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In this paper, by introduction of pseudopotentials, the nonlocal symmetry is obtained
for the Ablowitz—Kaup—Newell-Segur system, which is used to describe many physical
phenomena in different applications. Together with some auxiliary variables, this kind
of nonlocal symmetry can be localized to Lie point symmetry and the corresponding
once finite symmetry transformation is calculated for both the original system and the
prolonged system. Furthermore, the nth finite symmetry transformation represented in
terms of determinant and exact solutions are derived.
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1. Introduction

The symmetry analysis of the nonlinear differential equations counts mainly on
the invariance under a transformation of both independent and dependent vari-
ables. This symmetry transformation can map old solutions to new ones, permit to
enlarge the diversity of the possible solutions and reduce the number of indepen-
dent variables of the original system.!® Through conservation laws, some auxiliary
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variables such as potentials and pseudopotentials related to the original system
can be used to look for symmetry properties by virtue of symmetry analysis. The
corresponding symmetries expressed by these new auxiliary variables are called
nonlocal symmetries.

Calculating the once finite symmetry transformation starting from the nonlocal
symmetry is an easy calculation to complete and nonlocal symmetries of many

6-16 wwhile it is
16,17

special types have been considered in a number of publications,
difficult to calculate the mth finite symmetry transformation. Recently, Lou
obtained the nth finite symmetry transformations for the classical KdV equation
from Lie point symmetry approach via localization of the residual symmetry and
the square spectral function symmetry.

Our basic aim of this paper is to study nonlocal symmetry theory and to find
the once finite symmetry transformation as well as the nth finite symmetry trans-

formation for the Ablowitz—Kaup-Newell-Segur (AKNS) system!8 22
Up = Mgy + 2iu211,
(1)

Vp = —Upy — 2iuv? ,

by localizing the nonlocal symmetries which are related with pseudopotentials.

2. Refining the Nonlocal Symmetry
Consider the nonlocal symmetry associated to a differential equation
up + K(x, t,u, gy oo Ug ) =0, (2)

involving two independent variables (x,t) € R? and n dependent variables u =
(u1,...,u,) € R™. The generator of the classical Lie point symmetry is of the form

v:§2+7—+n“i
Ox

where &, 7 and n** are functions of x,¢ and w. The symmetry transformation is
equivalent to the solution of the following initial value problem:

X
X e, 1,U), X(e=0)==,

de

dT

7:T(X,T,Ui)7 T(EZO):t,

de
au; .

e = nu'z(X, T, UZ)7 U,L(e = 0) = U; .

Let us suppose that the evolution equation (2) admits conservation law of this type

0
E[Gi($7t7u7um7 e 7um,.‘.,m)] - %[Hi(l',tu,ux, e 7u:v,.‘.,:1:)] - 07

then, we can introduce a nonlocal potential variable p; such that
Pie=Gi, pir=H;. (3)
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In a similar way, one can introduce higher potentials from conservation law of the
prolonged systems (2) and (3).
Nonlocal Lie Bécklund operator is of the form

. 0
v=n"(x,t,u,ug,..., ua:...mp)a—m ,
where p denotes a collection of potentials. The prolonged Lie Béacklund operator
Upr = n“i% + nti= 83” + 4P 82_ + -+ is generated from the invariance re-

quirement of the equations u; ; = Dy(u;), ... and p; » = G4, pir = H;, . ... Note that
in general the prolongation does not close, so the finite symmetry transformation
can not be computed directly.

As we know, Lie point symmetries can be applied to construct symmetry trans-
formations, likewise, the similar calculation seems to be invalid for nonlocal sym-
metries. So it is possible to apply suitably the nonlocal symmetries to the local
ones, especially into Lie point symmetries.

Krasil’shchik and Vinogradov® proposed a generalization of the concept for non-
local symmetries by including pseudopotentials of Eq. (2). In contrast to the case
of the potential variables, pseudopotential variables can be defined through the
implicit equations

Pijx = Gi(xat7u7u$7 cees Uy Piy e s 7p_7) )
Dit = Hi(I,t,U,U;C7 cees Uz, s Piy e - 7p]) )

where the pseudopotential variables are included by G; and H;, such that the
compatibility condition p; 5+ — pi to = %Gi — B%Hi = 0 are fulfilled for all solutions
of Eq. (2). In the following, we consider nonlocal symmetries of this sort and extend
the original system to a closed prolonged system by introducing some additional
dependent variables.

3. Nonlocal Symmetry with Pseudopotentials

In this section, we recall the nonlocal symmetries determined by pseudopotentials
of AKNS system.® The AKNS system has two well-known pseudopotentials p and
q, which satisfy the following relations:

Pz = —iAp+vg, (4)
pe = (—iuv + 2i\*)p + (—iv, — 2)\v)q, (5)
gz = —up+iXq, (6)
gt = (—iug + 2)u)p + (iuv — 2iX%)q. (7)

The compatibility conditions of this linear system can yield (1). The inclusion of p
and ¢ leads to the nonlocal symmetries

o' =—q", o’"=p°, (8)
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of system (1). Obviously, the nonlocal symmetries o* and o¥ satisfy the following
linearized equations:

o —iol, — diuve® — 2iuc’ =0,
o} +iol, + diuve® + 2iv* o = 0.

Thus, to compute the initial value problem

T~ 2. v =,
M~ pr v =,

we have to localize the nonlocal symmetries (8). Following from formulas (4)—(7),
another potential f should satisfy

fo=pa.  fi=—i(up® +vq® — 4ikpq), (9)
then the nonlocal symmetries become Lie point symmetries
ot =—-¢* o' =p* o’=pf,
ot =qf, ol =f?,

for the prolonged systems (1), (4)—(7) and (9). The obtained Lie point symmetries
(10) are consistent with the results in Ref. 6, while only the once finite transforma-
tion is obtained in Ref. 6.

The symmetries (10) are solutions of the following linearized system:

(10)

u . . u 2 v
oy — 10, —4iuvo” — 2iu“0” =0,

of +iol, + diuve” + 2iviot =0,

oP +iXo? —qo?’ —vo? =0,

of +i(o"v +uc”)p —i(2A* — wv)o? + (il + 20 q + (iv, + 2 v)0? =0,
ol 4+ o"“p+ oPu—ire? =0,

ol — (2Ad" —ic")p — (2\u — iu,)o? — i(c"v + uc?)q —i(uv — 22%)o? = 0,
03’: —oPqg—0ip=0,

of +i(c"p® + 0 ¢* + (2up — 4iNg)o? + (2vq — 4iAp)a?) = 0.

After solving the initial value problem

Y9~ w2, v =,
W) _ by, vo=v,
T~ pr@, Po)=p,
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W9 _ qre. eo=a.
T~ pep. PO)= 1,

we get the once finite symmetry transformation theorem.

Theorem 1. If {u,v,p,q, f} is a solution of the prolonged AKNS systems (1),
(4)—~(7) and (9), so is {U(e),V(e), P(€), Q(€), F(e)} with

pe
ef —1’

g€
U(e) :u—‘—efi_l, Vie)=v—
f

j— q —
ef —1° ef —1°

4
ef -1’

P(e) =

Q) =

F(e) =

4. The nth Finite Symmetry Transformation

Now we shall consider the problem of calculating the nth finite symmetry trans-
formation. Because the parameter A in Eqs. (4)—(7) is arbitrary, we have infinitely
many nonlocal symmetries

n n
o, =— chq?-, o, = qu? , (11)
j=1 j=1

where p; and ¢;,j = 1,...,n, are pseudopotentials in Eqs. (4)-(7) with different
parameters \; # A, Vj # k.

To solve the initial value problem related to the nonlocal symmetries of Eq. (11)
for any fixed n,

dU(e) <~ B
AR L LIC LR
dV (e) _ Zn 2 _
dE _j:1cjpj(€) ) V(O) =,

we introduce the prolonged system

Up = Ugy + 20030, (12)

Vp = —iUgp — 2iun? (13)
Djz = —iA;jp; + vg;, (14)
Pt = (—tuv + Qi)\g)pj + (—ivg — 2Xv)g; , (15)
Qi = —up; +1iXjq;, (16)
gt = (—tug +2Xu)p; + (iuv — 2i)\§)qj , (17)
fiw =1ig (18)
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fit= —i(up? + UqJQ» —4iX\;p;q;) - (19)

Thus the nonlocal symmetries (11) become the following Lie point symmetries of
the above prolonged system

o' =— Z ch? , (20)
j=1

n
o’ = Z cjp? , (21)
j=1

] Pr(Piar — Pra;
o’ = cjp;f; ‘HZ % k(/\] k_)\k)k ])v (22)
A crqe(Pjar — Pra;)
o _ch]f]+zz ()f 0 Ly (23)
5 e N okpias — prgy)? 94
g _Cﬂfj_z 4N — )2 ) ( )
Py 30k

which are the solutions of the linearized system

ol —icY, — diuvo" — 2iutc’ =0, (25)
o} +icY, + diuve” + 2ivie" =0, (26)
oPi 4+ iXjoPi —gjo’ —vo¥ =0, (27)

o) +i(o"v +uo)p; — i(2/\? —wv)oPi + (ioy + 2X;0%)q;

+ (ivg +2X\jv)0% =0, (28)

of +0"pj +oPu—iXjo =0, (29)
— (2Xj0" —ioy)p; — (2Nju —iug )P —i(o"v 4+ uo)g;

—i(uv — 2)\?)0‘“ =0, (30)

UJJC’J’ —oPigi—o%p; =0, (31)

ol? +i(0"p? + 0Vq? + (2up; — 4iN;q;)o" + (2ug; — 4iN;p;)o®) =0, (32)

withj=1,...,n

Proof. For any fixed c¢; # 0,c, = 0,k # j, it is apparent that

u

o' = —ch?-, o’ = cjpf, (33)

are the solutions of Egs. (25) and (26). Substituting (33) into Eqgs. (27) and (29),
we get

Pi 4 i\.gPi — e — ool —
oy +iXjo? —¢;piq; —vo® =0,

1850332-6
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qj 2D Pj iX.cli =
o —cjqip; + o u—irjo¥ =0,

then eliminating v and u together with Eqgs. (14) and (16), it is easy to verify that

ol =¢ipifi, 0" =c¢iqif;- (34)
Substituting (34) back into Eq. (31), we obtain
0'; = cjsz .

To find oP* and 0% k # j from Egs. (27) and (29) with (33), we eliminate v and
u via
_ Pre +1kpE " IAkQk — Qka

dk Pk
Then we get

0% (Pra + iAkDK)

oPk + i\oPh — cjp?qk — =0,
qk
Pr z— I\
ot — iAo — ciqipr — o (ko = ) _ 0.
Pk
By using the relations
s+ A ‘
pro = BTG5 (35)
4aj
—Qjz +1A;q; .
Tz = o 9P + ik (36)
Dj
we can verify the results
oPr — icip;(Piqk — Pr)) 7 (37)
2(Aj — Ak)
ic;iq; Pk — Prdj)
otk — J4I\L’g J 38
20— M) )
From Eq. (31), for j = k, we have
ok —aPrq, —o%p =0,
which further yields
e C(Pegy = piar)?
AN =)
with Egs. (35)—(38). Thus, we have proved the above statement. a

Therefore, the corresponding initial value problem for Lie point symmetries
(20)—(24) has the form

- Z chj<€)2 )
j=1

1850332-7
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vie) _ zn:chj(e){
=1

de
dPi(€) _ . b (F(e) 4 — ¢ Pr(€) (P;(€)Qr(€) — Pu(€)Q;(e))
e = ali(eF(e) + % 200 — A :
4Qi(6) _ . 0 (\F(e) 4 i — cxQr(€)(P;(€)Qr(€) = Pu(€)Q;(e))
de Qj(€)Fy(e) + é 20 — Ag) ’
dFj(e) o = k(Pi(©)Qk(€) — Pi(e)Qj(€))?
de = C]Fj (6) ; 4()\j _ )\k)2 ’

U@)=u, V(0)=v, P;(0)=p;; Q;(0)=g,

Theorem 2. If {u,v,pj,q;, fi} is a solution of the prolonged AKNS system (12)—
(19), so is {U(e),V(e), Pj(€), Q;(€), Fj(€)} with

Ule) = -9 f: A +C
€ Az u
j=1

" e A2
Vie=0") JA; +Cy,
j=1

A )
Pi()=-— Qi9=-3, FlO=-%.

Here, C,, and C, are functions and are determined by the initial conditions,
namely, {U(0) = u,V(0) = v}. A, T, A; and Q; are determinants of the matrices
M, Mj7Nj and Kj,

ciefy =1 crewys - ClEWT e C1€W1p
Co€W12 62€f2 —1 e 02€w2j R Co €Wy,
M = ,
Cj €Wy C1E€W2; s Cijj -1 .- Cj€Wjn
Cn€W1in Cp€Way v - Cn€Wjn -+ Cp€fn —1

1850332-8
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crefr — 1 clewl

coewlg coefo — 1

Cj—1€W1,j—1 Cj_1€W2 j1 -

wij w2

CiH1EW j41 Cjy1€Wn 41 - -

Cn€Wln Cn €W2n
crefr — 1 Clewl2
coewl coefo — 1

Cj—1€W1,j—1 Cj_1€W2 j1 -

p1 p2

Ci41EWL j41 Cj41€W2 41 - -

Cp €Wlnp, Cp €Wy,
crefr — 1 clewq
coewyg coefo — 1

Cj—1€W1,j—1 Cj—1€Wa 51 -

q1 q2

CiH1€WL,j41 Cjt1€W2 j41 = -

Cp€Wln Cp €Wy,

wjk

=1

clewy j—1 clewy; ClEW] j4+1

coewy j 1 coewg; coewy 41

cj—1€fj—1 =1 cj1ewj_1,5 Cj_1€wj_1,541 *°

Wi—1,j fi Wi j+1

CiH1€W 1,541 CjH1€Wj 541 Citrefjp1 — 1

Cn€Wj_—1,n Cn€Wjn Cn€Wj41,n
clewy j1 clewy CcleW j41
coewy j1 coewg; coewy 41

cj—1€fj—1 =1 cj_1ewj_1,5 Cj_1€wj_1,541 "°

Pj—1 Dj Pj+1

ClHLEWj—1,j+1 Cj41€W) 41 Cjrrefj41 — 1

Cne€w;_1 n Cn €W n Cn€W;41 n
clewy j—1 clewy; ClEW] j4+1
coEwy j1 coewg; CcoEWy j41

cj—1efj—1 =1 ¢j1ewj1j Cj_1ewj—1 441 -

qj—1 q; qj+1
CjHLEWj—1,j+1 Cj41€W) 41 Cjrrefj41 — 1

Cn€Wj_1,n Cn€Wjn CneWjt1,n
.Pjdr — Pkq; A A\
Y2 U i k-
2(Aj — k) !

CCjr1€Wit1n

©Ci41€Wi41m

CCjrl1€Wit1n

ClEW]n

C2EW2n

Cj—1€W;_1 n

Win

cnefn —1

ClEW]n

Co€Wway

Cj—1€W;_1 n

Pn

cnefn — 1

ClEW]n

CoEWN

Cj—1€W5_1.n

an

cnefn —1

We shall now show that the solutions of AKNS system (1) arise from Theorem 2.
For a given trivial solution of AKNS system

u=0, v=0,

functions p;, q;, f; can be solved recursively

pj = exp(—i;(z — 2A;t)),

q; = exp(iX; (z — 2X;1)),

through Eqgs. (14)—(19) and w;; can be expressed as
sin((A; — Ak) (2N + M)t — 7))

Wik =

e —

(39)

fj =T — 4>\jt, (40)

(41)

Let us first consider the case of n = 1, in which case, U(e) and V (¢) satisfy

c1?
U(G):—/ 1A21

C1 A%
A2

de+C,, V(e)=

1850332-9
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Here, A, Qq,Aq are determinants of matrices M, K1, Ny,
=|M|=cefi—1, QU =|Ki|=q, Ai=|Ni|=p1, (43)

respectively. By requiring initial condition {U(0) = u, V' (0) = v}, we obtain C,, and
C, as
41 »
Co=u+-—, Cy,=v—=—7. 44
f1 7 (44)
Further, imposing j = 1 to (40),
p1 = exp(—idi(z — 2A\1t)), @1 = exp(idi(z —2\i1)), fi =z —4\t, (45)

and substituting these expressions with (39), (43), (44) into (42), one can express
the nontrivial solution of AKNS system as

creexp(2A1i(z — 2A1t))

creexp(2X13(2M\t — x))
4egMte — cpre + 1 ’

4egMte — cpre + 1

Ule) = — , Ve =

We continue in the same way to calculation for the case n = 2, which is es-
sentially the same as the case of n = 1, and the resulting determinants take the
form

= |M| = (c1ef1 — 1)(c2efa — 1) — Clczwfzﬁz,
N = |K1| = qi(caefa — 1) — qaezewnz,

Qo = |Ka| = q2(cref1 — 1) — qrerewnz, (46)
Ay = |N1| = pi(caefa — 1) — pacacwna,

Ay = |Na| = pa(ciefi — 1) — prerewnz,

where p1, P2, q1, q2, f1, fo and wis satisfy the equations

p1 = exp(—iAi(x — 2A1t)), q1 = exp(idi(x —2X\it)), f1 =2 — 4\,

p2 = exp(—ida(x — 2Xat)), g2 = exp(ida(z — 2Xat)), fa =2 —4Aat, (47)
- Sil’l(()\l — )\2)(2()\1 —+ /\Q)t — $))
W12 = .
Ao — M\

From this, we proceed to calculate

0? 032 A2 A2
Ule) = —/ (ClAzl + CZ;) de+Cy, V(e)= / <01Azl + CZ;) de +C,. (48)

The integral functions

2 2 2 2
+qifi -2 +p3f 2
C.=ut aifet+ N Qw2 o Pife + a1 P2z )
Jif2 — wiy Jifo —wiy

are solved through the initial condition {U(0) = u, V(0) = v}.

1850332-10
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Insertion of these expressions (39), (46), (47) and (49) in (48) yields another
exact solution of AKNS system

U(e) = (M — X2)?(c1(coe(dXhat — ) + 1)eexp(idg (x — 2X1t))?

+ca(cre(4rt — x) + 1)eexp(idg(z — 2Xat))?)

—2¢c1ca( A — Ao)€2sin((Ar — Xa2)(2(A1 + A2)t — ) exp(i(Ag + Xo)x
—2i(A\T + A3)1))/(crca(sin((Ar — A2) (2(A1 + A2)t — z))?
— (M1 = X2)? (4ot — ) (4t — 2))e? — (A — X2)2(4(cr M1 + cado)t

—(c1+e2)a)e — (A = A2)?),
V(e) = (A1 = Ao)?*(—c1(cac(dhat — ) + D)eexp(—idi (z — 2M1t))?
—ca(cre(4Mt — ) 4+ 1)eexp(—ida(z — 2Xat))?)

+2¢c1c0( A1 — A2)e?sin((A1 — X2)(2(A1 + Xo)t — 2)) exp(—i( A + A2z
+2i(A2 + A2)t)) /(crea(sin((Ar — X2)(2(A1 + Xo)t — 2))?
— ()\1 — )\2) (4)\2t — (E)(4)\1t — x))e — ()\1 — )\2)2(4(Cl>\1 —+ CQ)\Q)t

—(e1 4 c2)x)e — (M — A2)?),

for any value of the spectral parameters {\1, A2} and infinitesimal parameter e.

For each value of n, the process of constructing solution is similar. In principle,
Theorem 2 provides us with a way to construct infinitely multiple new solutions
through any given solution.

5. Summary

The nonlocal symmetries for AKNS system, which are generated by including
pseudopotentials, are equivalent to Lie point symmetries of the prolonged system.
Analogous to the once finite symmetry transformation, the nth finite symmetry
transformation is further derived.

It would be interesting to investigate whether AKNS system possesses other fi-
nite symmetry transformations starting from different nonlocal symmetries. We will
further study this problem and investigate the nth finite symmetry transformation
for other integrable differential equations in the near future.
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