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a b s t r a c t

The Painlevé analysis is applied and the multi-soliton criterion is presented to test the
integrability of the (3+1)-dimensional generalized KP equation derived from a Hirota
bilinear equation. It is shown that the considered equation does not pass the well known
Painlevé test and it is only integrable in a conditional sense. Solitary wave solutions
are shown to interact each other like solitons in multiple wave collisions unless some
additional conditions are imposed. Moreover, we analyze a class of analytical rational
lump-type solutions in detail, which are generated from positive quadratic polynomial
function and rationally localized in many directions in the space, based upon the Hirota
bilinear form.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Integrable dynamical systems as models of natural phenomena play a universal role. Since most of the nonlinear partial
differential equations (PDEs) of mathematical physics are of 3+1 dimensions or even higher dimensions, it is of cardinal
importance to see whether higher dimensional equations be integrable by linear techniques [1].

Whatwe shall do in this paper is to discuss the integrability [2,3], investigate solitarywave solutions [4–6] and lump-type
solutions [7–10] of the (3+1)-dimensional generalized Kadomtsev–Petviashvili (KP) equation

uyt − uxxxy − 3(uxuy)x − 3uxx + 3uzz = 0, (1)

which is derived from a (3+1)-dimensional Hirota bilinear equation [7]

(DtDy − D3
xDy − 3D2

x + 3D2
z )ff = 0, (2)

or equivalently,

ffty − ft fy + fxxxfy − ffxxxy + 3(fxxyfx − fxxfxy) − 3(ffxx − f 2x ) + 3(ffzz − f 2z ) = 0, (3)

under the transformation

u = 2 ln(f )x. (4)
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It is clear that if f solves Eq. (3), then u is a solution of Eq. (1) through the transformation (4).
In Section 2, Eq. (1) is tested for integrability through Painlevé analysis [11–13]. The criterion of Painlevé property is that

the solutions of the PDEs should have no singularities other than poles. The result reveals that Eq. (1) does not pass the test.
Another test for integrability is performed in Section 3. A characteristic of integrability that integrable PDEs have in

common is that they can possess N-soliton solutions for N ⩾ 3. Therefore, we would like to consider solitary wave solutions
of Eq. (1) in detail and examine whether the equation admits multiple solitons which have mutual interactions without
changing shape.

In Section 4, we present the lump-type solutions [14,15] for Eq. (1) and discuss the properties of these solutions. Themost
interesting novel feature of these solutions is that they decay to zero in many directions but not all directions in the space.

Section 5 is devoted to conclusions.

2. The Painlevé analysis

The Painlevé property implies integrability and the Painlevé test provides a way to identify integrability. A necessary
condition for a PDE has the Painlevé property is when the solution of the PDE

u =
1
φα

∞∑
j=0

ujφ
j, (5)

is single valued about the movable, singularity manifold. This singularity manifold φ = φ(x, y, z, t) is introduced in the
complex space of the independent variables x, y, z and t . Here α is an positive integer, and the coefficients uj = uj(x, y, z, t)
are analytic functions of the independent variables in a neighborhood of the singularity manifold φ = 0 [1].

The solution (5) should contain N arbitrary functions for an Nth-order PDE, namely, φ and N − 1 of the coefficients uj.
The corresponding values of j are called resonances. That means resonances are those values of j at which it is possible to
introduce free functions.

Now, we apply the Painlevé test to Eq. (1). Substitution of (5) into Eq. (1) determines the value of α = 1 by a leading order
analysis. It is found that resonances occur at j = −1, 1, 4 and 6. Next step is to compute the coefficients u2, u3 and u5 from
the recursion relations and to verify the existence of the free functions u1, u4 and u6. From the recursion relations, we find
that uj, j = 0, 1, 2, . . .,

j = 0, u0 = 2φx,

j = 1, u1 = free,

j = 2, u2 =
3φ2

z − 3φ2
x − 3φxφxxy + 3φxyφxx

6φ2
xφy

+
(φt − φxxx)

6φ2
x

,

j = 3, u3 =
(5φxxφy + 3φxφxy)u2

4φ2
xφy

+
φ4x − φxt

12φ3
x

−
φyt + 3φzz − 4φxxxy − 9φxx

12φ2
xφy

−
6φxzφz + φxy(φt + 2φxxx)

12φ3
xφy

,

j = 4, u4 = free.

The expression foru5 is too long to present here. The compatibility conditions at j = 1 and4 are satisfied identically. However,
a resonance condition at the resonance j = 6

12u2u3φx − 2(φxy(18u4φx + 5u3,x))x − 2(u3φxxy)x − ((
3
2
u2
2 + 2u3,x + 18u4φx)x

+ 72u5φ
2
x + 6u1,xu3 + 6u4,xφx)φxy − 8(3u4φy + u3,y)φxxx + 2u3(3φzz − 3φxx + φyt )

− 6(2u2u3 + 4u5φx + 5u4,x)φxxφy − 3((u2
2)y/2 + 2u1,yu3 + 6u4,yφx + 4u3,xy)φxx

+ 6(3u4φz + 2u3,z)φz + 2(3u4φy + u3,y)φt − 12u5,yφ
3
x − 6((6u2u4 + 4u2

3 + 2u5,x)φy

+ 3u1,yu4 + u2u3,y + 2u2,yu3 + 3u4 + 2u4,xy)φ2
x − 3u2,xx + 3u2,zz + u2,yt − u2,xxxy

+ (2u3,t − 2u3,xxx − 3((u2
2)x/2 + 2u1,xu3)x)φy − 3(u1,xu2,x)y − 3u1,yu2,xx − 3u1,xxu2,y

+ (−6(3u1,xu4 + 3u2u3,x + 4u2,xu3 + 2u4,xx)φy − 3u2u2,xy − 6(u1,xu3)y − 9u2,xu2,y

− 12u1,yu3,x − 6(2u3 + u3,xy)x)φx = 0,

is not satisfied automatically. Furthermore, if we reduce u2, u3 and u5, the above resonance condition is found to involve
the functions u1 and φ, rather than an identity. Analysis allows one to conclude that, Eq. (1) does not possess the Painlevé
property, in particular, is presumably not integrable.
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3. Soliton solutions

Now we turn our attention to the integrability criterion related to solitary wave solutions. We take the attitude that the
solutions of integrable PDEs can split apart intoN-soliton for all values ofN . Following this criterion,we look for theN-soliton
solutions of Eq. (1).

Substituting the quantities

u = exp(ξi), ξi = kix + liy + miz + cit, (6)

into the linear terms of Eq. (1), we obtain the dispersion relation

ci = k3i +
3(k2i − m2

i )
li

, i = 1, 2, . . . . (7)

As a result, the dispersion variable ξi reads

ξi = kix + liy + miz + (k3i +
3(k2i − m2

i )
li

)t. (8)

3.1. One-soliton solution

The form of one-soliton is

f = 1 + exp(ξ1).

This function f is a solution of Eq. (3) with the dispersion variable (8) in the case i = 1. The one-soliton solution of Eq. (1) is
given by

u =
2k1 exp ξ1

1 + exp ξ1
,

through Eq. (4).

3.2. Two-soliton solution

The situation for two-soliton we consider is

f = 1 + exp(ξ1) + exp(ξ2) + A12 exp(ξ1 + ξ2),

with ξ1 and ξ2 satisfy dispersion variable (8). If the value of phase shift A12 satisfies

A12 =
k1k2l1l2(k1 − k2)(l1 − l2) − (k1l2 − l1k2)2 + (l1m2 − m1l2)2

k1k2l1l2(k1 + k2)(l1 + l2) − (k1l2 − l1k2)2 + (l1m2 − m1l2)2
,

then f is a solution of Eq. (3). Moreover, the exact two-soliton solution of Eq. (1) is

u =
2(k1 exp ξ1 + k2 exp(ξ2) + A12(k1 + k2) exp (ξ1 + ξ2))

1 + exp(ξ1) + exp(ξ2) + A12 exp(ξ1 + ξ2)
.

3.3. Three-soliton solution

Now, we postulate an explicit form of three-soliton solution as

f = 1 + exp(ξ1) + exp(ξ2) + exp(ξ3) + A12 exp(ξ1 + ξ2) + A13 exp(ξ1 + ξ3)
+A23 exp(ξ2 + ξ3) + A12A13A23 exp(ξ1 + ξ2 + ξ3), (9)

here,

Aij =
kikjlilj(ki − kj)(li − lj) − (kilj − likj)2 + (limj − milj)2

kikjlilj(ki + kj)(li + lj) − (kilj − likj)2 + (limj − milj)2
.

Furthermore, the formula (9) is a solution of Eq. (3) only if the equality

(l1B1 + l2B2 + l3B3 + l1l2l3(k1 + k2)(k1 + k3)(k2 + k3)
(l1 + l2 + l3))A12A13A23 + (−l1B1 − l2B2 + l3B3

+ l1l2l3(k1 + k2)(k1 − k3)(k2 − k3)(l1 + l2 − l3))A12

+ (−l1B1 + l2B2 − l3B3 − l1l2l3(k1 − k2)(k1 + k3)(k2 − k3)
(l1 − l2 + l3))A13 + (l1B1 − l2B2 − l3B3 − l1l2l3(k1 − k2)
(k1 − k3)(k2 + k3)(l1 − l2 − l3))A23 = 0,
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vanishes identically, with

B1 = (l2m3 − l3m2)2 − (k2l3 − k3l2)2,
B2 = (l1m3 − l3m1)2 − (k1l3 − k3l1)2,
B3 = (l1m2 − l2m1)2 − (k1l2 − k2l1)2.

Therefore, the formula (9) is not a solution of Eq. (3). Eq. (1) possesses neither three-soliton solution nor N-soliton solutions
for any N > 3. It is obvious that Eq. (1) do not have solitary wave solutions with elastic collisions.

4. Lump-type solutions

Although Eq. (1) is non-integrable on its own in the sense of both Painlevé property and multi-soliton criterion, we can
still look for some exact solutions. In what follows, we study lump-type solutions [16–21] of Eq. (1) through searching for
positive quadratic function solution

f = g2
+ h2

+ c0, (10)

with

g = a1x + a2y + a3z + a4t + a5,
h = b1x + b2y + b3z + b4t + b5,

to the bilinear Eq. (3), where ai, bi, c0, 1 ⩽ i ⩽ 5, are real parameters to be determined.Wenote that all the solutions obtained
through Eq. (10) do not satisfy the criterion of localizing in all directions in space, therefore, they are not lump solutions.
However, they are rationally localized in many directions in space, so this kind of solution is called lump-type solution [8].
Substitution of Eq. (10) into Eq. (3) shows that f is a solution of the equation provided that some relations of the parameters
hold. Two sets of them are analyzed in detail.

The first set of constraining relations among the parameters is

{a1 = −
b1b2
a2

, a4 =
3(b21b

2
2 − a22a

2
3)

a32
, b3 =

b1(a22 + b22)
a22

+
a3b2
a2

,

b4 = −
3(a2a3 + b1b2)(2a22b1 + a2a3b2 + b1b22)

a42
},

which needs to satisfy a2 ̸= 0 to make the corresponding solution f to be well defined. The condition c0 > 0 guarantees the
positiveness of f . In addition, the determinant condition {∆1 = a1b2 − a2b1 = −

b1
a2
(a22 + b22) ̸= 0, ∆2 = a1b3 − a3b1 =

−
b1(a22+b22)(a2a3+b1b2)

a32
̸= 0, ∆3 = a2b3 − a3b2 =

b1(a22+b22)
a2

̸= 0} means that directions of (a1, a2) with (b1, b2) in the xy plane,

(a1, a3) with (b1, b3) in the xz plane and (a2, a3) with (b2, b3) in the yz plane are not parallel.
These parameters in this set yield the positive quadratic function solution of f as

f = (−
b1b2
a2

x + a2y + a3z +
3(b21b

2
2 − a22a

2
3)

a32
t + a5)2 + (b1x + b2y

+ (
b1(a22 + b22)

a22
+

a3b2
a2

)z −
3(a2a3 + b1b2)(2a22b1 + a2a3b2 + b1b22)

a42
t + b5)

2

+ c0,

which leads to the lump-type solution

u =

4(− b1b2
a2

g + b1h)

g2 + h2 + c0
, (11)

the functions of g and h are given as follows,

g = −
b1b2
a2

x + a2y + a3z +
3(b21b

2
2 − a22a

2
3)

a32
t + a5,

h = b1x + b2y + (
b1(a22 + b22)

a22
+

a3b2
a2

)z

−
3(a2a3 + b1b2)(2a22b1 + a2a3b2 + b1b22)

a42
t + b5,

to the (3+1)-dimensional generalized KP Eq. (1) under the transformation (4).
To show the localized behavior of the presented lump-type solution clearly, 3D plots, contour plots and curves with

particular choices of the involved parameters in the potential function u are plotted in Fig. 1.
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Fig. 1. Profiles of lump-type solution of u via Eq. (11) with parameters {a2 = 3, a3 = 1, a5 = 3, b1 = 1, b2 = 1, b5 = 3, c0 = 2} at {t = 0, z = 1}, {t =

0, x = 1}, {t = 0, y = 1}. 3D plots (top), contour plots (middle) and curve plots (bottom), correspondingly.

The second set of constraining conditions on the parameters is

{a4 =
3a21
a2

−
3(a2(a23 − b23) + 2a3b2b3)

a22 + b22
, b1 =

a1b2
a2

,

b4 =
3a21b2
a22

−
3(b2(b23 − a23) + 2a2a3b3)

a22 + b22
, c0 =

a31(a
2
2 + b22)

3

a32(a2b3 − a3b2)2
}.

This set of parameters generates quadratic function solution defined by Eq. (10), to the bilinear Eq. (3), and further the
resulting quadratic function solution yields lump-type solution,

u =

4(a1g +
a1b2
a2

h)

g2 + h2 +
a31(a

2
2+b22)

3

a32(a2b3−a3b2)2

, (12)
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Fig. 2. Profiles of lump-type solution u of Eq. (12) with parameters {a1 = 1, a2 = 1, a3 = 3, a5 = 3, b2 = 2, b3 = 1, b5 = 4} at {t = 0, z = 1}, {t = 0, x =

1}, {t = 0, y = 1}. 3D plots (top), contour plots (middle) and curve plots (bottom), correspondingly.

here, the functions g and h satisfy

g = a1x + a2y + a3z + (
3a21
a2

−
3(a2(a23 − b23) + 2a3b2b3)

a22 + b22
)t + a5,

h =
a1b2
a2

x + b2y + b3z + (
3a21b2
a22

−
3(b2(b23 − a23) + 2a2a3b3)

a22 + b22
)t + b5.

If the conditions a2 ̸= 0 and a2b3 − a3b2 ̸= 0 are satisfied, this class of rational function solutions is well defined. If
we choose the parameters guaranteeing a1a2 > 0, the analyticity of the rational solution can be achieved. The conditions
a2b3 − a3b2 ̸= 0 and a1b3 − a3b1 ̸= 0 guarantee that directions (a2, a3) with (b2, b3) and (a1, a3) with (b1, b3) are not
parallel in the yz plane and xz plane, while another corresponding determinant condition a1b2 − a2b1 = 0 indicates that
two directions (a1, a2) and (b1, b2) in the xy plane are parallel. See plots in Fig. 2.

5. Summary

In this paper, we have carried out the Painlevé test and the multi-soliton analysis for a (3+1)-dimensional generalized KP
equation. Both the Painlevé property and themulti-soliton criterion show that Eq. (1) is not completely integrable. Our result
shows that Eq. (1) is only integrable in a conditional sense and its solitary wave solution can be split apart into three solitons,
while an additional quantity has to vanish identically. Such a characteristic is generally considered to be incompatible with
integrability.
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In addition, based on the Hirota bilinear formula, we have analyzed positive quadratic function solution and thereby
lump-type solutions of the corresponding generalized KP equation. The conditions imposed on the parameters have been
explicitly presented to guarantee thewell definedness, the positiveness and the localization of the solutions. Those solutions
can help us recognize the solvability characteristics of the considered partial differential equations.
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