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To explore the features of lump solutions, which are local in every direction of space, a (2 + 1)-
dimensional extended shallow water wave model is studied, based on its bilinear representation. Several 
ansatzes have been utilized to determine single lump waves, lump-kink waves, single kinks and multi-
lumps leading to breathers in terms of function patterns for the model. Through analyzing interactions 
between solitons, the impact of free parameters involved in the solutions on interaction types is 
exhibited. We determine a condition on the parameters under which a single kink wave can be converted 
into a multi-lump wave. To illustrate the interaction of exponential and periodic function waves, we show 
that multi-lump waves in the form of breather waves especially come into sight as a straight line or an 
X shape. To realize dynamics, we make various graphical analyses on the presented solutions, which gives 
an essential improvement in the physical realizing of higher-dimensional lump waves in oceanography 
and nonlinear optics.

© 2018 Elsevier B.V. All rights reserved.
1. Introduction

The studies of entirely integrable models are thriving as they 
illustrate essential features in assortment of engineering fields. 
Mathematicians have been investing their efforts to enlarge and 
affect novel procedures for solving integrable models, while physi-
cists habitually observe dynamical behaviors of the physical sys-
tems. Various effective procedures were built in the literature to 
investigate and assort dynamical natures of the derived models 
[1–33]. It is broadly recognized that there is a substantial nonlinear 
effect, which is identified as that of rogue waves, arousing a vast 
impact in deep-ocean [1,2], nonlinear optics, plasma physics [3,4], 
super-fluids [5] and even in financial markets [6], etc. Tsunamis 
and storms-like natural effects allied with typhoons, which can 
be forecasted hours or a few days ago, but a rogue type lump 
wave episode is irregular, which is one of the underway matters 
in the mentioned fields of study. It is so essential to advance un-
derstanding and to smoothly supervise physical mechanisms for 
controlling rogue wave phenomena, in order to stifle them in the 
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dangerous aspects (e.g. oceanic rogue waves [19]) and to stimulate 
them in the helpful fields (e.g. optical rogue waves to motivate 
super-continuum production [3] or further valuable examples in 
future).

Gilson and Nimmo [8] offered lump wave solutions of the BKP 
equation. Imai [9] established dromion and lump wave solutions 
of the Ishimori-I equation. Satsuma and Ablowitz [10] presented 
lumps wave solution for non-linear dispersive systems. One of the 
authors (Ma) [11] presented a class of lump wave solutions to the 
(2 + 1) dimensional KP equation, and some other studies on lumps 
were systematically made in [23,24]. Rational solutions of the Toda 
lattice equation were generated in the Casoratian form in [16]. 
A new model namely (3 + 1)-dimensional potential-Yu–Toda–Sasa–
Fukuyama (YTSF)-like equation was derived and lump wave char-
acteristics of the model was analyzed in [21]. Hossen et al. [22]
investigated characteristics of the solitary waves and rogue waves 
and their interaction phenomena in a (2 + 1)-dimensional Break-
ing Soliton equation. Lump and rogue waves are clearly stated and 
physically explained in [31,33].

We consider an extended (2 + 1)-dimensional shallow water 
wave equation, introduced by Yu et al. [20], and written as

u yt + 3uxxxy − 3uxxu y − 3uxuxy + κuxy = 0, (1)
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where κ is a constant. This is a nonlinear particle differential equa-
tion in two spatial and a temporal coordinate, describing the evo-
lution of nonlinear shallow water wave propagation. Equation (1) is 
a frequently utilized model for exploring dynamics of solitons and 
nonlinear waves to describe the (2 + 1)-dimensional interaction of 
a Riemann wave propagating along the y-axis with a long wave 
propagating along the x-axis in fluid dynamics, plasma physics and 
weakly dispersive media.

Based on the Hirota bilinear method [17,18], the purpose of the 
present paper is to employ some efficient and straight ansatzes 
to determine lump wave, multi-lump wave and lump-kink wave 
solutions and their dynamics for the above (2 +1)-dimensional ex-
tended shallow water wave equation.

2. Bilinear formalism

Setting u = −�x , then inserting it into Eq. (1) and integrating 
it with respect to x yields:

�yt + 3�xxxy + 3�xx�xy + κ�xy − γ = 0, (2)

where γ is a constant. ‘P -polynomial theory (see, e.g., [18]) gives 
� = 2 lnϕ and thus we have u = −2(lnϕ)x .

All of the above can get a hold the bilinear form of Eq. (1) as(
D y Dt + D3

x D y + κ Dx D y
)
ϕ.ϕ − γ ϕ2 = 0. (3)

Expanding the Eq. (3) through Hirota bilinear D-operator to Hi-
rota direct method as

M∏
i=1

Dni
xi

a.b =
M∏

i=1

(
∂

∂xi
− ∂

∂x′
i

)ni

a(x)b
(
x′)∣∣∣∣

x′=x
, (4)

where x = (x1, · · · · · · , xM), x′ = (x′
1, · · · · · · , x′

M) are vectors and 
n1, · · · , nM are random non-negative integers.

The Eq. (2) has the solution

u = −2(lnϕ)x, (5)

where ϕ(x, y, t) solves (3). From Eq. (4), Eq. (3) yields

ϕϕyt − ϕyϕt + ϕϕxxxy − ϕyϕxxx + 3ϕxyϕxx − 3ϕxxyϕx

+ κ(ϕϕxy − ϕxϕy) − γ ϕ2 = 0. (6)

Note that u = −2(lnϕ)x translates the PDE Eq. (1) to its bilinear 
form (3). So if ϕ is a solution of Eq. (6), then the transformation 
u = −2(lnϕ)x will give a solution of the extended shallow water 
wave model Eq. (1).

3. Single lump solution

Now, we pay attention to ascertaining lump type solutions of 
the Eq. (1) as

ϕ = ϑ2 + τ 2 + k9, (7)

where ϑ(x, y, t) = k1x + k2 y + k3t + k4, τ (x, y, t) = k5x + k6 y +
k7t + k8.

Upon inserting Eq. (7) into Eq. (6) and after some simplifica-
tion, we set the coefficients of powers of the independent vari-
ables to equal to zero, and obtain a set of algebraic equations on 
the parameters ki ; (i = 1, 2, · · · · · · , 9). Solving this set of algebraic 
equations for the unknown parameters ki ; (i = 1, 2, · · · · · · , 9), we 
acquire the subsequent solution:{
γ = 0,k1 = −k3

,k2 = κk5k6
,k7 = −κk5

}
. (8)
κ k3
The solution Eq. (7) with Eq. (8) for the Eq. (1) contains six 
free parameters k3, k4, k5, k6, k8, k9 and gives a lump solution if 
the condition of k3 �= 0 and k9 > 0 holds. This condition assured 
localization and analyticity of the achieved lump solution in every 
direction in the xy-plane. Dynamical characteristics of this wave 
solution depend on the free parameters. All six involved parame-
ters are random provided that the solutions are well behaved all 
over the place if the condition of k3 �= 0 and k9 > 0 holds. This 
rational solution is a line wave, which is distinctly different from 
a moving line soliton. Indeed, u → 0 for ϑ or τ → ±∞, i.e. the 
solution is rhythm with algebraically decaying about ϑ or τ . As 
t → ±∞, the line wave uniformly goes to a constant background; 
but in the intermediate time, it attains its biggest amplitude. It 
also exhibits a special structure rationally localized in every direc-
tion with space. The wave exhibits a pattern with one high peak 
and a deep hole. By virtue of the extreme value theory of functions 
of several variables, setting k4 = k8 = 0 in this solution, we see that 

the maximum amplitude attains 2
κ

√
k2

3+κ2k2
5

k9
at (−κ

√
k9

(k2
3+κ2k2

5)
, 0)

and the minimum, − 2
κ

√
k2

3+κ2k2
5

k9
at (κ

√
k9

(k2
3+κ2k2

5)
, 0).

In Fig. 1(a), a single lump like rogue wave determined by the 
solution Eq. (7) with Eq. (8) is shown. The wave exhibits a pat-
tern with one high peak and a deep hole hidden under the plane 
wave. The amplitude of the wave solution determines its facial 
appearance as a bright–dark lump wave, which possesses the max-
imum 2

√
2 at (− 1√

2
, 0) and the minimum −2

√
2 at ( 1√

2
, 0). As 

a lump wave is a kind of killer wave or abnormal wave, its am-
plitude in the 2D plot is an important factor to study. The evo-
lution characteristics of the lump wave at different locations are 
plotted in Fig. 1(b), which shows that the wave solution is sym-
metric about the y-axis as it coincides when y = −1 and y = 1; 
or y = −2 and y = 2; the maximum amplitude is exhibited in 
its centre y = 0. In effect, the overall mass of the lump given by ∫ ∞
−∞

∫ ∞
−∞ u(ϑ, τ )dϑdτ , is vanishing so that the loads of masses in 

the upper and down hump accurately balance.

4. Interaction of lump waves with solitary waves

In this section, we are paying attention to interaction solutions 
between lump type rogue waves with a well-known kink type 
solitary wave solution to the extended shallow water wave equa-
tion (1). Here, we evoke a trial solution as a combination of two 
quadratic algebraic functions and an exponential function:

ϕ = ϑ2 + τ 2 + k9 + hη, (9)

where ϑ(x, y, t) = k1x +k2 y +k3t +k4, τ (x, y, t) = k5x +k6 y +k7t +
k8 and

η = exp(α1x + α2 y + α3t).

Applying the similar process carried out in the previous section 
for the unknown parameters ki ; (i = 1, 2, · · · · · · , 9) and α1, α2, α3, 
we acquire the subsequent solution:{
γ = 0,k1 = −k5k6

k2
,k3 = κk5k6

k2
,k7 = −κk5,

α3 = −α1
(
κ + α2

1

)
,α2 = 0

}
. (10)

The solution Eq. (10) with Eq. (9) of the Eq. (1) contains eight 
free parameters k2, k4, k5, k6, k8, k9, α1, h. If only the condition of 
k2 �= 0, h = 0 and k9 > 0 holds, then it exhibits just a lump wave 
as in the previous section. On the other hand, if the condition of 
k2 �= 0, h �= 0 and k9 > 0 holds, then it gives a mixed or interaction 
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Fig. 1. (Color online) Perspective view of the solution Eq. (5) with Eq. (7) and constraint Eq. (8) for the parametric values γ = 0, κ = k3 = k5 = k6 = k9 = 1, k4 = k8 = 0: 
(a) 3D plot and (b) 2D view at t = 0 for different values of y.

Fig. 2. (Color online) Perspective view of the solution Eq. (5) with Eq. (9) and Eq. (10) for the parametric values κ = −1, k2 = k4 = k5 = k6 = k8 = k9 = α1 = h = 1, γ = 0: 
(a) 3D plot at t = −8, (b) corresponding contour plot of (b), (c) 3D plot at t = 0, (d) corresponding contour plot of (c), (e) 3D view at t = 8 and (f) corresponding contour 
plot of (e).
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Fig. 3. (Color online) Perspective view of the solution Eq. (5) with Eq. (9) and Eq. (10) for the parametric values κ = k2 = −1, k4 = k5 = k6 = k8 = k9 = 1, α1 = 2, h = 1, 
γ = 0: (a) at y = −10, (b) at y = −2, (c) at y = 0, (d) at y = 2 and (e) at y = 10.
of a lump wave with a kink wave. Some (see Fig. 2) 3D plots and 
corresponding contour plots of the achieved solution Eq. (10) with 
Eq. (9) are given with the demanding variety of free parameters.

As in Fig. 2, it can be clearly seen that the non-elastic lump 
wave starts from a constant background in the entire (x, y) plane 
(see Fig. 2(a) and corresponding contour plot Fig. 2(b)) and comes 
into interaction with the elastic kink wave in the intermediate time 
t = 0 (see Fig. 2(c) and corresponding contour plot Fig. 2(d)). When 
the time increases, the lump goes away from the elastic kink (see 
Fig. 2(e) and corresponding contour plot Fig. 2(f)) and ultimately 
goes back to a constant background as t → ∞.

On the other hand, as seen in Fig. 3, the non-elastic lump 
wave comes from a constant background in the (x, t) plane (see 
Fig. 3(a)). Gradually, the lump wave takes its bigger amplitude 
with an elastic kink (see Fig. 3(b)) and ultimately giants the high-
est/lowest amplitude at y = 0 (see Fig. 3(c)). After the midway, 
the amplitude of the lump wave again gradually tends to diminish 
(see Fig. 3(d)) and finally it goes back to a constant background as 
seen in Fig. 3(e). But throughout the overall interaction (before, af-
ter and during interaction), the kink wave keeps its shape, size and 
constant speed, and displays its elastic situation.

5. Multi-lump wave solutions

In this section, we are paying attention to determination of 
multi-lump wave solutions from collisions between exponential 
and trigonometric functions to the extended shallow water wave 
model (1).

Case-1: Here, we evoke a trial solution as a combination of two 
exponential functions and a sinusoidal periodic function:
ϕ = exp
(−ρ1(x + n1 y − ω1t)

) + h1 exp
(
ρ1(x + n1 y − ω1t)

)
+ h2 sin

(
ρ2(x + n2 y − ω2t)

)
= 2

√
h1 cosh

{
ρ1(x + n1 y − ω1t) + ln(

√
h1)

}
+ h2 sin

(
ρ2(x + n2 y − ω2t)

)
,h1 > 0. (11)

Inserting Eq. (11) with Eq. (5) into Eq. (6) and setting all the 
coefficients of dissimilar powers of exp, sin, cos and their product 
to zero, we gain a system of polynomial equations. Solving this 
system of equations for the unknown parameters ρi, ni, ωi, hi ; (i =
1, 2), we get hold of the subsequent solutions:{
γ = 0,ρ1 =

√−κ

2
,ρ2 =

√
κ

2
,h1 = h2

2

4
,n1 = n2,ω1 = ω2

}
,

(12){
γ = 0,ρ2 = ±

√
κ
2 + ρ2

1 ,h1 = −n2h2
2(κ+2ρ2

1 )

8n1ρ
2
1

,

ω2 = −ω1,ω1 = −(κ/2 + 2ρ2
1 )

}
. (13)

In Fig. 4, the solution Eq. (5) with Eq. (11) and the constraints 
in Eq. (12) of the Eq. (1), exhibits a periodic lump type pulsate 
wave propagation, coming in terms of complex functions, and gives 
an interaction of periodic multi-lump waves with different small 
amplitudes. Pulses are given in very quick times.

As depicted in Fig. 5, the solution Eq. (5) with Eq. (11) and the 
constraints in Eq. (13) of the Eq. (1), gives collisions between two 
exponential solitons with a sinusoidal function, viewed in periodi-
cally multi-lump propagations along a straight line with a certain 
angle with the t-axis and x-axis. Its speed, tallness and thickness 
remain the same all over the propagation. Fig. 5(a) shows a 3D 
profile of the interaction, in which some lumps periodically get 
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Fig. 4. (Color online) Perspective view of the solution Eq. (5) with Eq. (11) and constraint Eq. (12) for κ = −1, n1 = n2 = 2, h2 = ω1 = ω2 = 1 along y = 0: (a) 3D plot (left) 
and (b) 2D plot (right) at t = 1.

Fig. 5. (Color online) Perspective view of the solution Eq. (5) with Eq. (11) and constraint Eq. (13) for κ = −1, n1 = ρ1 = h2 = 1, n2 = −3 along y = 0: (a) 3D plot (left) and 
(b) corresponding contour plot (right).
into a kink wave, being at equal distance from each other. The 
equidistance and the same angle are clearly observed from its cor-
responding contour plot in the Fig. 5(b). Moreover, we see that the 
solution is not only a space periodic breather wave but also a time 
periodic breather wave.

Case-2: In this case, we take a trial solution as a combination of 
two exponential functions and a sinusoidal periodic function:

ϕ = exp
(−ρ1(x + n1 y − ωt)

) + h1 exp
(
ρ1(x + n1 y − ωt)

)
+ h2 cos

(
ρ2(x + n2 y − ωt)

)
= 2

√
h1 cosh

{
ρ1(x + n1 y − ωt) + ln(

√
h1)

}
+ h2 cos

(
ρ2(x + n2 y − ωt)

)
,h1 > 0. (14)

Upon substituting Eq. (14) with Eq. (5) into the bilinear form 
Eq. (6) and then after some simplification, through the computer 
software Maple 13, we set all coefficients of exp, sin, cos and their 
product to zero, and obtain a set of polynomial equations in terms 
of the unknown parameters ρ1, ρ2, n1, n2, ω, h1 and h2. Solving 
this system of equations for the unknown parameters, we achieve{
ρ2 = n1ρ1

√−1

n2
,ω = ρ2

1n1(n1 + 2n2) + n2
2(κ + ρ2

1 )

n2
2

,

h1 = h2
2n1(3n1 + n2)

4n2(n1 + 3n2)

}
, (15)

where ρ1, n1, n2, h2 are arbitrary constants.
Fig. 6. (Color online) Perspective view of the solution Eq. (5) with Eq. (14) and 
constraint Eq. (15) for κ = −1, n1 = n2 = ρ1 = h2 = 1, γ = 0 along y = 0.

In the subsequent, Fig. 6 presents a kink soliton solution Eq. (5)
with Eq. (14) and the constraints in Eq. (15) of the Eq. (1) as a 
combination of two kinks coming from a two cosh soliton, since 
the parameter ρ2 gives a complex value (see the constraint in 
Eq. (15)) i.e., two exponential functions make a cosh soliton and 
the complex ρ2 reduces the cos function to a cosh soliton. Inter-
esting phenomena can be gathered by keeping the cos function to 
its own form. To do that, we should take n1 = √−1 to reduce ρ2
to a real parameter and keep the cos function to its own form. 
This makes a collision between two exponential solitons with a 
periodic cosine function, viewed in periodically multi-lump prop-
agations along two cross straight lines (i.e., an X-shape soliton 
solution) with a certain angle with the t-axis and the x-axis. Its 
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Fig. 7. (Color online) Perspective view of the solution Eq. (5) with Eq. (14) and constraint Eq. (15) for κ = −1, n1 = √−1, n2 = ρ1 = h2 = 1, γ = 0 along y = 0: (a) 3D plot of 
real part and (b) corresponding contour plot of the real part; (c) 3D plot of imaginary part and (b) corresponding contour plot of the imaginary part.
speed, tallness and thickness remain the same all over the propa-
gation. Fig. 7(a, c) shows a 3D profile of the interaction, in which 
some lumps periodically get into a kink wave, being at equal 
distance from each other. The equidistance and the same angle 
are clearly observed from its corresponding contour plot in the 
Fig. 7(b, d). Moreover, we see that the solution is not only the 
space periodic breather wave but also the time periodic breather 
wave.

6. Conclusion

In conclusion, the (2 + 1) dimensional extended shallow water 
wave model has been systematically analyzed. Various productive 
ansatzes have been utilized to determine single lump waves, lump-
kink waves, single kink waves and multi-lump waves with different 
function patterns for the model, based on its Hirota bilinear form. 
We have analyzed the results in details and shown that the sim-
ple lump waves are line local waves, which occur from a constant 
background with a line sketch and retract back to it again. The 
result also shows that lump waves can come from an extreme 
behavior of breather waves in high dimensions. It is worthy of 
mentioning that such studies recently attract much attention and 
can be facilitated to enrich dynamical properties of nonlinear shal-
low water wave fields.

Moreover, there are some other interesting studies on algebro-
geometric solutions (see, e.g., [25,26]) and interaction solutions for 
a few integrable equations in (2 + 1)-dimensions (see, e.g., [27,28]
for lump-kink interaction solutions and [29–33] for lump-soliton 
interaction solutions). One of the particularly interesting questions 
for us is whether one can carry out reductions of the algebro-
geometric solutions to get lump or lump-kink and lump-soliton 
solutions.
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