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To explore the features of lump solutions, which are local in every direction of space, a (2+1)-
dimensional extended shallow water wave model is studied, based on its bilinear representation. Several
ansatzes have been utilized to determine single lump waves, lump-kink waves, single kinks and multi-
lumps leading to breathers in terms of function patterns for the model. Through analyzing interactions
between solitons, the impact of free parameters involved in the solutions on interaction types is
exhibited. We determine a condition on the parameters under which a single kink wave can be converted
into a multi-lump wave. To illustrate the interaction of exponential and periodic function waves, we show
that multi-lump waves in the form of breather waves especially come into sight as a straight line or an
X shape. To realize dynamics, we make various graphical analyses on the presented solutions, which gives
an essential improvement in the physical realizing of higher-dimensional lump waves in oceanography

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

The studies of entirely integrable models are thriving as they
illustrate essential features in assortment of engineering fields.
Mathematicians have been investing their efforts to enlarge and
affect novel procedures for solving integrable models, while physi-
cists habitually observe dynamical behaviors of the physical sys-
tems. Various effective procedures were built in the literature to
investigate and assort dynamical natures of the derived models
[1-33]. It is broadly recognized that there is a substantial nonlinear
effect, which is identified as that of rogue waves, arousing a vast
impact in deep-ocean [1,2], nonlinear optics, plasma physics [3,4],
super-fluids [5] and even in financial markets [6], etc. Tsunamis
and storms-like natural effects allied with typhoons, which can
be forecasted hours or a few days ago, but a rogue type lump
wave episode is irregular, which is one of the underway matters
in the mentioned fields of study. It is so essential to advance un-
derstanding and to smoothly supervise physical mechanisms for
controlling rogue wave phenomena, in order to stifle them in the
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dangerous aspects (e.g. oceanic rogue waves [19]) and to stimulate
them in the helpful fields (e.g. optical rogue waves to motivate
super-continuum production [3] or further valuable examples in
future).

Gilson and Nimmo [8] offered lump wave solutions of the BKP
equation. Imai [9] established dromion and lump wave solutions
of the Ishimori-I equation. Satsuma and Ablowitz [10] presented
lumps wave solution for non-linear dispersive systems. One of the
authors (Ma) [11] presented a class of lump wave solutions to the
(2+ 1) dimensional KP equation, and some other studies on lumps
were systematically made in [23,24]. Rational solutions of the Toda
lattice equation were generated in the Casoratian form in [16].
A new model namely (3 + 1)-dimensional potential-Yu-Toda-Sasa-
Fukuyama (YTSF)-like equation was derived and lump wave char-
acteristics of the model was analyzed in [21]. Hossen et al. [22]
investigated characteristics of the solitary waves and rogue waves
and their interaction phenomena in a (2 + 1)-dimensional Break-
ing Soliton equation. Lump and rogue waves are clearly stated and
physically explained in [31,33].

We consider an extended (2 + 1)-dimensional shallow water
wave equation, introduced by Yu et al. [20], and written as

Uyt + 3Upxxy — 3Uxxlly — SUxlyy + Klxy =0, (1)
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where k is a constant. This is a nonlinear particle differential equa-
tion in two spatial and a temporal coordinate, describing the evo-
lution of nonlinear shallow water wave propagation. Equation (1) is
a frequently utilized model for exploring dynamics of solitons and
nonlinear waves to describe the (2 4+ 1)-dimensional interaction of
a Riemann wave propagating along the y-axis with a long wave
propagating along the x-axis in fluid dynamics, plasma physics and
weakly dispersive media.

Based on the Hirota bilinear method [17,18], the purpose of the
present paper is to employ some efficient and straight ansatzes
to determine lump wave, multi-lump wave and lump-kink wave
solutions and their dynamics for the above (2 + 1)-dimensional ex-
tended shallow water wave equation.

2. Bilinear formalism

Setting u = —®y, then inserting it into Eq. (1) and integrating
it with respect to x yields:
Dyt + 3Py + 3P Pxy + 6 Pxy — ¥ =0, (2)

where y is a constant. ‘P-polynomial theory (see, e.g., [18]) gives
® =2Ing and thus we have u = —-2(In@)y.
All of the above can get a hold the bilinear form of Eq. (1) as

(DyD; + D3Dy +kDxDy)g.¢ — yp* =0. (3)

Expanding the Eq. (3) through Hirota bilinear D-operator to Hi-
rota direct method as

M M 8 8 nj

Diab= — — — ) ax)b(¥ , 4
H a H(axi Bx’.> ®b(x) - “)
i=1 i=1 i xX'=x
where x = (x1,----- XD, X = (X, , X)) are vectors and
ni,---,ny are random non-negative integers.

The Eq. (2) has the solution
u=—-2(Inge)y, (5)

where ¢(x, y, t) solves (3). From Eq. (4), Eq. (3) yields

PPyt — PyPr + PPxxxy — PyParxx + 3Pxy Pxx — 3Pxxy Px
+ K (QPxy — 0xpy) — Y 9> =0. (6)

Note that u = —2(In ), translates the PDE Eq. (1) to its bilinear
form (3). So if ¢ is a solution of Eq. (6), then the transformation
u = —2(Ing)y will give a solution of the extended shallow water
wave model Eq. (1).

3. Single lump solution

Now, we pay attention to ascertaining lump type solutions of
the Eq. (1) as

=02 +12+ko. )

where 9 (X, y,t) = kix + kay + kst + ka, T(X, y,t) = ksx + kgy +
k7t +kg.

Upon inserting Eq. (7) into Eq. (6) and after some simplifica-
tion, we set the coefficients of powers of the independent vari-
ables to equal to zero, and obtain a set of algebraic equations on
the parameters k;; (i=1,2,------ ,9). Solving this set of algebraic
equations for the unknown parameters k;; (i=1,2,------ ,9), we
acquire the subsequent solution:

Kk5k6
k3

k
{y=0,k1=—§,kz= ,k7=—xk5}. (8)

The solution Eq. (7) with Eq. (8) for the Eq. (1) contains six
free parameters ks, ks, ks, kg, kg, kg and gives a lump solution if
the condition of k3 # 0 and kg > 0 holds. This condition assured
localization and analyticity of the achieved lump solution in every
direction in the xy-plane. Dynamical characteristics of this wave
solution depend on the free parameters. All six involved parame-
ters are random provided that the solutions are well behaved all
over the place if the condition of k3 # 0 and kg > 0O holds. This
rational solution is a line wave, which is distinctly different from
a moving line soliton. Indeed, u — 0 for ¢ or T — 400, i.e. the
solution is rhythm with algebraically decaying about ¥ or t. As
t — 400, the line wave uniformly goes to a constant background;
but in the intermediate time, it attains its biggest amplitude. It
also exhibits a special structure rationally localized in every direc-
tion with space. The wave exhibits a pattern with one high peak
and a deep hole. By virtue of the extreme value theory of functions
of several variables, setting k4 = kg = 0 in this solution, we see that
2 [ I3+K2kE
K kg

- 2 [K3+k2k2 ke
and the minimum, — £,/ 27— at (k @D 0).

In Fig. 1(a), a single lump like rogue wave determined by the
solution Eq. (7) with Eq. (8) is shown. The wave exhibits a pat-
tern with one high peak and a deep hole hidden under the plane
wave. The amplitude of the wave solution determines its facial
appearance as a bright-dark lump wave, which possesses the max-
imum 2+/2 at (—%,0) and the minimum —2+/2 at (%,O). As
a lump wave is a kind of killer wave or abnormal wave, its am-
plitude in the 2D plot is an important factor to study. The evo-
lution characteristics of the lump wave at different locations are
plotted in Fig. 1(b), which shows that the wave solution is sym-
metric about the y-axis as it coincides when y =—1 and y =1;
or y=—2 and y = 2; the maximum amplitude is exhibited in
its centre y = 0. In effect, the overall mass of the lump given by
S5, [0, u(@, T)dvdt, is vanishing so that the loads of masses in
the upper and down hump accurately balance.

at (—k [ 0)

the maximum amplitude attains @)

4. Interaction of lump waves with solitary waves

In this section, we are paying attention to interaction solutions
between lump type rogue waves with a well-known kink type
solitary wave solution to the extended shallow water wave equa-
tion (1). Here, we evoke a trial solution as a combination of two
quadratic algebraic functions and an exponential function:

@ =02 +712+ko+h, 9)
where 9 (x, y,t) =kix+koy+kst+ka, T(x,y,t) =ksx+kgy+kst+
kg and

n =exp(a1x + a2y + ast).

Applying the similar process carried out in the previous section
for the unknown parameters k;; (i=1,2,------ ,9) and a1, oy, as,
we acquire the subsequent solution:

ksks Kkske
{)/ , K1 1 , K3 k) » K7 KKs,
o3 =—061(K +Ol%),062:0}. (10)

The solution Eq. (10) with Eq. (9) of the Eq. (1) contains eight
free parameters kj, k4, ks, kg, ks, kg, &1, h. If only the condition of
ko #0, h =0 and kg > 0 holds, then it exhibits just a lump wave
as in the previous section. On the other hand, if the condition of
ko #0, h 0 and kg > 0 holds, then it gives a mixed or interaction
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Fig. 1. (Color online) Perspective view of the solution Eq. (5) with Eq. (7) and constraint Eq. (8) for the parametric values y =0, k =k3 =ks =ks =kg =1, kg = kg =0:
(a) 3D plot and (b) 2D view at t = 0 for different values of y.
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Fig. 2. (Color online) Perspective view of the solution Eq. (5) with Eq. (9) and Eq. (10) for the parametric values k = —1, kp = ks =ks =ks =ks =kg=a1 =h=1, y =0:
(a) 3D plot at t = —8, (b) corresponding contour plot of (b), (c) 3D plot at t =0, (d) corresponding contour plot of (c), (¢) 3D view at t =8 and (f) corresponding contour
plot of (e).
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Fig. 3. (Color online) Perspective view of the solution Eq. (5) with Eq. (9) and Eq. (10) for the parametric values xk =k = —1, kg =ks =k =kg =ko =1, €1 =2, h=1,

y =0:(a)at y=-10, (b)at y=—2,(c)at y =0, (d) at y=2 and (e) at y =10.

of a lump wave with a kink wave. Some (see Fig. 2) 3D plots and
corresponding contour plots of the achieved solution Eq. (10) with
Eq. (9) are given with the demanding variety of free parameters.

As in Fig. 2, it can be clearly seen that the non-elastic lump
wave starts from a constant background in the entire (x, y) plane
(see Fig. 2(a) and corresponding contour plot Fig. 2(b)) and comes
into interaction with the elastic kink wave in the intermediate time
t =0 (see Fig. 2(c) and corresponding contour plot Fig. 2(d)). When
the time increases, the lump goes away from the elastic kink (see
Fig. 2(e) and corresponding contour plot Fig. 2(f)) and ultimately
goes back to a constant background as t — co.

On the other hand, as seen in Fig. 3, the non-elastic lump
wave comes from a constant background in the (x,t) plane (see
Fig. 3(a)). Gradually, the lump wave takes its bigger amplitude
with an elastic kink (see Fig. 3(b)) and ultimately giants the high-
est/lowest amplitude at y = 0 (see Fig. 3(c)). After the midway,
the amplitude of the lump wave again gradually tends to diminish
(see Fig. 3(d)) and finally it goes back to a constant background as
seen in Fig. 3(e). But throughout the overall interaction (before, af-
ter and during interaction), the kink wave keeps its shape, size and
constant speed, and displays its elastic situation.

5. Multi-lump wave solutions

In this section, we are paying attention to determination of
multi-lump wave solutions from collisions between exponential
and trigonometric functions to the extended shallow water wave
model (1).

Case-1: Here, we evoke a trial solution as a combination of two
exponential functions and a sinusoidal periodic function:

¢ =exp(—p1(x+n1y —wit)) + hiexp(p1 (X +my — wnt))
+ hy sin(p2(x + n2y — wat))
= 2y/hy cosh{p1(x + n1y — w1t) + In(v'hy)}
+ hy sin(p2(x +nay — wat)), hy > 0. (11)
Inserting Eq. (11) with Eq. (5) into Eq. (6) and setting all the
coefficients of dissimilar powers of exp, sin, cos and their product
to zero, we gain a system of polynomial equations. Solving this

system of equations for the unknown parameters p;, n;, w;, hi; (i =
1, 2), we get hold of the subsequent solutions:

JE K

2
2

=== m=m,oi=w7q,
2 P 4

{V=0v,01= )

(12)

oo [ mis2d)
{y_O,pz—imvm_ 8ny p? ’]. (13)

wy = —w1, w1 = —(k /2 +2p?)

In Fig. 4, the solution Eq. (5) with Eq. (11) and the constraints
in Eq. (12) of the Eq. (1), exhibits a periodic lump type pulsate
wave propagation, coming in terms of complex functions, and gives
an interaction of periodic multi-lump waves with different small
amplitudes. Pulses are given in very quick times.

As depicted in Fig. 5, the solution Eq. (5) with Eq. (11) and the
constraints in Eq. (13) of the Eq. (1), gives collisions between two
exponential solitons with a sinusoidal function, viewed in periodi-
cally multi-lump propagations along a straight line with a certain
angle with the t-axis and x-axis. Its speed, tallness and thickness
remain the same all over the propagation. Fig. 5(a) shows a 3D
profile of the interaction, in which some lumps periodically get
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Fig. 4. (Color online) Perspective view of the solution Eq. (5) with Eq. (11) and constraint Eq. (12) for k = —1, ny =ny =2, hp = w1 = wy =1 along y = 0: (a) 3D plot (left)

and (b) 2D plot (right) at t =1.
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Fig. 5. (Color online) Perspective view of the solution Eq. (5) with Eq. (11) and constraint Eq. (13) for x = —1, ny = p; =hy =1, n = —3 along y = 0: (a) 3D plot (left) and

(b) corresponding contour plot (right).

into a kink wave, being at equal distance from each other. The
equidistance and the same angle are clearly observed from its cor-
responding contour plot in the Fig. 5(b). Moreover, we see that the
solution is not only a space periodic breather wave but also a time
periodic breather wave.

Case-2: In this case, we take a trial solution as a combination of
two exponential functions and a sinusoidal periodic function:

@ =exp(—p1(x+n1y — wt)) +hyexp(p1(x +n1y — wt))
+ hy cos(p2(x + n2y — wt))
= 2\/iT1cosh{p1(x+n1y —wt) + ln(\/hT)}
+ hy cos(p2(x +n2y — wt)), hy > 0. (14)

Upon substituting Eq. (14) with Eq. (5) into the bilinear form
Eq. (6) and then after some simplification, through the computer
software Maple 13, we set all coefficients of exp, sin, cos and their
product to zero, and obtain a set of polynomial equations in terms
of the unknown parameters p1, 02, n1, na, @, h1 and hy. Solving
this system of equations for the unknown parameters, we achieve

2 s

{p2 _men/=T  pim +2m2) +13(c + p7)
np n’

~ h3miGm +n2)] (15)

e 4ny(ny + 3ny)

where pq, n1, ny, hy are arbitrary constants.

Fig. 6. (Color online) Perspective view of the solution Eq. (5) with Eq. (14) and
constraint Eq. (15) for k =—1,n; =np=p;=hy =1, y =0 along y =0.

In the subsequent, Fig. 6 presents a kink soliton solution Eq. (5)
with Eq. (14) and the constraints in Eq. (15) of the Eq. (1) as a
combination of two kinks coming from a two cosh soliton, since
the parameter p, gives a complex value (see the constraint in
Eq. (15)) i.e.,, two exponential functions make a cosh soliton and
the complex p; reduces the cos function to a cosh soliton. Inter-
esting phenomena can be gathered by keeping the cos function to
its own form. To do that, we should take n; = +/—1 to reduce p;
to a real parameter and keep the cos function to its own form.
This makes a collision between two exponential solitons with a
periodic cosine function, viewed in periodically multi-lump prop-
agations along two cross straight lines (i.e., an X-shape soliton
solution) with a certain angle with the t-axis and the x-axis. Its
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Fig. 7. (Color online) Perspective view of the solution Eq. (5) with Eq. (14) and constraint Eq. (15) for k = —1, ny =+/—1,np = p;1 =hy =1, y =0 along y = 0: (a) 3D plot of
real part and (b) corresponding contour plot of the real part; (c) 3D plot of imaginary part and (b) corresponding contour plot of the imaginary part.

speed, tallness and thickness remain the same all over the propa-
gation. Fig. 7(a, ¢) shows a 3D profile of the interaction, in which
some lumps periodically get into a kink wave, being at equal
distance from each other. The equidistance and the same angle
are clearly observed from its corresponding contour plot in the
Fig. 7(b, d). Moreover, we see that the solution is not only the
space periodic breather wave but also the time periodic breather
wave.

6. Conclusion

In conclusion, the (2 + 1) dimensional extended shallow water
wave model has been systematically analyzed. Various productive
ansatzes have been utilized to determine single lump waves, lump-
kink waves, single kink waves and multi-lump waves with different
function patterns for the model, based on its Hirota bilinear form.
We have analyzed the results in details and shown that the sim-
ple lump waves are line local waves, which occur from a constant
background with a line sketch and retract back to it again. The
result also shows that lump waves can come from an extreme
behavior of breather waves in high dimensions. It is worthy of
mentioning that such studies recently attract much attention and
can be facilitated to enrich dynamical properties of nonlinear shal-
low water wave fields.

Moreover, there are some other interesting studies on algebro-
geometric solutions (see, e.g., [25,26]) and interaction solutions for
a few integrable equations in (2 + 1)-dimensions (see, e.g., [27,28]
for lump-kink interaction solutions and [29-33] for lump-soliton
interaction solutions). One of the particularly interesting questions
for us is whether one can carry out reductions of the algebro-
geometric solutions to get lump or lump-kink and lump-soliton
solutions.
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