Painlevé analysis, soliton solutions and lump-type solutions of the (3+1)-dimensional generalized KP equation

Xiazhi Hao a, Yinping Liu a,†, Zhibin Li a, Wen-Xiu Ma b,c,d

a School of Computer Science and Software Engineering, East China Normal University, Shanghai 200062, China
b Department of Mathematics and Statistics, University of South Florida, Tampa, FL 33620, USA
c College of Mathematics and Systems Science, Shandong University of Science and Technology, Qingdao 266590, Shandong, China
d International Institute for Symmetry Analysis and Mathematical Modelling, Department of Mathematical Sciences, North-West University, Mafikeng Campus Private Bag X2046, Mmabatho 2735, South Africa

ARTICLE INFO

Article history:
Received 26 June 2018
Received in revised form 1 October 2018
Accepted 6 October 2018
Available online 2 November 2018

Keywords:
Painlevé analysis
Hirota bilinear equation
Integrability
Solitary wave solutions
Lump-type solutions

ABSTRACT

The Painlevé analysis is applied and the multi-soliton criterion is presented to test the integrability of the (3+1)-dimensional generalized KP equation derived from a Hirota bilinear equation. It is shown that the considered equation does not pass the well known Painlevé test and it is only integrable in a conditional sense. Solitary wave solutions are shown to interact each other like solitons in multiple wave collisions unless some additional conditions are imposed. Moreover, we analyze a class of analytical rational lump-type solutions in detail, which are generated from positive quadratic polynomial function and rationally localized in many directions in the space, based upon the Hirota bilinear form.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Integrable dynamical systems as models of natural phenomena play a universal role. Since most of the nonlinear partial differential equations (PDEs) of mathematical physics are of 3+1 dimensions or even higher dimensions, it is of cardinal importance to see whether higher dimensional equations be integrable by linear techniques [1].

What we shall do in this paper is to discuss the integrability [2,3], investigate solitary wave solutions [4–6] and lump-type solutions [7–10] of the (3+1)-dimensional generalized Kadomtsev–Petviashvili (KP) equation

\[u_{yt} - u_{xxxxx} - 3(u_x u_y)_x - 3u_{xx} + 3u_{zz} = 0, \]

which is derived from a (3+1)-dimensional Hirota bilinear equation [7]

\[(D_t D_y - D_x^2 D_y - 3 D_x^2 f f f) = 0, \]
or equivalently,

\[f f f_y - f_x f_x f_y - f_{xxx} + 3(f_{xxy} f_x - f_{xx} f_{xy}) - 3(f_{xx} f_x - f_x f_{xx}) + 3(f_{xxz} - f_x^2 f) = 0, \]

under the transformation

\[u = 2 \ln(f)_x. \]
It is clear that if \(f \) solves Eq. (3), then \(u \) is a solution of Eq. (1) through the transformation (4).

In Section 2, Eq. (1) is tested for integrability through Painlevé analysis [11–13]. The criterion of Painlevé property is that the solutions of the PDEs should have no singularities other than poles. The result reveals that Eq. (1) does not pass the test.

Another test for integrability is performed in Section 3. A characteristic of integrability that integrable PDEs have in common is that they can possess \(N \)-soliton solutions for \(N \geq 3 \). Therefore, we would like to consider solitary wave solutions of Eq. (1) in detail and examine whether the equation admits multiple solitons which have mutual interactions without changing shape.

In Section 4, we present the lump-type solutions [14,15] for Eq. (1) and discuss the properties of these solutions. The most interesting novel feature of these solutions is that they decay to zero in many directions but not all directions in the space.

Section 5 is devoted to conclusions.

2. The Painlevé analysis

The Painlevé property implies integrability and the Painlevé test provides a way to identify integrability. A necessary condition for a PDE has the Painlevé property is when the solution of the PDE

\[
u = \frac{1}{\phi^\alpha} \sum_{j=0}^{\infty} u_j \phi^j,
\]

is single valued about the movable, singularity manifold. This singularity manifold \(\phi = \phi(x, y, z, t) \) is introduced in the complex space of the independent variables \(x, y, z \) and \(t \). Here \(\alpha \) is an positive integer, and the coefficients \(u_j = u_j(x, y, z, t) \) are analytic functions of the independent variables in a neighborhood of the singularity manifold \(\phi = 0 \) [1].

The solution (5) should contain \(N \) arbitrary functions for an \(N \)-th order PDE, namely, \(\phi \) and \(N - 1 \) of the coefficients \(u_j \). The corresponding values of \(j \) are called resonances. That means resonances are those values of \(j \) at which it is possible to introduce free functions.

Now, we apply the Painlevé test to Eq. (1). Substitution of (5) into Eq. (1) determines the value of \(\alpha = 1 \) by a leading order analysis. It is found that resonances occur at \(j = -1, 1, 4 \) and 6. Next step is to compute the coefficients \(u_2, u_3 \) and \(u_5 \) from the recursion relations and to verify the existence of the free functions \(u_1, u_4 \) and \(u_6 \). From the recursion relations, we find that \(u_j = 0, 1, 2, \ldots \),

\begin{align*}
j & = 0, \quad u_0 = 2\phi_x, \\
& = 1, \quad u_1 = \text{free}, \\
& = 2, \quad u_2 = \frac{3\phi_x^2 - 3\phi_x^2 - 3\phi_x\phi_{xy} + 3\phi_{xx}\phi_{xy}}{6\phi_x^2\phi_y} + \frac{(\phi_x - \phi_{xxx})}{6\phi_x^2}, \\
& = 3, \quad u_3 = \frac{(5\phi_{xx}\phi_y + 3\phi_x\phi_{xy})u_2}{4\phi_x^2\phi_y} + \frac{\phi_{4x} - \phi_{xx} - \phi_{yy} + 3\phi_{xx} - 4\phi_{xxx}}{12\phi_x^4} - \frac{6\phi_{xx}(\phi_x + 2\phi_{xxx})}{12\phi_x^4\phi_y}, \\
& = 4, \quad u_4 = \text{free}.
\end{align*}

The expression for \(u_5 \) is too long to present here. The compatibility conditions at \(j = 1 \) and 4 are satisfied identically. However, a resonance condition at the resonance \(j = 6 \)

\[
12u_2u_3\phi_x - 2(\phi_{xy}(18u_4\phi_x + 5u_3, x))_x - 2u_3\phi_{xxx} - ((\frac{3}{2}u_2^2 + 2u_3, x + 18u_4\phi_x)_x \\
+ 72u_5\phi_x^2 + 6u_1, x, u_3 + 6u_4, x, \phi_x\phi_{xy} - 8(3u_4\phi_y + u_3, y, \phi_{xxx} + 2u_3(3\phi_{xx} - 3\phi_{xx} + \phi_{yy}) \\
- 6(2u_2u_3 + 4u_5\phi_x + 5u_4, x, \phi_{xxx}\phi_y - 3((u_2^2)_y)/2 + 2u_1, y, u_3 + 6u_4, y, \phi_x + 4u_3, y, \phi_{xx} \\
+ 6(3u_4\phi_y + 2u_3, y, \phi_x + 2u_3, y, \phi_{xy}, \phi_{xy} - 12u_5, y, \phi_x^3 - 6(6u_5u_4 + 4u_3^2 + 2u_5, x, \phi_x y) \\
+ 3u_1, x, u_4 + u_2, u_3, x + 2u_2, y, u_3 + 3u_4 + 2u_4, x, \phi_x^2 - 3u_2, xx + 3u_2, z + u_2, y - u_2, xxxy \\
+ (2u_3, x + u_3, xxx) - 3((u_2^2)_y)/2 + 2u_1, x, u_3)_y, \phi_y - 3(u_1, x, u_2, x)_y - 3u_1, u_2, xx - 3u_1, xx, u_2, y \\
\quad + (6u_1, x, u_4 + 3u_2, u_3, x + 4u_4, x, u_1 + 2u_4, xx, \phi_y - 3u_2, u_2, y - 6u_1, x, u_3)_y - 9u_2, xx, u_2, y \\
- 12u_1, y, u_3, x - 6(2u_3 + u_3, xy)_y, \phi_x = 0,
\]

is not satisfied automatically. Furthermore, if we reduce \(u_2, u_3 \) and \(u_5 \), the above resonance condition is found to involve the functions \(u_1 \) and \(\phi \), rather than an identity. Analysis allows one to conclude that, Eq. (1) does not possess the Painlevé property, in particular, is presumably not integrable.
3. Soliton solutions

Now we turn our attention to the integrability criterion related to solitary wave solutions. We take the attitude that the solutions of integrable PDEs can split apart into N-soliton for all values of N. Following this criterion, we look for the N-soliton solutions of Eq. (1).

Substituting the quantities

\[u = \exp(\xi), \quad \xi = kx + ly + mz + ct, \]

into the linear terms of Eq. (1), we obtain the dispersion relation

\[c_i = k_i^3 + \frac{3(k_i^2 - m_i^2)}{l_i}, \quad i = 1, 2, \ldots \]
(6)

As a result, the dispersion variable \(\xi \) reads

\[\xi_i = k_i x + l_i y + m_i z + (k_i^3 + \frac{3(k_i^2 - m_i^2)}{l_i}) t. \]
(7)

3.1. One-soliton solution

The form of one-soliton is

\[f = 1 + \exp(\xi). \]

This function \(f \) is a solution of Eq. (3) with the dispersion variable (8) in the case \(i = 1 \). The one-soliton solution of Eq. (1) is given by

\[u = \frac{2k_1 \exp \xi_1}{1 + \exp \xi_1}, \]

through Eq. (4).

3.2. Two-soliton solution

The situation for two-soliton we consider is

\[f = 1 + \exp(\xi_1) + \exp(\xi_2) + A_{12} \exp(\xi_1 + \xi_2), \]

with \(\xi_1 \) and \(\xi_2 \) satisfy dispersion variable (8). If the value of phase shift \(A_{12} \) satisfies

\[A_{12} = \frac{k_1 k_2 l_1 l_2 (k_1 - k_2) (l_1 - l_2) - (k_1 l_2 - l_1 k_2)^2 + (l_1 m_2 - m_1 l_2)^2}{k_1 k_2 l_1 l_2 (k_1 + k_2) (l_1 + l_2) - (k_1 l_2 - l_1 k_2)^2 + (l_1 m_2 - m_1 l_2)^2}, \]

then \(f \) is a solution of Eq. (3). Moreover, the exact two-soliton solution of Eq. (1) is

\[u = \frac{2(k_1 \exp \xi_1 + k_2 \exp \xi_2) + A_{12}(k_1 + k_2) \exp(\xi_1 + \xi_2)}{1 + \exp(\xi_1) + \exp(\xi_2) + A_{12} \exp(\xi_1 + \xi_2)}. \]
(9)

3.3. Three-soliton solution

Now, we postulate an explicit form of three-soliton solution as

\[f = 1 + \exp(\xi_1) + \exp(\xi_2) + \exp(\xi_3) + A_{12} \exp(\xi_1 + \xi_2) + A_{13} \exp(\xi_1 + \xi_3) \]
\[+ A_{23} \exp(\xi_2 + \xi_3) + A_{12} A_{13} A_{23} \exp(\xi_1 + \xi_2 + \xi_3). \]

(9)

here,

\[A_0 = \frac{k_k k_i l_i (k_i - k_j) (l_i - l_j) - (k_i l_j - l_i k_j)^2 + (l_i m_j - m_i l_j)^2}{k_0 k_i l_i (k_i + k_j) (l_i + l_j) - (k_i l_j - l_i k_j)^2 + (l_i m_j - m_i l_j)^2}. \]

Furthermore, the formula (9) is a solution of Eq. (3) only if the equality

\[(l_1 B_1 + l_2 B_2 + l_3 B_3 + l_1 l_2 l_3 (k_1 + k_2)(k_1 + k_3)(k_2 + k_3)) \]
\[(l_1 + l_2 + l_3) A_{12} A_{13} A_{23} + (-l_1 B_1 - l_2 B_2 + l_3 B_3) \]
\[+ l_1 l_2 l_3 (k_1 + k_2)(k_1 - k_3)(k_2 - k_3)(l_1 + l_2 - l_3)) A_{12} \]
\[+ (-l_1 B_1 + l_2 B_2 - l_3 B_3 - l_1 l_2 l_3 (k_1 + k_2)(k_1 + k_3)(k_2 + k_3)) \]
\[(l_1 - l_2 + l_3) A_{13} + (l_1 B_1 - l_2 B_2 - l_3 B_3 - l_1 l_2 l_3 (k_1 + k_2) \]
\[(k_1 - k_2)(k_2 + k_3)(l_1 - l_2 - l_3)) A_{23} = 0, \]
vanishes identically, with
\[B_1 = (l_2 m_1 - l_3 m_2)^2 - (k_2 l_3 - k_3 l_2)^2, \]
\[B_2 = (l_1 m_3 - l_2 m_1)^2 - (k_1 l_3 - k_3 l_1)^2, \]
\[B_3 = (l_1 m_2 - l_2 m_1)^2 - (k_1 l_2 - k_2 l_1)^2. \]
Therefore, the formula (9) is not a solution of Eq. (3). Eq. (1) possesses neither three-soliton solution nor \(N \)-soliton solutions for any \(N > 3 \). It is obvious that Eq. (1) do not have solitary wave solutions with elastic collisions.

4. Lump-type solutions

Although Eq. (1) is non-integrable on its own in the sense of both Painlevé property and multi-soliton criterion, we can still look for some exact solutions. In what follows, we study lump-type solutions \([16–21]\) of Eq. (1) through searching for positive quadratic function solution
\[f = g^2 + h^2 + c_0, \quad (10) \]
with
\[g = a_1 x + a_2 y + a_3 z + a_4 t + a_5, \]
\[h = b_1 x + b_2 y + b_3 z + b_4 t + b_5, \]
to the bilinear Eq. (3), where \(a_i, b_i, c_0, 1 \leq i \leq 5 \), are real parameters to be determined. We note that all the solutions obtained through Eq. (10) do not satisfy the criterion of localizing in all directions in space, therefore, they are not lump solutions. However, they are rationally localized in many directions in space, so this kind of solution is called lump-type solution \([8]\). Substitution of Eq. (10) into Eq. (3) shows that \(f \) is a solution of the equation provided that some relations of the parameters hold. Two sets of them are analyzed in detail.

The first set of constraining relations among the parameters is
\[(a_1 = -\frac{b_1 b_2}{a_2}, a_2 = \frac{3(b_2^2 b_2^3 - a_2^2 a_2^3)}{a_2^3}, b_3 = b_1 (a_2^2 + b_2^2) + b_1 a_2 b_2, b_4 = -3(a_2 a_3 + b_1 b_2)(2a_2^3 b_1 + a_2 a_3 b_2 + b_1 b_2^2), a_2^4) \]
which needs to satisfy \(a_2 \neq 0 \) to make the corresponding solution \(f \) to be well defined. The condition \(c_0 > 0 \) guarantees the positiveness of \(f \). In addition, the determinant condition \(\Delta_1 = a_1 b_2 - a_2 b_1 = -\frac{b_1 b_2}{a_2} (a_2^2 + b_2^2) \neq 0, \Delta_2 = a_1 b_3 - a_2 b_2 = \frac{b_1 (a_2^2 + b_2^2)}{a_2} \neq 0 \) means that directions of \((a_1, a_2)\) with \((b_1, b_2)\) in the \(xy \) plane, \((a_1, a_3)\) with \((b_1, b_3)\) in the \(xz \) plane and \((a_2, a_3)\) with \((b_2, b_3)\) in the \(yz \) plane are not parallel.

These parameters in this set yield the positive quadratic function solution of \(f \) as
\[f = \left(-\frac{b_1 b_2}{a_2} x + a_2 y + a_3 z \frac{3(b_2^2 b_2^3 - a_2^2 a_2^3)}{a_2^3} + a_5 \right)^2 + (b_1 x + b_2 y + \frac{b_1 (a_2^2 + b_2^2)^2}{a_2^2} + a_2 b_2 \frac{3(a_2 a_3 + b_1 b_2)(2a_2^3 b_1 + a_2 a_3 b_2 + b_1 b_2^2)}{a_2^4} + b_3 z + b_4 t + b_5)^2 + c_0, \]
which leads to the lump-type solution
\[u = \frac{4(-\frac{b_1 b_2}{a_2} g + b_1 h)}{g^2 + h^2 + c_0}, \quad (11) \]
the functions of \(g \) and \(h \) are given as follows,
\[g = -\frac{b_1 b_2}{a_2} x + a_2 y + a_3 z + \frac{3(b_2^2 b_2^3 - a_2^2 a_2^3)}{a_2^3} t + a_5, \]
\[h = b_1 x + b_2 y + \left(\frac{b_1 (a_2^2 + b_2^2)^2}{a_2^2} + a_2 b_2 \frac{3(a_2 a_3 + b_1 b_2)(2a_2^3 b_1 + a_2 a_3 b_2 + b_1 b_2^2)}{a_2^4} \right) z + \frac{3(a_2 a_3 + b_1 b_2)(2a_2^3 b_1 + a_2 a_3 b_2 + b_1 b_2^2)}{a_2^4} t + b_5, \]
to the \((3+1)\)-dimensional generalized KP Eq. (1) under the transformation (4).

To show the localized behavior of the presented lump-type solution clearly, 3D plots, contour plots and curves with particular choices of the involved parameters in the potential function \(u \) are plotted in Fig. 1.
Fig. 1. Profiles of lump-type solution of u via Eq. (11) with parameters $\{a_2 = 3, a_3 = 3, b_1 = 1, b_2 = 1, b_5 = 3, c_0 = 2\}$ at $\{t = 0, z = 1\}$, $\{t = 0, x = 1\}$, $\{t = 0, y = 1\}$. 3D plots (top), contour plots (middle) and curve plots (bottom), correspondingly.

The second set of constraining conditions on the parameters is

$$
\begin{align*}
\{a_4 & = \frac{3a_2^2}{a_2} - \frac{3(a_2(a_2^2 - b_2^2) + 2a_3b_2b_3)}{a_2^2 + b_2^2}, b_1 = \frac{a_1b_2}{a_2}, \\
\{b_4 & = \frac{3a_2^2}{a_2} - \frac{3(b_2(b_2^2 - a_2^2) + 2a_2a_1b_1)}{a_2^2 + b_2^2}, c_0 = \frac{a_2^2(a_2^2 + b_2^2) + 2a_3b_2b_3}{a_2^2(a_2b_2 - a_3b_2)^2}\}
\end{align*}
$$

This set of parameters generates quadratic function solution defined by Eq. (10), to the bilinear Eq. (3), and further the resulting quadratic function solution yields lump-type solution,

$$
\begin{align*}
u & = \frac{\frac{4(a_1g + a_2b_2h)}{a_2}}{g^2 + h^2 + \frac{a_2^2(a_2^2 + b_2^2)^3}{a_2^2(a_2b_2 - a_3b_2)^2}}.
\end{align*}
$$
Fig. 2. Profiles of lump-type solution u of Eq. (12) with parameters $\{a_1 = 1, a_2 = 1, a_3 = 3, a_5 = 3, b_2 = 2, b_3 = 1, b_5 = 4\}$ at $\{t = 0, z = 1\}, \{t = 0, x = 1\}, \{t = 0, y = 1\}$. 3D plots (top), contour plots (middle) and curve plots (bottom), correspondingly.

here, the functions g and h satisfy

$$g = a_1 x + a_2 y + a_3 z + \left(\frac{3a_1^2}{a_2} - \frac{3(a_2(a_2^2 - b_2^2) + 2a_3b_2b_3)}{a_2^2 + b_2^2} \right) t + a_5,$$

$$h = \frac{a_1b_2}{a_2} x + b_2 y + b_3 z + \left(\frac{3a_1^2b_2}{a_2^2} - \frac{3(b_2(b_3^2 - a_3^2) + 2a_3b_3b_1)}{a_2^2 + b_2^2} \right) t + b_5.$$

If the conditions $a_2 \neq 0$ and $a_2b_3 - a_3b_2 \neq 0$ are satisfied, this class of rational function solutions is well defined. If we choose the parameters guaranteeing $a_1a_2 > 0$, the analyticity of the rational solution can be achieved. The conditions $a_2b_3 - a_3b_2 \neq 0$ and $a_1b_3 - a_3b_1 \neq 0$ guarantee that directions $\langle a_2, a_3 \rangle$ with $\langle b_2, b_3 \rangle$ and $\langle a_1, a_3 \rangle$ with $\langle b_1, b_3 \rangle$ are not parallel in the yz plane and xz plane, while another corresponding determinant condition $a_1b_2 - a_2b_1 = 0$ indicates that two directions $\langle a_1, a_2 \rangle$ and $\langle b_1, b_2 \rangle$ in the xy plane are parallel. See plots in Fig. 2.

5. Summary

In this paper, we have carried out the Painlevé test and the multi-soliton analysis for a $(3+1)$-dimensional generalized KP equation. Both the Painlevé property and the multi-soliton criterion show that Eq. (1) is not completely integrable. Our result shows that Eq. (1) is only integrable in a conditional sense and its solitary wave solution can be split apart into three solitons, while an additional quantity has to vanish identically. Such a characteristic is generally considered to be incompatible with integrability.
In addition, based on the Hirota bilinear formula, we have analyzed positive quadratic function solution and thereby lump-type solutions of the corresponding generalized KP equation. The conditions imposed on the parameters have been explicitly presented to guarantee the well-definedness, the positiveness and the localization of the solutions. Those solutions can help us recognize the solvability characteristics of the considered partial differential equations.

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Nos. 11435005, 11371326, 11371086 and 11571079), National Scholarship Fund (No. 201706140135), Shanghai Knowledge Service Platform for Trustworthy Internet of Things (No. ZF121), NSF under the grant DMS-1664561, the 111 Project of China (B16002), Natural Science Fund for Colleges and Universities of Jiangsu Province under the grant 17KJB110020, The Key Project of Shanghai Municipal Science and Technology Commission (No. 18511103105) and the distinguished professorships of the Shanghai University of Electric Power and Shanghai Polytechnic University.

References