ds
+3(a3 + ag)*(a] + a2)?53 + 6(a3 + ad)*p20405 + (a3 + ai)*p167]0%
+[6(af + a2)*p20383 + (4(aF + a3)?p1ds + 4p2p3)ds)d2ds
+(6(a3 + a§)(af + a3)p20] + 4(a3 + ag)(a¥ + a3 )p3dads
+2(a3 + a2)(aras + asag)psdz)ds]o;
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(al + a5)45252 + (6 (af + a§)2p254 + 6(a% + a§)2p455)525§
+((af + a3)?p18% + 2p2p3dads + ps63)03,

by = 3p2((a103 + az61)? + (asds + agd1)?)?,
b5 = pl((a + a6)52 + 2(&1&2 + a5a6)6153 + (Cll + a5)63) (8)
where

p1 = 3aia3 + ajaj + dajazasag + azai + 3aiag,
p2 = (af + a3)(araz + asa),
2
p3 = 3aia3 — aja? + 8ajazasas — azai + 3aal,
pa = (@102 — a1a6 + azas + asag)(a1az + aras — azas + asae),
3 2a}a3ag + 3ajag + 16 —16 ¢ +44afa3aZal
ps = 3atay — 2ata3a? + 3atad atasasag ajasasal ajazasag
—2a3a3ai — 2aiatag — 16arasaias + 16ajazadal

+ 3ajas — 2aZasa? + 3azag. 9)

The simplification of presenting the formulas in (7)—(9) has been conducted with
Maple. Based on the above solution formulas, we need to ensure that the above
solutions present a lump, and so we require

(61 + 53)2(5%(52 — 010204 + (532)55) #0 (10)
0.

to generate lump solutions to the nonlinear equation (

2.2.2. The case of 05 =0

Second, we will consider the case of d5 = 0 for Eq. (1). The same direct symbolic
computation provides us with a set of solutions for the parameters, which are

C1
@ (&154 + (1351)2 + (a554 + a751)27
C2
a6 = (CL154 + (1351)2 + (a554 + CL7($1)27 (11)
—c3ay + 3cqa0 — csas
ag =

(a1a7 — a3a5)2(5%§2 — 515364 + 5256)((6%)51 + (1154)2 + (CL751 + CL5($4)2)7

and all other aés are arbitrary. The involved constants c;-s, 1 <7 <5, are defined
as follows:

c1 = [a1(a3 + a?)ds + (alas + 2a1as5a7 — aza?)ds + as(ai + a2)dg)o:
+ [as(a? + a2)d3 + (a1a3 — aya2 + 2azasaz)d + a1 (a3 4 a2)d2)o4,
co = [as(a3 + a?)0s + (—alar + 2a1a3a5 + ara?)ds + az(ai + a2)d6)6:
+ [az(a? + a2)d3 + (2a1a3a7 — a3as + asa2)ds + as(a? 4 a2)d2)d4
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ez = (a3 + a2)2qz0] + 4(a2 + a2)(ara3 + asar)q38364 + 236303
+4¢2q36165 + (a? + a2)?q363,
ca = [(a5 + aF)(af + a3)q202 + (a3 + a7)*(a¥ + a5)*0s + (a5 + a7)qao]07
+[(af + a2)?gs0204 + 3(a3 + a3)(aF + a3) 20504 + (a3 + aF)(af + a3)qad46]07
+[3(af + a2)?q2020% + (a3 + a2)?q30307 + q2q46366)01
+(a +a3) 0207 + (ai + a2)?q20303 + (aF + a3)* 1036,
cs = [(af + a3)?qs03 + (6(a3 + a?)(af + a3)q203 + 2(a3 + a7)(af + a3)qade)d
+3(a3 + a7)*(ai + a3)05 + 6(aj + a7) 20306 + (a3 + a7)*q305]07
+[6(aF + a3)?q20504 + (4(aF + a3)* 30304 + 492q40604) 02
+6(a3 + a?)(ai + a3)g20403 + 4(a3 + a?)(af + a3)qud30406
+ 2(a§ + a?)(amg + a5a7)Q4545§](51
+3(at + a3)"0307 + (6(af + a3)*q20303 + 6(ai + a3)?q16306)>
+ (af + a3)?q30503 + 24244030356 + ¢505 65, (12)
where
q1 = (ara3 — arar + azas + asar)(araz + aray — azas + asaz),
@2 = (ai + a2)(ara3 + asaz),
g3 = 3aja3 + ala? + 4ajazasar + a3ai + 3aia?,
q4 = 3a%a§ — a%a% + 8ajaszasar — a%ag + 3a§a$,
g5 = 3atay — 2aja3a? + 3atat + 16aia3asar — 16a3azasad — 2a3aja?
+44a3a3ata? — 2a3akas — 16a1a5aar + 16a1a3a3ad
+ 3a3as — 2a2aia? + 3aiar. (13)

All the above formulas from (11) to (13) have been simplified directly through
Maple process. For §5 = 0, we need to check when the solutions are lumps, and so
we need the basic condition

((51 + 54)2(6%52 — 010304 + 5356) #0. (14)

Also, for this case, we need to check when the set of the proceed parameters
gives lumps, and thus we compute

10 — A20x5
(a1a7 — a3a5)((a%5g + 52@% - 56(CL§ + &%))(51

— (54(0,%53 + 2&1&356 + (1%53 + 2(15CL756))
(a154 + a351)2 + ((L554 + a751)2
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It follows that ajag — asas # 0 if and only if

ajay —agas #0, 02+ 0% #0, (16)
(a%52 + 52&?) — 56(a§ + a%))él — (54(&%53 + 2a1a30¢ + a%ég + 2&5&756) ?é 0.

Both ajag—asas # 0 and ag > 0 assure that the corresponding set of parameters
will present lump solutions.

2.2.3. Equivalence between two cases of solutions

When 05 = dg = 0, we have two sets of parameters that process lumps, determined
by Secs. 2.2.1 and 2.2.2. Also, we show the equivalence between these two cases of
corresponding lump solutions.

When taking d5 = dg = 0, the combined equation (1) becomes

P(u) = ai[4upzy + uptiyy + Ugak + Ugare] + a2[3(Uatly )z + Uzzay]
+ g [AUy Uy + UzUyy + UpgV + Ugayy| + O1Uye
+ 02Ugy + 03Ugt + daligy = 0. (17)
So, the related Hirota bilinear form becomes

B(f) = (mi DD} + aa DD, + asD2D;,

+ 61Dy Dy + 62D2 + 63D, Dy + 64D, D) f - f = 0. (18)
For the first class of the lump solutions defined by (7) with (8) (9), we have
az = — du
3= (a1(53 + a251)2 + (a553 + CL651)27
da
- : 19
o (@103 + a201)? + (as03 + agd1)? (19)
a0 — — dngl + d40[2 + d50[3
? (arag — aza5)?(6302 — 610204)((a103 + a261)? + (asds + agd1)?)’
where

di = [((a3 — a2)as + 2a1a5a6))02 + a1 (a3 + a2)d4)61
+[a1(a] + a2)d2 + az(a? + a2)d4]ds,
dy = [(—a%ag + 2a1aza5 + a2ag)ds + (adas + asal)ds)d,
+[(afas + a2)0302 + (afae + aZag)d4]ds,
dy = [(a] + a3)’p105 + (6(a3 + ag)(at + a3)p204)d> + 3(a3 + ag)*(a] + a3)*65]07
+[6(at + a3)*p2030 + 6(a3 + ag) (a7 + a5)p20303]01
+3(ai +a3)" 0303 + 6(af + a3)?p2020504 + (a¥ + a3)*p10307,
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dy = 3p2((a183 + asdr)* + (asds + agd1)?)?,

ds = p1((a3 + a§)6? + 2(aras + asag)0163 + (af + a?)d3)

(20)
with p;, 1 <14 <5, given by (9).
Furthermore, the set of parameters by (11) with (12) (13) is
el
ag = — ,
? (@104 + a301)? + (a5 + a7dy)?
e
ag = — ,
6 (a154 + a3§1)2 + (CL554 + a751)2 (21)
—egzaq + 3eqan — esa3
ag = ,
9 (a1a7 — a3a5)2(5%52 — 515354)((&351 + a154)2 + (a7(51 + a554)2)
where

e1 = lai(a3 + a2)d3 + (a%az + 2a1asa7 — aza?)ds]
+lag(af + a3)d3 + a1 (af + a3)ds)du,
ey = las(a3 + a2)d3 + (—aiar + 2a1a3a5 + aza?)ds)d;
+[ar(a] + a2)d3 + as(a? + a3)d2]d4,
ez = (a3 + a?)?q307 + 4(a3 + a2)(a1az + asar)qzdids
+2¢36763 + 4q2q36165 + (af + a3)q365,
eq = [(a3 + a7)(af + a3)q28z + (af + a7)*(af + a3)?55]67
+ [(a? + a?)?q36264 + 3(a + a2)(a? + a2)q20304]6?
+[3(af + a2)?q20263 + (af + a2)?q30363)0
+ (a7 + a3)"0207 + (a] + a3)* 020307,
es = [(ai + a3)?qs03 + 6(a3 + a7)(ai + a3)q20203 + 3(a + a3)*(af + a3)*63]07
+[6(af + a3)*020304 + (4(af + a3)gs0304)02 + 6(a3 + a?)(af + a3)g20403]01
+3(ai + a3)*630F + (6(af + a3)*q20503)0 + (af + a3)*s0363, (22)

with ¢;, 1 <@ <5, given by (13).

A straightforward symbolic computation can show that the above two classes
of lump solutions ((19—(20)) and ((21)—(22)) are equivalent to each other. Further-
more, we have

(a? + a%)(alcw — 0,30,5)(5152 — 5354)
(a154 + a351)2 + (a5(54 + (L751)2

a1 — 205 — (23)
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and
(a% + a%)(alag — a2a5)(61(52 — (5354)
— a- = 24
ardr = asas (a154 + a351)2 + (a554 + (1751)2 ( )
Therefore, when
5265 — 610964 £ 0, (25)

the two sets determine the absolutely same values for all the parameters and thus
they process the same lump solutions.

3. Examples in Two Cases
3.1. Example in the case dg = 0
We first consider the case of dg = 0, and choose

Oq:l, a2=1, a3:2, (51:17 (52:2, (5320, 64:2, (55:3.

(26)
Then we get our specific combined nonlinear equation
P(u) = dupuizt + Ugtps + Ugek + Uzzts
+3(Uzly)z + Uzzay + 2[AUyUzy + Ugllyy + UgaV + Uzzyy)
+ Uyt + 2Uzy + 2Ugy + Suyy =0, (27)

where k; = uy and v, = uy,. Therefore, under the logarithmic transformation in
(4), the Hirota bilinear form becomes

(D2D7 + DDy +2D2D; + DDy +2D2 + 2D, D, + 3D2)f - f =0.  (28)
Furthermore, associated with
a; = 4, as = —2, a4 = 5, as = 2, ag = 4, ag = 67 (29)

the transformations in (4) with (6) provide a specific lump solution to our first
specific combined nonlinear equation (27):

2(—80t + 40z + 64)

T (6t +dr — 2y +5)2 + (—8t+ 2z + 4y + 6)2 — 150
Y, 80
' (<6t + 4z — 2y + 5)2 + (=8t + 2z + 4y + 6)2 — 150
B 2(—40t + 40y + 28)2
(=6t + 4z — 2y + 5)2 + (=8t + 2z + 4y + 6)% — 150]2’
400
ky =

(=6t + 42 — 2y + 5)2 + (=8t + 2z + 4y + 6)%2 — 150

B 2(200t — 80z — 40y — 156)2 (30)
[(—6t + 4z — 2y + 5)2 + (=8t + 2z + 4y + 6)% — 150]2"
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Fig. 1. (Color online) Profiles of w1 when ¢ =0, 5, 10: 3d plots (top) and density plots (bottom).

Figure 1 presents three three-dimensional plots and density plots of the above
lump solutions u; at three different times.

3.2. Example in the case d5 = 0

For the case of d5 = 0, we take

ar=1, ar=1 a3=2, 61=1, 0d0=2, 63=0, =2, & =3,

(31)
which leads to another particular combined nonlinear equation
P(u) = 4ugiz + gty + tUgak + Ugare + 3(Uatly)e + Useay
+ 2[AuyUpy + Upllyy + UgaV + Ugzyy)
+ Uyt + 2Uzg + 2Uzy + Uy = 0, (32)

where k; = uy and vy = u,,. Under the logarithmic transformations in (4), the
above nonlinear equation also has a Hirota bilinear form

(D2D7 + DiDy + 2D2D; + DDy +2D2 + 2D, D, + 3D?)f - f =0.  (33)
Furthermore, associated with
a1 =4, az=-2, as=5 a5=2, ar=4, ag=2, (34)
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Fig. 2. (Color online) Profiles of v when t = 0, 5, 10: 3d plots (top) and density plots (bottom).

Fig. 3. (Color online) Profiles of k2 when ¢ =0, 5, 10: 3d plots (top) and density plots (bottom).
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the transformations in (4) with (6) present a specific lump solution to our second
specific combined nonlinear equation (32):

2(40z + 16y + 48)

e (=2t + 4z + 2y + 5)? + (4t + 22 + 2)2 — 182’
vy — 16
(=2t + 4 + 2y +5)2 + (4t 4 22 + 2)2 — 132
2(—8t + 162 + 8y + 20)?
- [(—2t+4x+2y+5)2+(4t+2x+2)2_%2]2’
hy — 80

162
(=2t +4x +2y +5)% + (4t + 22 +2)2 — =22

- 2(40t — 8y — 4)? )
(=2t + 4o + 2y + 5)2 + (4t + 20 +2)2 — 162]7

Similarly, we use Figs. 2 and 3 to show three three-dimensional plots and density
plots of the lump functions vo and ko, respectively, at three different times.

4. Concluding Remarks

By using symbolic computation and the Hirota bilinear method, we have presented
two classes of lump solutions to a combined fourth-order nonlinear equation in (1),
including two types of nonlinear terms in (241) dimensions. The results of our study
present a new example of (2 + 1)-dimensional combined nonlinear equations that
process lump solutions. Also, we use three-dimensional plots of our two specific lump
solutions in the two cases of the combined nonlinear equation to show the structure
of the lump solutions. The simplification process, the plots, and the solutions are
directly made by Maple. It is important to remark that the three nonlinear terms
can be merged into the considered nonlinear equation (1). The terms D2D? and
D2 D? reflect a new and more complex structure of the solutions. However, these
types of terms (‘2 + 2’-type terms) have been rarely mentioned in the past. In this
paper, we combined two ‘2 4 2’-type terms and one ‘3 4 1’-type term, which never
happened in the past research.

This study shows the richness and variation of nonlinear partial differential equa-
tions that possess lump solutions. It is a commonly known fact that many nonlinear
waves can be described by interaction solutions between lump solutions and soliton
solutions.!” Furthermore, there are lots of studies showing the existence of inter-
action solutions between lump solutions and lump-kind solutions and other kinds
of exact solutions to nonlinear equations'® and nonlinear integrable equations.!?:2°
Since the interaction properties involve much more complicated mathematical com-
putations, further researches for interaction and lump solutions for partial differen-
tial equations are meaningful.
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