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In this paper, by introduction of pseudopotentials, the nonlocal symmetry is obtained

for the Ablowitz–Kaup–Newell–Segur system, which is used to describe many physical
phenomena in different applications. Together with some auxiliary variables, this kind

of nonlocal symmetry can be localized to Lie point symmetry and the corresponding

once finite symmetry transformation is calculated for both the original system and the
prolonged system. Furthermore, the nth finite symmetry transformation represented in

terms of determinant and exact solutions are derived.

Keywords: Nonlocal symmetries; pseudopotentials; Lie point symmetries; the nth finite
symmetry transformation.

1. Introduction

The symmetry analysis of the nonlinear differential equations counts mainly on

the invariance under a transformation of both independent and dependent vari-

ables. This symmetry transformation can map old solutions to new ones, permit to

enlarge the diversity of the possible solutions and reduce the number of indepen-

dent variables of the original system.1–5 Through conservation laws, some auxiliary

¶Corresponding author.
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variables such as potentials and pseudopotentials related to the original system

can be used to look for symmetry properties by virtue of symmetry analysis. The

corresponding symmetries expressed by these new auxiliary variables are called

nonlocal symmetries.

Calculating the once finite symmetry transformation starting from the nonlocal

symmetry is an easy calculation to complete and nonlocal symmetries of many

special types have been considered in a number of publications,6–16 while it is

difficult to calculate the nth finite symmetry transformation. Recently, Lou16,17

obtained the nth finite symmetry transformations for the classical KdV equation

from Lie point symmetry approach via localization of the residual symmetry and

the square spectral function symmetry.

Our basic aim of this paper is to study nonlocal symmetry theory and to find

the once finite symmetry transformation as well as the nth finite symmetry trans-

formation for the Ablowitz–Kaup–Newell–Segur (AKNS) system18–22

ut = iuxx + 2iu2v ,

vt = −ivxx − 2iuv2 ,
(1)

by localizing the nonlocal symmetries which are related with pseudopotentials.

2. Refining the Nonlocal Symmetry

Consider the nonlocal symmetry associated to a differential equation

ut +K(x, t, u, ux, . . . , ux...x) = 0 , (2)

involving two independent variables (x, t) ∈ R2 and n dependent variables u =

(u1, . . . , un) ∈ Rn. The generator of the classical Lie point symmetry is of the form

v = ξ
∂

∂x
+ τ

∂

∂t
+ ηui

∂

∂ui
,

where ξ, τ and ηui are functions of x, t and u. The symmetry transformation is

equivalent to the solution of the following initial value problem:

dX

dε
= ξ(X,T, Ui), X(ε = 0) = x ,

dT

dε
= τ(X,T, Ui), T (ε = 0) = t ,

dUi
dε

= ηui(X,T, Ui), Ui(ε = 0) = ui .

Let us suppose that the evolution equation (2) admits conservation law of this type

∂

∂t
[Gi(x, t, u, ux, . . . , ux,...,x)]− ∂

∂x
[Hi(x, t, u, ux, . . . , ux,...,x)] = 0 ,

then, we can introduce a nonlocal potential variable pi such that

pi,x = Gi, pi,t = Hi . (3)
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In a similar way, one can introduce higher potentials from conservation law of the

prolonged systems (2) and (3).

Nonlocal Lie Bäcklund operator is of the form

v = ηui(x, t, u, ux, . . . , ux···x, p)
∂

∂ui
,

where p denotes a collection of potentials. The prolonged Lie Bäcklund operator

vpr = ηui ∂
∂ui

+ ηuix ∂
∂uix

+ · · · + ηpi ∂
∂pi

+ · · · is generated from the invariance re-

quirement of the equations ui,t = Dt(ui), . . . and pi,x = Gi, pi,t = Hi, . . .. Note that

in general the prolongation does not close, so the finite symmetry transformation

can not be computed directly.

As we know, Lie point symmetries can be applied to construct symmetry trans-

formations, likewise, the similar calculation seems to be invalid for nonlocal sym-

metries. So it is possible to apply suitably the nonlocal symmetries to the local

ones, especially into Lie point symmetries.

Krasil’shchik and Vinogradov8 proposed a generalization of the concept for non-

local symmetries by including pseudopotentials of Eq. (2). In contrast to the case

of the potential variables, pseudopotential variables can be defined through the

implicit equations

pi,x = Gi(x, t, u, ux, . . . , ux,...,x, pi, . . . , pj) ,

pi,t = Hi(x, t, u, ux, . . . , ux,...,x, pi, . . . , pj) ,

where the pseudopotential variables are included by Gi and Hi, such that the

compatibility condition pi,xt−pi,tx = ∂
∂tGi−

∂
∂xHi = 0 are fulfilled for all solutions

of Eq. (2). In the following, we consider nonlocal symmetries of this sort and extend

the original system to a closed prolonged system by introducing some additional

dependent variables.

3. Nonlocal Symmetry with Pseudopotentials

In this section, we recall the nonlocal symmetries determined by pseudopotentials

of AKNS system.6 The AKNS system has two well-known pseudopotentials p and

q, which satisfy the following relations:

px = −iλp+ vq, (4)

pt = (−iuv + 2iλ2)p+ (−ivx − 2λv)q , (5)

qx = −up+ iλq , (6)

qt = (−iux + 2λu)p+ (iuv − 2iλ2)q . (7)

The compatibility conditions of this linear system can yield (1). The inclusion of p

and q leads to the nonlocal symmetries

σu = −q2, σv = p2 , (8)
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of system (1). Obviously, the nonlocal symmetries σu and σv satisfy the following

linearized equations:

σut − iσuxx − 4iuvσu − 2iu2σv = 0 ,

σvt + iσvxx + 4iuvσv + 2iv2σu = 0 .

Thus, to compute the initial value problem

dU(ε)

dε
= −Q(ε)2, U(0) = u ,

dV (ε)

dε
= P (ε)2, V (0) = v ,

we have to localize the nonlocal symmetries (8). Following from formulas (4)–(7),

another potential f should satisfy

fx = pq, ft = −i(up2 + vq2 − 4iλpq) , (9)

then the nonlocal symmetries become Lie point symmetries

σu = −q2, σv = p2, σp = pf ,

σq = qf, σf = f2 ,
(10)

for the prolonged systems (1), (4)–(7) and (9). The obtained Lie point symmetries

(10) are consistent with the results in Ref. 6, while only the once finite transforma-

tion is obtained in Ref. 6.

The symmetries (10) are solutions of the following linearized system:

σut − iσuxx − 4iuvσu − 2iu2σv = 0 ,

σvt + iσvxx + 4iuvσv + 2iv2σu = 0 ,

σpx + iλσp − qσv − vσq = 0 ,

σpt + i(σuv + uσv)p− i(2λ2 − uv)σp + (iσvx + 2λσv)q + (ivx + 2λv)σq = 0 ,

σqx + σup+ σpu− iλσq = 0 ,

σqt − (2λσu − iσux)p− (2λu− iux)σp − i(σuv + uσv)q − i(uv − 2λ2)σq = 0 ,

σfx − σpq − σqp = 0 ,

σft + i(σup2 + σvq2 + (2up− 4iλq)σp + (2vq − 4iλp)σq) = 0 .

After solving the initial value problem

dU(ε)

dε
= −Q(ε)2, U(0) = u ,

dV (ε)

dε
= P (ε)2, V (0) = v ,

dP (ε)

dε
= P (ε)F (ε), P (0) = p ,
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dQ(ε)

dε
= Q(ε)F (ε), Q(0) = q ,

dF (ε)

dε
= F (ε)2, F (0) = f ,

we get the once finite symmetry transformation theorem.

Theorem 1. If {u, v, p, q, f} is a solution of the prolonged AKNS systems (1),

(4)–(7) and (9), so is {U(ε), V (ε), P (ε), Q(ε), F (ε)} with

U(ε) = u+
q2ε

εf − 1
, V (ε) = v − p2ε

εf − 1
, P (ε) = − p

εf − 1
,

Q(ε) = − q

εf − 1
, F (ε) = − f

εf − 1
.

4. The nth Finite Symmetry Transformation

Now we shall consider the problem of calculating the nth finite symmetry trans-

formation. Because the parameter λ in Eqs. (4)–(7) is arbitrary, we have infinitely

many nonlocal symmetries

σun = −
n∑
j=1

cjq
2
j , σvn =

n∑
j=1

cjp
2
j , (11)

where pj and qj , j = 1, . . . , n, are pseudopotentials in Eqs. (4)–(7) with different

parameters λj 6= λk,∀j 6= k.

To solve the initial value problem related to the nonlocal symmetries of Eq. (11)

for any fixed n,

dU(ε)

dε
= −

n∑
j=1

cjQj(ε)
2, U(0) = u ,

dV (ε)

dε
=

n∑
j=1

cjPj(ε)
2, V (0) = v ,

we introduce the prolonged system

ut = iuxx + 2iu2v , (12)

vt = −ivxx − 2iuv2 , (13)

pj,x = −iλjpj + vqj , (14)

pj,t = (−iuv + 2iλ2j )pj + (−ivx − 2λjv)qj , (15)

qj,x = −upj + iλjqj , (16)

qj,t = (−iux + 2λju)pj + (iuv − 2iλ2j )qj , (17)

fj,x = pjqj , (18)
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fj,t = −i(up2j + vq2j − 4iλjpjqj) . (19)

Thus the nonlocal symmetries (11) become the following Lie point symmetries of

the above prolonged system

σu = −
n∑
j=1

cjq
2
j , (20)

σv =

n∑
j=1

cjp
2
j , (21)

σpj = cjpjfj + i

n∑
k 6=j

ckpk(pjqk − pkqj)
2(λj − λk)

, (22)

σqj = cjqjfj + i

n∑
k 6=j

ckqk(pjqk − pkqj)
2(λj − λk)

, (23)

σfj = cjf
2
j −

n∑
k 6=j

ck(pjqk − pkqj)2

4(λj − λk)2
, (24)

which are the solutions of the linearized system

σut − iσuxx − 4iuvσu − 2iu2σv = 0 , (25)

σvt + iσvxx + 4iuvσv + 2iv2σu = 0 , (26)

σpjx + iλjσ
pj − qjσv − vσqj = 0 , (27)

σ
pj
t + i(σuv + uσv)pj − i(2λ2j − uv)σpj + (iσvx + 2λjσ

v)qj

+ (ivx + 2λjv)σqj = 0 , (28)

σqjx + σupj + σpju− iλjσqj = 0 , (29)

σ
qj
t − (2λjσ

u − iσux)pj − (2λju− iux)σpj − i(σuv + uσv)qj

− i(uv − 2λ2j )σ
qj = 0 , (30)

σfjx − σpjqj − σqjpj = 0 , (31)

σ
fj
t + i(σup2j + σvq2j + (2upj − 4iλjqj)σ

pj + (2vqj − 4iλjpj)σ
qj ) = 0 , (32)

with j = 1, . . . , n.

Proof. For any fixed cj 6= 0, ck = 0, k 6= j, it is apparent that

σu = −cjq2j , σv = cjp
2
j , (33)

are the solutions of Eqs. (25) and (26). Substituting (33) into Eqs. (27) and (29),

we get

σpjx + iλjσ
pj − cjp2jqj − vσqj = 0 ,

1850332-6
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σqjx − cjq2j pj + σpju− iλjσqj = 0 ,

then eliminating v and u together with Eqs. (14) and (16), it is easy to verify that

σpj = cjpjfj , σqj = cjqjfj . (34)

Substituting (34) back into Eq. (31), we obtain

σfj = cjf
2
j .

To find σpk and σqk , k 6= j from Eqs. (27) and (29) with (33), we eliminate v and

u via

v =
pkx + iλkpk

qk
, u =

iλkqk − qkx
pk

.

Then we get

σpkx + iλkσ
pk − cjp2jqk −

σqk(pkx + iλkpk)

qk
= 0 ,

σqk − iλkσqk − cjq2j pk −
σpk(qkx − iλkqk)

pk
= 0 .

By using the relations

pkx =
(pjx + iλjpj)qk

qj
− iλkpk , (35)

qkx = − (−qjx + iλjqj)pk
pj

+ iλkqk , (36)

we can verify the results

σpk =
icjpj(pjqk − pkqj)

2(λj − λk)
, (37)

σqk =
icjqj(pjqk − pkqj)

2(λj − λk)
. (38)

From Eq. (31), for j = k, we have

σfkx − σpkqk − σqkpk = 0 ,

which further yields

σfk = −cj(pkqj − pjqk)2

4(λj − λk)2
,

with Eqs. (35)–(38). Thus, we have proved the above statement.

Therefore, the corresponding initial value problem for Lie point symmetries

(20)–(24) has the form

dU(ε)

dε
= −

n∑
j=1

cjQj(ε)
2 ,

1850332-7

M
od

. P
hy

s.
 L

et
t. 

B
 2

01
8.

32
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 S

A
N

 J
O

SE
 S

T
A

T
E

 U
N

IV
E

R
SI

T
Y

 o
n 

10
/0

9/
18

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



September 24, 2018 13:35 MPLB S0217984918503323 page 8

X. Hao et al.

dV (ε)

dε
=

n∑
j=1

cjPj(ε)
2 ,

dPj(ε)

dε
= cjPj(ε)Fj(ε) + i

n∑
k 6=j

ckPk(ε)(Pj(ε)Qk(ε)− Pk(ε)Qj(ε))

2(λj − λk)
,

dQj(ε)

dε
= cjQj(ε)Fj(ε) + i

n∑
k 6=j

ckQk(ε)(Pj(ε)Qk(ε)− Pk(ε)Qj(ε))

2(λj − λk)
,

dFj(ε)

dε
= cjFj(ε)

2 −
n∑
k 6=j

ck(Pj(ε)Qk(ε)− Pk(ε)Qj(ε))
2

4(λj − λk)2
,

U(0) = u, V (0) = v, Pj(0) = pj , Qj(0) = qj ,

Fj(0) = fj , j = 1, . . . , n .

Theorem 2. If {u, v, pj , qj , fj} is a solution of the prolonged AKNS system (12)–

(19), so is {U(ε), V (ε), Pj(ε), Qj(ε), Fj(ε)} with

U(ε) = −∂−1ε
n∑
j=1

cjΩ
2
j

∆2
+ Cu ,

V (ε) = ∂−1ε

n∑
j=1

cj∆
2
j

∆2
+ Cv ,

Pj(ε) = −∆j

∆
, Qj(ε) = −Ωj

∆
, Fj(ε) = −Γj

∆
.

Here, Cu and Cv are functions and are determined by the initial conditions,

namely, {U(0) = u, V (0) = v}. ∆,Γj ,∆j and Ωj are determinants of the matrices

M,Mj , Nj and Kj ,

M =



c1εf1 − 1 c1εw12 · · · c1εw1j · · · c1εw1n

c2εw12 c2εf2 − 1 · · · c2εw2j · · · c2εw2n

...
...

...
...

...
...

cjεw1j c1εw2j · · · cjεfj − 1 · · · cjεwjn

...
...

...
...

...
...

cnεw1n cnεw2n · · · cnεwjn · · · cnεfn − 1


,

1850332-8
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Mj =



c1εf1 − 1 c1εw12 · · · c1εw1,j−1 c1εw1j c1εw1,j+1 · · · c1εw1n

c2εw12 c2εf2 − 1 · · · c2εw2,j−1 c2εw2j c2εw2,j+1 · · · c2εw2n

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

cj−1εw1,j−1 cj−1εw2,j−1 · · · cj−1εfj−1 − 1 cj−1εwj−1,j cj−1εwj−1,j+1 · · · cj−1εwj−1,n

w1j w2j · · · wj−1,j fj wj,j+1 · · · wjn

cj+1εw1,j+1 cj+1εw2,j+1 · · · cj+1εwj−1,j+1 cj+1εwj,j+1 cj+1εfj+1 − 1 · · · cj+1εwj+1,n

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

cnεw1n cnεw2n · · · cnεwj−1,n cnεwjn cnεwj+1,n · · · cnεfn − 1


,

Nj =



c1εf1 − 1 c1εw12 · · · c1εw1,j−1 c1εw1j c1εw1,j+1 · · · c1εw1n

c2εw12 c2εf2 − 1 · · · c2εw2,j−1 c2εw2j c2εw2,j+1 · · · c2εw2n

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

cj−1εw1,j−1 cj−1εw2,j−1 · · · cj−1εfj−1 − 1 cj−1εwj−1,j cj−1εwj−1,j+1 · · · cj−1εwj−1,n

p1 p2 · · · pj−1 pj pj+1 · · · pn

cj+1εw1,j+1 cj+1εw2,j+1 · · · cj+1εwj−1,j+1 cj+1εwj,j+1 cj+1εfj+1 − 1 · · · cj+1εwj+1,n

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

cnεw1n cnεw2n · · · cnεwj−1,n cnεwjn cnεwj+1,n · · · cnεfn − 1


,

Kj =



c1εf1 − 1 c1εw12 · · · c1εw1,j−1 c1εw1j c1εw1,j+1 · · · c1εw1n

c2εw12 c2εf2 − 1 · · · c2εw2,j−1 c2εw2j c2εw2,j+1 · · · c2εw2n

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

cj−1εw1,j−1 cj−1εw2,j−1 · · · cj−1εfj−1 − 1 cj−1εwj−1,j cj−1εwj−1,j+1 · · · cj−1εwj−1,n

q1 q2 · · · qj−1 qj qj+1 · · · qn

cj+1εw1,j+1 cj+1εw2,j+1 · · · cj+1εwj−1,j+1 cj+1εwj,j+1 cj+1εfj+1 − 1 · · · cj+1εwj+1,n

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

cnεw1n cnεw2n · · · cnεwj−1,n cnεwjn cnεwj+1,n · · · cnεfn − 1


,

with

wjk = i
pjqk − pkqj
2(λj − λk)

, λj 6= λk .

We shall now show that the solutions of AKNS system (1) arise from Theorem 2.

For a given trivial solution of AKNS system

u = 0, v = 0, (39)

functions pj , qj , fj can be solved recursively

pj = exp(−iλj(x− 2λjt)), qj = exp(iλj(x− 2λjt)), fj = x− 4λjt , (40)

through Eqs. (14)–(19) and wjk can be expressed as

wjk =
sin((λj − λk)(2(λj + λk)t− x))

λk − λj
. (41)

Let us first consider the case of n = 1, in which case, U(ε) and V (ε) satisfy

U(ε) = −
∫
c1Ω2

1

∆2
dε+ Cu, V (ε) =

∫
c1∆2

1

∆2
dε+ Cv . (42)
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Here, ∆,Ω1,∆1 are determinants of matrices M,K1, N1,

∆ = |M | = c1εf1 − 1, Ω1 = |K1| = q1, ∆1 = |N1| = p1 , (43)

respectively. By requiring initial condition {U(0) = u, V (0) = v}, we obtain Cu and

Cv as

Cu = u+
q21
f1
, Cv = v − p21

f1
. (44)

Further, imposing j = 1 to (40),

p1 = exp(−iλ1(x− 2λ1t)), q1 = exp(iλ1(x− 2λ1t)), f1 = x− 4λ1t , (45)

and substituting these expressions with (39), (43), (44) into (42), one can express

the nontrivial solution of AKNS system as

U(ε) = −c1ε exp(2λ1i(x− 2λ1t))

4c1λ1tε− c1xε+ 1
, V (ε) =

c1ε exp(2λ1i(2λ1t− x))

4c1λ1tε− c1xε+ 1
.

We continue in the same way to calculation for the case n = 2, which is es-

sentially the same as the case of n = 1, and the resulting determinants take the

form

∆ = |M | = (c1εf1 − 1)(c2εf2 − 1)− c1c2w2
12ε

2 ,

Ω1 = |K1| = q1(c2εf2 − 1)− q2c2εw12 ,

Ω2 = |K2| = q2(c1εf1 − 1)− q1c1εw12 , (46)

∆1 = |N1| = p1(c2εf2 − 1)− p2c2εw12 ,

∆2 = |N2| = p2(c1εf1 − 1)− p1c1εw12 ,

where p1, p2, q1, q2, f1, f2 and w12 satisfy the equations

p1 = exp(−iλ1(x− 2λ1t)), q1 = exp(iλ1(x− 2λ1t)), f1 = x− 4λ1t ,

p2 = exp(−iλ2(x− 2λ2t)), q2 = exp(iλ2(x− 2λ2t)), f2 = x− 4λ2t ,

w12 =
sin((λ1 − λ2)(2(λ1 + λ2)t− x))

λ2 − λ1
.

(47)

From this, we proceed to calculate

U(ε) = −
∫ (

c1Ω2
1

∆2
+
c2Ω2

2

∆2

)
dε+ Cu, V (ε) =

∫ (
c1∆2

1

∆2
+
c2∆2

2

∆2

)
dε+ Cv . (48)

The integral functions

Cu = u+
q21f2 + q22f1 − 2q1q2w12

f1f2 − w2
12

, Cv = v − p21f2 + p22f1 − 2p1p2w12

f1f2 − w2
12

, (49)

are solved through the initial condition {U(0) = u, V (0) = v}.
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Insertion of these expressions (39), (46), (47) and (49) in (48) yields another

exact solution of AKNS system

U(ε) = ((λ1 − λ2)2(c1(c2ε(4λ2t− x) + 1)ε exp(iλ1(x− 2λ1t))
2

+ c2(c1ε(4λ1t− x) + 1)ε exp(iλ2(x− 2λ2t))
2)

− 2c1c2(λ1 − λ2)ε2 sin((λ1 − λ2)(2(λ1 + λ2)t− x)) exp(i(λ1 + λ2)x

− 2i(λ21 + λ22)t))/(c1c2(sin((λ1 − λ2)(2(λ1 + λ2)t− x))2

− (λ1 − λ2)2(4λ2t− x)(4λ1t− x))ε2 − (λ1 − λ2)2(4(c1λ1 + c2λ2)t

− (c1 + c2)x)ε− (λ1 − λ2)2),

V (ε) = ((λ1 − λ2)2(−c1(c2ε(4λ2t− x) + 1)ε exp(−iλ1(x− 2λ1t))
2

− c2(c1ε(4λ1t− x) + 1)ε exp(−iλ2(x− 2λ2t))
2)

+ 2c1c2(λ1 − λ2)ε2 sin((λ1 − λ2)(2(λ1 + λ2)t− x)) exp(−i(λ1 + λ2)x

+ 2i(λ21 + λ22)t))/(c1c2(sin((λ1 − λ2)(2(λ1 + λ2)t− x))2

− (λ1 − λ2)2(4λ2t− x)(4λ1t− x))ε2 − (λ1 − λ2)2(4(c1λ1 + c2λ2)t

− (c1 + c2)x)ε− (λ1 − λ2)2) ,

for any value of the spectral parameters {λ1, λ2} and infinitesimal parameter ε.

For each value of n, the process of constructing solution is similar. In principle,

Theorem 2 provides us with a way to construct infinitely multiple new solutions

through any given solution.

5. Summary

The nonlocal symmetries for AKNS system, which are generated by including

pseudopotentials, are equivalent to Lie point symmetries of the prolonged system.

Analogous to the once finite symmetry transformation, the nth finite symmetry

transformation is further derived.

It would be interesting to investigate whether AKNS system possesses other fi-

nite symmetry transformations starting from different nonlocal symmetries. We will

further study this problem and investigate the nth finite symmetry transformation

for other integrable differential equations in the near future.
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