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A B S T R A C T

The inverse scattering transform is utilized to address the initial-value problem for the fourth-
order nonlinear Schrödinger equation characterized by fully asymmetric non-zero boundary
conditions. This work considers the fully asymmetric scenario for both asymptotic amplitudes
and phases. The direct problem demonstrates the establishment of the corresponding analytic
properties of eigenfunctions and scattering data. The inverse scattering problem is approached
using both (left and right) Marchenko integral equations and is also formulated as the Riemann–
Hilbert problem on a single sheet of the scattering variable. The temporal evolution of the
scattering coefficients is subsequently deduced, revealing that in contrast to solutions with
uniform amplitudes, both reflection and transmission coefficients exhibit a nontrivial time
dependency here. The findings of this paper are expected to be pivotal for exploring the long-
time asymptotic behavior of the fourth-order nonlinear Schrödinger solutions with significant
boundary conditions.

1. Introduction

Since the inception of the inverse scattering transform (IST) for the solution of the Korteweg–de Vries (KdV) equation utilizing
a Lax pair [1], this methodological framework has been progressively extended to encompass a broader spectrum of physically
significant nonlinear wave equations that also admit Lax pairs [2,3]. Prominent among these are the nonlinear Schrödinger (NLS)
equation [4], the modified Korteweg–de Vries (mKdV) equation [5], the Benjamin–Ono equation [6], the Kadomtsev–Petviashvili
equation [7], and the Davey–Stewartson equation [8], among others. The NLS equation and its various extensions have emerged as
particularly intriguing models within the nonlinear science domain, finding applications across diverse fields such as shallow water
waves [9], Bose–Einstein condensates [10,11], deep ocean dynamics [12], and even in financial modeling.

The IST stands as a powerful and versatile analytical tool in the study of integrable systems, facilitating the derivation of soliton
solutions that are pivotal in understanding the behavior of these systems [13]. Its application has been prolific in exploring a
multitude of integrable nonlinear wave equations. Beyond the foundational NLS equation, the scope of IST has been broadened to
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include the Sasa–Satsuma equation [14,15], the nonlocal mKdV equation [16] and the derivative NLS equation [17,18], thereby 
enriching our comprehension of soliton dynamics across different physical contexts. This expansion underscores the adaptability 
and profundity of IST as a cornerstone technique in the theoretical exploration of nonlinear phenomena [19,20].

The Riemann–Hilbert (RH) method as a modern variant of the IST has streamlined the computational process of IST and has 
garnered extensive applications. In recent years, the study of soliton solutions for integrable systems under both zero and non-zero 
boundary conditions (NZBCs) via the RH method has attracted significant attention [21,22]. Notable achievements have been made 
using the RH method, including the Sasa–Satsuma equation [23], the matrix KdV equation [24], the modified NLS equation [25], 
the three-component coupled NLS equation [26] and the Gerdjikov–Ivanov equation [27], among others. The procedure of the RH 
method can be summarized as follows: Initially, initial values in the Schwartz space are considered, and the associated scattering 
data is obtained through spectral analysis. Subsequently, the scattering data related to time 𝑡 is acquired through temporal evolution, 
and a relationship between the solutions of the original equation and the solutions of the RH problem is established. Ultimately, 
the general form of exact solutions corresponding to simple and second-order zeros under the reflectionless condition is obtained, 
and the propagation behaviors of different solutions with specific parameters are analyzed.

The fourth-order NLS equation, a fundamental model in the study of nonlinear optics, deep ocean and Bose–Einstein condensates 
has been a subject of intensive research due to its complex dynamics and practical significance [28–30]. The higher-order effects 
play an important role in the wave propagations of ultrashort (e.g. subpicosecond or femtosecond) light pulses in optical fibers. This 
study aims to investigate the characteristics of the fourth-order NLS equation [28–30]: 

i𝑞𝑡 + 𝜎11(𝑞𝑥𝑥 + 2 |𝑞|2 𝑞) + i𝜎12(𝑞𝑥𝑥𝑥 + 6|𝑞|2𝑞𝑥) + 𝜎13(𝑞𝑥𝑥𝑥𝑥 + 4|𝑞𝑥|
2𝑞 + 6𝑞2𝑥𝑞

∗ + 8𝑞𝑥𝑥|𝑞|
2 + 2𝑞2𝑞∗𝑥𝑥 + 6|𝑞|4𝑞) = 0, (1)

where 𝑞 = 𝑞(𝑥, 𝑡) denotes a scalar function and the real constants 𝜎11, 𝜎12 and 𝜎13 correspond to the second-order, third-order and 
fourth-order dispersions, respectively. When 𝜎12 and 𝜎13 = 0, Eq. (1) simplifies to the NLS equation [4], a classical equation that 
describes the plane self-focusing and one-dimensional self-modulation of waves in nonlinear dispersive media. As 𝜎11 = 𝜎13 = 0, 
Eq. (1) becomes the complex mKdV equation [31]. Given that 𝜎13 = 0, Eq. (1) reduces to the Hirota equation [32,33], which 
was used to describe the propagation of ultra-short light pulses in optical fibers. The Hirota equation first introduced by Hirota in 
1973 has since become a focal point in the realm of nonlinear science. Under the assumption that 𝜎12 = 0, Eq. (1) becomes the 
Lakshmanan–Porsezian–Daniel (LPD) equation [34], which is equivalent to the lowest order continuum limit of the Heisenberg spin 
chain. The integrability of the fourth-order NLS equation stems from its composition as the sum of LPD equation and complex mKdV 
equation [31], which are partial differential equations belonging to the same hierarchy, along with the integrable commutative 
flows derived from the NLS equation [4]. Discussions on the soliton solutions of systems with NZBCs have been presented, as well 
as studies on rogue waves and rational solutions of the fourth-order NLS equation [30]. Whether dealing with nonlinear integrable 
systems with zero or non-zero backgrounds, exact solutions can be obtained through various approaches, such as the IST [35] and 
the Darboux transformation [36].

The objective of this research is to elaborate the IST for Eq. (1), particularly in the context of fully asymmetric NZBCs: 

𝑞(𝑥, 𝑡) → 𝑞𝐿∕𝑅(𝑡) = 𝐵𝐿∕𝑅e
(2i𝜎11𝐵2

𝐿∕𝑅+6i𝜎13𝐵
4
𝐿∕𝑅)𝑡+i𝛿𝐿∕𝑅 , 𝑥 → ∓∞, (2)

where 𝐵𝑅 ≥ 𝐵𝐿 > 0 and 0 ≤ 𝛿𝐿∕𝑅 < 2𝜋 are arbitrary constants. The focusing and defocusing NLS equations [37,38] with fully 
asymmetric NZBCs have been studied and correspondingly extended to the focusing and defocusing mKdV equations [39] in few-
cycle pulses, the focusing and defocusing Hirota equations [40,41] and the defocusing LPD equation [42]. When the amplitudes of 
the solutions diverge as 𝑥 → ±∞, it becomes infeasible to define a uniformizing variable in the spectral domain. Such a variable 
would otherwise facilitate the mapping of the multi-sheeted Riemann surface associated with the scattering parameter, onto a 
singular complex plane. From a practical standpoint in physics, fully asymmetric NZBCs hold particular importance for theoretically 
exploring rogue waves and perturbed soliton solutions within microstructured optical fiber systems. These systems feature distinct 
background amplitudes at the fiber’s termini. Moreover, this research bears relevance to elucidating the function of soliton solutions 
in the nonlinear progression of modulation instability within such contexts.

The structure of the paper is summarized as follows. Section 2 focuses on the direct scattering problem. We begin by defining 
the Jost solutions and elucidating their continuity and analyticity properties. The symmetries linking eigenfunctions and scattering 
data are also explored. Moreover, we investigate the properties of the discrete spectrum and the trace formula. Finally, a systematic 
analysis of the behavior of eigenfunctions and scattering data for large values of 𝑔 is conducted, where 𝑔 represents the conventional 
complex scattering parameter utilized within the IST framework. In Section 3, we develop two triangular representations for the 
fundamental eigenfunctions. Furthermore, the inverse problem will be addressed using both (left and right) Marchenko integral 
equations and formulated as the RH problem on a unified sheet of the scattering variable 𝛽𝐿∕𝑅 =

√

𝑔2 + 𝐵2
𝐿∕𝑅, which involves 

reconstructing the eigenfunctions and the potential based on the scattering data. Section 4 offers an alternative approach to the 
inverse problem, formulated as the RH problem for the eigenfunctions, where the discontinuities are described using the scattering 
data. Additionally, this section addresses the temporal evolution of the eigenfunctions and scattering coefficients. Section 5 contains 
concluding remarks. Additional technical proofs are compiled in Appendices  A and B.

2. Direct scattering problem

2.1. Lax pair and the fundamental eigensolutions

The fourth-order NLS equation (1) is commonly linked to the following Lax pair: 
(3)
𝜓𝑥 = 𝐗𝜓, 𝜓𝑡 = 𝐓𝜓,
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where 𝜓 = 𝜓(𝑥, 𝑡) and 𝐗 = 𝐗(𝑔; 𝑥, 𝑡) = −i𝑔𝜎3 +𝐐, with the matrix denoted by 𝐓 is shown below: 
𝐓 = 𝐓(𝑔; 𝑥, 𝑡) = 𝜎11[2𝑔𝐐 − 2i𝑔2𝜎3 + i𝜎3(𝐐𝑥 −𝐐2)] + 𝜎12[4𝑔2𝐐 − 4i𝑔3𝜎3 + 2i𝑔𝜎3(𝐐𝑥 −𝐐2) + 2𝐐3

− 𝐐𝑥𝑥 +𝐐𝑥𝐐 −𝐐𝐐𝑥] + 𝜎13[8i𝑔4𝜎3 − 8𝑔3𝐐 − 4i𝑔2𝜎3(𝐐𝑥 −𝐐2) − 6i𝜎3𝐐2𝐐𝑥

− 𝑔(4𝐐3 − 2𝐐𝑥𝑥 + 2𝐐𝑥𝐐 − 2𝐐𝐐𝑥) + i𝜎3(3𝐐4 +𝐐𝑥𝑥𝑥 +𝐐2
𝑥 −𝐐𝑥𝑥𝐐 −𝐐𝐐𝑥𝑥)],

(4)

where the expressions for the matrices 𝜎2, 𝜎3 and 𝐐 = 𝐐(𝑥, 𝑡) are delineated below: 

𝜎2 =
(

0 −i
i 0

)

, 𝜎3 =
(

1 0
0 −1

)

, 𝐐 =
(

0 𝑞
−𝑞∗ 0

)

. (5)

We will now examine potentials with nontrivial boundary conditions, assuming that 𝐵𝑅 ≥ 𝐵𝐿 > 0. It should be noted that although 
the asymptotic amplitudes 𝐵𝐿∕𝑅 can be considered time-independent, the asymptotic phases evolve according to the following 
expressions: 𝛿𝐿∕𝑅(𝑡) = (2𝜎11𝐵2

𝐿∕𝑅 + 6𝜎13𝐵4
𝐿∕𝑅)𝑡 + 𝛿𝐿∕𝑅. Consequently, unlike the case of equal-amplitude boundary conditions where 

𝐵𝑅 = 𝐵𝐿, it is unfeasible to remove the background and make both boundary conditions time-independent.
This section explicitly disregards temporal dependence. Integrability condition is assumed whether 𝑡 = 0 or for any 𝑡 > 0: 

(𝑩𝑗 ) ∶ ∫

∞

0
(1 + |𝑥|)𝑗 [|𝑞(−𝑥) − 𝑞𝐿| + |𝑞(𝑥) − 𝑞𝑅|] d𝑥 < +∞, (6)

the assumption of 𝑗 = 0, 1, 2 applies to all 𝑡 ≥ 0. Note that the condition (𝑩𝑗 ) is equivalent to assuming (𝑞(𝑥) − 𝑞𝐿∕𝑅) ∈ 𝐿1,𝑗 (R∓). We 
use 𝐐𝑅(𝑡) to represent the limit of 𝐐(𝑥, 𝑡) as 𝑥 → +∞, and 𝐐𝐿(𝑡) to represent the limit of 𝐐(𝑥, 𝑡) as 𝑥 → −∞. Let the matrix 𝐐𝑎(𝑥, 𝑡)
be defined as follows: 

𝐐𝑎(𝑥, 𝑡) = 𝐐𝑅(𝑡)𝜇(𝑥) +𝐐𝐿(𝑡)𝜇(−𝑥), (7)

where 𝜇(𝑥) is the Heaviside function. It is beneficial to introduce the operators in the limit 𝑥→ ∓∞: 

𝐆𝐿∕𝑅(𝑔) = −i𝑔𝜎3 +𝐐𝐿∕𝑅, 𝐆(𝑥, 𝑔) = −i𝑔𝜎3 +𝐐𝑎(𝑥) = 𝐆𝑅(𝑔)𝜇(𝑥) +𝐆𝐿(𝑔)𝜇(−𝑥), (8)

and introduce the fundamental eigensolutions 𝐔̃(𝑥, 𝑔) and 𝐕̃(𝑥, 𝑔) that satisfy the asymptotic conditions: 

𝐔̃(𝑥, 𝑔) = e𝑥𝐆𝑅(𝑔)[𝐈2 + 𝑜(1)], 𝑥 → +∞, (9a)

𝐕̃(𝑥, 𝑔) = e𝑥𝐆𝐿(𝑔)[𝐈2 + 𝑜(1)], 𝑥 → −∞. (9b)

The exponential function e𝑥𝐆𝐿∕𝑅(𝑔) remains bounded for all 𝑥 ∈ R if and only if 𝐆𝐿∕𝑅(𝑔) is diagonalizable and its eigenvalues are 
either zero or purely imaginary. This condition holds if and only if 𝑔 ∈ R ∪ (−i𝐵𝐿∕𝑅, i𝐵𝐿∕𝑅). For 𝑔 = ±i𝐵𝐿∕𝑅, the norm of the group 
e𝑥𝐆𝐿∕𝑅(𝑔) increases linearly with 𝑥 as 𝑥→ ∓∞. Appendix  A provides detailed norm estimates, as well as proofs for a proposition and 
two theorems discussed in this section.

Proposition 1.  Assume the potential satisfies (𝑩0). Then the fundamental eigensolution 𝐔̃(𝑥, 𝑔) which exhibits asymptotic behavior (9a) 
can be uniquely determined as 

𝐔̃(𝑥, 𝑔) = e𝑥𝐆𝑅(𝑔) − ∫

∞

𝑥
e(𝑥−𝑦)𝐆𝑅(𝑔)[𝐐(𝑦) −𝐐𝑅]𝐔̃(𝑦, 𝑔) d𝑦, 𝑔 ∈ R ∪ (−i𝐵𝑅, i𝐵𝑅). (10)

Furthermore, the function 𝐔̃(𝑥, 𝑔) exhibits continuity for all 𝑥0 ≤ 𝑥, where 𝑥0 is any finite value, and it remains continuous as a function 
of 𝑔 across the entire domain 𝑔 ∈ R∪ (−i𝐵𝑅, i𝐵𝑅). Likewise, the fundamental eigensolution 𝐕̃(𝑥, 𝑔) which exhibits asymptotic behavior (9b) 
can be uniquely determined as 

𝐕̃(𝑥, 𝑔) = e𝑥𝐆𝐿(𝑔) + ∫

𝑥

−∞
e(𝑥−𝑦)𝐆𝐿(𝑔)[𝐐(𝑦) −𝐐𝐿]𝐕̃(𝑦, 𝑔) d𝑦, 𝑔 ∈ R ∪ (−i𝐵𝐿, i𝐵𝐿). (11)

Furthermore, the function 𝐕̃(𝑥, 𝑔) exhibits continuity for all 𝑥 ≤ 𝑥0 and it remains continuous across the entire domain 𝑔 ∈ R∪ (−i𝐵𝐿, i𝐵𝐿). 
Moreover, under the assumption (𝑩1), 𝐔̃(𝑥, 𝑔) (10) [resp. 𝐕̃(𝑥, 𝑔) (11)] has a unique and continuous solution for 𝑔 ∈ [−i𝐵𝑅, i𝐵𝑅] [resp. 
𝑔 ∈ [−i𝐵𝐿, i𝐵𝐿]]. The findings can be extended to the respective branch points.

Assuming (𝑩1), it is possible to substitute the integral equations (10) and (11) with alternative formulations. Let the matrix 
𝐖(𝑔; 𝑥, 𝑦) in the following manner: 

𝐖(𝑔; 𝑥, 𝑦) = 𝜇(𝑥)𝜇(𝑦)e(𝑥−𝑦)𝐆𝑅(𝑔) + 𝜇(−𝑥)𝜇(−𝑦)e(𝑥−𝑦)𝐆𝐿(𝑔) + 𝜇(𝑥)𝜇(−𝑦)e𝑥𝐆𝑅(𝑔)e−𝑦𝐆𝐿(𝑔) + 𝜇(−𝑥)𝜇(𝑦)e𝑥𝐆𝐿(𝑔)e−𝑦𝐆𝑅(𝑔). (12)

The matrix function 𝐖(𝑔; 𝑥, 𝑦) is continuous with respect to (𝑔; 𝑥, 𝑦) ∈ R2 × C and fulfills the associated initial value problems: 
𝜕𝐖(𝑔; 𝑥, 𝑦)

𝜕𝑥
= 𝐆(𝑥, 𝑔)𝐖(𝑔; 𝑥, 𝑦), 𝐖(𝑔; 𝑦, 𝑦) = 𝐈2, (13a)

𝜕𝐖(𝑔; 𝑥, 𝑦)
𝜕𝑦

= −𝐖(𝑔; 𝑥, 𝑦)𝐆(𝑦, 𝑔), 𝐖(𝑔; 𝑥, 𝑥) = 𝐈2. (13b)
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By employing Eqs. (13a) and (13b), it can be readily verified that the fundamental eigenfunctions also adhere to the integral 
equations: 

𝐔̃(𝑥, 𝑔) = 𝐖(𝑔; 𝑥, 0) − ∫

∞

𝑥
𝐖(𝑔; 𝑥, 𝑦)[𝐐(𝑦) −𝐐𝑎(𝑦)]𝐔̃(𝑦, 𝑔) d𝑦, (14a)

𝐕̃(𝑥, 𝑔) = 𝐖(𝑔; 𝑥, 0) + ∫

𝑥

−∞
𝐖(𝑔; 𝑥, 𝑦)[𝐐(𝑦) −𝐐𝑎(𝑦)]𝐕̃(𝑦, 𝑔) d𝑦, (14b)

where 𝐖(𝑔; 𝑥, 0) = 𝜇(𝑥)e𝑥𝐆𝑅(𝑔) + 𝜇(−𝑥)e𝑥𝐆𝐿(𝑔) as specified in Eq. (12). It is important to observe that Eq. (14a) aligns with Eq. (10) 
for 𝑥 ≥ 0, and Eq. (14b) aligns with Eq. (11) for 𝑥 ≤ 0. Furthermore, by applying Eq. (12), we obtain 

𝐔̃(𝑥, 𝑔) = e𝑥𝐆𝐿(𝑔)
[

𝐈2 − ∫

∞

𝑥
𝐖(𝑔; 0, 𝑦)[𝐐(𝑦) −𝐐𝑎(𝑦)]𝐔̃(𝑦, 𝑔) d𝑦

]

, 𝑥 ≤ 0, (15a)

𝐕̃(𝑥, 𝑔) = e𝑥𝐆𝑅(𝑔)
[

𝐈2 + ∫

𝑥

−∞
𝐖(𝑔; 0, 𝑦)[𝐐(𝑦) −𝐐𝑎(𝑦)]𝐕̃(𝑦, 𝑔) d𝑦

]

, 𝑥 ≥ 0, (15b)

where the integrals on the right-hand sides converge absolutely as 𝑥 → ∓∞. It should be noted that the fundamental matrix 
𝐖(𝑔; 𝑥, 𝑦) depends on both groups e𝑥𝐆𝐿∕𝑅(𝑔). Consequently, the integral equations (14a) and (14b) are applicable only for defining 
the fundamental eigenfunctions 𝐔̃(𝑥, 𝑔) and 𝐕̃(𝑥, 𝑔) when 𝑔 ∈ R ∪ [−i𝐵𝐿, i𝐵𝐿]. The condition 𝜕

𝜕𝑥 det 𝜓 = tr𝐗 det 𝜓 = 0 is used to 
determine that det 𝐔̃(𝑥, 𝑔) = det 𝐕̃(𝑥, 𝑔) = 1 and considering the asymptotic behavior (9a) and (9b).

2.2. Jost solutions

Given that the asymptotic scattering operators 𝐆𝐿∕𝑅(𝑔) are traceless and obey the relation 𝐆2
𝐿∕𝑅(𝑔) = −(𝑔2 + 𝐵2

𝐿∕𝑅)𝐈2, it is 
reasonable to introduce the conformal mappings 𝛽𝐿∕𝑅 =

√

𝑔2 + 𝐵2
𝐿∕𝑅 with branch cuts defined along the imaginary intervals 

𝛯𝐿∕𝑅 = [−i𝐵𝐿∕𝑅, i𝐵𝐿∕𝑅]. By employing suitable local polar coordinates, we proceed to define 

𝛽𝑅 =
√

𝜆1𝜆2ei(𝛿1+𝛿2)∕2, 𝛽𝐿 =
√

𝜆3𝜆4ei(𝛿3+𝛿4)∕2, (16)

where 𝜆𝑗 ≥ 0 and −𝜋∕2 ≤ 𝛿𝑗 < 3𝜋∕2 for 𝑗 = 1, 2, 3, 4 as indicated in Fig.  1. We shall examine a single sheet of the complex plane for 
𝑔, and let Λ𝐿∕𝑅 represent the plane with cuts along the segments 𝛯𝐿∕𝑅 on the imaginary axis. Let C± denote the open upper/lower 
complex half-planes, respectively, and let Λ±

𝐿∕𝑅 represent the corresponding open upper/lower complex half-planes with cuts along 
𝛯𝐿∕𝑅. 𝛽𝑅 establishes a bijective mapping across the ensuing domains:

• 𝑔 ∈ Λ+
𝑅 = C+∖(0, i𝐵𝑅] and 𝛽𝑅 ∈ C+.

• 𝑔 ∈ 𝜕Λ+
𝑅 = R ∪ {iℎ − 0+ ∶ 0 < ℎ < 𝐵𝑅} ∪ {i𝐵𝑅} ∪ {iℎ + 0+ ∶ 0 < ℎ < 𝐵𝑅} and 𝛽𝑅 ∈ R.

• 𝑔 ∈ Λ−
𝑅 = C−∖[−i𝐵𝑅, 0) and 𝛽𝑅 ∈ C−.

• 𝑔 ∈ 𝜕Λ−
𝑅 = R ∪ {iℎ − 0+ ∶ −𝐵𝑅 < ℎ < 0} ∪ {−i𝐵𝑅} ∪ {iℎ + 0+ ∶ −𝐵𝑅 < ℎ < 0} and 𝛽𝑅 ∈ R.

Similarly, 𝛽𝐿 establishes a bijective mapping among the subsequent domains:

• 𝑔 ∈ Λ+
𝐿 = C+∖(0, i𝐵𝐿] and 𝛽𝐿 ∈ C+.

• 𝑔 ∈ 𝜕Λ+
𝐿 = R ∪ {iℎ − 0+ ∶ 0 < ℎ < 𝐵𝐿} ∪ {i𝐵𝐿} ∪ {iℎ + 0+ ∶ 0 < ℎ < 𝐵𝐿} and 𝛽𝐿 ∈ R.

• 𝑔 ∈ Λ−
𝐿 = C−∖[−i𝐵𝐿, 0) and 𝛽𝐿 ∈ C−.

• 𝑔 ∈ 𝜕Λ−
𝐿 = R ∪ {iℎ − 0+ ∶ −𝐵𝐿 < ℎ < 0} ∪ {−i𝐵𝐿} ∪ {iℎ + 0+ ∶ −𝐵𝐿 < ℎ < 0} and 𝛽𝐿 ∈ R.

It is important to note that with this selection of branch cuts, 𝛽𝑅 ∼ 𝛽𝐿 ∼ 𝑔 as 𝑔 → ∞ throughout the entire plane (see Eq. (156)). 
Subsequently, 𝛽±𝐿 (𝑔) [resp. 𝛽±𝑅(𝑔)] will represent the boundary values of 𝛽𝐿(𝑔) [resp. 𝛽𝑅(𝑔)] for 𝑔 ∈ 𝛯𝐿 [resp. 𝑔 ∈ 𝛯𝑅], taken from 
the right/left edge of the cut, with 

𝛽±𝐿 (𝑔) = ±
√

𝐵2
𝐿 − |𝑔|2, 𝑔 = iℎ ± 0+, |ℎ| ≤ 𝐵𝐿, (17a)

𝛽±𝑅(𝑔) = ±
√

𝐵2
𝑅 − |𝑔|2, 𝑔 = iℎ ± 0+, |ℎ| ≤ 𝐵𝑅, (17b)

on the right/left edge. It is evident that ±i𝛽𝐿∕𝑅 are the eigenvalues of 𝐆𝐿∕𝑅(𝑔), and the corresponding eigenvector matrices 𝐄𝐿∕𝑅(𝑔)
satisfy 

𝐆𝐿∕𝑅(𝑔)𝐄𝐿∕𝑅(𝑔) = −i𝛽𝐿∕𝑅𝐄𝐿∕𝑅(𝑔)𝜎3, (18)

where 

𝐄𝐿∕𝑅(𝑔) = 𝐈2 −
i𝜎3𝐐𝐿∕𝑅

𝛽𝐿∕𝑅 + 𝑔
. (19)

We may subsequently define the Jost solutions utilizing the fundamental eigensolutions in the following manner: 
𝐔(𝑥, 𝑔) = (𝐮̃(𝑥, 𝑔),𝐮(𝑥, 𝑔)) ∶= 𝐔̃(𝑥, 𝑔)𝐄 (𝑔), (20a)
𝑅
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Fig. 1. The branch cuts for 𝛽𝑅 =
√

𝑔2 + 𝐵2
𝑅 and 𝛽𝐿 =

√

𝑔2 + 𝐵2
𝐿: we define 𝛽𝑅 =

√

𝜆1𝜆2ei(𝛿1+𝛿2 )∕2 with 𝜆1 = |

|

𝑔 − i𝐵𝑅||, 𝜆2 = |

|

𝑔 + i𝐵𝑅|| and angles −𝜋∕2 < 𝛿1 , 𝛿2 ≤ 3𝜋∕2. 
Similarly, 𝛽𝐿 =

√

𝜆3𝜆4ei(𝛿3+𝛿4 )∕2 with 𝜆3 = |

|

𝑔 − i𝐵𝐿||, 𝜆4 = |

|

𝑔 + i𝐵𝐿|| and angles −𝜋∕2 < 𝛿3 , 𝛿4 ≤ 3𝜋∕2.

𝐕(𝑥, 𝑔) = (𝐯(𝑥, 𝑔), 𝐯(𝑥, 𝑔)) ∶= 𝐕̃(𝑥, 𝑔)𝐄𝐿(𝑔). (20b)

Alternatively, they can be characterized as solutions to the scattering problem exhibiting the following asymptotic behavior: 
𝐕(𝑥, 𝑔) ∼ 𝐄𝐿(𝑔)e−i𝛽𝐿𝑥𝜎3 𝑥→ −∞, (21a)

𝐔(𝑥, 𝑔) ∼ 𝐄𝑅(𝑔)e−i𝛽𝑅𝑥𝜎3 𝑥 → +∞. (21b)

The Jost solutions ̃𝐮(𝑥, 𝑔) and 𝐮(𝑥, 𝑔) [resp. 𝐯(𝑥, 𝑔) and ̃𝐯(𝑥, 𝑔)] are defined for 𝛽𝑅 ∈ R [resp. 𝛽𝐿 ∈ R], where 𝑔 lies on the boundary 
of 𝜕Λ+

𝑅 ∪ 𝜕Λ−
𝑅 [resp. 𝜕Λ+

𝐿 ∪ 𝜕Λ−
𝐿]. Specifically, when 𝑔 = iℎ ∈ [−i𝐵𝑅, i𝐵𝑅] [resp. 𝑔 = iℎ ∈ [−i𝐵𝐿, i𝐵𝐿]], the solutions on the right/left 

edge of the cut in both half-planes are distinguished by the superscripts ±, respectively. 
𝐔±(𝑥, iℎ) = (𝐮̃±(𝑥, iℎ),𝐮±(𝑥, iℎ)) ∶= 𝐔̃(𝑥, iℎ)𝐄𝑅(iℎ ± 0+), |ℎ| ≤ 𝐵𝑅, (22a)

𝐕±(𝑥, iℎ) = (𝐯±(𝑥, iℎ), 𝐯±(𝑥, iℎ)) ∶= 𝐕̃(𝑥, iℎ)𝐄𝐿(iℎ ± 0+), |ℎ| ≤ 𝐵𝐿. (22b)

Given that 𝐕̃(𝑥, 𝑔) [resp. 𝐔̃(𝑥, 𝑔)] remains single-valued across the cut, and 𝐄𝐿(𝑔) [resp. 𝐄𝑅(𝑔)] is characterized by right/left limits 
as specified in Eq. (17a) [resp. Eq. (17b)]. The subsequent theorems delineate the analytic characteristics of the Jost solutions with 
respect to 𝑔. The conventional over-bar notation is employed to signify the closure of a set.

Theorem 1.  Assuming (𝑩1) is satisfied for 𝑥 ∈ R, 𝐮(𝑥, 𝑔) [resp. ̃𝐮(𝑥, 𝑔)] extends to a function that is continuous on 𝑔 ∈ Λ+
𝑅 ∪ 𝜕Λ−

𝑅 [resp. 
𝑔 ∈ Λ−

𝑅 ∪ 𝜕Λ+
𝑅] and analytic within 𝑔 ∈ Λ+

𝑅 [resp. 𝑔 ∈ Λ−
𝑅]. Likewise, 𝐯(𝑥, 𝑔) [resp. 𝐯(𝑥, 𝑔)] extends to a function that is continuous on 

𝑔 ∈ Λ+
𝐿 ∪ 𝜕Λ−

𝐿 [resp. 𝑔 ∈ Λ−
𝐿 ∪ 𝜕Λ+

𝐿] and analytic within 𝑔 ∈ Λ+
𝐿 [resp. 𝑔 ∈ Λ−

𝐿].

Theorem 2.  Assuming (𝑩2) is satisfied for 𝑥 ∈ R, the derivative 𝜕𝑔𝐮(𝑥, 𝑔) [resp. 𝜕𝑔 𝐮̃(𝑥, 𝑔)] extends to a function that is continuous on 
𝑔 ∈ Λ+

𝑅 ∪ 𝜕Λ−
𝑅∖{−i𝐵𝑅} [resp. 𝑔 ∈ Λ−

𝑅 ∪ 𝜕Λ+
𝑅∖{i𝐵𝑅}] and analytic within 𝑔 ∈ Λ−

𝑅 [resp. 𝑔 ∈ Λ+
𝑅]; the derivative 𝜕𝑔𝐯(𝑥, 𝑔) [resp. 𝜕𝑔𝐯(𝑥, 𝑔)] 

extends to a function that is continuous on 𝑔 ∈ Λ+
𝐿∪𝜕Λ

−
𝐿∖{−i𝐵𝐿} [resp. 𝑔 ∈ Λ−

𝐿∪𝜕Λ
+
𝐿∖{i𝐵𝐿}] and analytic within 𝑔 ∈ Λ−

𝐿 [resp. 𝑔 ∈ Λ+
𝐿].

The entities Λ±
𝐿∕𝑅 are to be understood as analytic manifolds. The continuity of the Jost solutions across the cuts is defined in 

terms of the existence of right/left continuous limits, which are only considered within the domains where the branch cut constitutes 
a boundary of the analytic manifold. In regions of the half-planes where analytic continuation is not possible near the branch cut, 
the functions 𝐮±(𝑥, 𝑔) and 𝐮̃±(𝑥, 𝑔) [resp. 𝐯±(𝑥, 𝑔) and 𝐯±(𝑥, 𝑔)] are defined according to the two possible values of 𝛽±𝑅 [resp. 𝛽±𝐿]. 
These functions can be uniquely determined by solving the associated Volterra integral equations.

2.3. Scattering matrix and its coefficients

By examining the integral equations for the fundamental matrices given in Eqs. (15a) and (15b), it is straightforward to deduce 
that 

𝐔̃(𝑥, 𝑔) = e𝑥𝐆𝐿(𝑔)[𝐀 (𝑔) + 𝑜(1)], 𝑥 → −∞, (23a)
𝑅
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𝐕̃(𝑥, 𝑔) = e𝑥𝐆𝑅(𝑔)[𝐀𝐿(𝑔) + 𝑜(1)], 𝑥 → +∞, (23b)

where 

𝐀𝑅(𝑔) = 𝐈2 − ∫

∞

−∞
𝐖(𝑔; 0, 𝑦)[𝐐(𝑦) −𝐐𝑎(𝑦)]𝐔̃(𝑦, 𝑔) d𝑦, (24a)

𝐀𝐿(𝑔) = 𝐈2 + ∫

∞

−∞
𝐖(𝑔; 0, 𝑦)[𝐐(𝑦) −𝐐𝑎(𝑦)]𝐕̃(𝑦, 𝑔) d𝑦, (24b)

with the matrices 𝐀𝑅(𝑔) and 𝐀𝐿(𝑔) are mutual inverses. The assumptions of Proposition  1, in conjunction Eqs. (23a), (23b) with (144), 
lead to the conclusion that det 𝐀𝑅(𝑔) = det 𝐀𝐿(𝑔) = 1 for 𝑔 ∈ R∪ [−i𝐵𝐿, i𝐵𝐿]. The scattering matrices 𝐂(𝑔) and 𝐇(𝑔) can subsequently 
be represented as follows: 

(𝐯(𝑥, 𝑔), 𝐯(𝑥, 𝑔)) = (𝐮̃(𝑥, 𝑔),𝐮(𝑥, 𝑔))𝐂(𝑔), (25a)

(𝐮̃(𝑥, 𝑔),𝐮(𝑥, 𝑔)) = (𝐯(𝑥, 𝑔), 𝐯(𝑥, 𝑔))𝐇(𝑔), (25b)

with the scattering matrices 𝐂(𝑔) = (𝑐𝑖𝑗 (𝑔)) and 𝐇(𝑔) = (ℎ𝑖𝑗 (𝑔)) are clearly mutual inverses, and they are defined as 

𝐂(𝑔) = 𝐄−1
𝑅 (𝑔)𝐀𝐿(𝑔)𝐄𝐿(𝑔), 𝐇(𝑔) = 𝐄−1

𝐿 (𝑔)𝐀𝑅(𝑔)𝐄𝑅(𝑔). (26)

It is apparent that 𝐂(𝑔) [resp. 𝐇(𝑔)] is generally defined wherever all four Jost solutions exist, specifically for 𝑔 ∈ 𝜕Λ−
𝐿 ∪ 𝜕Λ+

𝐿 [resp. 
𝑔 ∈ 𝜕Λ−

𝐿 ∪ 𝜕Λ+
𝐿∖{±i𝐵𝐿}, the branch points are omitted due to the second condition]. When 𝑔 ∈ [−i𝐵𝐿, i𝐵𝐿], the scattering matrices 

and its coefficients are determined by the values on the right/left boundary of the cut, and are denoted with superscripts ± as 
explained below. Given that det 𝐕(𝑥, 𝑔) and det 𝐔(𝑥, 𝑔) are independent with respect to 𝑥, it is straightforward to confirm that 

det 𝐂(𝑔) =
det 𝐄𝐿(𝑔)
det 𝐄𝑅(𝑔)

=
𝛽𝐿(𝛽𝑅 + 𝑔)
𝛽𝑅(𝛽𝐿 + 𝑔)

, det𝐇(𝑔) =
det 𝐄𝑅(𝑔)
det 𝐄𝐿(𝑔)

=
𝛽𝑅(𝛽𝐿 + 𝑔)
𝛽𝐿(𝛽𝑅 + 𝑔)

, 𝑔 ∈ R, (27a)

det 𝐂±(𝑔) =
𝛽+𝐿 (𝑔)[𝛽

±
𝑅(𝑔) + 𝑔]

𝛽+𝑅(𝑔)[𝛽
±
𝐿 (𝑔) + 𝑔]

, det𝐇±(𝑔) =
𝛽+𝑅(𝑔)[𝛽

±
𝐿 (𝑔) + 𝑔]

𝛽+𝐿 (𝑔)[𝛽
±
𝑅(𝑔) + 𝑔]

, 𝑔 ∈ (−i𝐵𝐿, i𝐵𝐿). (27b)

Eqs. (25a) and (25b) provide the determinant expressions for the subsequent scattering coefficients: 

𝑐11(𝑔) =
det(𝐯,𝐮)
det(𝐮̃,𝐮)

=
𝛽𝑅 + 𝑔
2𝛽𝑅

det(𝐯,𝐮), ℎ22(𝑔) =
𝛽𝐿 + 𝑔
2𝛽𝐿

det(𝐯,𝐮) =
𝛽𝑅(𝛽𝐿 + 𝑔)
𝛽𝐿(𝛽𝑅 + 𝑔)

𝑐11(𝑔), (28a)

𝑐22(𝑔) =
det(𝐮̃, 𝐯)
det(𝐮̃,𝐮)

=
𝛽𝑅 + 𝑔
2𝛽𝑅

det(𝐮̃, 𝐯), ℎ11(𝑔) =
𝛽𝐿 + 𝑔
2𝛽𝐿

det(𝐮̃, 𝐯) =
𝛽𝑅(𝛽𝐿 + 𝑔)
𝛽𝐿(𝛽𝑅 + 𝑔)

𝑐22(𝑔), (28b)

𝑐21(𝑔) =
det(𝐮̃, 𝐯)
det(𝐮̃,𝐮)

=
𝛽𝑅 + 𝑔
2𝛽𝑅

det(𝐮̃, 𝐯), ℎ12(𝑔) =
𝛽𝐿 + 𝑔
2𝛽𝐿

det(𝐮, 𝐯) = −
𝛽𝑅(𝛽𝐿 + 𝑔)
𝛽𝐿(𝛽𝑅 + 𝑔)

𝑐12(𝑔), (28c)

𝑐12(𝑔) =
det(𝐯,𝐮)
det(𝐮̃,𝐮)

=
𝛽𝑅 + 𝑔
2𝛽𝑅

det(𝐯,𝐮), ℎ21(𝑔) =
𝛽𝐿 + 𝑔
2𝛽𝐿

det(𝐯, 𝐮̃) = −
𝛽𝑅(𝛽𝐿 + 𝑔)
𝛽𝐿(𝛽𝑅 + 𝑔)

𝑐21(𝑔), (28d)

where the arguments (𝑥, 𝑔) of the Jost solutions are omitted for the sake of brevity. Observe that the aforementioned determinant 
representations facilitate the definition of the scattering coefficients’ values from the right/left edge of the cuts 𝛯𝐿∕𝑅. Specifically, 
we have 

𝑐±11(𝑔) =
𝛽±𝑅(𝑔) + 𝑔

2𝛽±𝑅(𝑔)
det(𝐯±(𝑥, 𝑔),𝐮±(𝑥, 𝑔)), 𝑔 ∈ (−i𝐵𝐿, i𝐵𝑅), (29a)

𝑐±22(𝑔) =
𝛽±𝑅(𝑔) + 𝑔

2𝛽±𝑅(𝑔)
det(𝐮̃±(𝑥, 𝑔), 𝐯±(𝑥, 𝑔)), 𝑔 ∈ (−i𝐵𝑅, i𝐵𝐿), (29b)

𝑐±21(𝑔) =
𝛽±𝑅(𝑔) + 𝑔

2𝛽±𝑅(𝑔)
det(𝐮̃±(𝑥, 𝑔), 𝐯±(𝑥, 𝑔)), 𝑔 ∈ (−i𝐵𝐿, i𝐵𝑅), (29c)

𝑐±12(𝑔) =
𝛽±𝑅(𝑔) + 𝑔

2𝛽±𝑅(𝑔)
det(𝐯±(𝑥, 𝑔),𝐮±(𝑥, 𝑔)), 𝑔 ∈ (−i𝐵𝑅, i𝐵𝐿), (29d)

and analogously for the scattering coefficients derived from the left.
Then Eqs. (28a), (28b), (28c) and (28d) enable the extension of certain scattering coefficients under the assumption (𝑩1). Indeed, 

this is corroborated by Theorem  1, which indicates that:

• 𝑐11(𝑔) [resp. 𝑐22(𝑔)] is continuous for 𝑔 ∈ Λ+
𝑅 ∪ 𝜕Λ−

𝐿∖{i𝐵𝑅} [resp. 𝑔 ∈ Λ−
𝑅 ∪ 𝜕Λ+

𝐿∖{−i𝐵𝑅}] (with values across the cut denoted 
as 𝑐±11(𝑔) [resp. 𝑐±22(𝑔)]), and analytic in 𝑔 ∈ Λ+

𝑅 [resp. 𝑔 ∈ Λ−
𝑅], while 

𝑐11(𝑔) ∼
i𝐵𝑅
2𝛽𝑅

det(𝐯(𝑥, i𝐵𝑅),𝐮(𝑥, i𝐵𝑅)), 𝑔 → i𝐵𝑅, (30a)

𝑐22(𝑔) ∼ −
i𝐵𝑅 det(𝐮̃(𝑥,−i𝐵𝑅), 𝐯(𝑥,−i𝐵𝑅)), 𝑔 → −i𝐵𝑅. (30b)

2𝛽𝑅
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• 𝑐21(𝑔) [resp. 𝑐12(𝑔)] is continuous for 𝜕Λ+
𝑅∪𝜕Λ

−
𝐿∖{i𝐵𝑅} [resp. 𝜕Λ−

𝑅∪𝜕Λ
+
𝐿∖{−i𝐵𝑅}] (with values across the cut denoted as 𝑐±21(𝑔)

[resp. 𝑐±12(𝑔)]), while 

𝑐±21(𝑔) ∼
i𝐵𝑅
2𝛽𝑅

det(𝐮̃(𝑥, i𝐵𝑅), 𝐯(𝑥, i𝐵𝑅)), 𝑔 → i𝐵𝑅, (31a)

𝑐±12(𝑔) ∼ −
i𝐵𝑅
2𝛽𝑅

det(𝐯(𝑥,−i𝐵𝑅),𝐮(𝑥,−i𝐵𝑅)), 𝑔 → −i𝐵𝑅. (31b)

Corresponding results can be derived for the remaining four scattering coefficients and their properties can also be deduced from the 
previous ones using Eqs. (28c) and (28d). Eqs. (30a), (30b), (31a) and (31b) demonstrate that the scattering coefficients typically 
exhibit singularities at the branch points 𝑔 = ±i𝐵𝑅, specifically when 𝛽𝑅 = 0.

For ease of future reference, the reflection coefficients from the right and left are defined as follows: 

𝛾(𝑔) =
𝑐21(𝑔)
𝑐11(𝑔)

, 𝑔 ∈ R, 𝛾±(𝑔) =
𝑐±21(𝑔)

𝑐±11(𝑔)
, 𝑔 ∈ [−i𝐵𝐿, i𝐵𝑅), (32a)

𝛾̃(𝑔) =
𝑐12(𝑔)
𝑐22(𝑔)

, 𝑔 ∈ R, 𝛾̃±(𝑔) =
𝑐±12(𝑔)

𝑐±22(𝑔)
, 𝑔 ∈ (−i𝐵𝑅, i𝐵𝐿], (32b)

𝛼(𝑔) =
ℎ12(𝑔)
ℎ22(𝑔)

= −
𝑐12(𝑔)
𝑐11(𝑔)

, 𝑔 ∈ R, 𝛼±(𝑔) =
ℎ±12(𝑔)

ℎ±22(𝑔)
= −

𝑐±12(𝑔)

𝑐±11(𝑔)
, 𝑔 ∈ [−i𝐵𝐿, i𝐵𝐿], (32c)

𝛼(𝑔) =
ℎ21(𝑔)
ℎ11(𝑔)

= −
𝑐21(𝑔)
𝑐22(𝑔)

, 𝑔 ∈ R, 𝛼±(𝑔) =
ℎ±21(𝑔)

ℎ±11(𝑔)
= −

𝑐±21(𝑔)

𝑐±22(𝑔)
, 𝑔 ∈ [−i𝐵𝐿, i𝐵𝐿]. (32d)

The coefficients 1∕𝑐11(𝑔) [resp. 1∕𝑐22(𝑔)] for 𝑔 ∈ Λ+
𝑅 [resp. for 𝑔 ∈ Λ−

𝑅] and 1∕𝑐±11(𝑔) [resp. 1∕𝑐±22(𝑔)] for 𝑔 ∈ [−i𝐵𝐿, i𝐵𝑅) [resp. 
𝑔 ∈ (−i𝐵𝑅, i𝐵𝐿]] are commonly designated as (right) transmission coefficients. Analogous definitions can be readily established as 
(left) transmission coefficients, namely 1∕ℎ22(𝑔) and 1∕ℎ11(𝑔). Likewise, we can derive the scattering matrix: 

𝐂(𝑔) = ∫

∞

0
ei𝛽𝑅𝑦𝜎3𝐄−1

𝑅 (𝑔)[𝐐(𝑦) −𝐐𝑅]𝐕(𝑦, 𝑔) d𝑦 + 𝐄−1
𝑅 (𝑔)𝐄𝐿(𝑔)

[

𝐈2 + ∫

0

−∞
ei𝛽𝐿𝑦𝜎3𝐄−1

𝐿 (𝑔)[𝐐(𝑦) −𝐐𝐿]𝐕(𝑦, 𝑔) d𝑦
]

, (33)

this integral representation offers an alternative to the determinant formulations for analytically continuing the scattering coefficients 
𝑐11(𝑔) and 𝑐22(𝑔) within their respective half-planes.

2.4. Symmetries of eigenfunctions and scattering data

The scattering problem (3) exhibits two involutions: (𝑔, 𝛽𝐿∕𝑅) → (𝑔∗, 𝛽∗𝐿∕𝑅) and (𝑔, 𝛽𝐿∕𝑅) → (𝑔,−𝛽𝐿∕𝑅). Consequently, the 
eigenfunctions and scattering data adhere to two distinct sets of symmetry relations. In the asymmetric scenario addressed here, 
which involves four branch points and two distinct branch cuts, it is crucial to differentiate between the situation where both 𝛽𝑅
and 𝛽𝐿 are discontinuous, then for 𝑔 ∈ [−i𝐵𝐿, i𝐵𝐿], and the case where only one is discontinuous (here 𝛽𝑅, due to the selection 
𝐵𝐿 ≤ 𝐵𝑅), which corresponds to 𝑔 ∈ [−i𝐵𝑅, i𝐵𝐿] ∪ [i𝐵𝐿, i𝐵𝑅].

First symmetry: On the single sheet of 𝑔 under consideration, the involution 𝑔 → 𝑔∗ entails that 𝛽𝐿∕𝑅 → 𝛽∗𝐿∕𝑅. It is straightforward 
to verify that if 𝜒(𝑥, 𝑔) = (𝜒1(𝑥, 𝑔), 𝜒2(𝑥, 𝑔))𝑇  is a solution to the scattering problem (3), then 𝜒(𝑥, 𝑔) = −i𝜎∗2𝜒

∗(𝑥, 𝑔∗) also constitutes 
a solution to the same scattering problem (3), where 𝑇  denotes matrix transpose. Considering the boundary conditions (21a) and 
(21b), the symmetries of the Jost solutions are as follows: 

𝐮̃∗(𝑥, 𝑔∗) = i𝜎2𝐮(𝑥, 𝑔), 𝑔 ∈ Λ+
𝑅 ∪ R, [𝐮̃±(𝑥, 𝑔∗)]∗ = i𝜎2𝐮±(𝑥, 𝑔), 𝑔 ∈ [0, i𝐵𝑅], (34a)

𝐮∗(𝑥, 𝑔∗) = −i𝜎2𝐮̃(𝑥, 𝑔), 𝑔 ∈ Λ−
𝑅 ∪ R, [𝐮±(𝑥, 𝑔∗)]∗ = −i𝜎2𝐮̃±(𝑥, 𝑔), 𝑔 ∈ [−i𝐵𝑅, 0], (34b)

𝐯∗(𝑥, 𝑔∗) = i𝜎2𝐯(𝑥, 𝑔), 𝑔 ∈ Λ−
𝐿 ∪ R, [𝐯±(𝑥, 𝑔∗)]∗ = i𝜎2𝐯±(𝑥, 𝑔), 𝑔 ∈ [−i𝐵𝐿, 0], (34c)

𝐯∗(𝑥, 𝑔∗) = −i𝜎2𝐯(𝑥, 𝑔), 𝑔 ∈ Λ+
𝐿 ∪ R, [𝐯±(𝑥, 𝑔∗)]∗ = −i𝜎2𝐯±(𝑥, 𝑔), 𝑔 ∈ [0, i𝐵𝐿]. (34d)

From Eqs. (25a) and (25b), we derive that 𝐂∗(𝑔∗) = 𝜎2𝐂(𝑔)𝜎2. Specifically, assuming (𝑩1) for the potential, the symmetry relations 
of the scattering coefficients can be expressed as 

𝑐∗22(𝑔
∗) = 𝑐11(𝑔), 𝑔 ∈ Λ+

𝐿 ∪ R, [𝑐±22(𝑔
∗)]∗ = 𝑐±11(𝑔), 𝑔 ∈ [−i𝐵𝐿, i𝐵𝑅), (35a)

𝑐∗12(𝑔) = −𝑐21(𝑔), 𝑔 ∈ R, [𝑐±12(𝑔
∗)]∗ = −𝑐±21(𝑔), 𝑔 ∈ [−i𝐵𝐿, i𝐵𝑅). (35b)

It is important to note that the aforementioned symmetries connect the values of the scattering coefficients in the upper/lower 
half-planes of 𝑔, and from the same side of the cuts. With this in mind, it is straightforward to determine the symmetry relations 
obeyed by the reflection coefficients: 

𝛾̃∗(𝑔) = −𝛾(𝑔), 𝑔 ∈ R, [𝛾̃±(𝑔∗)]∗ = −𝛾±(𝑔), 𝑔 ∈ [−i𝐵𝐿, i𝐵𝑅), (36a)

𝛼∗(𝑔) = −𝛼(𝑔), 𝑔 ∈ R, [𝛼±(𝑔∗)]∗ = −𝛼±(𝑔), 𝑔 ∈ [−i𝐵𝐿, i𝐵𝑅). (36b)
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Second symmetry: When employing a single sheet for the Riemann surface of the functions 𝛽2𝐿∕𝑅 = 𝑔2 + 𝐵2
𝐿∕𝑅, the involution 

(𝑔, 𝛽𝐿∕𝑅) → (𝑔,−𝛽𝐿∕𝑅) is only valid across the cuts. Thus, this second involution connects the values of eigenfunctions and scattering 
coefficients for the same 𝑔 value from opposite sides of the cut. On the innermost cut, where both 𝛽𝐿 and 𝛽𝑅 exhibit discontinuity, 
specifically for 𝑔 ∈ 𝛯𝐿, we have 

𝐮̃∓(𝑥, 𝑔) =
𝛽±𝑅 + 𝑔
−i𝑞𝑅

𝐮±(𝑥, 𝑔), 𝐯∓(𝑥, 𝑔) =
𝛽±𝐿 + 𝑔
−i𝑞∗𝐿

𝐯±(𝑥, 𝑔), 𝑔 ∈ [−i𝐵𝐿, i𝐵𝐿]. (37)

For 𝑔 ∈ 𝛯𝑅∖𝛯𝐿, the symmetries for 𝐮 and ̃𝐮 remain unchanged as previously stated. Meanwhile, 𝐯+(𝑥, 𝑔) = 𝐯−(𝑥, 𝑔) for 𝑔 ∈ [i𝐵𝐿, i𝐵𝑅]
and ̃𝐯+(𝑥, 𝑔) = 𝐯−(𝑥, 𝑔) for 𝑔 ∈ [−i𝐵𝑅,−i𝐵𝐿]. Additionally, considering that 𝑞𝐿∕𝑅 = 𝐵𝐿∕𝑅e

i𝛿𝐿∕𝑅 , the aforementioned symmetry relations 
also lead to 

𝐮̃(𝑥,±i𝐵𝑅) = ∓e−i𝛿𝑅𝐮(𝑥,±i𝐵𝑅), 𝐯(𝑥,±i𝐵𝐿) = ∓ei𝛿𝐿𝐯(𝑥,±i𝐵𝐿). (38)

By leveraging the symmetries in the determinant representations of the scattering coefficients, one can derive for 𝑔 ∈ 𝛯𝐿: 

𝑐±11(𝑔) =
𝑞∗𝐿𝑞𝑅

[𝛽±𝐿 (𝑔) + 𝑔][𝛽
±
𝑅(𝑔) − 𝑔]

𝑐∓22(𝑔) =
𝑞𝑅[𝛽

±
𝐿 (𝑔) − 𝑔]

𝑞𝐿[𝛽
±
𝑅(𝑔) − 𝑔]

𝑐∓22(𝑔), (39a)

𝑐±21(𝑔) =
𝑞∗𝐿[𝛽

±
𝑅(𝑔) + 𝑔]

𝑞𝑅[𝛽
±
𝐿 (𝑔) + 𝑔]

𝑐∓12(𝑔) =
𝑞∗𝑅[𝛽

±
𝐿 (𝑔) − 𝑔]

𝑞𝐿[𝛽
±
𝑅(𝑔) − 𝑔]

𝑐∓12(𝑔). (39b)

Conversely, for 𝑔 ∈ 𝛯𝑅∖𝛯𝐿, the symmetry relations transform into: 

𝑐±11(𝑔) =
𝛽∓𝑅(𝑔) − 𝑔

i𝑞∗𝑅
𝑐∓21(𝑔), 𝑔 ∈ [i𝐵𝐿, i𝐵𝑅], 𝑐∓22(𝑔) =

𝛽∓𝑅(𝑔) + 𝑔
−i𝑞𝑅

𝑐±12(𝑔), 𝑔 ∈ [−i𝐵𝑅,−i𝐵𝐿]. (40)

Moreover, for 𝑔 ∈ 𝛯𝑅∖𝛯𝐿, the symmetric relationship between the scattering coefficients and the reflection coefficients are expressed 
by the following expression: 

𝛾±(𝑔) =
i𝑞∗𝑅𝑐

∓
11(𝑔)

𝑐±11(𝑔)[𝛽
±
𝑅(𝑔) − 𝑔]

, 𝛾+(𝑔)𝛾−(𝑔) =
𝑞∗𝑅
𝑞𝑅
, 𝑔 ∈ [i𝐵𝐿, i𝐵𝑅], (41a)

𝛾̃±(𝑔) =
−i𝑞𝑅𝑐

∓
22(𝑔)

𝑐±22(𝑔)[𝛽
∓
𝑅(𝑔) + 𝑔]

, 𝛾̃+(𝑔)𝛾̃−(𝑔) =
𝑞𝑅
𝑞∗𝑅
, 𝑔 ∈ [−i𝐵𝑅,−i𝐵𝐿], (41b)

ℎ±22(𝑔) = −
i𝑞𝑅ℎ

∓
21(𝑔)

𝛽±𝑅(𝑔) + 𝑔
, 𝑔 ∈ [i𝐵𝐿, i𝐵𝑅], ℎ±11(𝑔) =

𝛽∓𝑅(𝑔) + 𝑔
−i𝑞𝑅

ℎ∓12(𝑔), 𝑔 ∈ [−i𝐵𝑅,−i𝐵𝐿]. (41c)

2.5. Discrete eigenvalues and asymptotic behavior

A discrete eigenvalue is defined as a value 𝑔 ∈ Λ+
𝑅 ∪ Λ−

𝑅 [associated with 𝛽𝑅, 𝛽𝐿 ∈ C∖R] for which a nontrivial solution 𝜒 to 
Eq. (3) exists, with its components residing in the space 𝐿2(R). For each discrete eigenvalue 𝑔𝑚 ∈ Λ+

𝑅, where 𝑚 = 1,… ,𝑀 (𝑀 is a 
finite number), the eigenfunctions 𝐯(𝑥, 𝑔𝑚) and 𝐮(𝑥, 𝑔𝑚) are linearly dependent. Specifically, there exists a complex constant 𝑑𝑚 such 
that 𝐯(𝑥, 𝑔𝑚) = 𝑑𝑚𝐮(𝑥, 𝑔𝑚). Subsequently, let 𝜔𝑚 represent the residue of 1∕𝑐11(𝑔) at the simple pole 𝛽𝑅 = 𝛽𝑅(𝑔𝑚), we can then express 
this as 

lim
𝑔→𝑔𝑚

[𝛽𝑅(𝑔) − 𝛽𝑅(𝑔𝑚)]
𝐯(𝑥, 𝑔)
𝑐11(𝑔)

= 𝐹𝑚𝐮(𝑥, 𝑔𝑚), 𝐹𝑚 = 𝑑𝑚𝜔𝑚, (42)

where 𝐹𝑚 is designated as the norming constant corresponding to 𝑔𝑚. Likewise, for 𝑔∗1 ,… , 𝑔∗𝑀  within Λ−
𝑅, the eigenfunctions ̃𝐯(𝑥, 𝑔∗𝑚)

and ̃𝐮(𝑥, 𝑔∗𝑚) are linearly dependent. Hence, there exist a complex constant 𝑑𝑚 such that 𝐯(𝑥, 𝑔∗𝑚) = 𝑑𝑚𝐮̃(𝑥, 𝑔∗𝑚). Subsequently, let 𝜔̃𝑚
denote the residue of 1∕𝑐22(𝑔) at the pole 𝛽𝑅 = 𝛽𝑅(𝑔∗𝑚), we can then express this as 

lim
𝑔→𝑔∗𝑚

[𝛽𝑅(𝑔) − 𝛽𝑅(𝑔∗𝑚)]
𝐯(𝑥, 𝑔)
𝑐22(𝑔)

= 𝐹𝑚𝐮̃(𝑥, 𝑔∗𝑚), 𝐹𝑚 = 𝑑𝑚𝜔̃𝑚, (43)

with 𝐹𝑚 is termed the norming constant corresponding to the discrete eigenvalue 𝑔∗𝑚. By employing the symmetry relations and the 
definitions (42) and (43), we obtain 𝜔̃𝑚 = 𝜔∗

𝑚, 𝑑𝑚 = −𝑑∗𝑚, and 𝐹𝑚 = −𝐹 ∗
𝑚.

We aim to derive the asymptotic behavior as 𝑔 becomes large, utilizing the Volterra integral equations (154a), (154b), (154c) 
and (154d). For convenience, we introduce the modified eigenfunction Φ(𝑥, 𝑔) = 𝐮(𝑥, 𝑔)e−i𝛽𝑅𝑥, and label its 𝑗th component with 
𝑗 = 1, 2. The components of Φ(𝑥, 𝑔) are represented as follows: 

Φ1(𝑥, 𝑔) = −
i𝑞𝑅

𝛽𝑅 + 𝑔
−
𝛽𝑅 + 𝑔
2𝛽𝑅 ∫

∞

𝑥
[𝑞(𝑦) − 𝑞𝑅]e2i𝛽𝑅(𝑦−𝑥)Φ2(𝑦, 𝑔) d𝑦 −

𝛽𝑅 − 𝑔
2𝛽𝑅 ∫

∞

𝑥
[𝑞(𝑦) − 𝑞𝑅]Φ2(𝑦, 𝑔) d𝑦

−
i𝑞𝑅 ∞

[𝑞∗(𝑦) − 𝑞∗ ]Φ1(𝑦, 𝑔) d𝑦 +
i𝑞𝑅 ∞

[𝑞∗(𝑦) − 𝑞∗ ]e2i𝛽𝑅(𝑦−𝑥)Φ1(𝑦, 𝑔) d𝑦,
(44)
2𝛽𝑅 ∫𝑥 𝑅 2𝛽𝑅 ∫𝑥 𝑅
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and 

Φ2(𝑥, 𝑔) = 1 +
𝛽𝑅 − 𝑔
2𝛽𝑅 ∫

∞

𝑥
[𝑞∗(𝑦) − 𝑞∗𝑅]e

2i𝛽𝑅(𝑦−𝑥)Φ1(𝑦, 𝑔) d𝑦 +
𝛽𝑅 + 𝑔
2𝛽𝑅 ∫

∞

𝑥
[𝑞∗(𝑦) − 𝑞∗𝑅]Φ1(𝑦, 𝑔) d𝑦

−
i𝑞∗𝑅
2𝛽𝑅 ∫

∞

𝑥
[𝑞(𝑦) − 𝑞𝑅]Φ2(𝑦, 𝑔) d𝑦 +

i𝑞∗𝑅
2𝛽𝑅 ∫

∞

𝑥
[𝑞(𝑦) − 𝑞𝑅]e2i𝛽𝑅(𝑦−𝑥)Φ2(𝑦, 𝑔) d𝑦.

(45)

Consequently, based on Theorem  1, the functions Φ1(𝑥, 𝑔) and Φ2(𝑥, 𝑔)−1 are uniformly bounded for (𝑥, 𝑔) ∈ [𝑥0,+∞)×[Λ+
𝑅 ∪𝜕Λ

+
𝑅 ∪

𝜕Λ−
𝑅] in the aforementioned integral equations. Additionally, the iteration of the integral equations converges uniformly for (𝑥, 𝑔)

within the same set. Assuming the potential satisfies 𝜕𝑥𝑞 ∈ 𝐿1(R), we can express 

∫

∞

𝑥
[𝑞(𝑦) − 𝑞𝑅]e2i𝛽𝑅(𝑦−𝑥) d𝑦 =

i
2𝛽𝑅

[

𝑞(𝑥) − 𝑞𝑅 + ∫

∞

𝑥

𝜕
𝜕𝑦
𝑞(𝑦)e2i𝛽𝑅(𝑦−𝑥) d𝑦

]

=
i[𝑞(𝑥) − 𝑞𝑅]

2𝑔
+ 𝑜(𝑔−1). (46)

By iterating for Φ1(𝑥, 𝑔) [resp. Φ2(𝑥, 𝑔)] once with respect to the other unknown Φ2(𝑥, 𝑔) [resp. Φ1(𝑥, 𝑔)], we obtain the formulas 
in powers of 𝑔−1 for the inhomogeneous terms: 

Φinh
1 (𝑥, 𝑔) = −

i𝑞𝑅
2𝑔

−
i[𝑞(𝑥) − 𝑞𝑅]

2𝑔
+ 𝑜(𝑔−1) = −

i𝑞(𝑥)
2𝑔

+ 𝑜(𝑔−1), Φinh
2 (𝑥, 𝑔) = 1 − i

2𝑔 ∫

∞

𝑥
[𝑞∗(𝑦) − 𝑞∗𝑅]𝑞(𝑦) d𝑦 + 𝑜(𝑔

−1). (47)

Upon substituting these expressions into the integral equations and calculating their first iterates, it becomes evident that only the 
penultimate term in the right-hand side of the second integral equation results in an additional contribution of order 𝑔−1, specifically, 

−
i𝑞∗𝑅
2𝑔 ∫

∞

𝑥
[𝑞(𝑦) − 𝑞𝑅] d𝑦. (48)

The iterations do not yield any further terms of 𝑂(1) or 𝑂(𝑔−1). Consequently, we derive 

Φ1(𝑥, 𝑔) = −
i𝑞(𝑥)
2𝑔

+ 𝑜(𝑔−1), (49a)

Φ2(𝑥, 𝑔) = 1 −
i𝑞∗𝑅
2𝑔 ∫

∞

𝑥
[𝑞(𝑦) − 𝑞𝑅] d𝑦 −

i
2𝑔 ∫

∞

𝑥
[𝑞∗(𝑦) − 𝑞∗𝑅]𝑞(𝑦) d𝑦 + 𝑜(𝑔

−1) = 1 − i
2𝑔 ∫

∞

𝑥
[|𝑞(𝑦)|2 − 𝐵2

𝑅] d𝑦 + 𝑜(𝑔
−1). (49b)

In summary, the Volterra integral equations provide the following asymptotic behaviors for the eigenfunctions as |𝑔| → ∞ within 
the relevant half-planes: 

𝐔(𝑥, 𝑔)ei𝛽𝑅𝜎3𝑥 =
[

𝐈2 +
i𝐐(𝑥)𝜎3

2𝑔

]

[1 + 𝑜(1)], 𝐕(𝑥, 𝑔)ei𝛽𝐿𝜎3𝑥 =
[

𝐈2 +
i𝐐(𝑥)𝜎3

2𝑔

]

[1 + 𝑜(1)]. (50)

For future convenience, we also note that 

𝜕𝑥
[

𝐔(𝑥, 𝑔)ei𝛽𝑅𝜎3𝑥
]

=
i𝜕𝑥𝐐(𝑥)𝜎3

2𝑔
[1 + 𝑜(1)]. (51)

Based on the determinant representations of the scattering coefficients, and considering once more that 𝛽𝑅 ∼ 𝛽𝐿 ∼ 𝑔 as 𝑔 → ∞, we 
subsequently derive the asymptotic behavior: 

𝑐11(𝑔) =
𝛽𝑅 + 𝑔
2𝛽𝑅

det(𝐯(𝑥, 𝑔),𝐮(𝑥, 𝑔)) ∼ 1, |𝑔| → ∞, 𝑔 ∈ Λ+
𝑅 ∪ R, (52a)

𝑐22(𝑔) = −
𝛽𝑅 + 𝑔
2𝛽𝑅

det(𝐯(𝑥, 𝑔), 𝐮̃(𝑥, 𝑔)) ∼ 1, |𝑔| → ∞, 𝑔 ∈ Λ−
𝑅 ∪ R, (52b)

𝑐21(𝑔) = 𝑂(𝑔−2), 𝛾(𝑔) = 𝑂(𝑔−2), 𝛾̃(𝑔) = 𝑂(𝑔−2), |𝑔| → ∞, 𝑔 ∈ R, (52c)

𝑐12(𝑔) = 𝑂(𝑔−2), 𝛼(𝑔) = 𝑂(𝑔−2), 𝛼(𝑔) = 𝑂(𝑔−2), |𝑔| → ∞, 𝑔 ∈ R. (52d)

2.6. Trace formula

To establish a representation for the scattering coefficient 𝑐11(𝑔) in terms of discrete eigenvalues and reflection coefficients, com-
monly known as the trace formula, we begin with the quasi-unitarity of the scattering matrix 𝐂(𝑔). Considering the symmetries (35) 
and (36), Eqs. (27a) and (27b) for det 𝐂(𝑔) transform into 

|𝑐11(𝑔)|
2 + |𝑐21(𝑔)|

2 =
𝛽𝐿(𝛽𝑅 + 𝑔)
𝛽𝑅(𝛽𝐿 + 𝑔)

, 𝑔 ∈ R, (53a)

𝑐±11(𝑔)[𝑐
±
11(𝑔

∗)]∗ + 𝑐±21(𝑔)[𝑐
±
21(𝑔

∗)]∗ =
𝛽+𝐿 (𝛽

±
𝑅 + 𝑔)

𝛽+𝑅(𝛽
±
𝐿 + 𝑔)

, 𝑔 ∈ 𝛯𝐿. (53b)

Conversely, the aforementioned equations can be reformulated utilizing the reflection coefficients in the following manner: 

|𝑐11(𝑔)|
2 =

𝛽𝐿(𝛽𝑅 + 𝑔)
2
, 𝑔 ∈ R, (54a)
𝛽𝑅(𝛽𝐿 + 𝑔)[1 + |𝛾(𝑔)| ]
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𝑐±11(𝑔)[𝑐
±
11(𝑔

∗)]∗ =
𝛽+𝐿 (𝛽

±
𝑅 + 𝑔)

𝛽+𝑅(𝛽
±
𝐿 + 𝑔)[1 + 𝛾±(𝑔)[𝛾±(𝑔∗)]∗]

, 𝑔 ∈ 𝛯𝐿. (54b)

Given that 𝑐11(𝑔) [resp. 𝑐22(𝑔)] exhibits analyticity within Λ+
𝑅 [resp. Λ−

𝑅] and continuity across Λ+
𝑅 [resp. Λ−

𝑅], converges to 1 as 
𝑔 → ∞, and features (simple) zeros at 𝑔 = 𝑔𝑚 [resp. 𝑔 = 𝑔∗𝑚], where 𝑚 = 1,… ,𝑀 , we proceed to introduce 

𝜌(𝑔) = 𝑐11(𝑔)
𝑀
∏

𝑚=1

𝑔 − 𝑔∗𝑚
𝑔 − 𝑔𝑚

, 𝜌(𝑔) = 𝑐22(𝑔)
𝑀
∏

𝑚=1

𝑔 − 𝑔𝑚
𝑔 − 𝑔∗𝑚

. (55)

Owing to the analytic characteristics of 𝜌(𝑔) and 𝜌(𝑔), the application of Cauchy’s integral formula for 𝑔 ∈ Λ+
𝑅 results in 

ln 𝜌(𝑔) = 1
2𝜋i ∫𝐷+

ln 𝜌(𝜉)
𝜉 − 𝑔

d𝜉 = 1
2𝜋i

[

∫R
ln 𝜌(𝜉)
𝜉 − 𝑔

d𝜉 − ∫

0

−i𝐵𝐿

ln 𝜌−(𝜉)
𝜉 − 𝑔

d𝜉 + ∫

0

−i𝐵𝐿

ln 𝜌+(𝜉)
𝜉 − 𝑔

d𝜉

+∫

i𝐵𝐿

0

ln 𝜌−(𝜉)
𝜉 − 𝑔

d𝜉 + ∫

i𝐵𝑅

i𝐵𝐿

ln 𝜌−(𝜉)
𝜉 − 𝑔

d𝜉 − ∫

i𝐵𝑅

i𝐵𝐿

ln 𝜌+(𝜉)
𝜉 − 𝑔

d𝜉 − ∫

i𝐵𝐿

0

ln 𝜌+(𝜉)
𝜉 − 𝑔

d𝜉

]

,

(56)

and 

0 = 1
2𝜋i ∫𝐷−

ln 𝜌(𝜉)
𝜉 − 𝑔

d𝜉 = 1
2𝜋i

[

∫R
ln 𝜌(𝜉)
𝜉 − 𝑔

d𝜉 − ∫

0

−i𝐵𝐿

ln 𝜌−(𝜉)
𝜉 − 𝑔

d𝜉 − ∫

−i𝐵𝐿

−i𝐵𝑅

ln 𝜌−(𝜉)
𝜉 − 𝑔

d𝜉

+∫

−i𝐵𝐿

−i𝐵𝑅

ln 𝜌+(𝜉)
𝜉 − 𝑔

d𝜉 + ∫

0

−i𝐵𝐿

ln 𝜌+(𝜉)
𝜉 − 𝑔

d𝜉 + ∫

i𝐵𝐿

0

ln 𝜌−(𝜉)
𝜉 − 𝑔

d𝜉 − ∫

i𝐵𝐿

0

ln 𝜌+(𝜉)
𝜉 − 𝑔

d𝜉

]

,

(57)

where 𝐷± denote the oriented contours, with the superscripts ± in 𝜌(𝑔) and 𝜌(𝑔) selected based on whether the integration is 
conducted along the right or left boundary of each respective cut.

Upon summing the two equations and invoking 𝜌(𝑔) and 𝜌(𝑔), the resultant expression is 

ln 𝑐11(𝑔) =
𝑀
∑

𝑚=1
ln
[

𝑔 − 𝑔𝑚
𝑔 − 𝑔∗𝑚

]

+ 1
2𝜋i

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∫R
ln[𝑐11(𝜉)𝑐22(𝜉)]

𝜉 − 𝑔
d𝜉 + ∫

i𝐵𝐿

0

ln
[

𝑐−11(𝜉)𝑐
−
22(𝜉)

𝑐+11(𝜉)𝑐
+
22(𝜉)

]

𝜉 − 𝑔
d𝜉

+∫

0

−i𝐵𝐿

ln
[

𝑐+11(𝜉)𝑐
+
22(𝜉)

𝑐−11(𝜉)𝑐
−
22(𝜉)

]

𝜉 − 𝑔
d𝜉 + ∫

i𝐵𝑅

i𝐵𝐿

ln
[

𝑐−11(𝜉)
𝑐+11(𝜉)

]

𝜉 − 𝑔
d𝜉 + ∫

−i𝐵𝐿

−i𝐵𝑅

ln
[

𝑐+22(𝜉)
𝑐−22(𝜉)

]

𝜉 − 𝑔
d𝜉

⎫

⎪

⎪

⎬

⎪

⎪

⎭

.

(58)

Utilizing the aforementioned, we subsequently derive what is commonly referred to as the trace formula: 

𝑐11(𝑔) =
𝑀
∏

𝑚=1

[

𝑔 − 𝑔𝑚
𝑔 − 𝑔∗𝑚

]

exp

⎧

⎪

⎪

⎨

⎪

⎪

⎩

− 1
2𝜋i ∫𝛯

ln
[

𝛽𝑅(𝛽𝐿+𝜉)
𝛽𝐿(𝛽𝑅+𝜉)

[1 + 𝛾(𝜉)𝛾∗(𝜉∗)]
]

𝜉 − 𝑔
d𝜉

+ 1
2𝜋i ∫

i𝐵𝑅

i𝐵𝐿

ln
[

|𝛽𝑅(𝜉)|−𝜉
i𝑞∗𝑅

𝛾+(𝜉)
]

𝜉 − 𝑔
d𝜉 + 1

2𝜋i ∫

−i𝐵𝐿

−i𝐵𝑅

ln
[

− |𝛽𝑅(𝜉)|+𝜉
i𝑞𝑅

𝛾̃−(𝜉)
]

𝜉 − 𝑔
d𝜉

⎫

⎪

⎪

⎬

⎪

⎪

⎭

,

(59)

where 𝛯 = R∪[−i𝐵𝐿, 0]L∪[−i𝐵𝐿, 0]R∪[0, i𝐵𝐿]L∪[0, i𝐵𝐿]R. It is noteworthy that the term within the square brackets in the numerator 
of the first integral in (59) transforms into [1+ |𝛾(𝜉)|2] for 𝜉 ∈ R, and [1+ 𝛾±(𝜉)[𝛾±(𝜉∗)]∗] for 𝜉 ∈ [−i𝐵𝐿, i𝐵𝐿]. Eq. (59) elucidates that 
𝑐11(𝑔) is fully ascertainable for 𝑔 ∈ Λ+

𝑅 based on the following:

• its zeros, identified as discrete eigenvalues 𝑔𝑚 ∈ Λ+
𝑅;

• the reflection coefficient 𝛾(𝑔) for 𝑔 ∈ R, and 𝛾±(𝑔) for 𝑔 ∈ 𝛯𝐿;
• 𝛾+(𝑘) for 𝑔 ∈ [i𝐵𝐿, i𝐵𝑅], and ̃𝛾−(𝑔) for 𝑔 ∈ [−i𝐵𝑅,−i𝐵𝐿].

3. Inverse scattering problem

Within the framework of the IST, the inverse scattering problem initially involves reconstructing the eigenfunctions using the 
scattering data, followed by deducing the potential, which corresponds to the solution of the NLS equation, in terms of these 
eigenfunctions. For example, when formulating the inverse problem from the right, the following scattering data are necessary:
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• the reflection coefficient 𝛾(𝑔) for 𝑔 ∈ R, along with its values 𝛾±(𝑔) for 𝑔 ∈ [−i𝐵𝐿, i𝐵𝐿] on the boundaries of the cut (this 
component represents the continuous spectrum of the scattering operator and functions analogously to the direct Fourier 
transform of the initial condition in solving the initial-value problem for a linear partial differential equation (PDE) via Fourier 
transform; it should be noted that the reflection coefficient ̃𝛾(𝑔) is interconnected with 𝛾(𝑔) through the symmetry expressed 
in Eq. (36a));

• the discrete eigenvalues 𝑔𝑚 ∈ Λ+
𝑅, together with their corresponding norming constants 𝐹𝑚 for 𝑚 = 1,… ,𝑀 (it should be 

observed that discrete eigenvalues within Λ−
𝑅 and their associated norming constants are not considered independent, as they 

can be derived from the aforementioned through conjugation symmetry);
• supplementary scattering data 𝛾+(𝑔) for 𝑔 ∈ [i𝐵𝐿, i𝐵𝑅] and ̃𝛾−(𝑔) for 𝑔 ∈ [−i𝐵𝑅, i𝐵𝐿] (it is noteworthy that 𝛾−(𝑔) and ̃𝛾+(𝑔) are 
interconnected with the former by symmetrical relationships; additionally, in accordance with the trace formula delineated 
in (59), the values of the transmission coefficient 1∕𝑐11(𝑔) for all 𝑔 ∈ Λ+

𝑅, and 1∕𝑐±11(𝑔) for 𝑔 ∈ 𝛯+
𝑅 can be ascertained from the 

scattering data previously mentioned).

3.1. Triangular representations for the eigenfunctions

In the present section, we introduce the following pair of triangular representations pertaining to the fundamental eigenfunctions: 

𝐔̃(𝑥, 𝑔)e−𝑥𝐆𝑅(𝑔) = 𝐈2 + ∫

∞

𝑥
𝐙(𝑥, ℎ)e(ℎ−𝑥)𝐆𝑅(𝑔) dℎ, (60a)

𝐕̃(𝑥, 𝑔)e−𝑥𝐆𝐿(𝑔) = 𝐈2 + ∫

𝑥

−∞
𝐏(𝑥, ℎ)e(ℎ−𝑥)𝐆𝐿(𝑔) dℎ, (60b)

with the kernels 𝐙(𝑥, ℎ) = [𝐙𝑖𝑗 (𝑥, ℎ)]𝑖,𝑗=1,2 and 𝐏(𝑥, ℎ) = [𝐏𝑖𝑗 (𝑥, ℎ)]𝑖,𝑗=1,2 are designated as ‘‘triangular’’ kernels, characterized by the 
property that 𝐙(𝑥, ℎ) = 0 when 𝑥 > ℎ, and 𝐏(𝑥, ℎ) = 0 when 𝑥 < ℎ. It is observed that Eqs. (60a) and (60b) lead to analogous 
triangular representations for the Jost solutions delineated in Eqs. (20a) and (20b): 

𝐔(𝑥, 𝑔) = 𝐄𝑅(𝑔)e−i𝛽𝑅𝜎3𝑥 + ∫

∞

𝑥
𝐙(𝑥, ℎ)𝐄𝑅(𝑔)e−i𝛽𝑅𝜎3ℎ dℎ, (61a)

𝐕(𝑥, 𝑔) = 𝐄𝐿(𝑔)e−i𝛽𝐿𝜎3𝑥 + ∫

𝑥

−∞
𝐏(𝑥, ℎ)𝐄𝐿(𝑔)e−i𝛽𝐿𝜎3ℎ dℎ. (61b)

Proposition 2.  Considering the explicit form of the groups e𝑥𝐆𝐿∕𝑅(𝑔) as presented in Eq. (144), and acknowledging that the transformation 
𝑔 → −𝑔 results in 𝛽𝐿∕𝑅 → −𝛽𝐿∕𝑅 [cf. Eq. (16)], it is possible to derive from Eq. (60a) for 𝑥 ∈ R and 𝑔 ∈ R ∪ [−i𝐵𝑅, i𝐵𝑅], 

𝐙(𝑥, ℎ) = 1
4𝜋 ∫

∞

−∞
e−i𝛽𝑅(ℎ−𝑥)

{

[

𝐔̃(𝑥, 𝑔)e−𝑥𝐆𝑅(𝑔) − 𝐈2
]

[

𝐈2 −
i
𝑔
𝜎3𝐐𝑅 −

𝛽𝑅
𝑔
𝜎3

]

+
[

𝐔̃(𝑥,−𝑔)e−𝑥𝐆𝑅(−𝑔) − 𝐈2
]

[

𝐈2 +
i
𝑔
𝜎3𝐐𝑅 +

𝛽𝑅
𝑔
𝜎3

]}

d𝛽𝑅.
(62)

Analogously, from the second equation of Eq. (60b), the following can be deduced: 

𝐏(𝑥, ℎ) = 1
4𝜋 ∫

∞

−∞
e−i𝛽𝐿(ℎ−𝑥)

{

[

𝐕̃(𝑥, 𝑔)e−𝑥𝐆𝐿(𝑔) − 𝐈2
]

[

𝐈2 −
i
𝑔
𝜎3𝐐𝐿 −

𝛽𝐿
𝑔
𝜎3

]

+
[

𝐕̃(𝑥,−𝑔)e−𝑥𝐆𝐿(−𝑔) − 𝐈2
]

[

𝐈2 +
i
𝑔
𝜎3𝐐𝐿 +

𝛽𝐿
𝑔
𝜎3

]}

d𝛽𝐿.
(63)

Proposition  2 will be proven in Appendix  B. We are now in a position to establish the existence of the kernels 𝐙(𝑥, ℎ) and 𝐏(𝑥, ℎ)
as Fourier transforms, as stipulated by Eqs. (62) and (63). To substantiate this claim, it is necessary to posit that the potential 𝑞(𝑥)
adheres to condition (𝑩2) and that 𝜕𝑥𝑞 is an element of 𝐿1(R) (which entails that 𝑞(𝑥) is continuous for 𝑥 ∈ R, and approaches 
𝑞𝐿∕𝑅 as 𝑥 → ∓∞). Should Eq. (62) define 𝐙(𝑥, ℎ), as a function of 𝑥, as the Fourier transform of a matrix function whose entries 
reside in 𝐿2(R, d𝛽𝑅), the existence of the kernel 𝐙(𝑥, ℎ) can be affirmed. Initially, it is noted that under the assumptions of (𝑩1) and 
𝜕𝑥𝑞 ∈ 𝐿1(R), the expression can be formulated as: 

𝐔̃(𝑥, 𝑔)e−𝑥𝐆𝑅(𝑔) − 𝐈2 =
i

2𝛽𝑅
𝜎3𝐐𝑅 −

𝛽𝑅 − 𝑔
2𝛽𝑅

𝐈2 +
1
𝑔
[

Φ(1)(𝑥) + 𝑜(1)
]

𝐄−1
𝑅 (𝑔)

= i
2𝛽𝑅

𝜎3𝐐𝑅 + 1
𝑔
[

Φ(1)(𝑥) + 𝑜(1)
]

+ 𝑂(𝑔−2).
(64)

Herein, Φ(𝑥, 𝑔) = 𝐔(𝑥, 𝑔)ei𝛽𝑅𝑥𝜎3  and Φ(1)(𝑥) = (𝛷̃(1)(𝑥), 𝛷(1)(𝑥)) represents the 𝑂(𝑔−1) term in the asymptotic expansion of Φ(𝑥, 𝑔) for 
large 𝑔. In a like manner, 

𝐔̃(𝑥,−𝑔)e−𝑥𝐆𝑅(−𝑔) − 𝐈2 = − i
2𝛽𝑅

𝜎3𝐐𝑅 −
𝛽𝑅 − 𝑔
2𝛽𝑅

𝐈2 −
1
𝑔
[

Φ(1)(𝑥) + 𝑜(1)
]

𝐄−1
𝑅 (−𝑔)

= − i 𝜎3𝐐𝑅 − 1 [

Φ(1)(𝑥) + 𝑜(1)
]

+ 𝑂(𝑔−2).
(65)
2𝛽𝑅 𝑔
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We are now in a position to demonstrate that 𝐙(𝑥, ℎ) is an element of 𝐿2(𝑥,+∞) with respect to ℎ. To achieve this, it is necessary 
to establish that 

∫

∞

−∞

‖

‖

‖

‖

‖

[

𝐔̃(𝑥, 𝑔)e−𝑥𝐆𝑅(𝑔) − 𝐈2
]

[

𝐈2 −
i
𝑔
𝜎3𝐐𝑅 −

𝛽𝑅
𝑔
𝜎3

]

+
[

𝐔̃(𝑥,−𝑔)e−𝑥𝐆𝑅(−𝑔) − 𝐈2
]

[

𝐈2 +
i
𝑔
𝜎3𝐐𝑅 +

𝛽𝑅
𝑔
𝜎3

]

‖

‖

‖

‖

‖

2

d𝛽𝑅, (66)

is finite for every 𝑥 ∈ R. To circumvent potential singularities at 𝑔 = 0 [i.e., 𝛽𝑅 = ±𝐵𝑅] and 𝑔 = ±i𝐵𝑅 [i.e., 𝛽𝑅 = 0], we partition the 
integral into two segments. Assuming condition (𝑩1) holds, the integral with respect to 𝛽𝑅 over any interval 𝛽𝑅 ∈ [−𝜎4, 𝜎4], where 
0 < 𝜎4 < 𝐵𝑅, circumvents the point 𝑔 = 0. The integrand within this range is continuous in 𝛽𝑅, thereby ensuring the integral is 
well-defined and finite. The integral concerning 𝛽𝑅 across the remaining segment of the real 𝛽𝑅-axis encompasses a domain that 
does not circumvent 𝛽𝑅 = ±𝐵𝑅, that is 𝑔 = 0. Nevertheless, by substituting this integral with one in terms of 𝑔, and leveraging the 
relation d𝛽𝑅 = (𝑔∕𝛽𝑅)d𝑔, under the assumption of (𝑩2), the existence of the limit can be established: 

lim
𝑔→0

𝐔̃(𝑥, 𝑔)e−𝑥𝐆𝑅(𝑔) − 𝐔̃(𝑥,−𝑔)e−𝑥𝐆𝑅(−𝑔)
2𝑔

=
[

𝜕
𝜕𝑔

𝐔̃(𝑥, 𝑔)e−𝑥𝐆𝑅(𝑔)
]

𝑔=0
, (67)

ensures the integral is well-behaved in the vicinity of 𝑔 = 0. Consequently, the sole aspect remaining for consideration as 𝑔 → ±∞
[resp. as 𝛽𝑅 → ±∞]. It is necessary to demonstrate that 

(

∫

−1

−∞
+∫

∞

1

)

‖

‖

‖

𝐔̃(𝑥, 𝑔)e−𝑥𝐆𝑅(𝑔) − 𝐈2
‖

‖

‖

2
d𝑔, 𝑥 ∈ R. (68)

This conclusion is substantiated by the large 𝑔 expansion, given the premises (𝑩1) and 𝜕𝑥𝑞 ∈ 𝐿1(R), the most significant term as 
𝑔 → ±∞ is of the order 𝑂(𝑔−1). Hence, we have established the existence of 𝐙(𝑥, ℎ) in ℎ for 𝑥 ∈ R, fulfilling the condition that 

∫

∞

𝑥
‖𝐙(𝑥, ℎ)‖2 dℎ < +∞. (69)

As a result, when considered as a function of ℎ, 𝐙(𝑥, ℎ) represents the Fourier transform of an 𝐿2 matrix function and is therefore an 
𝐿2 matrix function itself, uniformly for 𝑥 ≥ 𝑥0 for every 𝑥0 ∈ R. A parallel reasoning applies to 𝐏(𝑥, ℎ). Ultimately, the subsequent 
finding enables the reconstruction of the potential in terms of the kernels 𝐙(𝑥, ℎ) and 𝐏(𝑥, ℎ). Theorem  3 will be proven in Appendix 
B. 

Theorem 3.  Assuming that condition (𝑩2) is satisfied, and furthermore that 𝜕𝑥𝑞 ∈ 𝐿1(R), it follows that: 

𝐐(𝑥) −𝐐𝑅 = 2𝜎3𝐙(𝑥, 𝑥)𝜎3, 𝐐(𝑥) −𝐐𝐿 = 2𝜎3𝐏(𝑥, 𝑥)𝜎3. (70)

Specifically, Eq. (70) indicates that the diagonal elements of both Marchenko kernels 𝐙(𝑥, 𝑥) and 𝐏(𝑥, 𝑥) are zero, whereas the off-diagonal 
elements adhere to the subsequent relationship: 

𝑞(𝑥) = 𝑞𝑅 − 2𝐙12(𝑥, 𝑥) = 𝑞𝐿 − 2𝐏12(𝑥, 𝑥), 𝑞∗(𝑥) = 𝑞∗𝑅 + 2𝐙21(𝑥, 𝑥) = 𝑞∗𝐿 + 2𝐏21(𝑥, 𝑥). (71)

The condition 𝑞 ∈ 𝐶1(R) assures that Eqs. (70) and (71) are defined everywhere, not just almost everywhere. Time dependency 
is excluded here for conciseness. Assuming that all conditions on the potential hold for all 𝑡 ≥ 0, the inclusion of time dependency 
in the Jost and fundamental eigenfunctions gives rise to a 𝑡-parametric dependency in the Marchenko kernels. The reconstruction 
formulas (71) for the potential, applicable for all 𝑡 ≥ 0, are expressed as: 

𝑞(𝑥, 𝑡) = 𝑞𝑅(𝑡) − 2𝐙12(𝑥, 𝑥; 𝑡) = 𝑞𝐿(𝑡) − 2𝐏12(𝑥, 𝑥; 𝑡). (72)

It should be noted that the presence of the Marchenko kernels is associated with the subsequent Goursat problem: 

(𝜕𝑥 + 𝜕ℎ)
(

𝐙11(𝑥, ℎ)
𝐙22(𝑥, ℎ)

)

=
(

−𝑞∗𝑅 𝑞(𝑥)
−𝑞∗(𝑥) 𝑞𝑅

)(

𝐙12(𝑥, ℎ)
𝐙21(𝑥, ℎ)

)

, (73a)

(𝜕𝑥 − 𝜕ℎ)
(

𝐙12(𝑥, ℎ)
𝐙21(𝑥, ℎ)

)

=
(

−𝑞𝑅 𝑞(𝑥)
−𝑞∗(𝑥) 𝑞∗𝑅

)(

𝐙11(𝑥, ℎ)
𝐙22(𝑥, ℎ)

)

, (73b)

with boundary conditions: 
𝑞(𝑥) = 𝑞𝑅 − 2𝐙12(𝑥, 𝑥) = 𝑞𝑅 + 2𝐙∗

12(𝑥, 𝑥), lim
ℎ→∞

𝐙𝑖𝑗 (𝑥, ℎ) = 0, 𝑖, 𝑗 = 1, 2, (74)

this derivation, contingent upon supplementary conditions regarding the potential, stems from the scattering problem. Nevertheless, 
we have furnished a direct inversion formula for the kernels integral to the inverse problem, formulated explicitly in terms of 
the eigenfunctions from the direct scattering problem. Additionally, Plancherel’s theorem was employed to ascertain an explicit 
representation for 𝐙(𝑥, ℎ).
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3.2. Right Marchenko equations

We develop the (left and right) Marchenko integral equations as an approach to tackle the inverse problem. This involves the 
reconstruction of eigenfunctions and subsequently the potential, based on the scattering data provided. We shall explicitly articulate 
the Right Marchenko equations as follows: 

𝐯(𝑥, 𝑔)
𝑐11(𝑔)

= 𝐮̃(𝑥, 𝑔) + 𝛾(𝑔)𝐮(𝑥, 𝑔), 𝑔 ∈ R, (75a)

𝐯±(𝑥, 𝑔)
𝑐±11(𝑔)

= 𝐮̃±(𝑥, 𝑔) + 𝛾±(𝑔)𝐮±(𝑥, 𝑔), 𝑔 ∈ [−i𝐵𝐿, i𝐵𝑅], (75b)

𝐯(𝑥, 𝑔)
𝑐22(𝑔)

= 𝐮(𝑥, 𝑔) + 𝛾̃(𝑔)𝐮̃(𝑥, 𝑔), 𝑔 ∈ R, (75c)

𝐯±(𝑥, 𝑔)
𝑐±22(𝑔)

= 𝐮±(𝑥, 𝑔) + 𝛾̃±(𝑔)𝐮̃±(𝑥, 𝑔), 𝑔 ∈ (−i𝐵𝑅, i𝐵𝐿], (75d)

where 𝛾(𝑔), 𝛾±(𝑔) and 𝛾̃(𝑔), 𝛾̃±(𝑔) are specified by Eqs. (32a) and (32b), respectively. It is noteworthy that although Eq. (25a) is 
originally defined for 𝑔 ∈ R ∪ [−i𝐵𝐿, i𝐵𝐿], Eq. (75b) indicates that the first column of Eq. (25a) can be analytically continued to 
𝑔 ∈ [i𝐵𝐿, i𝐵𝑅]. Similarly, Eq. (75b) extends the domain of the second column of Eq. (25a) to 𝑔 ∈ [−i𝐵𝑅,−i𝐵𝐿]. Subsequently, we 
shall proceed under the assumptions aligned with the preceding discourse, namely:

• the absence of spectral singularities;
• the simplicity of all discrete eigenvalues;
• at 𝑔 = i𝐵𝑅, the det(𝐯,𝐮) lacks multiple zeros (it is recalled that due to symmetries, an analogous condition applies at 𝑔 = −i𝐵𝑅
for det(𝐯, 𝐮̃));

• condition (𝑩1) applies in the generic scenario, whereas (𝑩2) pertains in the exceptional scenario.

Multiplying Eq. (75a) by ei𝛽𝑅𝑦 for 𝑦 > 𝑥, and then substituting the triangular representations given by Eq. (61a), we derive the 
following result: 

[

ei𝛽𝑅𝑥𝐯(𝑥, 𝑔)
𝑐11(𝑔)

− 𝐄𝑅,1(𝑔)
]

ei𝛽𝑅(𝑦−𝑥) = ∫

∞

𝑥
𝐙(𝑥, ℎ)𝐄𝑅,1(𝑔)ei𝛽𝑅(𝑦−ℎ) dℎ

+ 𝛾(𝑔)
[

ei𝛽𝑅(𝑥+𝑦)𝐄𝑅,2(𝑔) + ∫

∞

𝑥
𝐙(𝑥, ℎ)𝐄𝑅,2(𝑔)ei𝛽𝑅(𝑦+ℎ) dℎ

]

,
(76)

where 𝐄𝑅,𝑗 (𝑔) represents the 𝑗th column of the eigenvector matrix 𝐄𝑅(𝑔) as defined in Eq. (19). It is noted that 𝛽𝑅 approaches 𝛽𝐿
as |𝑔| → ∞, implying that the term on the left-hand side diminishes as |𝑔| → ∞ within Λ+

𝑅 ∪ R. It is advantageous to regard the 
eigenfunctions as functions of 𝛽𝑅, that is, considering 𝑔 as a function of 𝛽𝑅, specifically 𝑔 = 𝑔(𝛽𝑅) ≡

√

𝛽2𝑅 − 𝐵2
𝑅. Observe that 𝛽𝑅 ∈ R

corresponds uniquely to either 𝑔 ∈ 𝛩+
𝑅 or 𝑔 ∈ 𝛩−

𝑅. For the subsequent discussion, we shall consider 𝑔 ∈ 𝛩+
𝑅 for 𝐮(𝑥, 𝑔) (which is 

analytic for 𝑔 ∈ Λ+
𝑅), and 𝑔 ∈ 𝛩−

𝑅 for ̃𝐮(𝑥, 𝑔) (analytic for 𝑔 ∈ Λ−
𝑅). Subsequently, we formally integrate equation (76) with respect 

to 𝛽𝑅, interchange the order of integration and proceed with the evaluation: 

1
2𝜋 ∫

∞

−∞

(

1

−
i𝑞∗𝑅
𝛽𝑅+𝑔

)

ei𝛽𝑅(𝑦−ℎ) dℎ =
(

𝜃(𝑦 − ℎ)
0

)

, (77)

with 

𝜃(𝑥) = 1
2𝜋 ∫

∞

−∞
eiℎ𝑥 dℎ, 1

2𝜋 ∫

∞

−∞
ei𝛽𝑅(𝑦−𝑠) d𝛽𝑅 = 𝜃(𝑦 − 𝑠), (78)

to obtain 

𝐉 = 𝐙(𝑥, 𝑦)
(

1
0

)

+𝐾(𝑥 + 𝑦) + ∫

∞

𝑥
𝐙(𝑥, ℎ)𝐾(ℎ + 𝑦) dℎ, (79)

where 

𝐉 = 1
2𝜋 ∫

∞

−∞

[

ei𝛽𝑅𝑥𝐯(𝑥, 𝑔)
𝑐11(𝑔)

− 𝐄𝑅,1(𝑔)
]

ei𝛽𝑅(𝑦−𝑥) d𝛽𝑅, 𝐾(𝑥) = 1
2𝜋 ∫

∞

−∞
𝛾(𝑔)𝐄𝑅,2(𝑔)ei𝛽𝑅𝑥 d𝛽𝑅. (80)

As previously detailed, in the integrals mentioned, 𝑔 = 𝑔(𝛽𝑅) with 𝑔 ∈ 𝛩+
𝑅. The subsequent objective is to articulate 𝐉 in relation 

to the Marchenko kernel 𝐙(𝑥, ℎ). It should be recalled that we have posited the discrete eigenvalues 𝑔1,… , 𝑔𝑀 , associated with the 
zeros of 𝑐11(𝑔) in Λ+

𝑅 to be simple. Thereafter, by contemplating the function 𝑘(𝛽𝑅) derived from the integrand of 𝐉 by excising its 
poles and considering Eq. (42), we arrive at the following: 

𝑘(𝛽𝑅) = ei𝛽𝑅(𝑦−𝑥)
[

ei𝛽𝑅𝑥𝐯(𝑥, 𝑔)
− 𝐄𝑅,1(𝑔)

]

−
𝑀
∑ ei𝛽𝑅(𝑔𝑚)𝑦𝐹𝑚𝐮(𝑥, 𝑔𝑚) . (81)
𝑐11(𝑔) 𝑚=1 𝛽𝑅 − 𝛽𝑅(𝑔𝑚)
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Given that 𝑘(𝛽𝑅) is analytic for 𝛽𝑅 ∈ C+, the application of the residue theorem in conjunction with Jordan’s Lemma results in: 

𝐉 = i
𝑀
∑

𝑚=1
ei𝛽𝑅(𝑔𝑚)𝑦𝐹𝑚𝐮(𝑥, 𝑔𝑚). (82)

Considering the triangular representation given by Eq. (61a), the following is obtained: 

𝐉 = 𝐾𝑎(𝑥 + 𝑦) + ∫

∞

𝑥
𝐙(𝑥, ℎ)𝐾𝑎(ℎ + 𝑦) dℎ, 𝐾𝑎(𝑥) = i

𝑀
∑

𝑚=1
ei𝛽𝑅(𝑔𝑚)𝑥𝐹𝑚𝐄𝑅,2(𝑔𝑚). (83)

Inserting the aforementioned formulation of 𝐉 into Eq. (79), we subsequently derive the right Marchenko integral equation: 

𝐙(𝑥, 𝑦)
(

1
0

)

+ 𝛹𝑅(𝑥 + 𝑦) + ∫

∞

𝑥
𝐙(𝑥, ℎ)𝛹𝑅(ℎ + 𝑦) dℎ =

(

0
0

)

, (84)

where 

𝛹𝑅(𝑥) = 𝐾(𝑥) −𝐾𝑎(𝑥) =
1
2𝜋 ∫

∞

−∞
𝛾(𝑔)𝐄𝑅,2(𝑔)ei𝛽𝑅𝑥 d𝛽𝑅 − i

𝑀
∑

𝑚=1
ei𝛽𝑅(𝑔𝑚)𝑥𝐹𝑚𝐄𝑅,2(𝑔𝑚). (85)

It should be noted that in the integral of Eq. (85) 𝛽𝑅 ∈ R and accordingly 𝑔 = 𝑔(𝛽𝑅) ∈ 𝛩+
𝑅.

Subsequently, we multiply Eq. (75c) by e−i𝛽𝑅𝑦 for 𝑦 > 𝑥 and insert Eqs. (61a) and (61b). This leads to the following result: 
[

e−i𝛽𝑅𝑥𝐯(𝑥, 𝑔)
𝑐22(𝑔)

− 𝐄𝑅,2(𝑔)
]

ei𝛽𝑅(𝑥−𝑦) = ∫

∞

𝑥
𝐙(𝑥, ℎ)𝐄𝑅,2(𝑔)ei𝛽𝑅(ℎ−𝑦) dℎ

+ 𝛾̃(𝑔)
[

e−i𝛽𝑅(𝑥+𝑦)𝐄𝑅,1(𝑔) + ∫

∞

𝑥
𝐙(𝑥, ℎ)𝐄𝑅,1(𝑔)e−i𝛽𝑅(𝑦+ℎ) dℎ

]

.
(86)

By formally integrating with respect to 𝛽𝑅 and following the previous procedure, we arrive at the subsequent outcome: 

𝐉 = 𝐙(𝑥, 𝑦)
(

0
1

)

+𝐾(𝑥 + 𝑦) + ∫

∞

𝑥
𝐙(𝑥, ℎ)𝐾(ℎ + 𝑦) dℎ, (87)

where 

𝐉 = 1
2𝜋 ∫

∞

−∞

[

e−i𝛽𝑅𝑥𝐯(𝑥, 𝑔)
𝑐22(𝑔)

− 𝐄𝑅,2(𝑔)
]

e−i𝛽𝑅(𝑦−𝑥) d𝛽𝑅, 𝐾(𝑥) = 1
2𝜋 ∫

∞

−∞
𝛾̃(𝑔)𝐄𝑅,1(𝑔)e−i𝛽𝑅𝑥 d𝛽𝑅. (88)

For the integrals mentioned above, it is assumed that 𝑔 = 𝑔(𝛽𝑅) ∈ 𝛩−
𝑅. Considering Eq. (43), in a manner analogous to the previous 

case, 𝐉 can be represented in terms of the Marchenko kernel: 

𝐉 = 𝐾𝑎(𝑥 + 𝑦) + ∫

∞

𝑥
𝐙(𝑥, ℎ)𝐾𝑎(ℎ + 𝑦) dℎ, 𝐾𝑎(𝑥) = −i

𝑀
∑

𝑚=1
e−i𝛽𝑅(𝑔

∗
𝑚)𝑥𝐹𝑚𝐄𝑅,1(𝑔∗𝑚), (89)

we have 

𝐙(𝑥, 𝑦)
(

0
1

)

+ 𝛹̃𝑅(𝑥 + 𝑦) + ∫

∞

𝑥
𝐙(𝑥, ℎ)𝛹̃𝑅(ℎ + 𝑦) dℎ =

(

0
0

)

, (90)

where 

𝛹̃𝑅(𝑥) = 𝐾(𝑥) −𝐾𝑎(𝑥) =
1
2𝜋 ∫

∞

−∞
𝛾̃(𝑔)𝐄𝑅,1(𝑔)e−i𝛽𝑅𝑥 d𝛽𝑅 + i

𝑀
∑

𝑚=1
e−i𝛽𝑅(𝑔

∗
𝑚)𝑥𝐹𝑚𝐄𝑅,1(𝑔∗𝑚). (91)

Observe that within the integral of Eq. (91), 𝛽𝑅 ∈ R and accordingly 𝑔 = 𝑔(𝛽𝑅) ∈ 𝛩−
𝑅.

Consequently, due to the symmetries inherent in the scattering data, it follows that: 𝐾∗(𝑥) = i𝜎2𝐾(𝑥), 𝐾∗
𝑎 (𝑥) = i𝜎2𝐾𝑎(𝑥) and 

𝛹∗
𝑅(𝑥) = i𝜎2𝛹̃𝑅(𝑥). In summary, the Marchenko equations (84) and (90) can be consolidated into a singular 2 × 2 Marchenko 
equation, featuring a 2 × 2 Marchenko kernel presented as follows: 

𝐙(𝑥, 𝑦) +Ψ𝑅(𝑥 + 𝑦) + ∫

∞

𝑥
𝐙(𝑥, ℎ)Ψ𝑅(ℎ + 𝑦) dℎ = 𝟎2×2, (92)

where Ψ𝑅(𝑥) = (𝛹𝑅(𝑥), 𝛹̃𝑅(𝑥)), with 𝛹𝑅(𝑥), 𝛹̃𝑅(𝑥) are defined by Eqs. (85) and (91), respectively, and they adhere to the relationship 
𝛹̃𝑅(𝑥) = −i𝜎2𝛹∗

𝑅(𝑥). It is observed that Ψ∗
𝑅(𝑥) = 𝜎2Ψ𝑅(𝑥)𝜎2, consistent with 𝐙∗(𝑥, ℎ) = 𝜎2𝐙(𝑥, ℎ)𝜎2.

3.3. Left Marchenko equations

To derive the left Marchenko equations, we explicitly express Eq. (25b) as follows: 
𝐮̃(𝑥, 𝑔)
ℎ11(𝑔)

= 𝐯(𝑥, 𝑔) + 𝛼(𝑔)𝐯(𝑥, 𝑔), 𝑔 ∈ R, (93a)

𝐮̃±(𝑥, 𝑔)
± = 𝐯±(𝑥, 𝑔) + 𝛼±(𝑔)𝐯±(𝑥, 𝑔), 𝑔 ∈ (−i𝐵𝐿, i𝐵𝐿), (93b)

ℎ11(𝑔)
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𝐮(𝑥, 𝑔)
ℎ22(𝑔)

= 𝐯(𝑥, 𝑔) + 𝛼(𝑔)𝐯(𝑥, 𝑔), 𝑔 ∈ R, (93c)

𝐮±(𝑥, 𝑔)
ℎ±22(𝑔)

= 𝐯±(𝑥, 𝑔) + 𝛼±(𝑔)𝐯±(𝑥, 𝑔), 𝑔 ∈ (−i𝐵𝐿, i𝐵𝐿), (93d)

where 𝛼(𝑔), 𝛼±(𝑔) and 𝛼(𝑔), 𝛼±(𝑔) are specified by Eqs. (32c) and (32d), respectively. With analogous assumptions concerning the 
potential and the discrete spectrum, and by considering the eigenfunctions as functions of 𝛽𝐿, where 𝑔 = 𝑔(𝛽𝐿) =

√

𝛽2𝐿 − 𝐵2
𝐿. 

We proceed by multiplying Eq. (93c) by e−i𝛽𝐿𝑦 for 𝑦 < 𝑥 and substituting the triangular representations as given in Eq. (61b). 
Subsequently, we formally integrate with respect to 𝛽𝐿 and interchange the order of integration, leading to the following result: 

1
2𝜋 ∫

∞

−∞

[

e−i𝛽𝐿𝑥𝐮(𝑥, 𝑔)
ℎ22(𝑔)

− 𝐄𝐿,2(𝑔)
]

ei𝛽𝐿(𝑥−𝑦) d𝛽𝐿 = 1
2𝜋 ∫

𝑥

−∞
𝐏(𝑥, ℎ) dℎ∫

∞

−∞
𝐄𝐿,2(𝑔)ei𝛽𝐿(ℎ−𝑦) d𝛽𝐿

+ 1
2𝜋 ∫

∞

−∞
𝛼(𝑔)𝐄𝐿,1(𝑔)e−i𝛽𝐿(𝑥+𝑦) d𝛽𝐿 + 1

2𝜋 ∫

𝑥

−∞
𝐏(𝑥, ℎ) dℎ∫

∞

−∞
𝛼(𝑔)𝐄𝐿,1(𝑔)e−i𝛽𝐿(ℎ+𝑦) d𝛽𝐿,

(94)

where 𝐄𝐿,𝑗 (𝑔) represents the 𝑗th column of the matrix of asymptotic eigenvectors 𝐄𝐿(𝑔). As previously mentioned, 𝛽𝐿 ∈ R corresponds 
uniquely to either 𝑔 ∈ 𝛩+

𝐿 or 𝑔 ∈ 𝛩−
𝐿. We consider 𝑔 ∈ 𝛩+

𝐿 for 𝐯(𝑥, 𝑔) [which is analytic for 𝑔 ∈ Λ+
𝐿], and 𝑔 ∈ 𝛩−

𝐿 for ̃𝐯(𝑥, 𝑔) [analytic 
for 𝑔 ∈ Λ−

𝐿]. As in the previous case, we can simplify the identity (94) to: 

𝐉 = 𝐏(𝑥, 𝑦)
(

0
1

)

+𝑁(𝑥 + 𝑦) + ∫

𝑥

−∞
𝐏(𝑥, ℎ)𝑁(ℎ + 𝑦) dℎ, (95)

where 

𝐉 = 1
2𝜋 ∫

∞

−∞

[

e−i𝛽𝐿𝑥𝐮(𝑥, 𝑔)
ℎ22(𝑔)

− 𝐄𝐿,2(𝑔)
]

ei𝛽𝐿(𝑥−𝑦) d𝛽𝐿, 𝑁(𝑥) = 1
2𝜋 ∫

∞

−∞
𝛼(𝑔)𝐄𝐿,1(𝑔)e−i𝛽𝐿𝑥 d𝛽𝐿. (96)

To calculate ̂𝐉 and represent it in terms of the Marchenko kernel 𝐏(𝑥, 𝑦), it is necessary to close the contour at infinity in the upper 
half-plane of 𝛽𝐿. Contrary to the scenario with the right Marchenko equations, closing the contour here involves accounting for the 
additional branch cut, which in the 𝑔-plane corresponds to 𝛯𝑅∖𝛯𝐿. Towards this objective, for 0 < 𝜀 < 𝑇 < +∞, let us examine the 
closed contour 𝛩(𝑇 , 𝜀) composed of the following segments, with the indicated orientation: (1) the interval [−𝑇 ,−𝜀]; (2) the segment 
from [−𝜀+ i0,−𝜀+ i𝛤 ] along the imaginary 𝛽𝐿 axis; (3) the semicircle 

{

i𝛤 + 𝜀ei[𝜋−𝛿] ∶ 0 ≤ 𝛿 ≤ 𝜋
} oriented clockwise; (4) the segment 

from [𝜀+i0, 𝜀+i𝛤 ] along the imaginary 𝛽𝐿 axis; (5) the interval [𝜀, 𝑇 ]; (6) the semicircle 
{

𝑇 ei𝛿 ∶ 0 ≤ 𝛿 ≤ 𝜋
} oriented counterclockwise. 

We establish the notation 𝛤 =
√

𝐵2
𝑅 − 𝐵2

𝐿. It is presumed that 𝑇  is sufficiently large and 𝜀 is sufficiently small such that all discrete 
eigenvalues 𝑔𝑚 ∈ Λ+

𝐿 for 𝑚 = 1, 2,… ,𝑀 , and their corresponding 𝛽𝐿(𝑔𝑚) lie within the interior of the specified contour. Given that 
𝐮(𝑥, 𝑔) and 1∕ℎ22(𝑔) approach finite limits as 𝑔 → i𝐵𝑅, the contribution to the integral defining 𝐉 from the semicircle encircling the 
branch point vanishes as 𝜀 → 0+. Due to Jordan’s lemma, the integral that defines 𝐉 over the large semicircle (6) also yields no 
contribution as 𝑇 → +∞ (note that 𝛽𝐿 ∼ 𝛽𝑅 as 𝑔 → ∞, which ensures the integrand tends to zero as 𝑔 → ∞). Consequently, there 
are two significant contributions to the integral ̂𝐉 = 𝐉1 + 𝐉2: the contribution ̂𝐉1 related to the residues of the integrand at the poles 
𝑔 ∈ Λ+

𝑅, and the contribution ̂𝐉2 associated with the integral around 𝛽𝐿 ∈ [0, i𝛤 ] in the upper-half 𝛽𝐿-plane. These two contributions 
will be assessed individually.

Given our assumption that the discrete eigenvalues 𝑔𝑚 in Λ+
𝑅 are simple poles of 1∕ℎ22(𝑔), and considering that the reflection 

and transmission coefficients are continuous for 𝑔 ∈ 𝜕Λ+
𝑅, along with the fact that 𝐮(𝑥, 𝑔𝑚) = 𝐯(𝑥, 𝑔𝑚)∕𝑑𝑚, we derive the following: 

𝐉1 = i
𝑀
∑

𝑚=1
e−i𝛽𝐿(𝑔𝑚)𝑦𝐹𝑚𝐯(𝑥, 𝑔𝑚), 𝐹𝑚 =

𝜔̃𝑚
𝑑𝑚

, (97)

where 𝜔̃𝑚 denotes the residue of 1∕ℎ22(𝑔) at 𝛽𝐿 = 𝛽𝐿(𝑔𝑚) and 𝐹𝑚 is the corresponding norming constant. It is noted that this implies 
a relationship between the residues 𝜔̃𝑚 and 𝜔𝑚, and consequently between the norming constants 𝐹𝑚 and 𝐹𝑚 as follows: 

𝜔̃𝑚 =
𝛽𝑅(𝑔𝑚) + 𝑔𝑚
𝛽𝐿(𝑔𝑚) + 𝑔𝑚

𝜔𝑚, 𝐹𝑚𝐹𝑚 = 𝜔2
𝑚
𝛽𝑅(𝑔𝑚) + 𝑔𝑚
𝛽𝐿(𝑔𝑚) + 𝑔𝑚

. (98)

Consequently, we arrive at the following conclusion: 

𝐉1 = 𝑁1(𝑥 + 𝑦) + ∫

𝑥

−∞
𝐏(𝑥, ℎ)𝑁1(ℎ + 𝑦) dℎ, 𝑁1(𝑥) = i

𝑀
∑

𝑚=1
e−i𝛽𝐿(𝑔𝑚)𝑥𝐹𝑚𝐄𝐿,1(𝑔𝑚). (99)

We now turn our attention to the second contribution 𝐉2, which emerges for 𝛽𝐿 ∈ [0, i𝛤 ], corresponding to 𝑔 ∈ [i𝐵𝐿, i𝐵𝑅] and 
𝛽𝑅 ∈ R. 

𝐉2 = lim
𝜀→0

1
2𝜋

(

∫

i𝛤−𝜀

i0−𝜀
−∫

i𝛤+𝜀

i0+𝜀

)

[

e−i𝛽𝐿𝑥𝐮(𝑥, 𝑔)
ℎ22(𝑔)

− 𝐄𝐿,2(𝑔)
]

ei𝛽𝐿(𝑥−𝑦) d𝛽𝐿 = 1
2𝜋 ∫

i𝛤

0

[

𝐮−(𝑥, 𝑔)
ℎ−22(𝑔)

−
𝐮+(𝑥, 𝑔)
ℎ+22(𝑔)

]

e−i𝛽𝐿𝑦 d𝛽𝐿. (100)

In the integral along the cut [0, i𝛤 ] on the positive imaginary axis, the superscripts ± conventionally represent the limiting values 
from the right/left side of the cut, respectively. It is also noted that 𝛽𝐿 and consequently 𝐄𝐿,1 are continuous across this cut. Utilizing 
Eq. (28c), 𝐉2 can be expressed as follows: 

𝐉2 =
1

∫

i𝛤
[

|𝛽𝐿| − 𝑔 𝐮−(𝑥, 𝑔)
− −

|𝛽𝑅| + 𝑔 𝐮+(𝑥, 𝑔)
+

]

𝛽𝐿 e−i𝛽𝐿𝑦 d𝛽𝐿, (101)

2𝜋 0 |𝛽𝐿| 𝑐11(𝑔) |𝛽𝑅| 𝑐11(𝑔) 𝛽𝐿 + 𝑔
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the symmetry relations given by Eqs. (37) and (40) facilitate the expression of: 
(|𝛽𝑅| − 𝑔)𝐮−(𝑥, 𝑔)

𝑐−11(𝑔)
= −

(|𝛽𝑅| + 𝑔)𝐮̃+(𝑥, 𝑔)
𝑐+21(𝑔)

. (102)

Consequently, 

𝐉2 = − 1
2𝜋 ∫

i𝛤

0

𝛽𝐿(|𝛽𝑅| + 𝑔)
|𝛽𝑅|(𝛽𝐿 + 𝑔)

[

𝐮̃+(𝑥, 𝑔)
𝑐+21(𝑔)

+
𝐮+(𝑥, 𝑔)
𝑐+11(𝑔)

]

e−i𝛽𝐿𝑦 d𝛽𝐿. (103)

Initially employing the scattering equation (75b), and subsequently reapplying the symmetry relation (40), we ultimately arrive 
at: 

𝐉2 = − 1
2𝜋 ∫

i𝛤

0

𝛽𝐿(|𝛽𝑅| + 𝑔)𝐯+(𝑥, 𝑔)e−i𝛽𝐿𝑦

|𝛽𝑅|(𝛽𝐿 + 𝑔)𝑐+11(𝑔)𝑐
+
21(𝑔)

d𝛽𝐿 =
i𝑞𝑅
2𝜋 ∫

i𝛤

0

𝛽𝐿𝐯+(𝑥, 𝑔)e−i𝛽𝐿𝑦

|𝛽𝑅|(𝛽𝐿 + 𝑔)𝑐+11(𝑔)𝑐
−
11(𝑔)

d𝛽𝐿. (104)

Substituting the triangular representation (61a) into the aforementioned expression yields: 

𝐉2 = 𝑁2(𝑥 + 𝑦) + ∫

𝑥

−∞
𝐏(𝑥, ℎ)𝑁2(ℎ + 𝑦) dℎ, 𝑁2(𝑥) =

i𝑞𝑅
2𝜋 ∫

i𝛤

0

𝛽𝐿𝐄𝐿,1(𝑔)e−i𝛽𝐿𝑥

|𝛽𝑅|(𝛽𝐿 + 𝑔)𝑐+11(𝑔)𝑐
−
11(𝑔)

d𝛽𝐿. (105)

Upon defining 

𝛹𝐿(𝑥) = 𝑁(𝑥) −𝑁1(𝑥) −𝑁2(𝑥) =
1
2𝜋 ∫

∞

−∞
𝛼(𝑔)𝐄𝐿,1(𝑔)e−i𝛽𝐿𝑥 d𝛽𝐿 − i

𝑀
∑

𝑚=1
e−i𝛽𝐿(𝑔𝑚)𝑥𝐹𝑚𝐄𝐿,1(𝑔𝑚)

−
i𝑞𝑅
2𝜋 ∫

i𝛤

0

𝛽𝐿𝐄𝐿,1(𝑔)e−i𝛽𝐿𝑥

|𝛽𝑅|(𝛽𝐿 + 𝑔)𝑐+11(𝑔)𝑐
−
11(𝑔)

d𝛽𝐿,

(106)

in the first integral, where 𝛽𝐿 ∈ R, it follows that 𝑔 = 𝑔(𝛽𝐿) ∈ 𝛩+
𝐿. Utilizing Eqs. (99) and (105) to evaluate 𝐉 = 𝐉1 + 𝐉2 and 

incorporating it into Eq. (95), we ultimately derive the left Marchenko integral equation: 

𝐏(𝑥, 𝑦)
(

0
1

)

+ 𝛹𝐿(𝑥 + 𝑦) + ∫

𝑥

−∞
𝐏(𝑥, ℎ)𝛹𝐿(ℎ + 𝑦) dℎ =

(

0
0

)

. (107)

Following a similar procedure, commencing from Eq. (93c), the ‘‘adjoint’’ left Marchenko equation can be deduced: 

𝐏(𝑥, 𝑦)
(

1
0

)

+ 𝛹̃𝐿(𝑥 + 𝑦) + ∫

𝑥

−∞
𝐏(𝑥, ℎ)𝛹̃𝐿(ℎ + 𝑦) dℎ =

(

0
0

)

, (108)

where 𝛹̃𝐿(𝑥) = i𝜎2𝛹∗
𝐿(𝑥). The pair of Marchenko equations can be succinctly expressed in matrix notation as follows: 

𝐏(𝑥, 𝑦) +Ψ𝐿(𝑥 + 𝑦) + ∫

𝑥

−∞
𝐏(𝑥, ℎ)Ψ𝐿(ℎ + 𝑦) dℎ = 𝟎2×2, (109)

where Ψ𝐿(𝑥) = (𝛹̃𝐿(𝑥), 𝛹𝐿(𝑥)) and Ψ∗
𝐿(𝑥) = 𝜎2Ψ𝐿(𝑥)𝜎2.

It is pertinent to offer some observations regarding the left and right Marchenko integral equations (92) and (109) obtained 
above. Initially, it should be noted that the disparity between the left and right Marchenko equations stems from the asymmetry 
of the boundary conditions, specifically due to the selection 𝐵𝑅 ≥ 𝐵𝐿 (with the roles of the two integral equations being reversed 
should 𝐵𝑅 ≤ 𝐵𝐿 be chosen). In the left Marchenko integral equations, Ψ𝐿(𝑥) in Eq. (106) comprises three distinct contributions: 
the first from the discrete spectrum, the second from the reflection coefficients from the left, 𝛼(𝑔) and ̃𝛼(𝑔), integrated over 𝑔 in the 
continuous spectrum, that is 𝑔 ∈ R∪𝛯𝐿 and a third contribution (often termed the dispersive shock wave contribution) that involves 
an integral over imaginary values of 𝛽𝐿 where the product of transmission coefficients 1∕𝑐+11(𝑔)𝑐−11(𝑔) is present. In contrast, Ψ𝑅(𝑥) in 
the right Marchenko integral equations (see Eq. (85)) consists of only two contributions: one from the discrete spectrum and the other 
from the reflection coefficients from the right, 𝛾(𝑔) and ̃𝛾(𝑔). It is important to observe that in the latter the reflection coefficients 
are integrated over the entire range of 𝛽𝑅 ∈ R. This implies that the integral encompasses not only the continuous spectrum R∪𝛯𝐿
but also contributions from 𝛯𝑅∖𝛯𝐿. Furthermore, the integrand over 𝛯𝑅∖𝛯𝐿 is never identically zero. According to Eq. (41a), in 
the absence of spectral singularities, 𝛾±(𝑔) ≠ 0 for all 𝑔 ∈ [i𝐵𝐿, i𝐵𝑅], and ̃𝛾±(𝑔) ≠ 0 for all 𝑔 ∈ [−i𝐵𝑅,−i𝐵𝐿]. Consequently, when 
𝛯𝑅∖𝛯𝐿 ≠ ∅ (that is, in scenarios involving asymmetric boundary conditions where 𝐵𝑅 ≠ 𝐵𝐿), pure soliton solutions cannot exist.

4. Riemann-Hilbert problem and time evolution

4.1. Riemann-Hilbert problem

The objective of this section is to present an alternative approach to the inverse problem, formulated as the RH problem for the 
eigenfunctions, where the discontinuities are characterized by the scattering data. Upon solving the RH problem, the asymptotic 
expansion of the eigenfunctions for large 𝑔 facilitates the reconstruction of the potential. We examine the following matrix composed 
of eigenfunctions: 

𝐌(𝑥, 𝑔) =

⎧

⎪

⎨

⎪

[

𝐯(𝑥,𝑔)
𝑐11(𝑔)

ei𝛽𝐿𝑥,𝐮(𝑥, 𝑔)e−i𝛽𝑅𝑥
]

, 𝑔 ∈ Λ+
𝑅,

[

𝐮̃(𝑥, 𝑔)ei𝛽𝑅𝑥, 𝐯(𝑥,𝑔) e−i𝛽𝐿𝑥
]

, 𝑔 ∈ Λ− ,
(110)
⎩

𝑐22(𝑔) 𝑅
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the matrix 𝐌(𝑥, 𝑔) is constructed such that it approaches the 2 × 2 identity matrix 𝐈2 as 𝑔 tends to infinity. The inverse problem is 
then formulated as the RH problem for the sectionally meromorphic matrix 𝐌(𝑥, 𝑔) across 𝜕Λ+

𝑅 ∪Λ−
𝑅. Specifically, we identify the 

five jump matrices: 𝐎0 represents the jump matrix across the real axis of the complex 𝑔-plane; 𝐎1 is across 𝛯+
𝐿 = [0, i𝐵𝐿]; 𝐎2 is across 

𝛯−
𝐿 = [−i𝐵𝐿, 0); 𝐎3 is across 𝛯+

𝑅∖𝛯
+
𝐿 = (i𝐵𝐿, i𝐵𝑅], and 𝐎4 is across 𝛯−

𝑅∖𝛯
−
𝐿 = [−i𝐵𝑅,−i𝐵𝐿). Each of the jump matrices is dependent 

on 𝑔 along the respective contour in the complex plane, and also, in a parametric sense, on (𝑥, 𝑡) ∈ R × R+ (where the dependence 
on 𝑥 is explicit, whereas the dependency on time is implicitly contained within the corresponding reflection coefficients).

The RH problem defined across 𝑔 ∈ R is represented as: 𝐌+(𝑥, 𝑔) = 𝐌−(𝑥, 𝑔)𝐎0(𝑥, 𝑔) which signifies that: 
[

𝐯+(𝑥, 𝑔)
𝑐+11(𝑔)

ei𝛽𝐿𝑥,𝐮+(𝑥, 𝑔)e−i𝛽𝑅𝑥
]

=

[

𝐮̃−(𝑥, 𝑔)ei𝛽𝑅𝑥, 𝐯
−(𝑥, 𝑔)
𝑐−22(𝑔)

e−i𝛽𝐿𝑥
]

𝐎0(𝑥, 𝑔), 𝑔 ∈ R, (111)

where the superscripts ± represent the limiting values from the upper/lower halves of the complex plane, respectively. The jump 
matrix across the real axis can be readily determined from Eq. (25a) and is expressed as: 

𝐎0(𝑥, 𝑔) =
(

[1 − 𝛾(𝑔)𝛾̃(𝑔)]ei(𝛽𝐿−𝛽𝑅)𝑥 [−𝛾̃(𝑔)e−2i𝛽𝑅𝑥]
𝛾(𝑔)e2i𝛽𝐿𝑥 ei(𝛽𝐿−𝛽𝑅)𝑥

)

. (112)

The RH problem across 𝛯+
𝐿 is formulated as: 𝐌+(𝑥, 𝑔) = 𝐌−(𝑥, 𝑔)𝐎1(𝑥, 𝑔) for 𝑔 ∈ C+, where the superscripts ± now indicate the 

limiting values from the right/left side of the cut across 𝛯+
𝐿 (𝛯𝐿 in the upper half-plane). Considering that across 𝛯𝐿 both 𝛽𝐿 and 

𝛽𝑅 change signs, and employing the notation 𝛽+𝐿∕𝑅 = −𝛽−𝐿∕𝑅 = 𝛽𝐿∕𝑅, we obtain: 
[

𝐯+(𝑥, 𝑔)
𝑐+11(𝑔)

ei𝛽
+
𝐿𝑥,𝐮+(𝑥, 𝑔)e−i𝛽

+
𝑅𝑥

]

=

[

𝐯−(𝑥, 𝑔)
𝑐−11(𝑔)

ei𝛽
−
𝐿𝑥,𝐮−(𝑥, 𝑔)e−i𝛽

−
𝑅𝑥

]

𝐎1(𝑥, 𝑔), (113)

where the jump matrix 𝐎1(𝑥, 𝑔) can be readily calculated utilizing Eq. (25a) along with the symmetry relations given by Eq. (37), 
resulting in: 

𝐎1(𝑥, 𝑔) = −
i𝑞𝑅

𝛽𝑅 + 𝑔

(

𝛾+(𝑔)e2i𝛽𝐿𝑥 ei(𝛽𝐿−𝛽𝑅)𝑥
[ 𝑞∗𝑅
𝑞𝑅

− 𝛾+(𝑔)𝛾−(𝑔)
]

ei(𝛽𝐿−𝛽𝑅)𝑥 −𝛾−(𝑔)e−2i𝛽𝑅𝑥

)

. (114)

The RH problem across 𝛯−
𝐿 is expressed as 𝐌+(𝑥, 𝑔) = 𝐌−(𝑥, 𝑔)𝐎2(𝑥, 𝑔) for 𝑔 ∈ C−, where the superscripts ± indicate the 

non-tangential limits from the right/left side of the cut across 𝛯−
𝐿 , that is, 𝛯𝐿 in the lower half-plane. Specifically, we have: 

[

𝐮̃+(𝑥, 𝑔)ei𝛽
+
𝑅𝑥,

𝐯+(𝑥, 𝑔)
𝑐+22(𝑔)

e−i𝛽
+
𝐿𝑥

]

=

[

𝐮̃−(𝑥, 𝑔)ei𝛽
−
𝑅𝑥,

𝐯−(𝑥, 𝑔)
𝑐−22(𝑔)

e−i𝛽
−
𝐿𝑥

]

𝐎2(𝑥, 𝑔). (115)

Similar to the previous cases, the jump matrix can be ascertained by utilizing Eqs. (25a) and (37), and is presented as follows: 

𝐎2(𝑥, 𝑔) = −
i𝑞∗𝑅

𝛽𝑅 + 𝑔

⎛

⎜

⎜

⎝

−𝛾̃−(𝑔)e2i𝛽𝑅𝑥
[

𝑞𝑅
𝑞∗𝑅

− 𝛾̃+(𝑔)𝛾̃−(𝑔)
]

ei(𝛽𝑅−𝛽𝐿)𝑥

ei(𝛽𝑅−𝛽𝐿)𝑥 𝛾̃+(𝑔)e−2i𝛽𝐿𝑥

⎞

⎟

⎟

⎠

. (116)

The RH problem across 𝛯+
𝑅∖𝛯

+
𝐿 is formulated as 𝐌+(𝑥, 𝑔) = 𝐌−(𝑥, 𝑔)𝐎3(𝑥, 𝑔) for 𝑔 ∈ C+: 

[

𝐯+(𝑥, 𝑔)
𝑐+11(𝑔)

ei𝛽𝐿𝑥,𝐮+(𝑥, 𝑔)e−i𝛽
+
𝑅𝑥

]

=

[

𝐯−(𝑥, 𝑔)
𝑐−11(𝑔)

ei𝛽𝐿𝑥,𝐮−(𝑥, 𝑔)e−i𝛽
−
𝑅𝑥

]

𝐎3(𝑥, 𝑔). (117)

Considering that 𝛽𝑅 changes sign while 𝛽𝐿 and 𝐯(𝑥, 𝑔) remain continuous, by applying Eqs. (25a) and (37), the following is derived: 

𝐎3(𝑥, 𝑔) = −
i𝑞𝑅

𝛽𝑅 + 𝑔

(

𝛾+(𝑔) e−i(𝛽𝐿+𝛽𝑅)𝑥
[ 𝑞∗𝑅
𝑞𝑅

− 𝛾+(𝑔)𝛾−(𝑔)
]

ei(𝛽𝐿−𝛽𝑅)𝑥 −𝛾−(𝑔)e−2i𝛽𝑅𝑥

)

. (118)

The symmetry given by Eq. (41a) ultimately leads to: 

𝐎3(𝑥, 𝑔) = −
i𝑞𝑅

𝛽𝑅 + 𝑔

(

𝛾+(𝑔) e−i(𝛽𝐿+𝛽𝑅)𝑥

0 −
𝑞∗𝑅

𝑞𝑅𝛾+(𝑔)
e−2i𝛽𝑅𝑥

)

. (119)

Lastly, the RH problem across 𝛯−
𝑅∖𝛯

−
𝐿 , where 𝛽𝑅 changes sign while 𝛽𝐿 and 𝐯(𝑥, 𝑔) remain continuous, is expressed as 𝐌+(𝑥, 𝑔) =

𝐌−(𝑥, 𝑔)𝐎4(𝑥, 𝑔) for 𝑔 ∈ C−: 
[

𝐮̃+(𝑥, 𝑔)ei𝛽
+
𝑅𝑥,

𝐯+(𝑥, 𝑔)
𝑐+22(𝑔)

e−i𝛽𝐿𝑥
]

=

[

𝐮̃−(𝑥, 𝑔)ei𝛽
−
𝑅𝑥,

𝐯−(𝑥, 𝑔)
𝑐−22(𝑔)

e−i𝛽𝐿𝑥
]

𝐎4(𝑥, 𝑔), (120)

where 

𝐎4(𝑥, 𝑔) = −
i𝑞∗𝑅

𝛽𝑅 + 𝑔

(

−𝛾̃−(𝑔)e2i𝛽𝑅𝑥 0
ei(𝛽𝐿+𝛽𝑅)𝑥 𝑞𝑅

𝑞∗𝑅 𝛾̃
−(𝑔)

)

. (121)

It should be noted that the jump matrices adhere to the following symmetry in the upper/lower half-planes: 𝐎2(𝑥, 𝑔) = 𝜎2𝐎∗
1(𝑥, 𝑔

∗)𝜎2
and 𝐎 (𝑥, 𝑔) = 𝜎 𝐎∗(𝑥, 𝑔∗)𝜎 .
4 2 3 2
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Addressing the inverse problem as the RH problem, which includes poles corresponding to the zeros of 𝑐11(𝑔) and 𝑐22(𝑔) in 
the upper/lower half-planes, entails calculating the sectionally meromorphic matrix 𝐌(𝑥, 𝑔) with the specified discontinuities and 
normalized to the identity matrix as 𝑔 approaches infinity. Specifically, the problem can be formulated as 𝐌+(𝑥, 𝑔) = 𝐌−(𝑥, 𝑔) +
[𝐎(𝑥, 𝑔)− 𝐈2]𝐌−(𝑥, 𝑔), where 𝐎(𝑥, 𝑔) = 𝐎𝑗 (𝑥, 𝑔) for 𝑗 = 0,… , 4 depending on the segment of the contour under consideration, and the 
superscripts ± indicate non-tangential limits from either side of the contour. Subsequently, by subtracting the asymptotic behavior 
as 𝑔 → ∞ and the residues of 𝐌± at the poles in Λ±

𝑅 from both sides, we derive: 

𝐌+ − 𝐈2 −
𝑀
∑

𝑚=1

Res𝑔𝑚 𝐌+

𝑔 − 𝑔𝑚
−

𝑀
∑

𝑚=1

Res𝑔∗𝑚 𝐌−

𝑔 − 𝑔∗𝑚
= 𝐌− − 𝐈2 −

𝑀
∑

𝑚=1

Res𝑔𝑚 𝐌+

𝑔 − 𝑔𝑚
−

𝑀
∑

𝑚=1

Res𝑔∗𝑚 𝐌−

𝑔 − 𝑔∗𝑚
+ (𝐎 − 𝐈2)𝐌−. (122)

The left-hand side of the aforementioned equation is now analytic within Λ+
𝑅 and is of order 𝑂(𝑔−1) as 𝑔 approaches infinity therein. 

Meanwhile, the sum of all terms except the last on the right-hand side is analytic in Λ−
𝑅 and is also of order 𝑂(𝑔−1) as 𝑔 tends to 

infinity in that region. Consequently, we introduce projectors 𝐴± over 𝛩±
𝑅 = R ∪ 𝛯±

𝑅 : 

𝐴±[𝑚](𝑔) =
1
2𝜋i ∫𝛩±

𝑅

𝑚(𝜉)
𝜉 − 𝑔

d𝜉, (123)

where ∫𝛩+
𝑅
 [resp. ∫𝛩−

𝑅
] signifies the integral along the oriented contours, and when 𝑔 ∈ 𝛩±

𝑅 ∩R, the limit is taken from above/below 
respectively. It can be readily demonstrated that if 𝑚± are analytic in Λ±

𝑅 and are 𝑂(𝑔−1) as 𝑔 → ∞, then the following relations 
hold: 𝐴±𝑚± = ±𝑚± and 𝐴+𝑚− = 𝐴−𝑚+ = 0. Subsequently, by applying 𝐴± to both sides of Eq. (122), we obtain: 

𝐌(𝑔) = 𝐈2 +
𝑀
∑

𝑚=1

Res𝑔𝑚 𝐌+

𝑔 − 𝑔𝑚
+

𝑀
∑

𝑚=1

Res𝑔∗𝑚 𝐌−

𝑔 − 𝑔∗𝑚
+ 1

2𝜋i ∫𝛩±
𝑅

𝐌−(𝜉)
𝜉 − 𝑔

[𝐎(𝜉) − 𝐈2] d𝜉, 𝑔 ∈ C±∖𝛯𝑅, (124)

in the expressions for the eigenfunctions and jump matrices, the 𝑥-dependence has been omitted for conciseness. Considering that the 
second column of Res𝑔𝑚 𝐌+ is zero for all 𝑚, while the first column is proportional to the second column of 𝐌+(𝑥, 𝑔𝑚), and conversely, 
the first column of Res𝑔∗𝑚 𝐌− is zero for all 𝑚, while the second column is proportional to the second column of 𝐌−(𝑥, 𝑔∗𝑚) as per 
Eqs. (42) and (43), the integral/algebraic system can be completed by evaluating it at each 𝑔 = 𝑔𝑚 and 𝑔 = 𝑔∗𝑚. The potential is 
subsequently reconstructed through the large 𝑔 expansion of the resulting expressions, since 

𝐌(𝑥, 𝑔) =
[

𝐈2 +
i
2𝑔

𝐐(𝑥)𝜎3

]

[1 + 𝑜(1)]. (125)

It should be noted that, in contrast to the scenario with equal amplitudes, the aforementioned system cannot be simplified to a purely 
algebraic form. Even though the reflection coefficients can be set to zero across the continuous spectrum, that is, for 𝑔 ∈ R∪𝛯𝐿, the 
integrals on the right-hand side of as per Eq. (124) always have a non-zero contribution from the contours 𝛯±

𝑅∖𝛯
±
𝐿 . Specifically, this 

indicates that pure soliton solutions do not exist, and solitons are invariably accompanied by some form of radiative contribution. 
Nevertheless, one could approach the solution of the system iteratively, under the assumption that the reflection coefficients are 
minor for 𝑔 ∈ 𝛯±

𝐿 (and/or for 𝑔 ∈ 𝛯±
𝑅∖𝛯

±
𝐿 ). This method would yield solutions that consist of solitons overlaid with minimal 

radiation. The temporal aspect within the system is straightforwardly incorporated through the time-varying nature of the scattering 
coefficients.

The RH problem can similarly be posed utilizing the left scattering data, by introducing a sectionally meromorphic matrix 
composed of eigenfunctions: 

𝐌̃(𝑥, 𝑔) =

⎧

⎪

⎨

⎪

⎩

[

𝐯(𝑥, 𝑔)ei𝛽𝐿𝑥, 𝐮(𝑥,𝑔)ℎ22(𝑔)
e−i𝛽𝑅𝑥

]

, 𝑔 ∈ Λ+
𝑅,

[

𝐮̃(𝑥,𝑔)
ℎ11(𝑔)

ei𝛽𝑅𝑥, 𝐯(𝑥, 𝑔)e−i𝛽𝐿𝑥
]

, 𝑔 ∈ Λ−
𝑅.

(126)

The RH problem defined across 𝑔 ∈ R is represented as: 𝐌̃+(𝑥, 𝑔) = 𝐌̃−(𝑥, 𝑔)𝐎̃0(𝑥, 𝑔) which applies for 𝑔 ∈ R, indicating that: 
[

𝐯+(𝑥, 𝑔)ei𝛽𝐿𝑥, 𝐮
+(𝑥, 𝑔)
ℎ+22(𝑔)

e−i𝛽𝑅𝑥
]

=

[

𝐮̃−(𝑥, 𝑔)
ℎ−11(𝑔)

ei𝛽𝑅𝑥, 𝐯−(𝑥, 𝑔)e−i𝛽𝐿𝑥
]

𝐎̃0(𝑥, 𝑔), (127)

where the superscripts ± represent the limiting values from the upper/lower halves of the complex plane, respectively. The jump 
matrix across 𝑔 ∈ R can be readily determined from Eq. (25b) and is expressed as: 

𝐎̃0(𝑥, 𝑔) =
(

ei(𝛽𝐿−𝛽𝑅)𝑥 𝛼(𝑔)e−2i𝛽𝑅𝑥

−𝛼(𝑔)e2i𝛽𝐿𝑥 [1 − 𝛼(𝑔)𝛼(𝑔)]ei(𝛽𝐿−𝛽𝑅)𝑥

)

. (128)

Similarly, the jump matrices 𝐎̃1(𝑥, 𝑔) across 𝛯+
𝐿 and 𝐎̃2(𝑥, 𝑔) across 𝛯−

𝐿 can be derived, respectively, by: 

𝐎̃1(𝑥, 𝑔) = −
i𝑞∗𝐿

𝛽𝐿 + 𝑔

⎛

⎜

⎜

⎜

⎝

−𝛼−(𝑔)e2i𝛽𝐿𝑥
[

𝑞𝐿
𝑞∗𝐿

− 𝛼+(𝑔)𝛼−(𝑔)
]

ei(𝛽𝐿−𝛽𝑅)𝑥

ei(𝛽𝐿−𝛽𝑅)𝑥 𝛼+(𝑔)e−2i𝛽𝑅𝑥

⎞

⎟

⎟

⎟

⎠

, across 𝛯+
𝐿 , (129a)

𝐎̃2(𝑥, 𝑔) = −
i𝑞𝐿

𝛽 + 𝑔

(

𝛼+(𝑔)e2i𝛽𝑅𝑥 ei(𝛽𝑅−𝛽𝐿)𝑥
[ 𝑞∗𝐿 − 𝛼+(𝑔)𝛼−(𝑔)

]

ei(𝛽𝑅−𝛽𝐿)𝑥 −𝛼−(𝑔)e−2i𝛽𝐿𝑥

)

, across 𝛯−
𝐿 . (129b)
𝐿 𝑞𝐿
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Regarding the RH problem formulated with scattering coefficients from the right, the jump matrices 𝐎̃1(𝑥, 𝑔) and 𝐎̃2(𝑥, 𝑔) adhere 
to the following symmetry in the upper/lower half-planes: 𝐎̃2(𝑥, 𝑔) = 𝜎2𝐎̃∗

1(𝑥, 𝑔
∗)𝜎2. In addressing the RH problem across 𝛯+

𝑅∖𝛯
+
𝐿 , 

the situation is as follows: 

𝐌̃+(𝑥, 𝑔) =

[

𝐯+(𝑥, 𝑔)ei𝛽𝐿𝑥, 𝐮
+(𝑥, 𝑔)
ℎ+22(𝑔)

e−i𝛽
+
𝑅𝑥

]

, 𝐌̃−(𝑥, 𝑔) =

[

𝐯−(𝑥, 𝑔)ei𝛽𝐿𝑥, 𝐮
−(𝑥, 𝑔)
ℎ−22(𝑔)

e−i𝛽
−
𝑅𝑥

]

. (130)

It should be noted that in contrast to the RH problem from the right, the jump cannot be determined here in the same manner. The 
same limitation applies to the RH problem on 𝛯−

𝑅∖𝛯
−
𝐿 . In fact, the right-hand sides are only defined simultaneously for 𝑔 ∈ R ∪ 𝛯𝐿

and cannot be extended to either 𝛯+
𝑅∖𝛯

+
𝐿 or 𝛯−

𝑅∖𝛯
−
𝐿 . This distinction is also apparent when considering that, unlike 𝛾±(𝑔) and ̃𝛾±(𝑔), 

which can be analytically continued onto 𝛯+
𝑅∖𝛯

+
𝐿 or 𝛯−

𝑅∖𝛯
−
𝐿 respectively, the reflection coefficients from the left, 𝛼±(𝑔) and 𝛼±(𝑔)

are typically defined only on the continuous spectrum, that is, for 𝑔 ∈ R ∪ 𝛯𝐿.
To properly define the RH problem from the left on 𝛯𝑅∖𝛯𝐿, it is necessary to consider both segments of the cut 𝛯+

𝑅∖𝛯
+
𝐿 and 

𝛯−
𝑅∖𝛯

−
𝐿 concurrently, and to account for the following:

• 𝛽𝑅 changes sign across 𝛯+
𝑅∖𝛯

+
𝐿 and 𝛯−

𝑅∖𝛯
−
𝐿 ;

• 𝐯+(𝑥, 𝑔) = 𝐯−(𝑥, 𝑔) for 𝑔 ∈ 𝛯+
𝑅∖𝛯

+
𝐿 , and ̃𝐯+(𝑥, 𝑔) = 𝐯−(𝑥, 𝑔) for 𝑔 ∈ 𝛯−

𝑅∖𝛯
−
𝐿 ;

• 𝐮±(𝑥, 𝑔)∕ℎ±22(𝑔) and ̃𝐮±(𝑥, 𝑔)∕ℎ±11(𝑔) are interconnected through the symmetry relations given by Eqs. (37) and (41c), that is: 
𝐮±(𝑥, 𝑔)
ℎ±22(𝑔)

=
𝐮̃∓(𝑥, 𝑔)
ℎ∓21(𝑔)

, 𝑔 ∈ 𝛯+
𝑅∖𝛯

+
𝐿 ,

𝐮̃±(𝑥, 𝑔)
ℎ±11(𝑔)

=
𝐮∓(𝑥, 𝑔)
ℎ∓12(𝑔)

, 𝑔 ∈ 𝛯−
𝑅∖𝛯

−
𝐿 . (131)

Addressing the RH problem from the left, which includes poles corresponding to the zeros of ℎ22(𝑔) and ℎ11(𝑔) in the upper/lower 
half-planes (identical to those from the right), involves calculating the sectionally meromorphic matrix 𝐌̃(𝑥, 𝑔) with the specified 
jumps 𝐎̃𝑗 , and normalized to the identity matrix as 𝑔 approaches infinity. Subsequently, the potential is reconstructed through the 
large 𝑔 expansion of this matrix, since 

𝐌̃(𝑥, 𝑔) =
[

𝐈2 +
i
2𝑔

𝐐(𝑥)𝜎3

]

[1 + 𝑜(1)]. (132)

4.2. Time evolution of the scattering data

In accordance with the second part of Eq. (3), the temporal evolution is described by 𝜓𝑡 = 𝐓𝜓 . Asymptotically, considering 
𝑞(𝑥, 𝑡) → 𝑞𝐿∕𝑅(𝑡) = 𝐵𝐿∕𝑅e

i𝛿𝐿∕𝑅(𝑡) as 𝑥 → ∓∞, we have 𝜓𝑡 ≃ 𝐓̃(𝑔, 𝑡)𝜓 and 𝐓̃(𝑔, 𝑡) = (𝑇𝑖𝑗 (𝑔, 𝑡)), where 

𝑇11(𝑔, 𝑡) = (𝜎11 + 2𝑔𝜎12 − 4𝑔2𝜎13)(i𝐵2
𝐿∕𝑅 − 2i𝑔2) + 3i𝜎13𝐵4

𝐿∕𝑅, (133a)

𝑇12(𝑔, 𝑡) = [2𝑔𝜎11 + 2𝜎12(2𝑔2 − 𝐵2
𝐿∕𝑅) + 4𝜎13(𝑔𝐵2

𝐿∕𝑅 − 2𝑔3)]𝑞𝐿∕𝑅(𝑡), (133b)

𝑇21(𝑔, 𝑡) = [2𝜎12(𝐵2
𝐿∕𝑅 − 2𝑔2) − 2𝑔𝜎11 + 4𝜎13(2𝑔3 − 𝑔𝐵2

𝐿∕𝑅)]𝑞
∗
𝐿∕𝑅(𝑡), (133c)

𝑇22(𝑔, 𝑡) = (𝜎11 + 2𝑔𝜎12 − 4𝑔2𝜎13)(2i𝑔2 − i𝐵2
𝐿∕𝑅) − 3i𝜎13𝐵4

𝐿∕𝑅. (133d)

The scattering problem outlined in Eq. (3) yields as 𝑥→ ∓∞, the following for the two components of any eigenfunction 𝜓(𝑥, 𝑡): 
𝑞∗𝐿∕𝑅(𝑡)𝜓

(1) ≃ −𝜓 (2)
𝑥 + i𝑔𝜓 (2), 𝑞𝐿∕𝑅(𝑡)𝜓 (2) ≃ 𝜓 (1)

𝑥 + i𝑔𝜓 (1). (134)

Substituting these equations into Eqs. (133a), (133b), (133c) and (133d), we derive the following as 𝑥 → ∓∞: 
𝜓 (1)
𝑡 ≃ [2𝑔𝜎11 + 2𝜎12(2𝑔2 − 𝐵2

𝐿∕𝑅) + 4𝜎13(𝑔𝐵2
𝐿∕𝑅 − 2𝑔3)]𝜓 (1)

𝑥 + i𝜎11𝐵2
𝐿∕𝑅𝜓

(1) + 3i𝜎13𝐵4
𝐿∕𝑅𝜓

(1), (135a)

𝜓 (2)
𝑡 ≃ [2𝑔𝜎11 + 2𝜎12(2𝑔2 − 𝐵2

𝐿∕𝑅) + 4𝜎13(𝑔𝐵2
𝐿∕𝑅 − 2𝑔3)]𝜓 (2)

𝑥 − i𝜎11𝐵2
𝐿∕𝑅𝜓

(2) − 3i𝜎13𝐵4
𝐿∕𝑅𝜓

(2). (135b)

The Jost solutions with boundary values as 𝑥 → ∓∞ specified by Eqs. (21a) and (21b), do not align with the aforementioned 
temporal evolution. Consequently, we introduce time-dependent eigenfunctions that serve as solutions to the evolution equation. 
For example, consider 𝜙(𝑥, 𝑔, 𝑡) = ei𝐵∞𝑡𝐯(𝑥, 𝑔, 𝑡), such that 

𝜙𝑡 = i𝐵∞𝜙 + ei𝐵∞𝑡𝐯𝑡. (136)

Considering that the components of 𝜙 asymptotically fulfill the systems (135a) and (135b) as 𝑥 → −∞ and acknowledging that 
𝐕(𝑥, 𝑔, 𝑡) = (𝐯(𝑥, 𝑔, 𝑡), 𝐯(𝑥, 𝑔, 𝑡)) ∼ 𝐄𝐿(𝑔)e−i𝛽𝐿𝑥𝜎3 , we have 

𝐯(𝑥, 𝑔, 𝑡) ≃
(

1
−i𝑞∗𝐿(𝑡)
𝛽𝐿+𝑔

)

e−i𝛽𝐿𝑥, 𝐯𝑡(𝑥, 𝑔, 𝑡) ≃
(

0

−
𝛿̇𝐿(𝑡)𝑞∗𝐿(𝑡)
𝛽𝐿+𝑔

)

e−i𝛽𝐿𝑥, 𝐯𝑥(𝑥, 𝑔, 𝑡) ≃ −i𝛽𝐿

(

1
−i𝑞∗𝐿(𝑡)
𝛽𝐿+𝑔

)

e−i𝛽𝐿𝑥, 𝑥 → −∞, (137)

where the dot signifies differentiation with respect to time. Substituting into Eq. (136), the first component results in 𝐵∞ =
𝜎11𝐵2

𝐿 + 3𝜎13𝐵4
𝐿 − 𝛽𝐿[2𝑔𝜎11 + 2𝜎12(2𝑔2 −𝐵2

𝐿) + 4𝜎13(𝑔𝐵2
𝐿 − 2𝑔3)] and from the second component, we derive: 𝛿̇𝐿(𝑡) = 2𝜎11𝐵2

𝐿 + 6𝜎13𝐵4
𝐿, 

leading to 𝛿 (𝑡) = 2𝜎 𝐵2 𝑡 + 6𝜎 𝐵4 𝑡 + 𝛿 (0). Similarly, the evolution of the asymptotic phase as 𝑥 → +∞ can be determined: 
𝐿 11 𝐿 13 𝐿 𝐿
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𝛿𝑅(𝑡) = 2𝜎11𝐵2
𝑅𝑡 + 6𝜎13𝐵4

𝑅𝑡 + 𝛿𝑅(0), as well as the temporal evolution of the other Jost solutions. This yields for 𝐕 = (𝐯, 𝐯) and 
𝐔 = (𝐮̃,𝐮), 

𝜕𝑡𝐕 = 𝐓𝐕 − i
[

𝜎11𝐵
2
𝐿 + 3𝜎13𝐵4

𝐿 − 𝛽𝐿[2𝑔𝜎11 + 2𝜎12(2𝑔2 − 𝐵2
𝐿) + 4𝜎13(𝑔𝐵2

𝐿 − 2𝑔3)]
]

𝐕𝜎3, (138a)

𝜕𝑡𝐔 = 𝐓𝐔 − i
[

𝜎11𝐵
2
𝑅 + 3𝜎13𝐵4

𝑅 − 𝛽𝑅[2𝑔𝜎11 + 2𝜎12(2𝑔2 − 𝐵2
𝑅) + 4𝜎13(𝑔𝐵2

𝑅 − 2𝑔3)]
]

𝐔𝜎3. (138b)

By differentiating Eq. (25a) with respect to 𝑡 and considering the temporal evolution of the Jost solutions as given by Eqs. (138a) 
and (138b), we derive the scattering matrix: 

𝜕𝑡𝐂 = i
[

𝜎11𝐵
2
𝑅 + 3𝜎13𝐵4

𝑅 − 𝛽𝑅[2𝑔𝜎11 + 2𝜎12(2𝑔2 − 𝐵2
𝑅) + 4𝜎13(𝑔𝐵2

𝑅 − 2𝑔3)]
]

𝜎3𝐂
− i

[

𝜎11𝐵
2
𝐿 + 3𝜎13𝐵4

𝐿 − 𝛽𝐿[2𝑔𝜎11 + 2𝜎12(2𝑔2 − 𝐵2
𝐿) + 4𝜎13(𝑔𝐵2

𝐿 − 2𝑔3)]
]

𝐂𝜎3.
(139)

Specifically, this results in the following expressions for the time evolution of the scattering coefficients 𝑐11(𝑔, 𝑡) and 𝑐21(𝑔, 𝑡), as well 
as the reflection coefficient from the right 𝛾(𝑔, 𝑡): 

𝑐11(𝑔, 𝑡) = 𝑐11(𝑔, 0)e
2i𝑔(𝜎11+2𝑔𝜎12−4𝑔2𝜎13)(𝛽𝐿−𝛽𝑅)𝑡+i𝜎11(𝐵2

𝑅−𝐵
2
𝐿)𝑡+3i𝜎13(𝐵

4
𝑅−𝐵

4
𝐿)𝑡+(2i𝜎12−4i𝑔𝜎13)(𝛽𝑅𝐵

2
𝑅−𝛽𝐿𝐵

2
𝐿)𝑡, (140a)

𝑐21(𝑔, 𝑡) = 𝑐21(𝑔, 0)e
2i𝑔(𝜎11+2𝑔𝜎12−4𝑔2𝜎13)(𝛽𝐿+𝛽𝑅)𝑡−i𝜎11(𝐵2

𝑅+𝐵
2
𝐿)𝑡−3i𝜎13(𝐵

4
𝑅+𝐵

4
𝐿)𝑡+(4i𝑔𝜎13−2i𝜎12)(𝛽𝑅𝐵

2
𝑅+𝛽𝐿𝐵

2
𝐿)𝑡, (140b)

𝛾(𝑔, 𝑡) = 𝛾(𝑔, 0)e4i𝑔𝛽𝑅(𝜎11+2𝑔𝜎12−4𝑔
2𝜎13)𝑡−2i𝜎11𝐵2

𝑅𝑡−6i𝜎13𝐵
4
𝑅𝑡+𝛽𝑅𝐵

2
𝑅(8i𝑔𝜎13−4i𝜎12)𝑡. (140c)

The initial equation indicates that the discrete eigenvalues 𝑔𝑚 are invariant with respect to time and are determined by the zeros 
of 𝑐11(𝑔, 0). It is noted that in the symmetric scenario where 𝐵𝐿 = 𝐵𝑅, it follows that 𝑐11(𝑔, 𝑡) = 𝑐11(𝑔, 0), meaning the transmission 
coefficient remains constant over time. Furthermore, regarding the behavior of 𝑐11(𝑔, 𝑡) for large 𝑔, consistent with 𝑐11(𝑔, 𝑡) ∼ 1 as 
|𝑔| → ∞ for 𝑔 ∈ Λ+

𝑅 ∪ R and for all 𝑡 ≥ 0; this ensures the inverse problem is well-posed. Similarly, the evolution of the other 
scattering coefficients such as ℎ22(𝑔, 𝑡), ℎ12(𝑔, 𝑡) etc., can be determined, as well as the reflection coefficient from the left 𝛼(𝑔, 𝑡): 

ℎ12(𝑔, 𝑡) = ℎ12(𝑔, 0)e
i𝜎11(𝐵2

𝑅+𝐵
2
𝐿)𝑡−2i𝑔(𝜎11+2𝑔𝜎12−4𝑔

2𝜎13)(𝛽𝐿+𝛽𝑅)𝑡+3i𝜎13(𝐵4
𝑅+𝐵

4
𝐿)𝑡+(2i𝜎12−4i𝑔𝜎13)(𝛽𝑅𝐵

2
𝑅+𝛽𝐿𝐵

2
𝐿)𝑡, (141a)

ℎ22(𝑔, 𝑡) = ℎ22(𝑔, 0)e
i𝜎11(𝐵2

𝑅−𝐵
2
𝐿)𝑡+2i𝑔(𝜎11+2𝑔𝜎12−4𝑔

2𝜎13)(𝛽𝐿−𝛽𝑅)𝑡+3i𝜎13(𝐵4
𝑅−𝐵

4
𝐿)𝑡+(2i𝜎12−4i𝑔𝜎13)(𝛽𝑅𝐵

2
𝑅−𝛽𝐿𝐵

2
𝐿)𝑡, (141b)

𝛼(𝑔, 𝑡) = 𝛼(𝑔, 0)e2i𝜎11𝐵
2
𝐿𝑡+6i𝜎13𝐵

4
𝐿𝑡−4i𝑔𝛽𝐿(𝜎11+2𝑔𝜎12−4𝑔

2𝜎13)𝑡+2𝛽𝐿𝐵2
𝐿(2i𝜎12−4i𝑔𝜎13)𝑡. (141c)

Lastly, it is necessary to ascertain the temporal dependence of the norming constants. By differentiating 𝐯(𝑥, 𝑔𝑚) = 𝑑𝑚𝐮(𝑥, 𝑔𝑚) with 
respect to time and assessing the first and second columns at 𝑔 = 𝑔𝑚, we obtain: 

𝑑𝑚(𝑡) = 𝑑𝑚(0) exp[2i𝑔𝑚(𝜎11 + 2𝑔𝑚𝜎12 − 4𝑔2𝑚𝜎13)(𝛽𝐿(𝑔𝑚) + 𝛽𝑅(𝑔𝑚))𝑡 − i𝜎11(𝐵2
𝑅 + 𝐵2

𝐿)𝑡

− 3i𝜎13(𝐵4
𝑅 + 𝐵4

𝐿)𝑡 + (4i𝑔𝑚𝜎13 − 2i𝜎12)(𝛽𝑅(𝑔𝑚)𝐵2
𝑅 + 𝛽𝐿(𝑔𝑚)𝐵2

𝐿)𝑡],
(142)

where 𝑚 = 1,… ,𝑀 . Subsequently, utilizing the definition of 𝐹𝑚 as given in Eq. (42), we derive: 

𝐹𝑚(𝑡) = 𝐹𝑚(0)e
4i𝑔𝑚𝛽𝑅(𝑔𝑚)(𝜎11+2𝑔𝑚𝜎12−4𝑔2𝑚𝜎13)𝑡−2i𝜎11𝐵

2
𝑅𝑡−6i𝜎13𝐵

4
𝑅𝑡+𝛽𝑅(𝑔𝑚)𝐵

2
𝑅(8i𝑔𝑚𝜎13−4i𝜎12)𝑡. (143)

5. Discussion and final remarks

We have advanced the IST for the fourth-order NLS equation with fully asymmetric NZBCs as 𝑥 → ±∞. This represents a 
significant extension of the scenario where the amplitudes of the background field are equal at both spatial infinities, entailing 
the management of supplementary technical complexities. The most critical of these is the inability to introduce a uniformization 
variable in the spectral domain when the amplitudes of the soliton solutions differ as 𝑥 → ±∞. This is because such a variable would 
be necessary to map the multi-sheeted Riemann surface for the scattering parameter onto a single complex plane, a step that becomes 
infeasible under these asymmetric conditions. Significant distinctions from the symmetric case also emerge in the inverse problem. 
In addition to solitons where correspond to the discrete eigenvalues of the scattering problem and radiation which corresponds 
to the continuous spectrum of the scattering operator and is represented in the inverse problem by the reflection coefficients for 
𝑔 ∈ R ∪ (−i𝐵𝐿, i𝐵𝐿), there is also a notable contribution from the transmission coefficients for 𝑔 ∈ (−i𝐵𝑅,−i𝐵𝐿) ∪ (i𝐵𝐿, i𝐵𝑅). This 
is evidenced by the last term in Eq. (106), which contributes to the left Marchenko equations. Accordingly, Eqs. (41a) and (41b) 
indicate that in the right Marchenko equations, there is always a significant contribution from the integral terms in Eqs. (85) and 
(91), since 𝛾(𝑔) [resp. ̃𝛾(𝑔)] does not vanish for 𝑔 ∈ (i𝐵𝐿, i𝐵𝑅) [resp. 𝑔 ∈ (−i𝐵𝑅,−i𝐵𝐿)]. Specifically, this suggests that pure soliton 
solutions are not feasible, and solitons are invariably coupled with some form of radiative contribution. Consequently, unlike in the 
symmetric scenario, an explicit solution cannot be derived merely by simplifying the inverse problem into a system of algebraic 
equations.

The advancements presented in this paper regarding the IST for the fourth-order NLS equation with fully asymmetric NZBCs 
as 𝑥 → ±∞ open new avenues for future research in mathematical physics. This work not only extends the understanding of the 
fourth-order NLS equation under asymmetric conditions but also provides a robust framework for analyzing the long-time asymptotic 
behavior of solutions. The results are expected to facilitate the application of the nonlinear steepest descent method to study the 
evolution of solutions over extended periods, similar to what has been achieved for the focusing NLS [43–48] and mKdV [49,50] 
equation with step-like initial conditions. The Marchenko integral equations derived in this study offer an alternative approach 
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to investigate the long-time behavior of solutions through matched asymptotics, akin to recent developments in the study of the 
KdV equation [51]. This methodological advancement is significant as it allows for a more nuanced understanding of the interplay 
between solitons and radiation in the context of NZBCs.

Furthermore, the insights gained from this research will be instrumental in exploring the dynamics of solitons and their 
interactions with the background field under asymmetric conditions [52–56]. The inability to introduce a uniformization variable 
due to differing amplitudes at spatial infinities presents a unique challenge that this study begins to address, paving the way for 
further exploration into the complex behavior of nonlinear waves in diverse physical settings [57–60]. In summary, the findings 
of this paper are expected to stimulate further research into the long-time asymptotic behavior of soliton solutions with nontrivial 
boundary conditions, potentially leading to new theoretical developments and practical applications in the field of mathematical 
physics.
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Appendix A. Direct scattering problem

Given that 𝐆2
𝐿∕𝑅(𝑔) = −𝛽2𝐿∕𝑅𝐈2, the explicit form of e𝑥𝐆𝐿∕𝑅(𝑔) can be easily derived from its series expansion: 

e𝑥𝐆𝐿∕𝑅(𝑔) = cos(𝛽𝐿∕𝑅𝑥)𝐈2 +
sin(𝛽𝐿∕𝑅𝑥)
𝛽𝐿∕𝑅

[𝐐𝐿∕𝑅 − i𝑔𝜎3]. (144)

The Hilbert–Schmidt norm of a matrix 𝐋 is given by ‖𝐋‖2HS = tr(𝐋†𝐋), and the spectral norm is the square root of the largest singular 
value of 𝐋†𝐋. Then, det e𝑥𝐆𝐿∕𝑅(𝑔) = 1 for any 𝑔 ∈ C and 𝛽𝐿∕𝑅 =

√

𝑔2 + 𝐵2
𝐿∕𝑅 ∈ R. For 𝑔 ∈ R ∪ [−i𝐵𝐿∕𝑅, i𝐵𝐿∕𝑅], we have 

‖e𝑥𝐆𝐿∕𝑅(𝑔)‖2HS =∶ 2𝑌 (𝑥, 𝑔), 𝑌 (𝑥, 𝑔) = cos2(𝛽𝐿∕𝑅𝑥) +
|𝑔|2 + 𝐵2

𝐿∕𝑅

𝛽2𝐿∕𝑅
sin2(𝛽𝐿∕𝑅𝑥). (145)

Since |𝑔|2 + 𝐵2
𝐿∕𝑅 = 𝑔2 + 𝐵2

𝐿∕𝑅 = 𝛽2𝐿∕𝑅 for all 𝑔 ∈ R, it follows that 𝑌 (𝑥, 𝑔) = 1. Taking the limit of 𝑌 (𝑥, 𝑔) as 𝛽𝐿∕𝑅 → 0 in Eq. (145) 
results in 𝑌 (𝑥,±i𝐵𝐿∕𝑅) = 1 + 2𝐵2

𝐿∕𝑅𝑥
2. Additionally, for 𝑔 ∈ (−i𝐵𝐿∕𝑅, i𝐵𝐿∕𝑅), we have |𝑔|2 = −𝑔2 and 𝛽2𝐿∕𝑅 ≤ 𝐵2

𝐿∕𝑅. Therefore, for 
𝑔 ∈ (−i𝐵𝐿∕𝑅, i𝐵𝐿∕𝑅), we find that 

𝑌 (𝑥, 𝑔) = cos2(𝛽𝐿∕𝑅𝑥) +
|𝑔|2 + 𝐵2

𝐿∕𝑅

𝛽2𝐿∕𝑅
sin2(𝛽𝐿∕𝑅𝑥) = 1 +

2(𝐵2
𝐿∕𝑅 − 𝛽2𝐿∕𝑅)

𝛽2𝐿∕𝑅
sin2(𝛽𝐿∕𝑅𝑥) ≥ 1. (146)

Moreover, for 𝑔 ∈ [−i𝐵𝐿∕𝑅, i𝐵𝐿∕𝑅], it follows that 𝑌 (𝑥, 𝑔) ≤ 1 + 2𝐵2
𝐿∕𝑅𝑥

2.
For 𝑔 ∈ R, the boundedness of 𝑌 (𝑥, 𝑔) ≤ 1 + 2𝐵2

𝐿∕𝑅𝑥
2 is clearly established. Using the identity 

‖𝐋‖2 = 1
2

[

‖𝐋‖2HS +
√

‖𝐋‖4HS − 4| det 𝐋|2
]

, (147)

we then obtain 
𝑥𝐆𝐿∕𝑅(𝑔) 2

√

2 (148)

‖e ‖ = 𝑌 (𝑥, 𝑔) + 𝑌 (𝑥, 𝑔) − 1, 𝑔 ∈ R ∪ (−i𝐵𝐿∕𝑅, i𝐵𝐿∕𝑅),
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yielding 

𝐷𝐿∕𝑅(𝑔) = sup
𝑥∈R

‖e𝑥𝐆𝐿∕𝑅(𝑔)‖ =

{

1, 𝑔 ∈ R,
√

𝑌 (𝑔) +
√

𝑌 2(𝑔) − 1, 𝑔 ∈ (−i𝐵𝐿∕𝑅, i𝐵𝐿∕𝑅),
(149)

where 

𝑌 (𝑔) = 1 +
2(𝐵2

𝐿∕𝑅 − 𝛽2𝐿∕𝑅)

𝛽2𝐿∕𝑅
= 1 +

2|𝑔|2

𝛽2𝐿∕𝑅
, 𝑔 ∈ (−i𝐵𝐿∕𝑅, i𝐵𝐿∕𝑅). (150)

Ultimately, for all 𝑥 ∈ R and 𝑔 ∈ [−i𝐵𝐿∕𝑅, i𝐵𝐿∕𝑅] ∪ R, from 𝑌 (𝑥, 𝑔) ≤ 1 + 2𝐵2
𝐿∕𝑅𝑥

2 we find that 

‖e𝑥𝐆𝐿∕𝑅(±i𝐵𝐿∕𝑅)‖2 = 1 + 2𝐵2
𝐿∕𝑅𝑥

2 +
√

(1 + 2𝐵2
𝐿∕𝑅𝑥

2)2 − 1 ≤ 𝐷̃2
𝐿∕𝑅(1 + |𝑥|)2. (151)

Here, 𝐷̃𝐿∕𝑅 is a positive constant that does not depend on 𝑥 ∈ R.

Proof of Proposition  1.  For all 𝑥 ∈ R and 𝑔 ∈ R∪(−i𝐵𝐿∕𝑅, i𝐵𝐿∕𝑅), the estimate (149) demonstrates that ‖e𝑥𝐆𝑅(𝑔)‖ ≤ 𝐷𝑅(𝑔). Applying 
𝐔̃(𝑥, 𝑔) (10) and Gronwall’s inequality with 𝛼1(𝑥, 𝑔) = 𝐷𝑅(𝑔), 𝛼2(𝑦, 𝑔) = 𝐷𝑅(𝑔)‖𝐐(𝑦) −𝐐𝑅‖ yield the desired result: 

‖𝐔̃(𝑥, 𝑔)‖ ≤ 𝐷𝑅(𝑔)e𝐷𝑅(𝑔) ∫
∞
𝑥 ‖𝐐(𝑦)−𝐐𝑅‖ d𝑦. (152)

From the estimate (151), we deduce that there is a constant 𝐷̃𝑅 such that ‖e𝑥𝐆𝑅(𝑔)‖ ≤ 𝐷̃𝑅(1+|𝑥|) for all 𝑥 ∈ R and 𝑔 ∈ R∪[−i𝐵𝑅, i𝐵𝑅]. 
Applying Gronwall’s inequality leads to 

‖𝐔̃(𝑥, 𝑔)‖ ≤ 𝐷̃𝑅(1 + |𝑥|)e𝐷̃𝑅 ∫ ∞
𝑥 (1+|𝑦−𝑥|)‖𝐐(𝑦)−𝐐𝑅‖ d𝑦 ≤ 𝐷̃𝑅(𝑥0)(1 + |𝑥|)e𝐷̃𝑅(𝑥0) ∫

∞
𝑥 (1+|𝑦|)‖𝐐(𝑦)−𝐐𝑅‖ d𝑦, (153)

with 𝐷̃𝑅(𝑥0) = 𝐷̃𝑅(1 + max(0,−𝑥0)) and 𝑥 ≥ 𝑥0. □

Proof of Theorem  1.  By multiplying Eqs. (10) and (11) from the right by the respective appropriate columns of the matrices 
𝐄𝐿∕𝑅(𝑔) and utilizing the explicit forms given in Eq. (144) for e(𝑥−𝑦)𝐆𝐿∕𝑅(𝑔), we derive the subsequent Volterra integral equations for 
the Jost solutions: 

ei𝛽𝑅𝑥𝐮̃(𝑥, 𝑔) = 𝐄𝑅,1(𝑔) − ∫

∞

𝑥
Ω−
𝑅(𝑦 − 𝑥, 𝑔)[𝐐(𝑦) −𝐐𝑅]ei𝛽𝑅𝑦𝐮̃(𝑦, 𝑔) d𝑦, (154a)

e−i𝛽𝑅𝑥𝐮(𝑥, 𝑔) = 𝐄𝑅,2(𝑔) − ∫

∞

𝑥
Ω+
𝑅(𝑦 − 𝑥, 𝑔)[𝐐(𝑦) −𝐐𝑅]e−i𝛽𝑅𝑦𝐮(𝑦, 𝑔) d𝑦, (154b)

ei𝛽𝐿𝑥𝐯(𝑥, 𝑔) = 𝐄𝐿,1(𝑔) + ∫

𝑥

−∞
Ω+
𝐿(𝑥 − 𝑦, 𝑔)[𝐐(𝑦) −𝐐𝐿]ei𝛽𝐿𝑦𝐯(𝑦, 𝑔) d𝑦, (154c)

e−i𝛽𝐿𝑥𝐯(𝑥, 𝑔) = 𝐄𝐿,2(𝑔) + ∫

𝑥

−∞
Ω−
𝐿(𝑥 − 𝑦, 𝑔)[𝐐(𝑦) −𝐐𝐿]e−i𝛽𝐿𝑦𝐯(𝑦, 𝑔) d𝑦, (154d)

where the subscripts 𝑗 = 1, 2 in the matrices 𝐄𝐿∕𝑅(𝑔) indicate their 𝑗th column, with 

Ω−
𝑅(𝑥, 𝑔) =

⎛

⎜

⎜

⎝

1 + 𝛽𝑅−𝑔
2𝛽𝑅

[e−2i𝛽𝑅𝑥 − 1] − i𝑞𝑅
2𝛽𝑅

[e−2i𝛽𝑅𝑥 − 1]
i𝑞∗𝑅
2𝛽𝑅

[e−2i𝛽𝑅𝑥 − 1] e−2i𝛽𝑅𝑥 − 𝛽𝑅−𝑔
2𝛽𝑅

[e−2i𝛽𝑅𝑥 − 1]

⎞

⎟

⎟

⎠

, (155a)

Ω+
𝑅(𝑥, 𝑔) =

⎛

⎜

⎜

⎝

e2i𝛽𝑅𝑥 − 𝛽𝑅−𝑔
2𝛽𝑅

[e2i𝛽𝑅𝑥 − 1] i𝑞𝑅
2𝛽𝑅

[e2i𝛽𝑅𝑥 − 1]

−
i𝑞∗𝑅
2𝛽𝑅

[e2i𝛽𝑅𝑥 − 1] 1 + 𝛽𝑅−𝑔
2𝛽𝑅

[e2i𝛽𝑅𝑥 − 1]

⎞

⎟

⎟

⎠

, (155b)

Ω+
𝐿(𝑥, 𝑔) =

⎛

⎜

⎜

⎝

1 + 𝛽𝐿−𝑔
2𝛽𝐿

[e2i𝛽𝐿𝑥 − 1] − i𝑞𝐿
2𝛽𝐿

[e2i𝛽𝐿𝑥 − 1]
i𝑞∗𝐿
2𝛽𝐿

[e2i𝛽𝐿𝑥 − 1] e2i𝛽𝐿𝑥 − 𝛽𝐿−𝑔
2𝛽𝐿

[e2i𝛽𝐿𝑥 − 1]

⎞

⎟

⎟

⎠

, (155c)

Ω−
𝐿(𝑥, 𝑔) =

⎛

⎜

⎜

⎝

e−2i𝛽𝐿𝑥 − 𝛽𝐿−𝑔
2𝛽𝐿

[e−2i𝛽𝐿𝑥 − 1] i𝑞𝐿
2𝛽𝐿

[e−2i𝛽𝐿𝑥 − 1]

−
i𝑞∗𝐿
2𝛽𝐿

[e−2i𝛽𝐿𝑥 − 1] 1 + 𝛽𝐿−𝑔
2𝛽𝐿

[e−2i𝛽𝐿𝑥 − 1]

⎞

⎟

⎟

⎠

. (155d)

Given the chosen branch cuts, it is straightforward to deduce the following expressions that describe the behavior of 𝛽𝐿∕𝑅 as 𝑔 → ∞: 

𝛽𝑅 − 𝑔 =
𝐵2
𝑅

2𝑔
[1 + 𝑂(𝑔−2)], 𝛽𝐿 − 𝑔 =

𝐵2
𝐿

2𝑔
[1 + 𝑂(𝑔−2)]. (156)

Furthermore, when 𝑥 ≥ 0, we observe that 
|

|

|

e±2i𝛽𝑅𝑥 − 1 |
|

|

≡
|

|

|

𝑥
e±2i𝛽𝑅ℎ dℎ

|

|

|

≤ min
(

𝑥, 1
)

, 𝑔 ∈ Λ± ∪ 𝜕Λ± , (157)

|

2𝛽𝑅 | |

∫0 |
|𝛽𝑅| 𝑅 𝑅
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Similarly, this applies to the quantities with the 𝐿-subscript. Additionally, applying the maximum modulus principle, we obtain 

‖

‖

‖

‖

‖

(

1,−
i𝑞𝑅

𝛽𝑅 + 𝑔

)𝑇
‖

‖

‖

‖

‖

=
‖

‖

‖

‖

‖

(

1,−
i(𝛽𝑅 − 𝑔)
𝑞∗𝑅

)𝑇
‖

‖

‖

‖

‖

=
⎡

⎢

⎢

⎣

1 +

(

1
|𝑞𝑅|

max
𝑔∈𝜕Λ±

𝑅

|𝛽𝑅 − 𝑔|

)2
⎤

⎥

⎥

⎦

1
2

=
√

2, 𝑔 ∈ Λ±
𝑅 ∪ 𝜕Λ±

𝑅.
(158)

Then, utilizing Eqs. (156), (157) and (158) for estimation, we find that 

‖Ω−
𝑅(𝑥, 𝑔)‖ ≤ 1 + 2|𝑞𝑅|min

(

𝑥, 1
|𝛽𝑅|

)

, 𝑔 ∈ Λ−
𝑅 ∪ 𝜕Λ−

𝑅. (159)

Employing Gronwall’s inequality, we arrive at the following result: 

‖ei𝛽𝑅𝑥𝐮̃(𝑥, 𝑔)‖ ≤
√

2e∫
∞
𝑥 [1+2|𝑞𝑅|(𝑦−𝑥)]‖𝐐(𝑦)−𝐐𝑅‖ d𝑦, (160)

with the estimate is uniformly valid for (𝑥, 𝑔) ∈ [𝑥0,+∞)×[Λ−
𝑅 ∪𝜕Λ−

𝑅 ∪𝜕Λ+
𝑅], provided that the hypothesis (𝑩1) holds. Consequently, 

assuming (𝑩1) holds and for any 𝑥 ∈ R, the Jost solution ̃𝐮(𝑥, 𝑔) is continuous for 𝑔 ∈ Λ−
𝑅 ∪ 𝜕Λ−

𝑅 ∪ 𝜕Λ+
𝑅 and analytic for 𝑔 ∈ Λ−

𝑅. 
Similarly, we derive analogous estimates for the remaining three Jost solutions, thereby establishing the continuity and analyticity 
properties previously discussed. □

Proof of Theorem  2.  Upon differentiating Eq. (154a) with respect to 𝑔, we arrive at the following integral equation: 
𝜕
[

ei𝛽𝑅𝑥𝐮̃(𝑥, 𝑔) − 𝐄𝑅,1(𝑔)
]

𝜕𝑔
= − 𝜕

𝜕𝑔 ∫

∞

𝑥
Ω−
𝑅(𝑦 − 𝑥, 𝑔)[𝐐(𝑦) −𝐐𝑅]𝐄𝑅,1(𝑔) d𝑦

− ∫

∞

𝑥

𝜕Ω−
𝑅(𝑦 − 𝑥, 𝑔)
𝜕𝑔

[𝐐(𝑦) −𝐐𝑅]
[

ei𝛽𝑅𝑦𝐮̃(𝑦, 𝑔) − 𝐄𝑅,1(𝑔)
]

d𝑦

− ∫

∞

𝑥
Ω−
𝑅(𝑦 − 𝑥, 𝑔)[𝐐(𝑦) −𝐐𝑅]

𝜕
[

ei𝛽𝑅𝑦𝐮̃(𝑦, 𝑔) − 𝐄𝑅,1(𝑔)
]

𝜕𝑔
d𝑦,

(161)

where 
𝜕Ω−

𝑅(𝑦 − 𝑥, 𝑔)
𝜕𝑔

= −
2i𝑔
𝛽𝑅

(𝑦 − 𝑥)e−2i𝛽𝑅(𝑦−𝑥)
(

0 0
0 1

)

−
𝛽𝑅 − 𝑔
2𝛽2𝑅

(e−2i𝛽𝑅(𝑦−𝑥) − 1)𝜎3

−
𝑔

2𝛽2𝑅

(

𝛽𝑅 − 𝑔 −i𝑞𝑅
i𝑞∗𝑅 𝑔 − 𝛽𝑅

)[

e−2i𝛽𝑅(𝑦−𝑥) − 1
𝛽𝑅

+ 2i(𝑦 − 𝑥)e−2i𝛽𝑅(𝑦−𝑥)
]

.
(162)

Applying Eq. (159), we derive the following result: 
‖

‖

‖

‖

‖

𝜕Ω−
𝑅(𝑦 − 𝑥, 𝑔)
𝜕𝑔

‖

‖

‖

‖

‖

≤ 2
|𝑔|
|𝛽𝑅|

(𝑦 − 𝑥)
[

1 +
|𝛽𝑅 − 𝑔| + |𝑞𝑅|

|𝛽𝑅|

]

+
|𝛽𝑅 − 𝑔|
|𝛽𝑅|

(𝑦 − 𝑥). (163)

A straightforward application of Gronwall’s inequality allows us to estimate the solution, provided that 𝑔 ≠ ±i𝐵𝑅. An analogous 
conclusion applies to 𝐮(𝑥, 𝑔) and the other two Jost solutions, under the condition that 𝑔 ≠ ±i𝐵𝐿. □

Appendix B. Inverse scattering problem

Proof of Proposition  2.  Let us examine the representation given by Eq. (60a), which may be expressed as: 

𝐔̃(𝑥, 𝑔) = e𝑥𝐆𝑅(𝑔) + ∫

∞

𝑥
𝐙(𝑥, ℎ)eℎ𝐆𝑅(𝑔) dℎ = ∫

∞

𝑥
𝐙(𝑥, ℎ)

[

cos(𝛽𝑅ℎ) +
sin(𝛽𝑅ℎ)
𝛽𝑅

𝐐𝑅

]

dℎ

+ cos(𝛽𝑅𝑥)𝐈2 +
sin(𝛽𝑅𝑥)
𝛽𝑅

[𝐐𝑅 − i𝑔𝜎3] − i𝑔 ∫

∞

𝑥
𝐙(𝑥, ℎ)

sin(𝛽𝑅ℎ)
𝛽𝑅

𝜎3 dℎ

= cos(𝛽𝑅𝑥)𝐈2 +
sin(𝛽𝑅𝑥)
𝛽𝑅

[𝐐𝑅 − i𝑔𝜎3] + 𝐔𝑎(𝑥, 𝛽𝑅) + 𝐔𝑏(𝑥, 𝛽𝑅)[𝐐𝑅 − i𝑔𝜎3],

(164)

where 

𝐔𝑎(𝑥, 𝛽𝑅) = ∫

∞

𝑥
𝐙(𝑥, ℎ) cos(𝛽𝑅ℎ) dℎ, 𝐔𝑏(𝑥, 𝛽𝑅) = ∫

∞

𝑥
𝐙(𝑥, ℎ)

sin(𝛽𝑅ℎ)
𝛽𝑅

dℎ. (165)

By isolating the components that are even and odd with respect to 𝛽𝑅, we arrive at: 
𝐔̃(𝑥, 𝑔) + 𝐔̃(𝑥,−𝑔)

2
= cos(𝛽𝑅𝑥)𝐈2 +

sin(𝛽𝑅𝑥)
𝛽𝑅

𝐐𝑅 + 𝐔𝑎(𝑥, 𝛽𝑅) + 𝐔𝑏(𝑥, 𝛽𝑅)𝐐𝑅, (166a)

𝐔̃(𝑥, 𝑔) − 𝐔̃(𝑥,−𝑔)
2

= −i𝑔
sin(𝛽𝑅𝑥)
𝛽𝑅

𝜎3 − i𝑔𝐔𝑏(𝑥, 𝛽𝑅)𝜎3. (166b)
599 



P.-F. Han et al. Chinese Journal of Physics 96 (2025) 577–602 
Consequently, 

𝐔𝑏(𝑥, 𝛽𝑅) =
𝐔̃(𝑥,−𝑔) − 𝐔̃(𝑥, 𝑔)

2i𝑔
𝜎3 −

sin(𝛽𝑅𝑥)
𝛽𝑅

𝐈2, (167a)

𝐔𝑎(𝑥, 𝛽𝑅) =
𝐔̃(𝑥, 𝑔) + 𝐔̃(𝑥,−𝑔)

2
− cos(𝛽𝑅𝑥)𝐈2 +

𝐔̃(𝑥, 𝑔) − 𝐔̃(𝑥,−𝑔)
2i𝑔

𝜎3𝐐𝑅. (167b)

Proceeding from the identity, 

∫

∞

𝑥
𝐙(𝑥, ℎ)ei𝛽𝑅ℎ dℎ = 𝐔𝑎(𝑥, 𝛽𝑅) + i𝛽𝑅𝐔𝑏(𝑥, 𝛽𝑅), (168)

one may express it as: 

∫

∞

𝑥
𝐙(𝑥, ℎ)ei𝛽𝑅ℎ dℎ = 1

2
𝐔̃(𝑥, 𝑔)

[

𝐈2 −
i
𝑔
𝜎3𝐐𝑅 −

𝛽𝑅
𝑔
𝜎3

]

+ 1
2
𝐔̃(𝑥,−𝑔)

[

𝐈2 +
i
𝑔
𝜎3𝐐𝑅 +

𝛽𝑅
𝑔
𝜎3

]

− ei𝛽𝑅𝑥𝐈2. (169)

Subsequently, the verification of the following identities can be readily undertaken: 

e𝑥𝐆𝑅(𝑔)
[

𝐈2 −
i
𝑔
𝜎3𝐐𝑅 −

𝛽𝑅
𝑔
𝜎3

]

= ei𝛽𝑅𝑥
[

𝐈2 −
i
𝑔
𝜎3𝐐𝑅 −

𝛽𝑅
𝑔
𝜎3

]

, (170a)

e𝑥𝐆𝑅(−𝑔)
[

𝐈2 +
i
𝑔
𝜎3𝐐𝑅 +

𝛽𝑅
𝑔
𝜎3

]

= ei𝛽𝑅𝑥
[

𝐈2 +
i
𝑔
𝜎3𝐐𝑅 +

𝛽𝑅
𝑔
𝜎3

]

. (170b)

Upon multiplying both sides of Eq. (169) by e−i𝛽𝑅𝑥, and employing the aforementioned identities, we ascertain that: 

∫

∞

𝑥
𝐙(𝑥, ℎ)ei𝛽𝑅(ℎ−𝑥) dℎ = 1

2

[

𝐔̃(𝑥, 𝑔)e−𝑥𝐆𝑅(𝑔) − 𝐈2
]

[

𝐈2 −
i
𝑔
𝜎3𝐐𝑅 −

𝛽𝑅
𝑔
𝜎3

]

+ 1
2

[

𝐔̃(𝑥,−𝑔)e−𝑥𝐆𝑅(−𝑔) − 𝐈2
]

[

𝐈2 +
i
𝑔
𝜎3𝐐𝑅 +

𝛽𝑅
𝑔
𝜎3

]

,
(171)

Hence, ∫ ∞
𝑥 𝐙(𝑥, ℎ)ei𝛽𝑅(ℎ−𝑥) dℎ = ∫ ∞

−∞ 𝐙(𝑥, ℎ)ei𝛽𝑅(ℎ−𝑥) dℎ, given that 𝐙(𝑥, ℎ) ≡ 0 for 𝑥 > ℎ, we consequently derive Eq. (62). Similarly, it 
can be demonstrated from Eq. (60b) that Eq. (63) holds. □

Proof of Theorem  3.  Upon substituting Eq. (61a) into Eq. (3) and subsequently multiplying the resultant equation on the right by 
ei𝛽𝑅𝜎3𝑥, we obtain: 

𝜕𝑥
[

𝐔(𝑥, 𝑔)ei𝛽𝑅𝜎3𝑥
]

− i𝛽𝑅𝐔(𝑥, 𝑔)𝜎3ei𝛽𝑅𝜎3𝑥 = [𝐐(𝑥) − i𝑔𝜎3]
[

𝐄𝑅(𝑔) + ∫

∞

𝑥
𝐙(𝑥, ℎ)𝐄𝑅(𝑔)e−i𝛽𝑅𝜎3(ℎ−𝑥) dℎ

]

. (172)

Utilizing Eqs. (19), (50) and (51) with the assumption in Eq. (51) that 𝜕𝑥𝑞 ∈ 𝐿1(R), we derive the following: 
[

i𝜕𝑥𝐐(𝑥)𝜎3
2𝑔

− i𝛽𝑅

(

𝐈2 +
i𝐐(𝑥)𝜎3

2𝑔

)

𝜎3

]

[1 + 𝑜(1)] = [𝐐(𝑥) − i𝑔𝜎3]
[

𝐈2 + ∫

∞

𝑥
𝐙(𝑥, ℎ)e−i𝛽𝑅𝜎3(ℎ−𝑥) dℎ

]

+
i[𝐐(𝑥) − i𝑔𝜎3]

𝛽𝑅 + 𝑔

[

𝐐𝑅 + ∫

∞

𝑥
𝐙(𝑥, ℎ)𝐐𝑅e−i𝛽𝑅𝜎3(ℎ−𝑥) dℎ

]

𝜎3.
(173)

That is to say, 

i𝑔𝜎3 +
1
2
𝐐(𝑥) + 𝑜(𝑔−1) = −i𝑔𝜎3 +𝐐(𝑥) +𝐐(𝑥)∫

∞

𝑥
𝐙(𝑥, ℎ)e−i𝛽𝑅𝜎3(ℎ−𝑥) dℎ

− i𝛽𝑅𝜎3 ∫

∞

𝑥
𝐙(𝑥, ℎ)e−i𝛽𝑅𝜎3(ℎ−𝑥) dℎ +

i𝐵2
𝑅

𝛽𝑅 + 𝑔
𝜎3 ∫

∞

𝑥
𝐙(𝑥, ℎ)e−i𝛽𝑅𝜎3(ℎ−𝑥) dℎ

+ 1
2

[

1 −
𝐵2
𝑅

(𝛽𝑅 + 𝑔)2

]

𝜎3𝐐𝑅𝜎3 +
i𝐐(𝑥)𝐐𝑅𝜎3
𝛽𝑅 + 𝑔

+
i[𝐐(𝑥) − i𝑔𝜎3]

𝛽𝑅 + 𝑔 ∫

∞

𝑥
𝐙(𝑥, ℎ)𝐐𝑅e−i𝛽𝑅𝜎3(ℎ−𝑥)𝜎3 dℎ.

(174)

On the right-hand side, the third, fifth, and final terms encompass Fourier integrals of matrix functions, the entries of which are 
in 𝐿2(R; d𝛽𝑅), and are multiplied by factors that remain bounded as 𝑔 becomes large; consequently, these terms tend to zero as 
𝑔, 𝛽𝑅 → ∞. Subsequently, for the fourth term, we express it as: 

−i𝛽𝑅𝜎3 ∫

∞

𝑥
𝐙(𝑥, ℎ)e−i𝛽𝑅𝜎3(ℎ−𝑥) dℎ = −i𝛽𝑅𝜎3 ∫

∞

𝑥
𝐙(𝑥, ℎ)𝐄𝑅(𝑔)e−i𝛽𝑅𝜎3(ℎ−𝑥) dℎ

−
𝛽𝑅

𝛽𝑅 + 𝑔
𝜎3 ∫

∞

𝑥
𝐙(𝑥, ℎ)𝐐𝑅𝜎3e−i𝛽𝑅𝜎3(ℎ−𝑥) dℎ,

(175)

wherein the second term on the right features entries in 𝐿2(R; d𝛽𝑅). The initial term on the right is articulated as: 

− i𝛽𝑅𝜎3 ∫

∞

𝑥
𝐙(𝑥, ℎ)𝐄𝑅(𝑔)e−i𝛽𝑅𝜎3(ℎ−𝑥) dℎ = 𝜎3

{

−𝐙(𝑥, 𝑥)𝐄𝑅(𝑔) + ∫

∞

𝑥

[

𝜕𝑥𝐙(𝑥, ℎ)
]

e−i𝛽𝑅𝜎3(ℎ−𝑥) dℎ

+ i ∞
[

𝜕𝑥𝐙(𝑥, ℎ)
]

𝐐𝑅𝜎3e−i𝛽𝑅𝜎3(ℎ−𝑥) dℎ − 𝜕𝑥
[

𝐔(𝑥, 𝑔)ei𝛽𝑅𝜎3𝑥 − 𝐄𝑅(𝑔)
]

}

𝜎3.
(176)
𝛽𝑅 + 𝑔 ∫𝑥
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Let us now scrutinize the individual terms within the brackets on the right-hand side of the aforementioned identity. The first term 
simplifies to −𝐙(𝑥, 𝑥) + 𝑜(1). According to Eq. (51), the terminal term dissipates as 𝑔 → ±∞, the penultimate term comprises entries 
in 𝐿2(R; d𝛽𝑅) (as it represents the Fourier transform of an 𝐿2 matrix function), and the antepenultimate term of the final component 
is 𝐿2 scaled by a bounded coefficient. Consequently, dismissing all contributions that tend to zero as 𝑔 → ±∞, and leveraging the 
fact that 𝜎3𝐐𝑅𝜎3 = −𝐐𝑅, we arrive at: 

−i𝑔𝜎3 +
1
2
𝐐(𝑥) = −i𝑔𝜎3 +𝐐(𝑥) − 𝜎3𝐙(𝑥, 𝑥)𝜎3 −

1
2
𝐐𝑅. (177)

That is, the first part of Eq. (70) is established. The second equality in Eq. (70) can be demonstrated through a similar approach. □
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