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ARTICLE INFO ABSTRACT

Keywords: The inverse scattering transform is utilized to address the initial-value problem for the fourth-
Inverse scattering transform order nonlinear Schrodinger equation characterized by fully asymmetric non-zero boundary
The f‘?urth"’rder nonlinear Schrédinger conditions. This work considers the fully asymmetric scenario for both asymptotic amplitudes
equation i and phases. The direct problem demonstrates the establishment of the corresponding analytic
Fully asymmetric non-zero boundary . . . . . . .

conditions properties of eigenfunctions and scattering data. The inverse scattering problem is approached

Right and left Marchenko equations using both (left and right) Marchenko integral equations and is also formulated as the Riemann—

Riemann-Hilbert problem Hilbert problem on a single sheet of the scattering variable. The temporal evolution of the
scattering coefficients is subsequently deduced, revealing that in contrast to solutions with
uniform amplitudes, both reflection and transmission coefficients exhibit a nontrivial time
dependency here. The findings of this paper are expected to be pivotal for exploring the long-
time asymptotic behavior of the fourth-order nonlinear Schrédinger solutions with significant
boundary conditions.

1. Introduction

Since the inception of the inverse scattering transform (IST) for the solution of the Korteweg—de Vries (KdV) equation utilizing
a Lax pair [1], this methodological framework has been progressively extended to encompass a broader spectrum of physically
significant nonlinear wave equations that also admit Lax pairs [2,3]. Prominent among these are the nonlinear Schrédinger (NLS)
equation [4], the modified Korteweg—de Vries (mKdV) equation [5], the Benjamin—-Ono equation [6], the Kadomtsev—-Petviashvili
equation [7], and the Davey-Stewartson equation [8], among others. The NLS equation and its various extensions have emerged as
particularly intriguing models within the nonlinear science domain, finding applications across diverse fields such as shallow water
waves [9], Bose-Einstein condensates [10,11], deep ocean dynamics [12], and even in financial modeling.

The IST stands as a powerful and versatile analytical tool in the study of integrable systems, facilitating the derivation of soliton
solutions that are pivotal in understanding the behavior of these systems [13]. Its application has been prolific in exploring a
multitude of integrable nonlinear wave equations. Beyond the foundational NLS equation, the scope of IST has been broadened to
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include the Sasa-Satsuma equation [14,15], the nonlocal mKdV equation [16] and the derivative NLS equation [17,18], thereby
enriching our comprehension of soliton dynamics across different physical contexts. This expansion underscores the adaptability
and profundity of IST as a cornerstone technique in the theoretical exploration of nonlinear phenomena [19,20].

The Riemann-Hilbert (RH) method as a modern variant of the IST has streamlined the computational process of IST and has
garnered extensive applications. In recent years, the study of soliton solutions for integrable systems under both zero and non-zero
boundary conditions (NZBCs) via the RH method has attracted significant attention [21,22]. Notable achievements have been made
using the RH method, including the Sasa—Satsuma equation [23], the matrix KdV equation [24], the modified NLS equation [25],
the three-component coupled NLS equation [26] and the Gerdjikov-Ivanov equation [27], among others. The procedure of the RH
method can be summarized as follows: Initially, initial values in the Schwartz space are considered, and the associated scattering
data is obtained through spectral analysis. Subsequently, the scattering data related to time ¢ is acquired through temporal evolution,
and a relationship between the solutions of the original equation and the solutions of the RH problem is established. Ultimately,
the general form of exact solutions corresponding to simple and second-order zeros under the reflectionless condition is obtained,
and the propagation behaviors of different solutions with specific parameters are analyzed.

The fourth-order NLS equation, a fundamental model in the study of nonlinear optics, deep ocean and Bose-Einstein condensates
has been a subject of intensive research due to its complex dynamics and practical significance [28-30]. The higher-order effects
play an important role in the wave propagations of ultrashort (e.g. subpicosecond or femtosecond) light pulses in optical fibers. This
study aims to investigate the characteristics of the fourth-order NLS equation [28-30]:

i, + 011 (e, +21q1” @) + 101Gy +61a170,) + 013(@er + 410,12 q + 6020" + 84, lal* + 2477, +6lgl*q) =0, e})

where g = g(x,1) denotes a scalar function and the real constants o, 0|, and o3 correspond to the second-order, third-order and
fourth-order dispersions, respectively. When ¢, and 6,3 = 0, Eq. (1) simplifies to the NLS equation [4], a classical equation that
describes the plane self-focusing and one-dimensional self-modulation of waves in nonlinear dispersive media. As ¢y} = oy3 = 0,
Eq. (1) becomes the complex mKdV equation [31]. Given that 6,3 = 0, Eq. (1) reduces to the Hirota equation [32,33], which
was used to describe the propagation of ultra-short light pulses in optical fibers. The Hirota equation first introduced by Hirota in
1973 has since become a focal point in the realm of nonlinear science. Under the assumption that 6, = 0, Eq. (1) becomes the
Lakshmanan-Porsezian—-Daniel (LPD) equation [34], which is equivalent to the lowest order continuum limit of the Heisenberg spin
chain. The integrability of the fourth-order NLS equation stems from its composition as the sum of LPD equation and complex mKdV
equation [31], which are partial differential equations belonging to the same hierarchy, along with the integrable commutative
flows derived from the NLS equation [4]. Discussions on the soliton solutions of systems with NZBCs have been presented, as well
as studies on rogue waves and rational solutions of the fourth-order NLS equation [30]. Whether dealing with nonlinear integrable
systems with zero or non-zero backgrounds, exact solutions can be obtained through various approaches, such as the IST [35] and
the Darboux transformation [36].
The objective of this research is to elaborate the IST for Eq. (1), particularly in the context of fully asymmetric NZBCs:

(2ioy; BZL/R+6ial3 Bi/R)t+i5L/R’

q(x,1) = qp /(1) = By /e X = Foo, (2)

where Bgp > B; > 0 and 0 < §;,g < 2r are arbitrary constants. The focusing and defocusing NLS equations [37,38] with fully
asymmetric NZBCs have been studied and correspondingly extended to the focusing and defocusing mKdV equations [39] in few-
cycle pulses, the focusing and defocusing Hirota equations [40,41] and the defocusing LPD equation [42]. When the amplitudes of
the solutions diverge as x — +oo0, it becomes infeasible to define a uniformizing variable in the spectral domain. Such a variable
would otherwise facilitate the mapping of the multi-sheeted Riemann surface associated with the scattering parameter, onto a
singular complex plane. From a practical standpoint in physics, fully asymmetric NZBCs hold particular importance for theoretically
exploring rogue waves and perturbed soliton solutions within microstructured optical fiber systems. These systems feature distinct
background amplitudes at the fiber’s termini. Moreover, this research bears relevance to elucidating the function of soliton solutions
in the nonlinear progression of modulation instability within such contexts.

The structure of the paper is summarized as follows. Section 2 focuses on the direct scattering problem. We begin by defining
the Jost solutions and elucidating their continuity and analyticity properties. The symmetries linking eigenfunctions and scattering
data are also explored. Moreover, we investigate the properties of the discrete spectrum and the trace formula. Finally, a systematic
analysis of the behavior of eigenfunctions and scattering data for large values of g is conducted, where g represents the conventional
complex scattering parameter utilized within the IST framework. In Section 3, we develop two triangular representations for the
fundamental eigenfunctions. Furthermore, the inverse problem will be addressed using both (left and right) Marchenko integral

L/R
reconstructing the eigenfunctions and the potential based on the scattering data. Section 4 offers an alternati\//e approach to the
inverse problem, formulated as the RH problem for the eigenfunctions, where the discontinuities are described using the scattering
data. Additionally, this section addresses the temporal evolution of the eigenfunctions and scattering coefficients. Section 5 contains
concluding remarks. Additional technical proofs are compiled in Appendices A and B.

equations and formulated as the RH problem on a unified sheet of the scattering variable §; /r = 4/ g2+ B? . which involves

2. Direct scattering problem
2.1. Lax pair and the fundamental eigensolutions

The fourth-order NLS equation (1) is commonly linked to the following Lax pair:

v, =Xy, y, =Ty, 3
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where y = y(x,1) and X = X(g; x,t) = —igo3 + Q, with the matrix denoted by T is shown below:

T =T(g; x,1) = 01, [28Q — 2ig%s3 + io3(Q, — QN1 + 01,[4g°Q — dig’ o3 + 2igo3(Q, — Q%) + 2Q°
- Q,, +Q,Q-QQ,] +0y3[8ig*c; — 8g°Q — 4ig%s3(Q, — Q%) - 6i53Q?Q, Q)
- g(4Q* - 2Q,, +2Q,Q - 2QQ,) +i3(3Q* + Q. + Q> - Q,,Q - QQ,,)],

where the expressions for the matrices o,, 63 and Q = Q(x,t) are delineated below:

0 i 10 0
2= (0 0) o= 5) e (G 0) ®

We will now examine potentials with nontrivial boundary conditions, assuming that B; > B; > 0. It should be noted that although
the asymptotic amplitudes B,z can be considered time-independent, the asymptotic phases evolve according to the following
expressions: 6, /(1) = (20, Bi Rt 60, 3B‘i / )t + 6, /r. Consequently, unlike the case of equal-amplitude boundary conditions where
By = B, it is unfeasible to remove the background and make both boundary conditions time-independent.

This section explicitly disregards temporal dependence. Integrability condition is assumed whether ¢ = 0 or for any ¢ > 0:

(B)) : /0 (1 + xIY Tla(=x) — a1 | + 1g(x) — gglldx < +oo, ©)

the assumption of j = 0, 1,2 applies to all # > 0. Note that the condition (B;) is equivalent to assuming (q(x) — g, /R) € LY(RF). We
use Qg(?) to represent the limit of Q(x,t) as x - +o0, and Q, (?) to represent the limit of Q(x,?) as x - —oo. Let the matrix Q,(x,?)
be defined as follows:

Q. (x, 1) = Qr()u(x) + QL (Ou(—x), 7)
where u(x) is the Heaviside function. It is beneficial to introduce the operators in the limit x — Foo:

Gy r(8) = —igo3 + Qr/r.  G(x,8) = —igoz + Qu(x) = Gr(g)u(x) + G (gu(—x), (8)
and introduce the fundamental eigensolutions U(x, g) and V(x, g) that satisfy the asymptotic conditions:

U(x, g) = €Cr@[L, + o(1)], x — +o0, (9a)
Vix,g) = CLO[I, + o(1)], x - —co. (9b)

The exponential function ¢*2/&® remains bounded for all x € R if and only if G, /r(8) is diagonalizable and its eigenvalues are
either zero or purely imaginary. This condition holds if and only if § € RU (<iB; /g,1B; g). For g = *iB, /g, the norm of the group
e*61/r® increases linearly with x as x — Foo. Appendix A provides detailed norm estimates, as well as proofs for a proposition and
two theorems discussed in this section.

Proposition 1. Assume the potential satisfies (B,). Then the fundamental eigensolution ﬁ(x, g) which exhibits asymptotic behavior (9a)
can be uniquely determined as

0

U(x, g) = eOr® — / X CRDIQ(y) ~ QplU(rg)dy, g € RU(=iBg,iBg). (10)
X

Furthermore, the function U(x, g) exhibits continuity for all xo < x, where x, is any finite value, and it remains continuous as a function

of g across the entire domain g € RU (—iBpg, iBg). Likewise, the fundamental eigensolution V(x, g) which exhibits asymptotic behavior (9b)

can be uniquely determined as

X

Vi =e0utt s+ [~ 6u01Q0) - IV by 8 € RUBiB,) an
—0o0

Furthermore, the function \7(x, g) exhibits continuity for all x < x, and it remains continuous across the entire domain g € RU (—iB,iBy).

Moreover, under the assumption (B,), U(x, g) (10) [resp. V(x,g) (11)] has a unique and continuous solution for g € [—iBg,iBg] [resp.

g € [-iB;,1B;1]. The findings can be extended to the respective branch points.

Assuming (B)), it is possible to substitute the integral equations (10) and (11) with alternative formulations. Let the matrix
W(g; x, y) in the following manner:

Wgix. y) = uOu(E™RE + p(=x)u(=p)e®LE + p(0)pu(=p)e RO CLE 4 p(—x)u(y)e O EeOrE), (12)

The matrix function W(g; x, y) is continuous with respect to (g; x,y) € R? x C and fulfills the associated initial value problems:

0W(§;x, 2 G(x,©)W(g:x,y), W(gy,y) =1, (13a)
THELY - Wik 9GO0 Wigin) =L (130)
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By employing Egs. (13a) and (13b), it can be readily verified that the fundamental eigenfunctions also adhere to the integral
equations:

Ulx, g) = W(g; x,0) — / W(g: x, »IQY) — Q(IU(, g) dy, (14a)

Vix,g) = W(g; x,0) + / W(g; x, »[QW) — QIV(y, g)dy, (14b)

where W(g; x,0) = pu(x)e*6r® 4+ y(—x)e*61® as specified in Eq. (12). It is important to observe that Eq. (14a) aligns with Eq. (10)
for x > 0, and Eq. (14b) aligns with Eq. (11) for x < 0. Furthermore, by applying Eq. (12), we obtain

Ux, g) = e¥6L©® [12 - / W(g; 0, »IQ(M) — QU &) dy] , x<0, (15a)

V(x, g) = e¥6r® [Iz + / W(g:0,»[Q0) — Q,MIV(y. ) dy] . x20, (15b)

where the integrals on the right-hand sides converge absolutely as x — Foo. It should be noted that the fundamental matrix
W(g; x,y) depends on both groups ¢*¢/8®_ Consequently, the integral equations (14a) and (14b) are applicable only for defining
the fundamental eigenfunctions ﬁ(x, g) and V(x, g) when g € RuU [-iB;,iB;]. The condition % dety = trXdety = 0 is used to
determine that det ﬁ(x, g) = det V(x, g) = 1 and considering the asymptotic behavior (9a) and (9b).

2.2. Jost solutions
Given that the asymptotic scattering operators G /r(8) are traceless and obey the relation G2L / &) = —(g% + Bi / Db it is

reasonable to introduce the conformal mappings f;,x = /g% + Bi /R with branch cuts defined along the imaginary intervals
Zp/r = [=iB g, 1B g]. By employing suitable local polar coordinates, we proceed to define

Br = VA e @2 g =\ [7 T el t0/2 (16)
where 4; > 0 and -7/2 < §; <3z/2 for j = 1,2,3,4 as indicated in Fig. 1. We shall examine a single sheet of the complex plane for
g, and let A represent the plane with cuts along the segments =,z on the imaginary axis. Let C* denote the open upper/lower
complex half-planes, respectively, and let Af /r Tepresent the corresponding open upper/lower complex half-planes with cuts along
E/r- Pr establishes a bijective mapping across the ensuing domains:

+ g€ A} =C*"\(0,iBg] and pp € C*.

. ge@A};:Ru{ih—OJr 10<h<Bg}U{iBg}u{ih+0" : 0<h < Bg} and fz € R.

* § € Ay =C7\[-iBg,0) and pp € C.

. ge@A;:RU{ih—O*’ P =Br<h<0}uU{-iBr}U{ih+0% : =B < h <0} and gy € R.

Similarly, g, establishes a bijective mapping among the subsequent domains:

. geAz =C*\(0,iB;] and p; € C*.

. geaA‘2=]Ru{ih—0Jr :0<h<B}U{iB }U{ih+0t : 0<h < B;} and f;, €R.
*+g€A; =C"\[-iB.,0) and , € C".

. geaAz=Ru{ih—0+ =B, <h<0}uU{-iB }u{ih+0" : =B; <h <0} and ; €R.

It is important to note that with this selection of branch cuts, gz ~ g, ~ g as g > o« throughout the entire plane (see Eq. (156)).
Subsequently, ﬂ;—’(g) [resp. ﬂ;—;(g)] will represent the boundary values of g, (g) [resp. fr(g)] for g € =, [resp. g € =], taken from

the right/left edge of the cut, with

Br(e)==\/B2—lgl’, g=ih=0", |n<B, (172)
pi(e)==\/BY— g%, g=ih+0", |h| < Bpg, (17b)

on the right/left edge. It is evident that +if, /, are the eigenvalues of G, /x(g), and the corresponding eigenvector matrices E; /x(g)
satisfy

GL/R(g)EL/R(g) = —iﬂL/REL/R(g)O'y (18)
where
i03Qp
E; p(g) =1, - ——. (19
L/R'E 2 Brirt+8

We may subsequently define the Jost solutions utilizing the fundamental eigensolutions in the following manner:

U(x, &) = [(x, g). u(x, &) := U(x, ©)ER(8), (20a)
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Img Img
Br=+/(9—iBr)(g +iBr) Br = ivVA1 A g= e Br =+/(9 —1BL)(g +iBL) Br = ivVAsh g=Ael®
1P 3 _--3F
e Bl TN e Bl N
Br=—vVMN|Br=vVNi -~ S Br= VA | BL=VAsh o S
. . IN
Br=—VAiha NS Br=VAA Br = —vAshi NS Bi=vVih
- Reg - Reyg
,’I/\z ,'//\,1
—iBr /\52 —iBy, /\‘54
Br = —ivV A1 A2 Br = —ivAz\

Fig. 1. The branch cuts for fp = y/g + B and f, = 1/g2 + B2: we define f = /4, 4,¢®*+)/2 with 1, = |g —iBg|, 4, = |g +iBg| and angles —z/2 < §,,6, < 3x/2.
Similarly, p, = \/A;A,e!®*+%/2 with i; = |g —iB,|, 4, = |¢ +iB,| and angles —7/2 < 85,6, <3x/2.

V(x,8) = (v(x,8), ¥(x, 8)) 1= V(x, 9E(g). (20b)
Alternatively, they can be characterized as solutions to the scattering problem exhibiting the following asymptotic behavior:

Vix,8) ~E(9)e™1%%  x — —oo, (21a)

U(x, g) ~ Eg(g)e /R x — 40, (21b)

The Jost solutions u(x, g) and u(x, g) [resp. v(x, g) and V(x, g)] are defined for f € R [resp. f; € R], where g lies on the boundary
of dA; UOJA, [resp. aAz UAA] 1. Specifically, when g = ih € [iBg,iBg] [resp. g = ih € [-iB;,iB]], the solutions on the right/left
edge of the cut in both half-planes are distinguished by the superscripts +, respectively.

Ut (x,ih) = @ (x, ih), ut(x,ih) := UCx,inEg(ih £0%), |h| < Bp, (22a)
VE(x,ih) = (vE(x,ih), VE(x,ih)) := V(x,in)E(ih £ 0%), |h| < Bj. (22b)
Given that V(x, g) [resp. ﬁ(x, £)] remains single-valued across the cut, and E; (g) [resp. Ex(g)] is characterized by right/left limits

as specified in Eq. (17a) [resp. Eq. (17b)]. The subsequent theorems delineate the analytic characteristics of the Jost solutions with
respect to g. The conventional over-bar notation is employed to signify the closure of a set.

Theorem 1. Assuming (B,) is satisfied for x € R, u(x, g) [resp. U(x, g)] extends to a function that is continuous on g € A_;U AL [resp.
gE AU 6A;] and analytic within g € A; [resp. g € AI‘{]. Likewise, v(x,g) [resp. V(x,g)] extends to a function that is continuous on
gE AT UIA] [resp. g € A_Z U JAT] and analytic within g € A} [resp. g € A} ].

Theorem 2. Assuming (B,) is satisfied for x € R, the derivative dgu(x, g) [resp. agﬁ(x, g)] extends to a function that is continuous on
g € AR UIA\{~iBg} [resp. g € A UAAFR\(iBg}] and analytic within g € A, [resp. g € A}]; the derivative d,v(x, g) [resp. 9,¥(x, g)]
extends to a function that is continuous on g € Az UIAT\{—iB_} [resp. g € AzudA’i\{iBL }] and analytic within g € A7 [resp. g € AZ].

The entities Af r are to be understood as analytic manifolds. The continuity of the Jost solutions across the cuts is defined in
terms of the existence of right/left continuous limits, which are only considered within the domains where the branch cut constitutes
a boundary of the analytic manifold. In regions of the half-planes where analytic continuation is not possible near the branch cut,
the functions u*(x,g) and W*(x, g) [resp. v*(x,g) and V*(x,g)] are defined according to the two possible values of g3 [resp. f7].
These functions can be uniquely determined by solving the associated Volterra integral equations.

2.3. Scattering matrix and its coefficients

By examining the integral equations for the fundamental matrices given in Egs. (15a) and (15b), it is straightforward to deduce
that

U(x, g) = e CL@[Ag(g) + o(1)], x — —o0, (23a)
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Vx,g) = e CrO[A (g) +o(1)], x — +oo, (23b)
where

Ar@ =T, - / : Wig:0,[Q0) - QTG 2 dy, 24a)

A@=L+ / : W(g: 0, »IQW) — Q,IV(y.g) dy, (24b)

with the matrices A (g) and A, (g) are mutual inverses. The assumptions of Proposition 1, in conjunction Egs. (23a), (23b) with (144),
lead to the conclusion that det Az(g) = det A;(g) = 1 for g € RU[-iB;,iB; ]. The scattering matrices C(g) and H(g) can subsequently
be represented as follows:

(v(x, £), ¥(x, 8)) = (@(x, g), u(x, £)C(g), (25a)
(U(x, g), u(x, g)) = (v(x, g), ¥(x, g)H(g), (25b)

with the scattering matrices C(g) = (c;;(g)) and H(g) = (h;;(g)) are clearly mutual inverses, and they are defined as

C(e) =ER (©AL(DE(9), H(g) = E;' (@AR(®)ER(s). (26)

It is apparent that C(g) [resp. H(g)] is generally defined wherever all four Jost solutions exist, specifically for ¢ € A7 UOAT [resp.
gEOIATU aAz\{i—iB 1}, the branch points are omitted due to the second condition]. When g € [-iB,,iB, ], the scattering matrices
and its coefficients are determined by the values on the right/left boundary of the cut, and are denoted with superscripts + as
explained below. Given that det V(x, g) and det U(x, g) are independent with respect to x, it is straightforward to confirm that

detE;(g) _ frL(Br+8) detEg(g) _ Pr(bL +8)

det C(g) = = , detH(g) = = s R, 27
OO B Bebre YT G T At ©C @72)
+ + + +
det C=(g) = ﬂi(g)[ﬁ,i(g) +g]’ det HE(g) = ﬁ,i(g)[ﬂi(g) +g]’ ¢ € (<iB,.iB,). (27b)
Br@Ip(8) + gl B (@IPR(8) + &l
Egs. (25a) and (25b) provide the determinant expressions for the subsequent scattering coefficients:
_ det(v,u) _ fr+g _b+sg _ Pr(BL+8)
c(e) = Gt . 2, det(v,u), hy(g) = 25, det(v,u) = RG] +g)0n(g), (28a)
_detﬁ,%_ﬂR+g _BrL+s _ Br(BL+2)
cxn(g) = det(a. ) = 2 det(@,v), hy(g) = 28, det(@,v) = —ﬂL(ﬂR s ¢ (8), (28b)
_ det@,v) _ fr+g _bL+sg _ _Br(B+g)
c1(8) = et 20 det@,v), hyy(g) = 25, det(u, V) = IRCEY) +g)c.2(g), (280)
_detVow) _ frtsg o _PLts ~ _ Br(BL+2)
cp(g) = det(a. ) = 2 det(v,u), hy(g)= 28, det(v,u) = —ﬁL(ﬂR e c1(8), (28d)

where the arguments (x, g) of the Jost solutions are omitted for the sake of brevity. Observe that the aforementioned determinant
representations facilitate the definition of the scattering coefficients’ values from the right/left edge of the cuts Z, /5. Specifically,

we have

fr@)+g

£ (g) = B —— det(v¥(x.).u*(x.g)). g€ (~iB,.iBp). (292)
26%(9)

. Pr@+e . - .

¢, (8) = —Zﬂﬁ(g) det(@*(x, g), V= (x,8)), g € (—iBg,iBy), (29b)
Prle) +g

5 (8) = ———— det(@*(x, g), v5(x,2)), g € (~iBy,iBg), (29¢)

CZ]g ZﬂE(g) ct(u—(x,g),v-(x, g 8 lLlR
PR +eg

() = ———— det(V(x, £).u*(x,g)), g € (-iBg,iBy), (29d)

612 g zﬂl—{(g) X, 8 X, 8 I4 1bp,1D)

and analogously for the scattering coefficients derived from the left.
Then Egs. (28a), (28b), (28¢) and (28d) enable the extension of certain scattering coefficients under the assumption (B)). Indeed,
this is corroborated by Theorem 1, which indicates that:

* ¢11(g) [resp. ¢ (g)] is continuous for g € A_;; UJAT\(iBg} [resp. g € A_EU aAZ\{—iBR}] (with values across the cut denoted
as cli1 (g) [resp. cziz(g)]), and analytic in g € A} [resp. g € A}], while

iB
en(g) ~ ‘27" det(v(x, iBg), u(x, iBg)), g — iBg, (30a)
R
" )
ern(g) ~ —1272 det@(x, —iBg), ¥(x, —iBg)), g — —iBp. (30b)
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* ¢31(g) [resp. ¢15(g)] is continuous for IAF UIAT\{iBg} [resp. dAL UIAT\{~iBg}] (with values across the cut denoted as cJ; (¢)
[resp. cliz(g)]), while

iB
5, (g) ~ 1272 det(u(x,iBg), v(x,1Bg)), g — iBp, (31a)
. iBg . . .
c5(8) ~ T det(V(x, —=iBg),u(x,—iBg)), g — —iBg. (31b)

Corresponding results can be derived for the remaining four scattering coefficients and their properties can also be deduced from the
previous ones using Egs. (28c) and (28d). Egs. (30a), (30b), (31a) and (31b) demonstrate that the scattering coefficients typically
exhibit singularities at the branch points g = +iBy, specifically when g = 0.

For ease of future reference, the reflection coefficients from the right and left are defined as follows:

+

c5,(8)
v =2 LRy = 22 ¢ e[-iBy,iBp), (32a)
c11(®) ;(®
- - @) o
7(g) = (), gER, 7H(@)= 12—, ge(-iBg.iB,], (32b)
(8) 5, (8)

hh) 5@
e @
h@) 66
hE(®) ()
The coefficients 1/c;;(g) [resp. 1/cx(g)] for g € A} [resp. for g € Al and 1/}, (g) [resp. 1/c;,(g)] for g € [~iB;.iBg) [resp.

g € (—iBg,iB;]] are commonly designated as (right) transmission coefficients. Analogous definitions can be readily established as
(left) transmission coefficients, namely 1/h,,(g) and 1/h;;(g). Likewise, we can derive the scattering matrix:

hi5(8) c12(8) .
=-2s , R, a*(g) =
“8) hy(8) c11(8) &€ e

g € [-iB,,iB;], (32¢)

(g) = hoi(®) _ a8

R eR, a*(g)=
hy1(g) (&) & e

g € [-iB,,iB,]. (32d)

© 0
Cg) = / PRGEL()[Q() — QrIV(y.2) dy + ER' (9)EL(2) [Iz + / e ET N (@)[Q) — QLIV(y. g)dy| . (33)
0 —o0
this integral representation offers an alternative to the determinant formulations for analytically continuing the scattering coefficients
¢11(g) and ¢y, (g) within their respective half-planes.

2.4. Symmetries of eigenfunctions and scattering data

The scattering problem (3) exhibits two involutions: (g,5;,g) — (g% 8] ,p) and (g.8;/r) — (8 —Pr r)- Consequently, the
eigenfunctions and scattering data adhere to two distinct sets of symmetry re{ations. In the asymmetric scenario addressed here,
which involves four branch points and two distinct branch cuts, it is crucial to differentiate between the situation where both gy
and p; are discontinuous, then for g € [-iB;,iB; ], and the case where only one is discontinuous (here gz, due to the selection
B; < Bg), which corresponds to g € [-iBg,iB;] U [iB,iBg].

First symmetry: On the single sheet of g under consideration, the involution g — g* entails that g, /R = P /R
to verify that if y(x,g) = (x,(x,£), x2(x,£))" is a solution to the scattering problem (3), then 7(x, g) = —io) x*(x,8") also constitutes
a solution to the same scattering problem (3), where T' denotes matrix transpose. Considering the boundary conditions (21a) and
(21Db), the symmetries of the Jost solutions are as follows:

It is straightforward

u'(x,g") =ioyu(x,g), g€ A; UR, [, g")]* =iou*(x,g), g€l0,iBgl, (34a)
u*(x,g*) = —ioyu(x,g), g€ AR UR, [u*(x, g")]* = —ic,u*(x,g), g € [-iBg.0], (34b)
vi(x,g") =io,V(x,g8), g€ A UR, [vE(x, 91" =i0,VE(x,8), g€ [-iB,0], (340)
Vi(x,g") = —iopv(x,8), g€ AT UR, [VE(x,g")]* = —ioyvi(x,g), g €[0,iB]. (34d)

From Egs. (25a) and (25b), we derive that C*(g*) = 0,C(g)o,. Specifically, assuming (B,) for the potential, the symmetry relations
of the scattering coefficients can be expressed as

(gD =c(@), g€ATUR, [ (@) =¢](2), g€l-iB;,iBy), (352)
@) =-0(), g€R, [N =~c5(e), g€[-iB,,iBp). (35b)

It is important to note that the aforementioned symmetries connect the values of the scattering coefficients in the upper/lower
half-planes of g, and from the same side of the cuts. With this in mind, it is straightforward to determine the symmetry relations
obeyed by the reflection coefficients:

7@ =-r@, g€R, [ )" =—-r*(g), g€ [-iB.,iBy), (36a)
@' (g)=-a(g), geR, [a*(g")]" =—-a*(g), ge[-iB;.iBy). (36b)
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Second symmetry: When employing a single sheet for the Riemann surface of the functions ﬂL R =g2+ BL /R the involution
(& Br/r) =~ (8. =B /p) is only valid across the cuts. Thus, this second involution connects the values of eigenfunctions and scattering
coefficients for the same g value from opposite sides of the cut. On the innermost cut, where both g, and f exhibit discontinuity,
specifically for g € =, we have

+ +

— g o
ur(x, g), Vi(x,g) = —V*(x,g). ge€[-iB;.iB;] (37)
R M

ut(x,g) =

For g € ¢\ =, the symmetries for u and u remain unchanged as previously stated. Meanwhile, v*(x,g) = v™(x, g) for g € [iB;,1Bg]
and V*(x, g) =V (x, g) for g € [-iBg, —iB, ]. Additionally, considering that q; /R=Byr, Re";"/ R the aforementioned symmetry relations
also lead to

U(x, +iBg) = Fe Ru(x, +iBg), V(x,+iB;) = FeLv(x, +iB;). (38)

By leveraging the symmetries in the determinant representations of the scattering coefficients, one can derive for g € =;:

. a7 4R qrlp7 () — gl

. _ arlpi® el (39)

GO o rare -2 " wre—a 2 *
i) +g] _ @ gl .

ot (g = RO 8] LA (39b)

e L —a ¢

Conversely, for g € £\ =, the symmetry relations transform into:

Pre)—g _ Pre)+g
cte) = qu—R 1(2), g €liB,iBgl, c;2<g>=R_TRcf2<g>, g € [~iBg. ~iB/]. (40)

Moreover, for g € 3\ =}, the symmetric relationship between the scattering coefficients and the reflection coefficients are expressed
by the following expression:

. igcl (& o ay .

Ho = R gy = £, g eiBy.iBgl, (41a)
T Ete g [ T EETRIR

_ —ich;"Z(g) ~t o~ qr . .

e = 2 i) = R, ge(-iBg—iB,], (41b)
P e T T TR

N iqrh, () o Pl +g o
h = —— B;,iBpg], 5 —iBgp,—iB;]. 41
B =g E LB W= T TE, 8 € BBy 410)

2.5. Discrete eigenvalues and asymptotic behavior

A discrete eigenvalue is defined as a value g € A; U Ay [associated with fg, ; € C\R] for which a nontrivial solution y to
Eq. (3) exists, with its components residing in the space L2(R). For each discrete eigenvalue g, € A;, where m=1,...,M (M is a
finite number), the eigenfunctions v(x, g,,) and u(x, g,,) are linearly dependent. Specifically, there exists a complex constant d,, such
that v(x, g,,) = d,u(x, g,,). Subsequently, let w,, represent the residue of 1/¢;,(g) at the simple pole g = fr(g,,), we can then express
this as

v(x, &)
llm [ﬂR(g) - ﬂR(gm)] © = Fu(x,g,), F,=d,w,, (42)
where F,, is designated as the norming constant corresponding to g,,. L1kew1se, for g}, ..., g3, within A7, the eigenfunctions ¥(x, g},

and u(x, g,) are linearly dependent. Hence, there exist a complex constant d such that v(x, g = d u(x g5). Subsequently, let @,
denote the residue of 1/cy,(g) at the pole fiz = fr(g},), we can then express this as

lim [fp(g) — = F(x,g%), F,=dy,d,, (43)
8=8m

)

with F, is termed the norming constant corresponding to the d~iscrete eigenvalue g’ . By employing the symmetry relations and the
definitions (42) and (43), we obtain @,, = w, d,, = —d, and F, = —F.

We aim to derive the asymptotic behavior as g becomes large, utilizing the Volterra integral equations (154a), (154b), (154c)
and (154d). For convenience, we introduce the modified eigenfunction ®(x,g) = u(x, g)e /%, and label its jth component with
j = 1,2. The components of ®(x, g) are represented as follows:

®,(xg) = - ﬂ“’fg P R+g / [4(0) — aRle2PRO By, g)dy—— / [4(3) — ar1 %5 (v, ) dy

B (44)
"’R / [0 (0) - 441®, (v, 8) dy + ﬂ" / [0 (0) — g 1e2PR02B, (3, g)dy,
R Jx
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and
ﬂR g

®,(x,8)=1+ / [q*(y) — gle®PRO™0® (3, g)dy+ / [* () — a1, (3. 8) dy
(45)

iq%
- ﬁ/ [4() — qg1 P, (1. g) dy + —/ [4(») — ar Jez‘ﬂ"(y NP, (y,g)dy.
R Jx

Consequently, based on Theorem 1, the functions ®(x, g) and ®,(x, g) — 1 are uniformly bounded for (x, g) € [x,, +o0) X [A; uaA; U
dA%] in the aforementioned integral equations. Additionally, the iteration of the integral equations converges uniformly for (x, g)
within the same set. Assuming the potential satisfies d,q € L!(R), we can express

e i - i 00 4] 2i —_ i[q(x) - qR] —1
la(y) — qgle® RO dy = — [q(x)—q + / ——q(e? RO dy| = ————= +0(g7). (46)
/x * 2x B e oy 2
By iterating for ®,(x, g) [resp. ®,(x,g)] once with respect to the other unknown ®,(x, g) [resp. ®,(x, g)], we obtain the formulas
in powers of g~! for the inhomogeneous terms:

igp ilg(x) — qgl tolg ) = — ig(x)

(binh ,g)=—
1 (x,8) 2% % ey

+o(g™), @M, g)—l—— / ") — qla(y) dy + o(g™h). (47)

Upon substituting these expressions into the integral equations and calculating their first iterates, it becomes evident that only the
penultimate term in the right-hand side of the second integral equation results in an additional contribution of order g~!, specifically,

igh [
—2—;; / [g(») — qg]dy. (48)

The iterations do not yield any further terms of O(1) or O(g~"). Consequently, we derive

B, (x,g) = 0 )+ og™). (49a)

<I>z(x,g)=1—2—§ / 190~ axldy = 5- / (0°0) ~ aRla) dy +ols™) = 1= 5 / g - B31dy +o(s™"). (49b)

In summary, the Volterra integral equations provide the following asymptotic behaviors for the eigenfunctions as |g| — co within
the relevant half-planes:

Ulx, g)ePross = [12 n IQ(’:”3] [ +0(1)], V(x,gelfos = [12 n IQ(;)”3] [+ o(1)]. (50)
For future convenience, we also note that
0, [U(x, g)e#ro3%| = 19:Q903 1y | (1), (51)
2g

Based on the determinant representations of the scattering coefficients, and considering once more that fz ~ f; ~ g as g — o0, we
subsequently derive the asymptotic behavior:

(@ = 28 devix. . ux ) ~ 1 gl = 0. g€ ALUR, (52a)

() = 2 25 g det((x, ), 0(x, g) ~ 1, gl = 0, g€AZUR, (52b)
R

(@) =0, 7@ =02, Fg=0@E>), lgl—>w geR, (52¢)

() =07, a(g)=0(g™?), &g =0(2), lgl—>ow, geR (52d)

2.6. Trace formula

To establish a representation for the scattering coefficient ¢, (g) in terms of discrete eigenvalues and reflection coefficients, com-
monly known as the trace formula, we begin with the quasi-unitarity of the scattering matrix C(g). Considering the symmetries (35)
and (36), Egs. (27a) and (27b) for det C(g) transform into

PLPr+8)
@ +len @I €R, (53a)
leri (@7 + lex (@17 = IR +g)
By (bg +
L @Lef; @I + &5, (@ (8N = ————, g€ ZL. (53b)
11 11 21 21 ﬂR(ﬁL + ) L
Conversely, the aforementioned equations can be reformulated utilizing the reflection coefficients in the following manner:

(Br+8)

et = — LR (54a)

BrBL + 1+ 7@
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FrBE+ )
- cs,. (54b)
e T = T ] St

Given that ¢|;(g) [resp. ¢,,(g)] exhibits analyticity within A; [resp. A;] and continuity across A_; [resp. A_;{], converges to 1 as
g — o, and features (simple) zeros at g = g, [resp. g = g;,], where m = 1,..., M, we proceed to introduce

M * M
&~ grln ~ —&m
@) =@ [ L (o) = en(e) [ =2 (55)
m=1 &~ 8nm m=1%" Em
Owing to the analytic characteristics of p(g) and p(g), the application of Cauchy’s integral formula for g € A; results in
0 0 +
In p(g) = 21 / In p(§) e = L / Inp($) d.f:—/ Inp~(9) e+ Inp*($) de
7i Jp, ¢—8& 27i | Jr €-8 -iBy i-g -iBy = 56)
iB iB iB + iB +
+/ Llnp™(§) de + ®Inp=(5) de— R np* (&) dé—/ Llnp*(§) .
= iB; i-g B, ¢-g 0 E-g
and
R U A VP / In5(¢) dé_/o YRG! dg_/_iBL 5@ 4
271 Jp_ £-¢g 27i | Jr £-8 -ip, £-¢8 -ipy £-¢8 57)

+/—IBL In 57+ (&) et 0 lnp*(é) np™© 4 4 /‘BL Inp~ (5) /'BL In p*(&) al.
—iBg i-¢g —iBy 0 £-g

where D, denote the oriented contours, with the superscripts + in p(g) and p(g) selected based on whether the integration is

conducted along the right or left boundary of each respective cut.
Upon summing the two equations and invoking p(g) and p{(g), the resultant expression is

GEAG) ]

o In | H—2—
M iB e
_ 8~ &nm 1 Infe;(£)exn ()] L [611(5)522@
e = Jn S|+ o [ MR e [ e

m=1

(58)
f ©c© @ 5H©
11 22 11 22
o In [c,‘, (5>c;2<5>] i 11 [c;(f)] -ig, In [c;z(/:)]
+/ —d§+/ —d§+/ ——=de
-iBy E-¢g B, ¢—¢& -ipy  €-¢8
Utilizing the aforementioned, we subsequently derive what is commonly referred to as the trace formula:
BRBL+E
c(8) = ﬁ [g_gm] expy — L/ ln[ﬂ = A )]] d¢
1 g—g, 271 J= E—g
(59)

18 (E)I ¢
L in m[ 2 +(:)] i, In [~ L )
T e PO e P
2ri iBy 5 & 27 —iBg f_g

where = = RU[-iB;,0]; U[-iB;,0lgU[0,iB;1; U[0,1B; ]z. It is noteworthy that the term within the square brackets in the numerator
of the first integral in (59) transforms into [1 + ly(&)I?] for £ € R, and [1 +y*(&)[y*(E*)]*] for & € [-iB;,iB;]. Eq. (59) elucidates that
¢y1(g) is fully ascertainable for g € A} based on the following:

» its zeros, identified as discrete eigenvalues g,, € A;;
« the reflection coefficient y(g) for g € R, and y*(g) for g € =;;
» y*(k) for g € [iB;,iBg], and 7~ (g) for g € [-iBg,—iB;].

3. Inverse scattering problem
Within the framework of the IST, the inverse scattering problem initially involves reconstructing the eigenfunctions using the
scattering data, followed by deducing the potential, which corresponds to the solution of the NLS equation, in terms of these

eigenfunctions. For example, when formulating the inverse problem from the right, the following scattering data are necessary:
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+ the reflection coefficient y(g) for g € R, along with its values y*(g) for g € [-iB;,iB;] on the boundaries of the cut (this
component represents the continuous spectrum of the scattering operator and functions analogously to the direct Fourier
transform of the initial condition in solving the initial-value problem for a linear partial differential equation (PDE) via Fourier
transform,; it should be noted that the reflection coefficient 7(g) is interconnected with y(g) through the symmetry expressed
in Eq. (36a));

the discrete eigenvalues g, € A%, together with their corresponding norming constants F,, for m = 1,..., M (it should be
observed that discrete eigenvalues within A} and their associated norming constants are not considered independent, as they
can be derived from the aforementioned through conjugation symmetry);

supplementary scattering data y*(g) for g € [iB;,iBg] and 7~ (g) for g € [-iBy, B, ] (it is noteworthy that y~(g) and 7*(g) are
interconnected with the former by symmetrical relationships; additionally, in accordance with the trace formula delineated
in (59), the values of the transmission coefficient 1/c;;(g) for all g € A;, and 1/ cﬁ (g) for g € E;g can be ascertained from the
scattering data previously mentioned).

3.1. Triangular representations for the eigenfunctions

In the present section, we introduce the following pair of triangular representations pertaining to the fundamental eigenfunctions:

[se]
U(x, g)e Or® =1, + / Z(x, h)e"=¥Gr® dp, (60a)

X
X
V(x, g)e ™ 6L® =1, + / P(x, h)e"¥61®) qp, (60b)
with the kernels Z(x, h) = [Z; EROISY) and P(x, h) = [P; ;(x, M), j=1 o are designated as “triangular” kernels, characterized by the
property that Z(x,h) = 0 when x > h, and P(x,h) = 0 when x < h. It is observed that Eqgs. (60a) and (60b) lead to analogous
triangular representations for the Jost solutions delineated in Eqgs. (20a) and (20b):

U(x, g) = Eg(g)e Pro3* + / Z(x, DE(g)ePro3" dp, (61a)
V(x,g) = Ep(g)e™PLosx 4 / P(x, WE (g)e PLo3" dh, (61b)

Proposition 2. Considering the explicit form of the groups ¢*¢L/8® as presented in Eq. (144), and acknowledging that the transformation
g — —g results in Br/r = —Pr/r [cf. Eq. (16)], it is possible to derive from Eq. (60a) for x € R and g € R U [—iBg,iBg],

o0 .
Z(x, h) = 4i / e R { [U(x, e CrE) — Iz] [Iz - 203Qg - ﬂ_Rffs]
T J_ g g

a . (62)
+ [ﬁ(x, —g)e *CrC®) — 12] L+ ~03Qg + ﬂ—R03] } dfi-
g 4
Analogously, from the second equation of Eq. (60b), the following can be deduced:
PG h) = = / e L= { [V(x, ge 6L - 12] [12 - 1o - ﬂ—Las]
REV g g 63)

+ [V(x, —g)e*Gr-e) _ 12] [12 + éo‘_gQL + %03] } dp, .

Proposition 2 will be proven in Appendix B. We are now in a position to establish the existence of the kernels Z(x, h) and P(x, h)
as Fourier transforms, as stipulated by Egs. (62) and (63). To substantiate this claim, it is necessary to posit that the potential g(x)
adheres to condition (B,) and that d,q is an element of L!(R) (which entails that g(x) is continuous for x € R, and approaches
qr/r 8 X = Fo0). Should Eq. (62) define Z(x, h), as a function of x, as the Fourier transform of a matrix function whose entries
reside in L2(R, dfig), the existence of the kernel Z(x, h) can be affirmed. Initially, it is noted that under the assumptions of (B;) and
d.q € L'(R), the expression can be formulated as:

U(x, e *Cr® 1, = ﬁcaQR y ’2‘ ﬁ_ £L+ é [0 (x) + o(1)] ER'(g)
R R (64)
1 _
= ﬁ%QR 3 [2D(x) + o(1)] + O(g7).

Herein, ®(x, g) = U(x, g)e’r**3 and &1 (x) = (@D (x), ®1)(x)) represents the O(g~!) term in the asymptotic expansion of ®(x, g) for
large g. In a like manner,

0. =) 8 0~ 1y = = Q= 2L, = 2 800+ o] Bl o)
‘ (65)
1 .
= —ﬁ@QR -2 [@D(x) + o(1)] + O(g72).
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We are now in a position to demonstrate that Z(x, /) is an element of L?(x, +o0) with respect to . To achieve this, it is necessary
to establish that

L.

is finite for every x € R. To circumvent potential singularities at g = 0 [i.e., fr = +By] and g = +iBy [i.e., f = 0], we partition the
integral into two segments. Assuming condition (B)) holds, the integral with respect to f; over any interval g € [-o,,0,4], where
0 < 64 < By, circumvents the point g = 0. The integrand within this range is continuous in f, thereby ensuring the integral is
well-defined and finite. The integral concerning S across the remaining segment of the real f-axis encompasses a domain that
does not circumvent g, = +Byp, that is g = 0. Nevertheless, by substituting this integral with one in terms of g, and leveraging the
relation dfy = (g/fr)dg, under the assumption of (B,), the existence of the limit can be established:

2
dfg, (66)

+ [ﬁ(x, —g)e ¥CrE=8) _ 12] [IZ +10,Qp+ ﬂ—R0'3]
g 8

- » . i
[U(x’ e "6r©) _ 12] [12 - §63QR - ?’%3

i Ux, gle0r®) — Ux, —g)e*Cr(-®)
m =
g—0 2g

iﬁ(x, g)e~*6r() , (67)
ag £=0

ensures the integral is well-behaved in the vicinity of g = 0. Consequently, the sole aspect remaining for consideration as g — +oo
[resp. as fr — +oo]. It is necessary to demonstrate that

( Iy °°)|)ﬁ<x,g>e—xex<g>_lzuz & xeR 68)
—o0 1

This conclusion is substantiated by the large g expansion, given the premises (B,) and d,q € L'(R), the most significant term as
g — +co is of the order O(g~!). Hence, we have established the existence of Z(x, #) in h for x € R, fulfilling the condition that

/oo 1 Z(x, h)||> dh < +co. (69)

X

As a result, when considered as a function of h, Z(x, h) represents the Fourier transform of an L? matrix function and is therefore an
L? matrix function itself, uniformly for x > x, for every x, € R. A parallel reasoning applies to P(x, h). Ultimately, the subsequent
finding enables the reconstruction of the potential in terms of the kernels Z(x, k) and P(x, h). Theorem 3 will be proven in Appendix
B.

Theorem 3. Assuming that condition (B,) is satisfied, and furthermore that d,.q € L'(R), it follows that:
Q(x) — Qg =203Z(x,x)03, Q(x) —Qp =203P(x,x)03. (70)

Specifically, Eq. (70) indicates that the diagonal elements of both Marchenko kernels Z(x, x) and P(x, x) are zero, whereas the off-diagonal
elements adhere to the subsequent relationship:

q(x) = qr = 2Z15(x,x) = q; = 2P5(x,X),  q"(x) = g + 2Z,,(x,X) = q] + 2P, (x, x). (71)

The condition ¢ € C!(R) assures that Egs. (70) and (71) are defined everywhere, not just almost everywhere. Time dependency
is excluded here for conciseness. Assuming that all conditions on the potential hold for all # > 0, the inclusion of time dependency
in the Jost and fundamental eigenfunctions gives rise to a r-parametric dependency in the Marchenko kernels. The reconstruction
formulas (71) for the potential, applicable for all 7 > 0, are expressed as:

q(x, 1) = qr(t) = 2Z5(x, x;1) = q(1) = 2Ppp(x, X3 0). (72)

It should be noted that the presence of the Marchenko kernels is associated with the subsequent Goursat problem:

Z,,(x,h) —q5 q(x)\ (Zy(x, h)
0. +0 11 - Ir 12 ) , 73
Ot 0n) (Zzz()ﬁ h)) (—m) ix ) (zmx, ) 732)
Z,y(x, h) -q q(x)\ (Zy;(x, h)
9, -0 12 >=< R )(” ) 73b
( * h) <Z21(x, h) _q*(x) q; Zzz(x, h) ( )

with boundary conditions:
q(x) = qg = 2Z5(x, x) = qg +2Z],(x, x), hlg{.lo Z,;(x,n)=0, ij=12, 74)

this derivation, contingent upon supplementary conditions regarding the potential, stems from the scattering problem. Nevertheless,
we have furnished a direct inversion formula for the kernels integral to the inverse problem, formulated explicitly in terms of
the eigenfunctions from the direct scattering problem. Additionally, Plancherel’s theorem was employed to ascertain an explicit
representation for Z(x, h).
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3.2. Right Marchenko equations
We develop the (left and right) Marchenko integral equations as an approach to tackle the inverse problem. This involves the

reconstruction of eigenfunctions and subsequently the potential, based on the scattering data provided. We shall explicitly articulate
the Right Marchenko equations as follows:

YO8 _Gix )+ r(gulxg). g E€R, (75a)
c11(8)

—V_ix’ o _ Ut (x,8) +r*(g)ut(x,g), g€ [~iB,iBgl, (75b)
;@)
e u(x, g) +7(gu(x,g), gER, (75¢)
(8)

VOB |y r, ) + FH@EE(x.8), g € (—iBpoiByl, (75d)
¢5,(8)

where y(g), y*(g) and 7(g), 7*(g) are specified by Egs. (32a) and (32b), respectively. It is noteworthy that although Eq. (25a) is
originally defined for g € R U [-iB;,iB;], Eq. (75b) indicates that the first column of Eq. (25a) can be analytically continued to
g € [iB;,iBg]. Similarly, Eq. (75b) extends the domain of the second column of Eq. (25a) to g € [—-iBg, —iB;]. Subsequently, we
shall proceed under the assumptions aligned with the preceding discourse, namely:

« the absence of spectral singularities;

« the simplicity of all discrete eigenvalues;

+ at g = 1By, the det(v,u) lacks multiple zeros (it is recalled that due to symmetries, an analogous condition applies at g = —iBy
for det(V,n));

+ condition (B)) applies in the generic scenario, whereas (B,) pertains in the exceptional scenario.

Multiplying Eq. (75a) by =Y for y > x, and then substituting the triangular representations given by Eq. (61a), we derive the
following result:

efrxv(x, g)

—Em(g)] RO = / Z(x, WEg ()’ dh
c11(8) : :

. . (76)
+ 7(9) [ePRCVE L 1 (9) + / Z(x, DE g 5 (g)ePROM dh],
X

where Ep ;(g) represents the jth column of the eigenvector matrix Er(g) as defined in Eq. (19). It is noted that fp approaches
as |g| — oo, implying that the term on the left-hand side diminishes as |g| — oo within A; U R. It is advantageous to regard the
eigenfunctions as functions of f, that is, considering g as a function of fy, specifically g = g(fg) = 1/ ﬂ?{ - sz. Observe that g € R
corresponds uniquely to either g € ©} or g € ©%. For the subsequent discussion, we shall consider g € 6 for u(x,g) (which is
analytic for g € A}), and g € O}, for U(x, g) (analytic for g € Ay). Subsequently, we formally integrate equation (76) with respect
to Py, interchange the order of integration and proceed with the evaluation:

o 1 . _
ZL <_ i, >exﬂk<y—h) dh = <0(yo h)), 77)
T J - Pr+8
with
1% 1 [%;
0(x) = — / e dn, — / RO dpp = 0(y — 5), (78)
27 J_o 27 J_w
to obtain
1 0
J=Z(x,y) <0> +K(x+y)+ / Z(x,h)K(h + y)dh, (79)
X
where
© [ gifpx . o ,
= [T gy | eoae k0= [T reRRa@ (80)
2z —0o 11 (g) 2z —0o ’
As previously detailed, in the integrals mentioned, g = g(fg) with g € @;. The subsequent objective is to articulate J in relation
to the Marchenko kernel Z(x, h). It should be recalled that we have posited the discrete eigenvalues g, ..., g),, associated with the

zeros of ¢;;(g) in A}, to be simple. Thereafter, by contemplating the function k(fg) derived from the integrand of J by excising its
poles and considering Eq. (42), we arrive at the following:

M eiPrEY F u(x, g,,)

Br — Pr(&m)

ePr¥v(x, g)

81
cr1(g) D

k(fg) = efrO~) [ -Eg, (g)] -

m=1
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Given that k(fg) is analytic for pz € C*, the application of the residue theorem in conjunction with Jordan’s Lemma results in:

M
J=i) elrenF u(x, g,,). (82)

m=1

Considering the triangular representation given by Eq. (61a), the following is obtained:

0 M
J=K,(x+y+ / Z(x, K, (h+y)dh, K, (x)=1i 2 PREXE Ep o (g,)- (83)

m=1

Inserting the aforementioned formulation of J into Eq. (79), we subsequently derive the right Marchenko integral equation:

Z(x,y) <(1)> +Pr(x+y)+ / Z(x,h)Prh+y)dh = <8> N (84)
where
© M
Pr(x) = K(x) — K,(x) = % /_ . Y(©Ega(g)ePr* dp —i Z PREWXF B (8. (85)

m=1
It should be noted that in the integral of Eq. (85) fz € R and accordingly g = g(fz) € 9;.
Subsequently, we multiply Eq. (75c) by e""/rY for y > x and insert Eqs. (61a) and (61b). This leads to the following result:

—ifRXY . © .
[e—v(x,g) _ ERQ(g)] eiPRx=Y) — / Z(x, h)ER’z(g)e'ﬁR(h_y) dh
X

n(8) . (86)
+7(g) [e-“’R@‘*”ER,l(g) + / Z(x, hEg, (g)e” /RO dh] :
X
By formally integrating with respect to f; and following the previous procedure, we arrive at the subsequent outcome:
o
J=Z(x,y) (?) +K(x+y)+ / Z(x,h)K(h + y)dh, 87)
P
where
~ © [ e=ifRxF . ~ o .
j=L / VNG (@) e RO g, Rx) = - / 7(9)Eg(g)e R dpp. (88)
27 J - 2(8) ’ 27 J_o »

For the integrals mentioned above, it is assumed that g = g(f) € O%- Considering Eq. (43), in a manner analogous to the previous
case, J can be represented in terms of the Marchenko kernel:

0 M
T=K,Gx+»+ / Z(x, K, (h+y)dh, K (x)=-i Z e PREYE B (gh), (89)
X m=1
we have
Z(x,y) (?) +Ppx+y) + / Z(x, P p(h + y)dh = <g> , (90)
where
~ ~ ~ 1 o . L ~
Prx) = K(x) - K,(x) = 3 / 7(§Eg (g)e PR dpp +1i Z e PREWXE B (g)). (91)

m=1

Observe that within the integral of Eq. (91), g € R and accordingly g = g(fg) € 6. B B
Consequegtly, due to the symmetries inherent in the scattering data, it follows that: K*(x) = i6,K(x), K} (x) = io,K,(x) and

¥i(x) = i0,¥g(x). In summary, the Marchenko equations (84) and (90) can be consolidated into a singular 2 x 2 Marchenko

equation, featuring a 2 x 2 Marchenko kernel presented as follows:

Z(x, )+ Pr(x+y)+ / Z(x, h)¥ g(h+ y)dh = 0,,,, 92)

where W i (x) = (Pr(x), 7 r(x)), with ¥Pr(x), f’R(x) are defined by Egs. (85) and (91), respectively, and they adhere to the relationship
Pr(x) = —io, PR(x). It is observed that W (x) = 0, ¥ p(x)0,, consistent with Z*(x, h) = 6,Z(x, h)o,.

3.3. Left Marchenko equations

To derive the left Marchenko equations, we explicitly express Eq. (25b) as follows:

U8) _ v, ) +3g)xg). g R, (93a)
Nhll(g)
WO _ yry g)+ F @V (x.g). g € (~iBL.iB)). 93b)
7 @)
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Y8 _ Gx,g)+ a(gv(xg) g ER, 930)
hyy(8)

W8 _ ey g) 4 at(evE(rg). g € (—iBLLiBy). 93d)
h3,(8)

where a(g), a*(g) and @(g), a*(g) are specified by Eqgs. (32¢) and (32d), respectively. With analogous assumptions concerning the
potential and the discrete spectrum, and by considering the eigenfunctions as functions of g;, where g = g(f;) = ﬁi -

We proceed by multiplying Eq. (93c) by e7r¥ for y < x and substituting the triangular representations as given in Eq. (61b).
Subsequently, we formally integrate with respect to §; and interchange the order of integration, leading to the following result:

Cl —ifx X x o0 .
1 / [e—u(x,g) — EL,Z(g)] elfL(x=y) dp, = 1 / P(x, h) dh/ ELyz(g)elﬂL(h*y) dg;
2z hy(g) 27 J_ oo

(94)
(] X [es]
+ zi / a(g)EL,1<g)e—iﬁL<x+y>dﬂL+i / P(x, h) dh / a(@)E (g Pt dp,

T J - 2z —00 —o0

where E; ;(g) represents the jth column of the matrix of asymptotic eigenvectors E; (¢g). As previously mentioned, §; € R corresponds
uniquely to either g € O} or g € ©;. We consider g € 7 for v(x, g) [which is analytic for ¢ € A}], and g € @] for ¥(x, g) [analytic
for g € A7]. As in the previous case, we can simplify the identity (94) to:

J=Pxy (?) + N(x+y) +/ P(x, )N (h + y)dh, ©5)
where
1 *© —ifLx , — | 0 o
1= 2n/ [ hz;zg S 'E“(g)] MO N =52 /_ R (e dp 96)

To calculate J and represent it in terms of the Marchenko kernel P(x, ), it is necessary to close the contour at infinity in the upper
half-plane of g, . Contrary to the scenario with the right Marchenko equations, closing the contour here involves accounting for the
additional branch cut, which in the g-plane corresponds to Z;\=;. Towards this objective, for 0 < ¢ < T < +o0, let us examine the
closed contour O(T', €) composed of the following segments, with the indicated orientation: (1) the interval [-T, —¢]; (2) the segment
from [—¢ +1i0, —¢ +iI'] along the imaginary f; axis; (3) the semicircle {iF +eclmdl: 0<8< 71'} oriented clockwise; (4) the segment
from [e+i0, e+iI'] along the imaginary g, axis; (5) the interval [e, T; (6) the semicircle {Te?® : 0 < 6 < x} oriented counterclockwise.
We establish the notation I' = 4 /B%z - B%. It is presumed that T is sufficiently large and ¢ is sufficiently small such that all discrete
eigenvalues g, € AJE for m=1,2,..., M, and their corresponding f; (g,,) lie within the interior of the specified contour. Given that
u(x, g) and 1/h,,(g) approach finite limits as g — iBjy, the contribution to the integral defining J from the semicircle encircling the
branch point vanishes as ¢ — 0*. Due to Jordan’s lemma, the integral that defines 7 over the large semicircle (6) also yields no
contribution as T — +oo (note that g; ~ fr as g — o, which ensures the integrand tends to zero as g — o). Consequently, there
are two significant contributions to the integral J = J 1+ 32: the contribution J | related to the residues of the integrand at the poles
g€E A;, and the contribution jz associated with the integral around g; € [0,iI'] in the upper-half §; -plane. These two contributions
will be assessed individually.

Given our assumption that the discrete eigenvalues g, in A} are simple poles of 1/h,,(g), and considering that the reflection
and transmission coefficients are continuous for g € aA;, along with the fact that u(x, g,,) = v(x, g,,)/d,,, we derive the following:

M ~

~ . ~ ~ @

3, =i § e L&V vix.g,). F,= d_'”, 97)
m=1 m

where &,, denotes the residue of 1/h,,(g) at §;, = B, (g,,) and F,, is the corresponding norming constant. It is noted that this implies
a relationship between the residues @,, and w,,, and consequently between the norming constants F,, and F,, as follows:

~ Br(&m) + &m o, 7 F= wz Br(&m) + &m (98)
Br(gm) + &n " BL(&m) + 8m
Consequently, we arrive at the following conclusion:
x M
J=NG&+y+ / PCe, N (h+y)dh, Ni(x)=i ) e /LEXFE, (g,). (99)

m=1
We now turn our attention to the second contribution J,, which emerges for g; € [0,iI'], corresponding to g € [iB;,iBg] and

pr €R.
il+e —1ﬁLxu(x g) ] 1 ir u (x g) u+(X g) i
LoL B, ()| e 8) W8 | iny g, 100
= lim e < /0 , /0 ) [ (e 28)|e o=z e e |C P (100)

In the integral along the cut [0,iI'] on the positive imaginary axis, the superscripts + conventionally represent the limiting values
from the right/left side of the cut, respectively. It is also noted that g, and consequently E; , are continuous across this cut. Utilizing
Eq. (28c), J, can be expressed as follows:

Go L [Tl —guwne  Brltsuteg | B
2r Bl (@ 1Bl cl+1(g) BrL+sg

e PLydp, , (101)
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the symmetry relations given by Egs. (37) and (40) facilitate the expression of:

(1frl —u™(x.8) _ (el + 0" (x.9)
€18 e

(102)

Consequently,

1 (7 p3Brl+9) |t | ut(x,g)

2 fo BRI+ | e ¢
Initially employing the scattering equation (75b), and subsequently reapplying the symmetry relation (40), we ultimately arrive

5= ey ap, . (103)

at:
~ ir + —ifry i ir + —ifLy
J2=—L/ BLBrI+ &)V +(x,g)cj—r g, = v BLv (x,g)f Y g (104)
2z Jo  1BRI(BL + 8)c (8)cy, (2) 2z Jo  1BRIBL + 8)c(8)ey (8)

Substituting the triangular representation (61a) into the aforementioned expression yields:

~ x : i E —ifx
B=mons [ PN Ny = 2 /0 | ﬂle;L ilg(i )lfl o (105)
Upon defining
0 M
Y, (x) = N(x) = Ny(x) = Nay(x) = i / a(@Ep (e Pr¥dpy —i Y e VLen F B, \(g,)
o . =l (106)
B i
2 Jo 18RI +9)ch (@ (@)

in the first integral, where g, € R, it follows that g = g(f;) € 92. Utilizing Eqgs. (99) and (105) to evaluate i=17 1+ jz and
incorporating it into Eq. (95), we ultimately derive the left Marchenko integral equation:

P(x,y) (?) +¥, (x+y) +/ P(x,)¥;(h+ y)dh = <8> . (107)

)

Following a similar procedure, commencing from Eq. (93c), the “adjoint” left Marchenko equation can be deduced:

1 ~ * ~
P(x,y) <0> +¥, (x+y)+ / P(x,h)¥;(h+y)dh = <8> R (108)
where ¥ 1(x) =i, ] (x). The pair of Marchenko equations can be succinctly expressed in matrix notation as follows:

X
P(x,y)+‘IlL(x+y)+/ P(x, )W ; (h+ y)dh = 0y, (109)
where ¥; (x) = (‘f’L(x), ¥ (x)) and lII*L(x) =0,¥;(x)0,.

It is pertinent to offer some observations regarding the left and right Marchenko integral equations (92) and (109) obtained
above. Initially, it should be noted that the disparity between the left and right Marchenko equations stems from the asymmetry
of the boundary conditions, specifically due to the selection Bi > B; (with the roles of the two integral equations being reversed
should By < B; be chosen). In the left Marchenko integral equations, ¥, (x) in Eq. (106) comprises three distinct contributions:
the first from the discrete spectrum, the second from the reflection coefficients from the left, a(g) and a(g), integrated over g in the
continuous spectrum, that is g € RU=; and a third contribution (often termed the dispersive shock wave contribution) that involves
an integral over imaginary values of §; where the product of transmission coefficients 1 /cfl (&), (&) is present. In contrast, ¥ z(x) in
the right Marchenko integral equations (see Eq. (85)) consists of only two contributions: one from the discrete spectrum and the other
from the reflection coefficients from the right, y(g) and 7(g). It is important to observe that in the latter the reflection coefficients
are integrated over the entire range of g, € R. This implies that the integral encompasses not only the continuous spectrum RuU =,
but also contributions from =3\ =, . Furthermore, the integrand over =3\ =, is never identically zero. According to Eq. (41a), in
the absence of spectral singularities, y*(g) # 0 for all g € [iB,,iBg], and 7%(g) # 0 for all g € [-iBg, —iB;]. Consequently, when
Er\E. # @ (that is, in scenarios involving asymmetric boundary conditions where B, # B; ), pure soliton solutions cannot exist.

4. Riemann-Hilbert problem and time evolution
4.1. Riemann-Hilbert problem

The objective of this section is to present an alternative approach to the inverse problem, formulated as the RH problem for the
eigenfunctions, where the discontinuities are characterized by the scattering data. Upon solving the RH problem, the asymptotic
expansion of the eigenfunctions for large g facilitates the reconstruction of the potential. We examine the following matrix composed
of eigenfunctions:

[—V(X’g) eL¥, u(x, g)e‘“”"‘] . 8E€EA}
M(x,g)={ " (110)
[ﬁ(x, g)eifrx, %e_'ﬁ”] , g€AN,
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the matrix M(x, g) is constructed such that it approaches the 2 x 2 identity matrix I, as g tends to infinity. The inverse problem is
then formulated as the RH problem for the sectionally meromorphic matrix M(x, g) across 6A; UAZ. Specifically, we identify the
five jump matrices: Oy represents the jump matrix across the real axis of the complex g-plane; O, is across =} = [0,iB,]; O, is across
= [-iB;,0); O; is across = \ = (iB;,iBg], and O, is across ER\E] = [-iBg,—-iB,). Each of the jump matrices is dependent
on g along the respective contour 1n the complex plane, and also, in a parametric sense, on (x,t) € R x R* (where the dependence
on x is explicit, whereas the dependency on time is implicitly contained within the corresponding reflection coefficients).
The RH problem defined across g € R is represented as: M*(x, g) = M~ (x, g)O(x, g) which signifies that:

(@ c5,(8)

where the superscripts + represent the limiting values from the upper/lower halves of the complex plane, respectively. The jump
matrix across the real axis can be readily determined from Eq. (25a) and is expressed as:

[3-55-52 i1, +(x,g)e_wa] = [ﬁ—(x,g)éﬂkx,Y:Eflgze—mLX] 0y(x.g). gER, 11

([ =y Pr=PRx  [—y(g)e~2Pr¥]
O()(X, g) = ( y(g)eszX ei(ﬁL_ﬂR)X (112)
The RH problem across _z is formulated as: M*(x,g) = M~ (x,£)0(x, g) for g € C*, where the superscripts + now indicate the

limiting values from the right/left side of the cut across =} (£, in the upper half-plane). Considering that across =, both g, and

Pr change signs, and employing the notation g T/R= -B; R = f1/r, We obtain:

[V e +(x,g)eiﬂ;x] B [v_—(x’_g)eiﬂ”,u‘(x,g)e”’ R

0,(x,9), (113)
(@) (@) e

where the jump matrix O,(x, g) can be readily calculated utilizing Eq. (25a) along with the symmetry relations given by Eq. (37),
resulting in:

o _ g . r*(g)e?hrx l(PL=br)x a4
g =- Br+g [ - —7+(g)y‘(g)] elPr=Prx  —y=(g)e~2rx |"

The RH problem across = PR expressed as M*(x,g) = M (x,g)0,(x,g) for g € C-, where the superscripts + indicate the
non-tangential limits from the right/left side of the cut across =7, that is, =, in the lower half-plane. Specifically, we have:

|: +(x g)elﬂ x v (x g) —1ﬂ+ ] — [u (x, g)elﬂ x v (x g) e ihpx

0,(x, 8). (115)
5A0) T 2ng

Similar to the previous cases, the jump matrix can be ascertained by utilizing Eqgs. (25a) and (37), and is presented as follows:

9r_|-7 @ e |~ ()7 (g)| e PrPL
Mk : ‘

0,(x,8) = — (116)
Pr+8| itbr—prx 7+ (g)e 2L
The RH problem across Z5\=; is formulated as M*(x, g) = M™(x, £)O5(x, g) for g € C*:
YO8 o x, gy | = | e, e | O3 . 117)
c“(g) ¢, (@

Considering that g changes sign while g; and v(x, g) remain continuous, by applying Eqgs. (25a) and (37), the following is derived:

iqx yt(g) e~i(BL+PR)x
08 =5 <[— -7t @r” (g)] HL=bp)x —7‘(g)e‘2i”Rx> (118)
The symmetry given by Eq. (41a) ultimately leads to:
0,008) = igg <y+(g) e—qi*(ﬂL+/3_R)r > | 19)
Prts 0 _qkrﬁ(g)e i

Lastly, the RH problem across Z;\Z;, where fi; changes sign while §; and V(x, g) remain continuous, is expressed as M*(x, g) =
M~ (x,8)0,(x,g) for g C:

(e, L8 it | g, grei, L8 minix | 0, ), (120)
22(g) €y 2)
where
igh (-7 (g)e?hrx 0
Oy(x,g) = - i(BL+PR) R . (121)
¢ Prt+e < et aR7(8)

It should be noted that the jump matrices adhere to the following symmetry in the upper/lower half-planes: O,(x, g) = 0,07(x, g%)o,
and Oy(x,8) = azog(x, g%)o,.
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Addressing the inverse problem as the RH problem, which includes poles corresponding to the zeros of ¢;;(g) and ¢y (g) in
the upper/lower half-planes, entails calculating the sectionally meromorphic matrix M(x, g) with the specified discontinuities and
normalized to the identity matrix as g approaches infinity. Specifically, the problem can be formulated as M*(x,g) = M~ (x,g) +
[O(x, &) —L,IM™(x, g), where O(x, g) = O,(x,g) for j =0, ...,4 depending on the segment of the contour under consideration, and the
superscripts + indicate non-tangential limits from either side of the contour. Subsequently, by subtracting the asymptotic behavior
as g —» oo and the residues of M* at the poles in Af{ from both sides, we derive:

M Res, Mt M Res, M- M Res, Mt M Resg

M -1 - Y -Z :M’—Iz—z —Z = +(0—12)M*. (122)

m=1 &~ 8m m=1 m=1 &~ 8m m=1

The left-hand side of the aforementioned equation is now analytic within A}, and is of order O(g™") as g approaches infinity therein.
Meanwhile, the sum of all terms except the last on the right-hand side is analytic in A} and is also of order O(g™!) as g tends to
PN . . . v .
infinity in that region. Consequently, we introduce projectors A, over O, = RU Z%:

m(&)

Alml(g) = 2”1 adé (123)

where [ . [resp. [5-1 31gn1f1es the integral along the oriented contours, and when g € ©7 NR, the limit is taken from above/below
R R

respectively. It can be readily demonstrated that if m* are analytic in A*—I; and are O(g™!) as g — oo, then the following relations
hold: A,m* = +m* and A,m~ = A_m* = 0. Subsequently, by applying A, to both sides of Eq. (122), we obtain:

M Res, MJr M Res,» M- 1 M- (g)

M(g)_12+zl . +m§ i s 2 o, 100 -bld g eC\Zp, (124)

in the expressions for the eigenfunctions and jump matrices, the x-dependence has been omitted for conciseness. Considering that the
second column of Res, M is zero for all m, while the first column is proportional to the second column of M*(x, g,,), and conversely,
the first column of Res,» M~ is zero for all m, while the second column is proportional to the second column of M~ (x, g;,) as per
Egs. (42) and (43), the integral/algebraic system can be completed by evaluating it at each g = g, and g = g’. The potential is

subsequently reconstructed through the large g expansion of the resulting expressions, since

M(x, g) =

L+ iQ(x)@] [1 + o(D)]. (125)

It should be noted that, in contrast to the scenario with equal amplitudes, the aforementioned system cannot be simplified to a purely
algebraic form. Even though the reflection coefficients can be set to zero across the continuous spectrum, that is, for g€ RUZE;, the
integrals on the right-hand side of as per Eq. (124) always have a non-zero contribution from the contours "R\ . Specifically, this
indicates that pure soliton solutions do not exist, and solitons are invariably accompanied by some form of radlatlve contribution.
Nevertheless, one could approach the solution of the system iteratively, under the assumption that the reflection coefficients are
minor for g € :* (and/or for g € = E\:f). This method would yield solutions that consist of solitons overlaid with minimal
radiation. The temporal aspect within the system is straightforwardly incorporated through the time-varying nature of the scattering
coefficients.

The RH problem can similarly be posed utilizing the left scattering data, by introducing a sectionally meromorphic matrix

composed of eigenfunctions:

[V(X g)elﬂ,x ux.g) e—l/in] , g€ A+,
h2(g)

M(x,g) = xe) (126)
ulx,g 1ﬂ X —ifrx _
[hll(g) RV, g)e™n ]’ g€ AR.
The RH problem defined across g € R is represented as: M (x, g) = M‘(x, g)ao(x, g) which applies for g € R, indicating that:
v g, S "8 i | 2 | T8 x| Gy, ), 127
(@) hi (@)

where the superscripts + represent the limiting values from the upper/lower halves of the complex plane, respectively. The jump
matrix across g € R can be readily determined from Eq. (25b) and is expressed as:

~ el(BL—Pr)x a,(g)e—ZiﬂRx

Qo8 = (—Mg)ezi”hx - a(g)a(g)]e“/"-""“x) (128
Similarly, the jump matrices 61(x, g) across E;: and 52(x, g) across £ can be derived, respectively, by:

~ igt | —a(g)efrx [q—’; —at(g)a” )] elPr=Pr)x

0,(x,8) =— L § . g (g . across EZ, (129a)

Prel ip-sox at(g)etPrx
- iq, +(g)621ﬂkx el(Br—PL)x _
B A ey A (1299)
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Regarding the RH problem formulated with scattering coefficients from the right, the jump matrices 0 1(x, ) and 62(x, g) adhere
to the following symmetry in the upper/lower half-planes: O,(x,g) = 6,0](x,g")o,. In addressing the RH problem across EE\EZ,
the situation is as follows:

W (o) = | v e, T8 e—iﬂEX] . MT(x,9) = [v_(x,g)eiﬂ”, L8 ingr] (130)
h3,(8) h,(8)

It should be noted that in contrast to the RH problem from the right, the jump cannot be determined here in the same manner. The
same limitation applies to the RH problem on Z3\Z7. In fact, the right-hand sides are only defined simultaneously for g e RU =}
and cannot be extended to either E;;\Ez or Ex\E7. This distinction is also apparent when considering that, unlike y*(g) and y*(g),
which can be analytically continued onto Z;\Z; or Zz\Z; respectively, the reflection coefficients from the left, a*(g) and &*(g)
are typically defined only on the continuous spectrum, that is, for g € RU =}.

To properly define the RH problem from the left on =3\ =y, it is necessary to consider both segments of the cut Z;\=; and
E2\E] concurrently, and to account for the following:

. i =t\ =+ Z\ET:
Pr changes sign across =3 \Z] and Z3\Z7;

c vi(x,g) =v (x,g) for g e _E\EZ, and V*(x,g) =V (x,g) for g € E\EL;
c ut(x,g)/ h;iz(g) and u*(x, g)/ hli1 (g) are interconnected through the symmetry relations given by Egs. (37) and (41c), that is:
ut(x,g) _ ¥ (x,8) oty o U g ui(x,g) o

=58 Eh\ gt =—%, geZp\E].
h5(8) B (8 R A N A9} R

(131)

Addressing the RH problem from the left, which includes poles corresponding to the zeros of 4,,(g) and k,,(g) in the upper/lower
half-planes (identical to those from the right), involves calculating the sectionally meromorphic matrix M(x, g) with the specified
jumps 0o ;» and normalized to the identity matrix as g approaches infinity. Subsequently, the potential is reconstructed through the
large g expansion of this matrix, since

M(x, g) = [12 + iQ(x)@] [1+o(1)]. (132)

4.2. Time evolution of the scattering data

In accordance with the second part of Eq. (3), the temporal evolution is described by y, = Ty. Asymptotically, considering
q(x,1) = qp/p(1) = BL/Re"S"/R(') as x - Foo, we have y, ~ T(g, )y and T(g,t) = (YN“,-J-(g, 1)), where

Ti1(8.0) = (01, + 2801, — 487013)(iB] | —2ig”) +3ic13B] p. (133a)
Tia(s.1) = 12801 +201,(28" = B ) +4013(¢ B} — 28")ap (1), (133b)
Toi(8.0) = [2013(B] | — 287) — 2801, +4013(28° — g B} )Id} (1), (133¢)
Ty(g.0) = (01 + 2801, — 4g7013)2ig” — 1B} ) = 3ic13B] - (133d)

The scattering problem outlined in Eq. (3) yields as x — Foo, the following for the two components of any eigenfunction y(x,7):
;v =~y +igy®, g r0p® =y +igy . (134)
Substituting these equations into Egs. (133a), (133b), (133c) and (133d), we derive the following as x — Foo:
1//1(1) ~ [2g0y; + 201,28 — Bi/R) + 4513(gBi/R - 2g3)]w§1) + iauBZL/Rv/(l) + 3i613Bi/Rl//(l), (135a)
1//1(2) ~ [2g0y; + 201,28 — Bi/R) + 4513(gBi/R - 2g3)]w§2) - iauBZL/Rv/(z) - 3i613Bi/Rl//(2). (135b)

The Jost solutions with boundary values as x — Foo specified by Egs. (21a) and (21b), do not align with the aforementioned
temporal evolution. Consequently, we introduce time-dependent eigenfunctions that serve as solutions to the evolution equation.
For example, consider ¢(x, g,1) = e'B='v(x, g, ), such that

b, = 1By +ePlv,. (136)

Considering that the components of ¢ asymptotically fulfill the systems (135a) and (135b) as x — —oco and acknowledging that
V(x,g,1) = (V(x, & 1), ¥(x, g, 1) ~ Ef (g)e #1773, we have

1 ) 0 . 1 )
v(x, g,1) = <—iq;<r)> e x v (x, 8. 0) = ( SL«)qz(r)) ey (x,8.0) = —ify (—iqi(r)) e LY x> —oo, (137)
PL+g - PL+g PL+g

where the dot signifies differentiation with respect to time. Substituting into Eq. (136), the first component results in B, =
011B% + 3013 B} — f,[2g0), +2015(28> — B2) +40,5(g B2 —2¢*)] and from the second component, we derive: &, (1) = 26|, B2 + 60,3 B;,
leading to 6, (1) = 2011Bit + 6al3B‘zt + 6;(0). Similarly, the evolution of the asymptotic phase as x — +oo can be determined:
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o) = ZUHBit + 6013B4Rt + 6x(0), as well as the temporal evolution of the other Jost solutions. This yields for V = (v,¥) and
U=(,w,

0,V =TV —i|o) B +303B} — p,[280,, +20,,(28> — B2) + 40,3(g B2 — 2¢°)]| Vo, (138a)

0,U="TU 1|0, B% +303B} — frl2g0, +201,(28* — B2) + 403(gB% — 2¢°)]] Uos. (138b)

By differentiating Eq. (25a) with respect to ¢ and considering the temporal evolution of the Jost solutions as given by Egs. (138a)

and (138b), we derive the scattering matrix:

0,C =10y B% + 3038} — frl2g0), +2061,(28% — B) + 4013(gB% — 2g7)]] 6,C (139)
— o) B2 +303BF — B [280), +2061,(28% — B2) +40,3(gB2 - 2g7)]| Cos.

Specifically, this results in the following expressions for the time evolution of the scattering coefficients c,;(g, ) and ¢,,(g, 1), as well
as the reflection coefficient from the right y(g,):

enle. ) = ¢y (g O)eZig(al1+2g012—4g2013)([3L—ﬁR)H—ia]1(Bi—Bi)H}ial3(Bi—Bi)r+(2iz712—4igal3)(ﬂRBi—ﬁLBi)t’ (140a)
61(81) = 3y (g, 0)e2iE11+28012-48>013) (P +p)i—io1 (By B i=3i013 (B + B] i+ (digo13—2io1n) B By +AL B )Y (140b)
(g, 1) = y(g’0)e4igﬂR(61]+2g612—4g2013)t—2i511Bit—ﬁiuBB‘l‘{HﬂRBi(8igal3—4i512)t. (140¢)

The initial equation indicates that the discrete eigenvalues g, are invariant with respect to time and are determined by the zeros
of ¢;;(g,0). It is noted that in the symmetric scenario where B; = By, it follows that ¢;,(g,7) = ¢;;(g,0), meaning the transmission
coefficient remains constant over time. Furthermore, regarding the behavior of ¢;,(g,t) for large g, consistent with ¢;,(g,7) ~ | as
lg] - oo for g € A; U R and for all ¢+ > 0; this ensures the inverse problem is well-posed. Similarly, the evolution of the other

scattering coefficients such as h,,(g, 1), hj,(g,t) etc., can be determined, as well as the reflection coefficient from the left a(g, 1):
hiy(g. D) = h(g o)eiﬁl1(B§<+Bi)t—2ig(611+2g61z—4g2613)(ﬂL+ﬂR)r+3ial3(B§(+B‘pr+(2ial2—4igal3)(ﬁR B2+p B2 )t (141a)
(8. 1) = hay(g, 0)e! (BB} 1+2i8(011 +28012-487013) (B ~PR)1+3i013 (B =B} i+ Qioyy~4igo13) (P By ~AL Bt (141b)

; 2,6 4 g 2 2 (9 :
a(g’ = a(g’ 0)621611BLt+61613BLt—41gﬁL(all+2g612—4g 0'13)f+2ﬂLBL(210'12—4lg0'13)l. (141C)

Lastly, it is necessary to ascertain the temporal dependence of the norming constants. By differentiating v(x, g,,) = d,,u(x, g,,) with
respect to time and assessing the first and second columns at g = g,,, we obtain:

d,(t) = d,,(0)exp[2ig,, (6, + 28,012 — 4g,2n013)(ﬁL(gm) + Br(gm)t — io’ll(Bi + Bi)l

. 4 4 . . 5 ) (142)
- 31613(BR + BL)t + (dig,,013 — 21612)(ﬂR(gm)BR + ﬂL(gm)BL)t],
where m = 1, ..., M. Subsequently, utilizing the definition of F,, as given in Eq. (42), we derive:
F,(t) = Fm(o)e4igmﬁk(gm)(611+28m512—4§,2n513)f—2i611BZRf—é'iﬁlsB‘;HﬁR(g,,,)Bi(Sigmala—“itflz)f_ (143)

5. Discussion and final remarks

We have advanced the IST for the fourth-order NLS equation with fully asymmetric NZBCs as x — z+oo. This represents a
significant extension of the scenario where the amplitudes of the background field are equal at both spatial infinities, entailing
the management of supplementary technical complexities. The most critical of these is the inability to introduce a uniformization
variable in the spectral domain when the amplitudes of the soliton solutions differ as x — +o0. This is because such a variable would
be necessary to map the multi-sheeted Riemann surface for the scattering parameter onto a single complex plane, a step that becomes
infeasible under these asymmetric conditions. Significant distinctions from the symmetric case also emerge in the inverse problem.
In addition to solitons where correspond to the discrete eigenvalues of the scattering problem and radiation which corresponds
to the continuous spectrum of the scattering operator and is represented in the inverse problem by the reflection coefficients for
g € Ru (-iB;,iBy), there is also a notable contribution from the transmission coefficients for g € (-iBg,—iB;) U (iB;,iBg). This
is evidenced by the last term in Eq. (106), which contributes to the left Marchenko equations. Accordingly, Egs. (41a) and (41b)
indicate that in the right Marchenko equations, there is always a significant contribution from the integral terms in Egs. (85) and
(91), since y(g) [resp. 7(g)] does not vanish for g € (iB;,iBg) [resp. g € (—iBg,—iB;)]. Specifically, this suggests that pure soliton
solutions are not feasible, and solitons are invariably coupled with some form of radiative contribution. Consequently, unlike in the
symmetric scenario, an explicit solution cannot be derived merely by simplifying the inverse problem into a system of algebraic
equations.

The advancements presented in this paper regarding the IST for the fourth-order NLS equation with fully asymmetric NZBCs
as x — +oo open new avenues for future research in mathematical physics. This work not only extends the understanding of the
fourth-order NLS equation under asymmetric conditions but also provides a robust framework for analyzing the long-time asymptotic
behavior of solutions. The results are expected to facilitate the application of the nonlinear steepest descent method to study the
evolution of solutions over extended periods, similar to what has been achieved for the focusing NLS [43-48] and mKdV [49,50]
equation with step-like initial conditions. The Marchenko integral equations derived in this study offer an alternative approach
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to investigate the long-time behavior of solutions through matched asymptotics, akin to recent developments in the study of the
KdV equation [51]. This methodological advancement is significant as it allows for a more nuanced understanding of the interplay
between solitons and radiation in the context of NZBCs.

Furthermore, the insights gained from this research will be instrumental in exploring the dynamics of solitons and their
interactions with the background field under asymmetric conditions [52-56]. The inability to introduce a uniformization variable
due to differing amplitudes at spatial infinities presents a unique challenge that this study begins to address, paving the way for
further exploration into the complex behavior of nonlinear waves in diverse physical settings [57-60]. In summary, the findings
of this paper are expected to stimulate further research into the long-time asymptotic behavior of soliton solutions with nontrivial
boundary conditions, potentially leading to new theoretical developments and practical applications in the field of mathematical
physics.

CRediT authorship contribution statement

Peng-Fei Han: Writing — review & editing, Writing — original draft, Software, Data curation, Conceptualization. Kun Zhu:
Software, Project administration, Investigation. Feng Zhang: Visualization, Validation, Supervision, Formal analysis. Wen-Xiu
Ma: Visualization, Resources, Project administration, Investigation, Funding acquisition. Yi Zhang: Visualization, Resources,
Investigation, Funding acquisition.

Declaration of competing interest

The authors declare the following financial interests/personal relationships which may be considered as potential competing
interests: Yi Zhang reports financial support was provided by National Natural Science Foundation of China. If there are other
authors, they declare that they have no known competing financial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

We appreciate the efforts of the reviewers in providing detailed and helpful comments that have contributed to the enhancement
of our research. Zhang’s and Ma’s works were partially supported by the National Natural Science Foundation of China (Grant
Nos. 11371326 and 12271488). Ma’s work was also partially supported by the Ministry of Science and Technology of China
(G2021016032L and G2023016011L). Zhu’s work was partially supported by the Natural Science Foundation of Jiangxi Province
(Nos. 20224BAB201015 and 20232BAB202034).

Appendix A. Direct scattering problem

Given that GZL / &)= —ﬂ% / zL2» the explicit form of e*CL/R® can be easily derived from its series expansion:
sin(fy /gx)

LR 1Q, g — igos]. 144
Pix [Q/r —igo3] (144)

The Hilbert-Schmidt norm of a matrix L is given by ||L||2HS = tr(L'L), and the spectral norm is the square root of the largest singular
value of LTL. Then, det e*6L/&® = | for any g € C and Brjr=+/8*+ Bi/R € R. For g € RU[-iBy /g.iB; /], we have

e*6L/r(®) = cos(f rX)L, +

2 2
lgl” + B /r

lle*CL/R® |2 ¢ =2 2Y (x,8),  Y(x,8) = cos’(By/px) + sin® (B gx)- (145)

2
L/R
Since |g|? + Bi/R =g2+ Bi/R = ﬁi/R for all g € R, it follows that Y(x,g) = 1. Taking the limit of Y(x, g) as f;,x — 0 in Eq. (145)
results in Y(x, B p) = 1 + ZBi/sz. Additionally, for g € (—iByg,iBy/g), We have lg)* = —g? and ﬂi/R < Bi/R. Therefore, for
g € (=iByg,iBy p), we find that

lg|* + B 2ABZ, .~ B2 )
Y(x,g)= 0052(ﬂL/Rx) + Z—L/R sinz(ﬂL/Rx) =1+ M sinz(ﬁL/Rx) > 1. (146)
L/R L/R

Moreover, for g € [~iBy /g,iBy gl, it follows that Y(x,g) <1+ 2B2/Rx2.
For g € R, the boundedness of Y(x,g) < 1+ 2B?,_x2 is clearly established. Using the identity

L/R
1
I = 3 [||L||%{S + /LIl —4|detL|2] , (147)
we then obtain
e¥CL/R®|2 = ¥ (x, g) + VY2(x.8) = 1. g € RU(~iBy/.iB. ). (148)
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yielding
, gER,
Dy r(g) = sup [|e*CL/R®)|| = _ , (149)
/ xeR Y@ +VYXg) -1, g€ (=iBp/r,1Br/p)
where
28] = Piyw) _ 2gP o
Y(g):1+2—:1+2—, ge(—lBL/R,lBL/R). (150)
L/R L/R

Ultimately, for all x € R and g € [~iB;g,iB; gl UR, from Y(x,g) <1+ 2B2/Rx2 we find that

lleXCLREBLR|2 = 1+ 28] px + /(1 +2B] px?)? = 1 < D} (14 |x])%. asn

Here, D; /R is @ positive constant that does not depend on x € R.
Proof of Proposition 1. Forall x € R and g € RU(-iBp,1B; ), the estimate (149) demonstrates that [le*6r®) || < Dg(g). Applying
U(x, g) (10) and Gronwall’s inequality with a;(x, g) = Dg(g), @,(»,g) = Dgr()||Q(y) — Q|| yield the desired result:

10(x, 9l < Dp(g)ePr® /i 1QM-Qrlldy, (152)

From the estimate (151), we deduce that there is a constant 5R such that ||e*6r®)|| < 5R(1+ |x]) for all x € R and g € RU[-iBg,iBgl.
Applying Gronwall’s inequality leads to

”[Nj(x,g)“ < 5R(1 + |x|)65R [ A+ly=xDIQG)-Qg Il dy < ER(XO)(I + |x|)65R<X0)/xw(1+\y|)IIQ(y)—QRII dy, (153)

with Dg(xy) = Dg(1 + max(0, —x,)) and x > x,. []
Proof of Theorem 1. By multiplying Eqgs. (10) and (11) from the right by the respective appropriate columns of the matrices

E, r(g) and utilizing the explicit forms given in Eq. (144) for e VGL/r(E) we derive the subsequent Volterra integral equations for
the Jost solutions:

PRT(x, g) = B, (g) - / " 20— %, 91Q0) - QRIEPE(y, )0y, (154a)
e R u(x, g) = Ep,(g) - / ) QL - x,9)1Q0) - Qrle "R u(y, g)dy, (154b)
e’Liv(x, 8) =K (2) + /_ m Q] (x - ».9)IQW) - Q1" v(y. ) dy, (1540)
e V(x,) = Epp(0) + /_ w Q; (x -y, 91Q() — Q1 ™¥(y, g) dy, (154d)

where the subscripts j = 1,2 in the matrices E; /r(8) indicate their jth column, with

BR=8& [, —2ifpx _ _lgR 1 2ifrx _
Ql_i(x’ 8= 1+iq£ﬂk [:/3 x ! 2ip XZﬂR /[:rg 2ip 13 ? (155a)
— e R* — — RY — & 21T RX —
TR e 1] S W [e 1]
&2ifrx _ Pr=S [e2PRX _ 1] iq_R[eziﬂRx —1]
Qh(x,9) = o PR A : (155b)
—ﬁ[BZ'ﬂRX _ 1] 1+ 2RﬁRg [621ﬁRx -1
14 B8 pe2isx _q) _lay raiprx _qy
QZ(x, 8= iq%ﬂL 2ifi; x 2if xMLﬂ: & 1.2if x ’ (1550)
—_ LA — L* — - L —
TR [e 1] e TR [e 1]
e—2BLx _ ﬁsz_g [e~2ifrx _ 1] ;’ITL[e—ZiﬁLx —1]
Q(x,8) = it L ; ) . 155d
L( g) _;‘;T,;[e—mﬂl_x -1] 1+ ﬁZLﬂ—Lg [e—zwLx —1] ( )

Given the chosen branch cuts, it is straightforward to deduce the following expressions that describe the behavior of §; / as g — co:

B2 B?
R -2 L -2

—g==2[1+0 , —g==2[1+40 ) (156)

Br—g 2g[+ &I BL-s 2g[+ (&™)
Furthermore, when x > 0, we observe that

e=2Prx — 1 ¥ ipgh . 1
- |= 2R dp| < — AZ AE 1

e ' [) e ‘_mm X, ) g € AR UOAL, (157)
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Similarly, this applies to the quantities with the L-subscript. Additionally, applying the maximum modulus principle, we obtain

(1 i(fg — g))
, 0

Then, utilizing Eqgs. (156), (157) and (158) for estimation, we find that

1

212
=1+ L max_|fg — gl =2, g€ AL UIAL. (158)
l9r| geonx

T
HIR
ﬂR +g

1905 (x. Il < 1+ 2]gz] min (xﬁ) geAZUAL, (159)
R

Employing Gronwall’s inequality, we arrive at the following result:
lePR5Ti(x, g)|| < V/2els I+2arIG=x1IRM-Qrll dy (160)

with the estimate is uniformly valid for (x, g) € [x(, +o0) X [ARUOAL uaA+], provided that the hypothesis (B,) holds. Consequently,
assuming (B,) holds and for any x € R, the Jost solution u(x, g) is continuous for g € AR UOAZ U BA+ and analytic for g € Ay
Similarly, we derive analogous estimates for the remaining three Jost solutions, thereby establishing the continuity and analyticity
properties previously discussed. []

Proof of Theorem 2. Upon differentiating Eq. (154a) with respect to g, we arrive at the following integral equation:

0 [er*T(x, g) — Eg (8]
74

--2 / Q7 - x Q) — QulEr 1 (8)dy

© 0 (y—x,8) I
- / R 100) - Qu [, ~ By )] a61)

0 [e¥rV(y, £) — Eg 1 (g)] 4
og

>

- / Q30 - x.9IQW) - Qg]

where

M = _Zi_g(y — x)e ARG <O 0) - M(G—Ziﬂk(yﬂ) - Do,

g hr 0 1)7 op
. ’ (162)
— i <ﬂR -8 ~l9R ) |:67 RO~ — 1 + 21(y _ x)e—ZiﬁR(y—x) .
262 \ iax &= Pr Pr
Applying Eq. (159), we derive the following result:

0 (y—x,8) gl I/i —&l+lgrl] | 1Br—sl

R g R—& qr R— 8
— || £2=0-x0 |1 + »-x). (163)
‘ og 1] 16zl 16zl

A straightforward application of Gronwall’s inequality allows us to estimate the solution, provided that g # +iBy. An analogous
conclusion applies to u(x, g) and the other two Jost solutions, under the condition that g # +iB;. [

Appendix B. Inverse scattering problem

Proof of Proposition 2. Let us examine the representation given by Eq. (60a), which may be expressed as:

Ux, g) = e*6r® 4 / Z(x, h)ehCr® dp = / Z(x, h) [cos(ﬂRh) + sm(ﬁﬂ &M 0| an
x X R
T cos(Br)l + SR 10 o] —ig / ) Sm(ﬁﬂ &Y (164)
x R
Sin(ﬂRx) . .
= cos(frx)l, + 7 [Qg —igos] + U,(x, Br) + Up(x, fp)[Qg —igos],
R
where
o o sin(fgh)
U, (x. fr) = / Z(x, h) cos(Brh) dh, Uy(x, ) = / Z(x. ) — = dh (165)
X X R
By isolating the components that are even and odd with respect to f, we arrive at:
YO+ U020 (g, + IR )QR U, (x. B+ Uy(x. B Qe (1662)
B ST g T - g0y (166b)
R
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Consequently,
U(x, —g) - U(x, g) sin(fgx)
Uy(x, Br) = - 03— L, (167a)
»(X. Pr 2ig 3 e 2
U, (x ) = Ulx,g) +2U(x, -8 _ cos(frl, + Ux, g ;i:(x, -8 53Qg. (167b)
Proceeding from the identity,
o]
/ Z(x, )ePR" dh = U, (x, Br) + iBRUp(x. ). (168)
P
one may express it as:
oo iprh 1~ i ﬂR 1~ i ﬂR ifpx
Z(x,h)e"R*dh = =U(x,g) |I, = —=03Qr — — o3| + =U(x,—g) |IL + —03Qr + — 03| —"**L,. (169)
x 2 g g 7] 2 g g
Subsequently, the verification of the following identities can be readily undertaken:
e“Cr® [I _is Qg - ﬁ—Ra } = elfrx [1 i Qp — ﬂ—Ro ] , (170a)
27 50T 0 27 0RO
¢*Or(-8) [Iz + l173QR + ﬁ—Ra3] =er¥ (1, 4+ l63QR + ﬁ—RO'3] . (170b)
4 4 4 4
Upon multiplying both sides of Eq. (169) by e~/**, and employing the aforementioned identities, we ascertain that:
oo .
/ Z(x, h)eiﬂk(h—x) dh = % [U(x’ g)efoR(g) — 12] [IZ — lO-SQR — ﬂ—RU3]
x 4 g 171)

1 [~ _ _ i Br
+ = |Ux, - XGR<g>—I]I+— + =03,
2[ (x,—g)e 2| (&2 gGSQR PR

Hence, [~ Z(x, WePr"=%) dn = [% Z(x, h)e!Prh=) dh, given that Z(x, h) = 0 for x > h, we consequently derive Eq. (62). Similarly, it
can be demonstrated from Eq. (60b) that Eq. (63) holds. []

Proof of Theorem 3. Upon substituting Eq. (61a) into Eq. (3) and subsequently multiplying the resultant equation on the right by
¢lfro3X  we obtain:

0, [Ux, 9)ePr73| — ippU(x, g)o3 PR3 = [Q(x) — igo3] [Eg(g) + / Z(x, h)E g(g)e Pro3(h=) dh]. 172)

Utilizing Egs. (19), (50) and (51) with the assumption in Eq. (51) that d,q € L'(R), we derive the following:
[iaxQ(xm i (12 , Qe

) 63] [1+o(1)] = [Q(x) — igos] [12 + / " 2, hye-iPrs =) dh]

2g 2g x a73)
i[Q(x) — ig0'3] [Q + /oo Z(x, HQ e~iPro3(h—x) dh] P
Br+8 R TR o
That is to say,
[s+]
igos + %Q(x) +o(g™H = —igosy + Q(x) + Q(x)/ Z(x, hye Pro3(h=x) gp
X
o0 . iB? o .
— ifgos / Z(x, e Pros(h=) dp A fgo3 / Z(x, hye Prosh=) dp (174)
X X
B2 i i —i S ,
1o % 01Qos + iQ(x)Qgo3 . i[Q(x) —igos] Z(x, Qe PR35 dp,
2 (Br + 8 ; Prt+sg BPr+sg x

On the right-hand side, the third, fifth, and final terms encompass Fourier integrals of matrix functions, the entries of which are
in L?(R;dpy), and are multiplied by factors that remain bounded as g becomes large; consequently, these terms tend to zero as
g, fr — . Subsequently, for the fourth term, we express it as:

[s+] o0
—ifros / Z(x, h)e Pro3(h=2) qp = —ifro, / Z(x, WEg(g)e Pro3(=%) qp
X X

s - (175)
R ~ipro3(h—x)
- c Z(x, h)Qgose Pro3(=) dp,
fr+g > /x K
wherein the second term on the right features entries in L?>(R;dfg). The initial term on the right is articulated as:
— ifgos / Z(x, hEg(g)e Pro3=) dp = o, {—Z(x, xEg(g) + / [0 Z(x, h)] e Prosh=2) dpy
* * (176)

i

+ e / [0 Z(x, h)] Qrose™#r73 =) dh — 9, [U(x, g)ePR3* — E(g)] } o3.
X
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Let us now scrutinize the individual terms within the brackets on the right-hand side of the aforementioned identity. The first term
simplifies to —Z(x, x) + o(1). According to Eq. (51), the terminal term dissipates as g — +oo0, the penultimate term comprises entries
in L2(R; dpg) (as it represents the Fourier transform of an L? matrix function), and the antepenultimate term of the final component
is L? scaled by a bounded coefficient. Consequently, dismissing all contributions that tend to zero as g — +oo, and leveraging the
fact that 6;Qgo3 = —Qp, we arrive at:

—igoy + %Q(x) = —igoy + Q) — 03 Z(x, X)os — %QR, a77)

That is, the first part of Eq. (70) is established. The second equality in Eq. (70) can be demonstrated through a similar approach. []
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