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Abstract
Water waves play a crucial role in elucidating fluid dynamics and plasma physics,
as they significantly influence phenomena such as wave propagation, energy trans-
fer, and stability across diverse environments. In this paper, we aim to construct the
bilinear auto-Bäcklund transformation and novel function superposition solutions for
an extended (3+1)-dimensional generalized shallow water wave equation by employ-
ing the Hirota bilinear method and symbolic computation. We meticulously illustrate
and analyze the dynamic behavior of interactions between lump waves and two kink
waves under various periodic wave backgrounds. This includes the collision of the
lump wave with the two kink waves, the splitting of the kink waves, and the emer-
gence and degeneration of the lump wave. By scrutinizing the interactions of breather
waves, we observe the fusion and separation phenomena involving bell-shaped waves
and breather waves. Additionally, by examining the interactions of rogue waves, we
analyze their fission and fusion processes. The interplay among thesewaves can signif-
icantly enhance our understanding of the characteristics of solutions involving function
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superposition, potentially shedding light on certain physical phenomena within the
realm of nonlinear science.

Keywords Hirota bilinear method · Lump wave interactions · Bäcklund
transformation · Mixed wave interactions

1 Introduction

Extensive research on shallow water wave theory has garnered significant interest in
elucidating its formation mechanisms within marine engineering [1–3], ocean dynam-
ics [4–6], and fluid mechanics [7–11]. As a category of nonlinear evolution equations
(NLEEs), shallow water wave models have been effectively utilized across various
research domains, including applied mathematics [12], hydrodynamics [13], ocean
dynamics [14], seawater intrusion [15], and marine engineering [16–18]. Exact solu-
tions play a crucial role in enhancing our comprehension of the intricate physical
phenomena and dynamic processes simulated by NLEEs [19–26]. Numerous power-
ful methods have been developed for this purpose, such as the long wave limit method
[27, 28], Darboux transformation [29, 30], Hirota bilinear method [31–35], inverse
scattering transform [36, 37], Riemann-Hilbert approach [38], Bäcklund transforma-
tion [39], Lie group method [40, 41], and others [42–45].

The application of soliton research in fluid mechanics [46] and plasma physics [47]
is of crucial significance. It not only facilitates a deeper understanding of nonlinear
wave phenomena within fluids and plasmas but also propels the development of novel
theories in applied physics [48]. Solitons, as stable waveforms that emerge in the
context of dispersion, dissipation, and diffusion processes, typically arise from the
mathematical modeling of physical systems [49]. The soliton solutions derived from
these models have garnered considerable interest among researchers [50]. Extensive
studies in the literature have explored solitons in conjunction with a broad spectrum
of physical phenomena, particularly within the realm of shallow water wave equa-
tions [51]. Here, soliton solutions are intricately linked to wave behavior in the actual
ocean, which is pivotal for comprehending and forecasting ocean dynamics [52, 53].
These investigations not only enhance our grasp of soliton characteristics but may also
uncover certain physical phenomena within the domain of nonlinear science.

Oceanographers confront a diverse array of issues, ranging from the ocean’s impact
on the Earth’s physical climate system to its involvement in the global carbon cycle
[54, 55]. The shallowwater wave equation is a pivotal tool for these scientists, enabling
them to comprehend and anticipate the behavior of ocean waves [56, 57]. This under-
standing is vital for gaining insights into the impacts of climate change and the
intricacies of marine ecosystems [58, 59]. In our research, we will delve into an
extended (3+1)-dimensional generalized shallow water wave equation, which is pre-
sented as follows:

λ1uyt + λ2uxxxy + λ3uxuxy + λ3uxxuy + λ4uxx + λ5uxy + λ6uxz = 0. (1)
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In the context of oceanographic and atmospheric studies [60], u represents a variable
that is dependent on multiple factors, specifically the spatial coordinates x , y, and
z, as well as time t , the coefficients λ1, λ2, λ3, λ4, λ5 and λ6 are the real constants.
This function u encapsulates the complexity of fluid dynamics within the ocean and
atmosphere, where it can denote various physical quantities such as velocity, pressure,
or temperature. Several specific instances of Eq. (1) have garnered extensive scholarly
attention, particularly those that are integrable models. These integrable models are
crucial for understanding wave mechanics and have significant implications in various
fields, including fluid dynamics and plasma physics [61–66]:

• By imposing the conditions that u is independent of z and setting the parameters
λ1 = λ2 = 1, λ3 = −3, λ6 = 0, Eq. (1) simplifies to the (2+1)-dimensional
extended shallow water wave equation as referenced in [61].

• By confining the variable u to not depend on z and assigning the values λ1 = λ2 =
1, λ3 = −3 and λ4 = λ5 = λ6 = 0 to the parameters, Eq. (1) is simplified to
the (2+1)-dimensional Boiti-Leon-Manna-Pempinelli equation as documented in
reference [62].

• By specifying the parameters λ1 = λ2 = 1, λ3 = −3, λ6 = −1, and setting
λ4 = λ5 = 0 in Eq. (1), we obtain the (3+1)-dimensional generalized shallow
water equation as detailed in [63].

• Assigning the values λ1 = 2, λ2 = 1, λ3 = 3, λ6 = −3 and λ4 = λ5 = 0 to the
parameters in Eq. (1) results in the (3+1)-dimensional Jimbo-Miwa equation as
reported in [64–66].

The Hirota bilinear method is recognized as a potent and straightforward approach
within the realm of soliton theory [67]. It has been widely applied to NLEEs to con-
struct analytic solutions, demonstrating its effectiveness in various contexts [68–70].
The study of analytic solutions holds significant physical relevance for understanding
nonlinear phenomena in shallow water waves, which are crucial for modeling and
predicting wave behavior in oceanographic and atmospheric studies [71, 72]. Despite
the extensive application of the Hirota bilinear method, there remains a gap in the lit-
erature regarding the test function in the form of function superposition. Specifically,
research on the superposition of multiple functions to form solutions is relatively lim-
ited [73, 74]. Therefore, the purpose of this paper is to explore solutions formed by the
superposition of multiple functions, aiming to fill this gap and provide new insights
into the behavior of such solutions.

In our research, we focus on the interactions of lump waves with multiple expo-
nential functions and multiple hyperbolic cosine functions. These interactions are
particularly intriguing as they can reveal complex wave dynamics that are not evi-
dent in simpler models. Additionally, we investigate the interactions between breather
waves and rogue waves with other types of waves. This comprehensive study not
only explores the mathematical properties of these solutions but also delves into their
dynamic characteristics, providing a deeper understanding of the underlying physi-
cal phenomena. We have visually depicted the wave interaction phenomena through
graphical representations, offering a more intuitive understanding of the complex
dynamics involved. This visual approach allows for a clearer interpretation of the
solutions and their implications in real-world scenarios.
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The progression of the subsequent chapters in this research is described next. In
Sect. 2, the Hirota bilinear method is employed to derive the bilinear auto-Bäcklund
transformation, lump kink exp-type solutions and lump wave cosh-type solutions of
Eq. (1). In Sect. 3, breather wave cos-type solutions and mixed wave cosh-sin-type
solutions are constructed using the homoclinic test method. The dynamical behaviors
of the wave interactions are illustrated through 3D images. The findings of our study
are presented in Sect. 4.

2 LumpWave Interactions

Within this section, we will utilize the Hirota bilinear method to construct the bilinear
auto-Bäcklund transformation and explore the interactions between lump waves and
multiple exponential functions. This investigation encompasses both lump kink exp-
type solutions and lump wave cosh-type solutions.

2.1 Bäcklund Transformation

To obtain the Hirota bilinear form of Eq. (1), we initiate the derivation by introducing
a transformation:

u = 6
λ2

λ3
(ln f )x + u0(z, t). (2)

Here, f denotes a function that is differentiable with respect to x , y, z, and t , while
u0(z, t) represents an unspecified function that depends on z and t . Eq. (1) has been
reformulated into the subsequent bilinear form:

(λ1DyDt + λ2D
3
x Dy + λ4D

2
x + λ5Dx Dy + λ6Dx Dz) f · f = 0, (3)

where Dx , Dy , Dz and Dt are the bilinear operators as defined by Hirota [75]. We
assume that there exists an additional solution g to the bilinear equation (3):

(λ1DyDt + λ2D
3
x Dy + λ4D

2
x + λ5Dx Dy + λ6Dx Dz)g · g = 0. (4)

To establish the bilinear auto-Bäcklund transformation between the solutions f and g
of the bilinear equation (3), which is associated with Eq. (1), we consider the following
form:

P = [(λ1DyDt + λ2D
3
x Dy + λ4D

2
x + λ5Dx Dy + λ6Dx Dz) f · f ]g2

− f 2[(λ1DyDt + λ2D
3
x Dy + λ4D

2
x + λ5Dx Dy + λ6Dx Dz)g · g]. (5)

Given that P = 0 in Eq. (5), the function f satisfies the bilinear equation (3) if and only
if g satisfies the bilinear equation (4). Consequently, the equations derived under the
condition P = 0 correspond to the desired bilinear auto-Bäcklund transformations.
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By employing the exchange relations for Hirota’s bilinear operators [75], we pro-
ceed to derive the following results:

(DyDt f · f )g2 − f 2(DyDt g · g) = 2Dy(Dt f · g) · ( f g) = 2Dt (Dy f · g) · ( f g),
(6a)

(Dx Dy f · f )g2 − f 2(Dx Dyg · g) = 2Dx (Dy f · g) · ( f g) = 2Dy(Dx f · g) · ( f g),
(6b)

(Dx Dz f · f )g2 − f 2(Dx Dzg · g) = 2Dx (Dz f · g) · ( f g) = 2Dz(Dx f · g) · ( f g),
(6c)

(D2
x f · f )g2 − f 2(D2

x g · g) = 2Dx (Dx f · g) · ( f g), (6d)

and

(D3
x Dy f · f )g2 − f 2(D3

x Dyg · g)
= 3Dx [(D2

x Dy f · g) · ( f g)] − Dy[(D3
x f · g) · ( f g)]

+ 3Dx [(Dy f · g) · (D2
x f · g)] + 3Dy[(Dx f · g) · (D2

x f · g)].
(7)

By substituting Eqs. (6) and (7) into formula (5), Eq. (5) can be transformed into the
subsequent form:

P = 3λ2Dy{(Dx f · g) · [(D2
x + ρ1Dx ) f · g]}

+ 3λ2Dx {(Dy f · g) · [(D2
x + ρ2Dy) f · g]}

+ Dx {[(3λ2D2
x Dy + 2λ4Dx + λ5Dy + 2λ6Dz) f · g] · ( f g)}

+ Dy{[(2λ1Dt − λ2D
3
x + λ5Dx ) f · g] · ( f g)},

(8)

where ρ1 and ρ2 are real constants. Consequently, with P = 0, the disentanglement
of Eq. (8) yields an alternative bilinear auto-Bäcklund transformation for Eq. (1):

(D2
x + ρ1Dx ) f · g = 0, (2λ1Dt − λ2D

3
x + λ5Dx ) f · g = 0,

(D2
x + ρ2Dy) f · g = 0, (3λ2D

2
x Dy + 2λ4Dx + λ5Dy + 2λ6Dz) f · g = 0.

(9)

We choose f = 1 as a solution for the bilinear form (3) and subsequently solve the
bilinear auto-Bäcklund transformation (9) to derive the following equations:

gxx + ρ1gx = 0, gxx + ρ2gy = 0,

2λ1gt − λ2gxxx + λ5gx = 0,

3λ2gxxy + 2λ4gx + λ5gy + 2λ6gz = 0.

(10)

By assuming g = 1 + exp(v1x + v2y + v3z + v4t) and solving Eq. (10), we derive
the relationships among the parameters in the solution g as follows:

v1 = −ρ1, v2 = −ρ2
1

ρ2
, v3 = ρ1(ρ1λ5 + 3ρ3

1λ2 + 2ρ2λ4)

2ρ2λ6
, v4 = ρ1λ5 − ρ3

1λ2

2λ1
,
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(11)

where v1, v2, v3 and v4 are the real constants. Thus, the corresponding exponential
function solution for Eq. (1) is

u = 6λ2v1 exp(v1x + v2y + v3z + v4t)

λ3[1 + exp(v1x + v2y + v3z + v4t)] + u0(z, t), (12)

where v1, v2, v3 and v4 are defined by (11). The example provided above is relatively
simple. It is equally plausible to assume alternative forms of g, which could lead to a
richer variety of solution types.

2.2 Lump Kink Exp-Type Solutions

To seek the lump kink exp-type solutions for the bilinear form (3), we start by assuming
that

f A = a0 + η21 + η22 +
N∑

i=1

hi exp(θi ), θi = αi x + βi y + γi z + ωi t,

η1 = a1x + b1y + c1z + d1t, η2 = a2x + b2y + c2z + d2t,

(13)

where a0, a1, b1, c1, d1, a2, b2, c2, d2, hi , αi , βi , γi and ωi are all the real constants,
with N is a positive integer. Furthermore, the resolution of Eq. (1), which includes
a quadratic function along with N -exponential functions is provided based on the
subsequent Theorem:

Theorem 1 Supposing that the test function fA (13) is a solution to Eq. (3) and that one
of the four scenarios listed below is satisfied, it follows that the test function fA (13)
indeed solves Eq. (3).

c1 = a2b2(λ5a1 + λ1d1) − λ4a31
λ6a21

, b1 = −a2b2
a1

, d2 = a2d1
a1

,

γi = −λ4αi

λ6
, βi = 0,

c2 = −b2(λ5a1 + λ1d1) + λ4a1a2
λ6a1

, ωi = d1αi

a1
− λ2α

3
i

λ1
, λ1λ6a1 �= 0.

(14)

b1 = a2(λ4a2 + λ6c2)

λ1d1 + λ5a1
, c1 = λ4(a21 + a22) + λ6a2c2

−λ6a1
,

d2 = a2d1
a1

, γi = −λ4αi

λ6
, βi = 0,

b2 = −a1(λ4a2 + λ6c2)

λ1d1 + λ5a1
, ωi = d1αi

a1
− λ2α

3
i

λ1
, λ1λ6a1(λ1d1 + λ5a1) �= 0.

(15)
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d1 = −a1(λ4a1 + λ5b1 + λ6c1)

λ1b1
, ωi = −αi (λ2b1α2

i + λ4a1 + λ5b1 + λ6c1)

λ1b1
,

b2 = −a1b1
a2

, βi = 0,

d2 = −a2(λ4a1 + λ5b1 + λ6c1)

λ1b1
, c2 = −λ4(a21 + a22) + λ6a1c1

λ6a2
,

γi = −λ4αi

λ6
, λ1λ6a2b1 �= 0.

(16)

d1 = a1(λ4a21 − λ5a2b2 + λ6a1c1)

λ1a2b2
, ωi = αi [a1(λ4a1 + λ6c1) − a2b2(λ2α2

i + λ5)]
λ1a2b2

,

b1 = −a2b2
a1

,

d2 = a1(λ4a1 + λ6c1) − λ5a2b2
λ1b2

, c2 = −λ4(a21 + a22) + λ6a1c1
λ6a2

,

γi = −λ4αi

λ6
, βi = 0, λ1λ6a1a2b2 �= 0.

(17)

Proof of Theorem 1 By the direct computations, substituting the relational expres-
sions (14) and f A (13) into Eq. (3), it is easy to verify that Eq. (3) is established,
then the relational formula f A (13) is the solution of Eq. (3). Similarly, the other three
cases (15), (16) and (17) are also correct. ��

Substituting expressions (13) and (14) into transformation (2) to obtain the lump
kink exp-type solutions of Eq. (1):

uA = 6
λ2

λ3
(ln f A)x + u0(z, t),

f A = a0 + η21 + η22 +
N∑

i=1

hi exp

[
αi x − λ4αi

λ6
z + d1αi

a1
t − λ2α

3
i

λ1
t

]
,

η1 = a1x − a2b2
a1

y + a2b2(λ5a1 + λ1d1) − λ4a31
λ6a21

z + d1t,

η2 = a2x + b2y − b2(λ5a1 + λ1d1) + λ4a1a2
λ6a1

z + a2d1
a1

t .

(18)

Numerical experiments are conducted to illustrate the characteristics of lump kink
exp-type solutions through graphical representations. By setting N = 2 in the lump
kink exp-type solutions given by Eq. (18), we obtain the solutions that depict the
interaction between a lump wave and two kink waves under various background con-
ditions. From Fig. 1, it is evident that the lump wave exhibits a peak and a valley.
Their interactions are investigated under various periodic backgrounds. In Fig. 1, pan-
els (A1), (A2) and (A3) explore the interaction between a lump wave and two kink
waves in a cosine periodic background.Meanwhile, panels (B1), (B2) and (B3) depict
the interaction in the M-type soliton background. As the parameter t increases and
the parameter y decreases, the two kink waves and the lump wave propagate along the
x-axis and z-axis at a specific angle. One of the kink waves propagates faster than the
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Fig. 1 (A1), (A2), (A3): the interaction between lump wave and two kink waves under the background
of cos period via the lump kink exp-type solutions (18) with u0(z, t) = cos(z)/4. (B1), (B2), (B3): the
interaction between lump wave and two kink waves in the M-type soliton background via the lump kink
exp-type solutions (18) with u0(z, t) = z2/(z4 + 1). The profiles are generated by assigning particular
values of parameters as λ1 = λ4 = λ5 = h1 = h2 = 1, α1 = λ2 = −1, λ3 = 6, λ6 = 2, a0 = 0,
a1 = 0.6, a2 = 1.5, b2 = −0.8, d1 = 1.4 and α2 = 1.1

other, eventually overtaking it and resulting in a collision. This collision between the
two kink waves induces a change in the amplitude of the lump wave. Following the
interaction, the faster kink wave separates from the other due to its higher speed, and
the lump wave subsequently recovers its original amplitude.

Investigating the interactions between lump waves and kink waves in different
backgrounds is of significant importance for understanding the propagation charac-
teristics of nonlinear waves. In the cosine periodic background, the interactions are
primarily characterized by periodic energy transfer and changes in amplitude. In con-
trast, the interactions in the M-type soliton background are more complex involving
changes in the propagation path and energy redistribution. These findings not only
enrich the theory of nonlinear waves but also provide theoretical foundations for wave
control and energy transfer in practical applications [76, 77]. With the help of expres-
sions (15), (16) and (17), the other three lump kink exp-type solutions of Eq. (1) can
be obtained, which will not be introduced one by one here.

2.3 LumpWave Cosh-Type Solutions

To explore the lumpwave cosh-type solutions for Eq. (1), we posit the general solution
of the bilinear form (3) in the following manner:

fB = a0 + η21 + η22 +
M∑

j=1

k j cosh(φ j ), φ j = m j x + n j y + p j z + q j t,

η1 = a1x + b1y + c1z + d1t, η2 = a2x + b2y + c2z + d2t,

(19)
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where a0, a1, b1, c1, d1, a2, b2, c2, d2, k j , m j , n j , p j , q j are all the real constants,
with M is a positive integer.

Theorem 2 Supposing that the test function fB (19) is a solution to Eq. (3) and that
one of the four scenarios listed below is satisfied, it follows that the test function
fB (19) indeed solves Eq. (3).

d1 = −a1(λ4a2 + λ5b2 + λ6c2)

λ1b2
, d2 = −a2(λ4a2 + λ5b2 + λ6c2)

λ1b2
,

b1 = −a2b2
a1

, p j = −λ4m j

λ6
,

c1 = −λ4(a21 + a22) + λ6a2c2
λ6a1

, q j = −m j (λ2b2m2
j + λ4a2 + λ5b2 + λ6c2)

λ1b2
,

n j = 0, λ1λ6a1b2 �= 0.

(20)

c1 = b2(λ5a2 + λ1d2) − λ4a21
λ6a1

, b1 = −a2b2
a1

, d1 = a1d2
a2

, n j = 0,

λ1λ6a1a2 �= 0,

c2 = −b2(λ5a2 + λ1d2) + λ4a22
λ6a2

, p j = −λ4m j

λ6
, q j = d2m j

a2
− λ2m3

i

λ1
.

(21)

b1 = −a1(λ4a1 + λ6c1)

λ1d1 + λ5a1
, c2 = −λ4(a21 + a22) + λ6a1c1

λ6a2
,

d2 = a2d1
a1

, p j = −λ4m j

λ6
,

b2 = a21(λ4a1 + λ6c1)

a2(λ1d1 + λ5a1)
, q j = d1m j

a1
− λ2m3

i

λ1
, n j = 0,

λ1λ6a1a2(λ1d1 + λ5a1) �= 0.

(22)

d1 = a2(λ4a2 + λ6c2) − λ5a1b1
λ1b1

, c1 = −λ4(a21 + a22) + λ6a2c2
λ6a1

,

b2 = −a1b1
a2

, p j = −λ4m j

λ6
, n j = 0,

d2 = a22(λ4a2 − λ5a1b1 + λ6c2)

λ1a1b1
, q j = m j [a2(λ4a2 + λ6c2) − a1b1(λ2m2

j + λ5)]
λ1a1b1

,

λ1λ6a1a2b1 �= 0.

(23)

The proof of Theorem 2 can be similarly referenced to the proof of Theorem 1.
Substituting expressions (19) and (20) into transformation (2), the corresponding lump
wave cosh-type solutions for Eq. (1) appear as

uB = 6
λ2

λ3
(ln fB)x + u0(z, t), fB = a0 + η21 + η22 +

M∑

j=1

k j cosh(φ j ),

η1 = a1x − a2b2
a1

y − λ4(a21 + a22) + λ6a2c2
λ6a1

z − a1(λ4a2 + λ5b2 + λ6c2)

λ1b2
t,

η2 = a2x + b2y + c2z − a2(λ4a2 + λ5b2 + λ6c2)

λ1b2
t,
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Fig. 2 (A1), (A2), (A3): the interaction between four bending kink waves under the background of sin
period via lump wave cosh-type solutions (24) with u0(z, t) = 0.5 sin[(z + t)/2]. (B1), (B2), (B3): the
interaction between four bending kink waves in the W -type soliton background via lump wave cosh-type
solutions (24) with u0(z, t) = −(z + t)2/[(z + t)4 + 1]. The parameters of (A1), (A2), (A3), (B1), (B2)
and (B3) are the same as λ1 = λ5 = k1 = k2 = 1, λ2 = λ4 = b2 = c2 = −1, λ3 = 6, λ6 = 2, a0 = 0,
a1 = −0.7, a2 = 2, m1 = −2 and m2 = 2.4

φ j = m j x − λ4m j

λ6
z − m j (λ2b2m2

j + λ4a2 + λ5b2 + λ6c2)

λ1b2
t . (24)

For the lump wave cosh-type solutions given by Eq. (24) with M = 2, the three-
dimensional dynamic visualizations of these solutions are effectively depicted inFig. 2.
As observed in Fig. 2, four bending kink waves interact with one another under various
periodic backgrounds. In Fig. 2, panels (A1), (A2) and (A3) examine the interactions
among four bendingkinkwaves against a sine periodic background.Meanwhile, panels
(B1), (B2) and (B3) depict the interactions of these four bending kinkwaveswithin the
W -type soliton background. Fig. 2 illustrates the phenomenon where two kink waves
collide and subsequently split into four bending kink waves. These four bending kink
waves travel along the negative direction of the z-axis and their interaction results in
the formation of a lump wave. Subsequently, the four bending kink waves return to
their original state and the lump wave degenerates.

The interactions of four bending kink waves under different backgrounds reveal
the rich and complex dynamics of nonlinear wave systems. In the sine periodic back-
ground, the interactions are characterized by periodic variations and transient lump
wave formation. In contrast, the W -type soliton background provides a more stable
environment, leading to enhanced stability and complex interaction patterns. These
studies provide valuable insights into the behavior of nonlinear waves in various phys-
ical contexts, such as fluid dynamics, plasma physics and optical systems [78, 79].

Using expressions (21), (22) and (23), we can obtain another lump wave cosh-type
solutions for Eq. (1). The obtained lump kink exp-type solutions and lump wave cosh-
type solutions include the solutions of the studied special equations. When parameters
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λ1 = λ2 = 1, λ4 = λ5 = 0, λ3 = −3, λ6 = −1 and N = 1 in expression (14) are
selected, the lump-kink wave solutions [80] and the lumpoff wave solutions [81] of the
(3+1)-dimensional generalized shallow water wave equation are obtained. Choosing
M = 1 in expression (20) can obtain the rouge wave solutions [80, 81] of (3+1)-
dimensional generalized shallow water wave equation. When parameters λ1 = 1,
λ2 = 3, λ4 = λ6 = 0, λ3 = −3 and N = 1 in expression (14) are selected, the
mixed lump-kink solution [82] of the extended shallow water wave model in (2+1)-
dimensions is obtained. The lump kink exp-type solutions and lump wave cosh-type
solutions not only encompass the solutions of the specific equations under study, but
also significantly expand the repertoire of novel solutions for these equations.

3 MixedWave Interactions

In this section, we aim to derive the breather wave cos-type solutions and mixed
wave cosh-sin-type solutions for Eq. (1). We will explore the interaction between the
breather wave and a bell-shapedwave, as well as the interaction of a roguewavewithin
double bending kink waves.

3.1 BreatherWave Cos-Type Solutions

To derive the breather wave cos-type solutions for the bilinear form (3), we select a
test function that comprises an exponential function and cosine functions of the sum
type:

fC = r0 exp(η3) + exp(−η3) +
N∑

i=1

ki cos(θi ), η3 = r1x + r2y + r3z + r4t,

θi = αi x + βi y + γi z + ωi t, (25)

where r0, r1, r2, r3, r4, ki , αi , βi , γi and ωi are real constants, with N is a positive
integer.

Theorem 3 Supposing that the test function fC (25) is a solution to Eq. (3) and that
one of the three scenarios listed below is satisfied, it follows that the test function
fC (25) indeed solves Eq. (3).

r3 = αNβN (λ1r4 + 4λ2r31 + λ5r1) − λ4r31
λ6r21

, ωi = αi [λ1r4 + λ2r1(r21 + α2
i )]

λ1r1
,

λ1λ6r1αi �= 0,

γi = αNβN [r1(3λ2α2
i − λ2r21 − λ5) − λ1r4] − λ4r1α2

i

λ6r1αi
,

r2 = −αNβN

r1
, βi = αNβN

αi
.

(26)
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r4 = r1[r1(λ4r1 + λ6r3) − αNβN (4λ2r21 + λ5)]
λ1αNβN

, βi = αNβN

αi
, r2 = −αNβN

r1
,

λ1λ6r1αiβN �= 0,

γi = (3λ2αNβN − λ4)(r21 + α2
i ) − λ6r1r3

λ6αi
,

ωi = αiαNβN [λ2(α2
i − 3r21 ) − λ5] + αi (λ4r21 + λ6r1r3)

λ1αNβN
.

(27)

r3 = r2(λ2α3
1 − λ1ω1 − λ5α1 − 3λ2r21α1) − λ4r1α1

λ6α1
,

ωi = λ1ω1αi + λ2α1αi (α
2
i − α2

1)

λ1α1
,

βi = −r1r2
αi

,

r4 = r1(λ1ω1 − λ2α
3
1 − λ2r21α1)

λ1α1
,

γi = r1r2(λ1ω1 + λ5α1 − λ2α
3
1 − 3λ2α1α

2
i ) − λ4α1α

2
i

λ6α1αi
,

λ1λ6αi �= 0.

(28)

The proof of Theorem 3 can be similarly referenced to the proof of Theorem 1.
By substituting expressions (26) and (25) into transformation (2), the breather wave
cos-type solutions for Eq. (1) are obtained as follows:

uC = 6
λ2

λ3
(ln fC )x + u0(z, t), fC = r0 exp(η3) + exp(−η3) +

N∑

i=1

ki cos(θi ),

η3 = r1x − αNβN

r1
y + αNβN (λ1r4 + 4λ2r31 + λ5r1) − λ4r31

λ6r21
z + r4t,

θi = αi x + αNβN

αi
y + αNβN [r1(3λ2α2

i − λ2r21 − λ5) − λ1r4] − λ4r1α2
i

λ6r1αi
z

+ αi [λ1r4 + λ2r1(r21 + α2
i )]

λ1r1
t .

(29)

Let us set N = 2 to illustrate the breather wave cos-type solutions in Fig. 3. In
Fig. 3, panels (A1), (A2) and (A3) depict the interaction between the breather wave
and the bell-shaped wave. As the parameter t increases, the breather wave propagates
along the x-axis and z-axis at a specific angle. When the parameter t = 0, the bell-
shaped wave and the breather wave merge leading to a decrease in the amplitude of the
breather wave. Subsequently, the bell-shaped wave and the breather wave gradually
separate, and the amplitude of the breather wave recovers. This demonstrates that the
interaction between the bell-shaped wave and the breather wave endows the solitary
wave with the physical properties of fusion and separation. Panels (B1), (B2) and
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Fig. 3 (A1), (A2), (A3): the interaction between breather wave and bell-shaped wave via breather wave cos-
type solutions (29) with u0(z, t) = sech(z). (B1), (B2), (B3): the breather wave under the background of
cos period via breather wave cos-type solutions (29) with u0(z, t) = cos(z/2)/5. The profiles are generated
by assigning particular values of parameters as λ1 = λ5 = r0 = k1 = r4 = 1, λ2 = λ4 = −1, λ3 = 6,
λ6 = 2, k2 = α1 = 0.5, r1 = −0.6, α2 = −0.5 and β2 = −1.2

(B3) in Fig. 3 examine the breather wave against a cosine periodic background. Based
on expressions (27) and (28), we can derive two additional distinct forms of breather
wave cos-type solutions.

The interaction between a breather wave and a bell-shaped wave highlights the
dynamic nature of solitary waves, characterized by fusion, separation, and energy
transfer. This interaction is crucial for understanding the behavior of nonlinear waves
in various physical systems. On the other hand, the breather wave under a cosine
periodic background reveals the influence of periodicmodulation onwave propagation
and stability. These studies provide valuable insights into the complex dynamics of
nonlinear waves [83, 84].

3.2 MixedWave Cosh-Sin-Type Solutions

Select a trial function that consists of a combination of exponential, hyperbolic cosine
and sine functions of the sum type:

fD = r0 exp(η3) + exp(−η3) +
N∑

i=1

ki cosh(φi ) +
M∑

j=1

g j sin(ϕ j ),

η3 = r1x + r2y + r3z + r4t, φi = ai x + bi y + ci z + di t,

ϕ j = m j x + n j y + p j z + q j t,

(30)

where r0, r1, r2, r3, r4, ki , ai , bi , ci , di , g j , m j , n j , p j and q j are all the real constants
to be determined, with N and M are positive integers.



  150 Page 14 of 22 P-F. Han et al.

Theorem 4 Supposing that the test function fD (30) is a solution to Eq. (3) and that
one of the four scenarios listed below is satisfied, it follows that the test function
fD (30) indeed solves Eq. (3).

ci = (3λ2mMnM − λ4)(a2i − r21 ) + λ6r1r3
λ6ai

,

p j = (3λ2mMnM − λ4)(m2
j + r21 ) − λ6r1r3

λ6m j
,

q j = m j (λ4r21 + λ6r1r3) + m jmMnM [λ2(m2
j − 3r21 ) − λ5]

λ1mMnM
, r2 = −mMnM

r1
,

bi = −mMnM
ai

,

di = ai (λ4r21 + λ6r1r3) − aimMnM [λ2(a2i + 3r21 ) + λ5]
λ1mMnM

, n j = mMnM
m j

,

r4 = r1[r1(λ4r1 + λ6r3) − mMnM (4λ2r21 + λ5)]
λ1mMnM

, λ1λ6r1aim jnM �= 0. (31)

r3 = mMnM (λ1r4 + 4λ2r31 + λ5r1) − λ4r31
λ6r21

, r2 = −mMnM
r1

,

bi = −mMnM
ai

, λ1λ6r1aim j �= 0,

ci = mMnM [r1(3λ2a2i + λ2r21 + λ5) + λ1r4] − λ4r1a2i
λ6r1ai

, n j = mMnM
m j

,

di = ai [λ1r4 + λ2r1(r21 − a2i )]
λ1r1

,

p j = mMnM [r1(3λ2m2
j − λ2r21 − λ5) − λ1r4] − λ4r1m2

j

λ6r1m j
,

q j = m j [λ1r4 + λ2r1(r21 + m2
j )]

λ1r1
. (32)

r3 = −r2(λ1d1 + λ2a31 + 3λ2r21a1 + λ5a1) + λ4r1a1
λ6a1

,

di = λ1d1ai + λ2a1ai (a21 − a2i )

λ1a1
, n j = −r1r2

m j
,

ci = −r1r2(λ1d1 + λ5a1 + λ2a31 + 3λ2a1a2i ) + λ4a1a2i
λ6a1ai

,

q j = λ1d1m j + λ2a1m j (a21 + m2
j )

λ1a1
, bi = r1r2

ai
,

p j = r1r2(λ1d1 + λ5a1 + λ2a31 − 3λ2a1m2
j ) − λ4a1m2

j

λ6a1m j
,
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r4 = r1(λ1d1 + λ2a31 − λ2r21a1)

λ1a1
, λ1λ6aim j �= 0. (33)

p j = (3λ2mMnM − λ4)(m2
j − m2

1) + λ6m1 p1

λ6m j
,

r3 = (3λ2mMnM − λ4)(m2
1 + r21 ) − λ6m1 p1

λ6r1
,

di = −aim1(λ4m1 + λ6 p1) + aimMnM [λ2(a2i − 3m2
1) + λ5]

λ1mMnM
, n j = mMnM

m j
,

r4 = −r1[m1(λ4m1 + λ6 p1) + mMnM (λ2r21 − 3λ2m2
1 + λ5)]

λ1mMnM
, r2 = −mMnM

r1
,

q j = m jmMnM [λ2(m2
j + 3m2

1) − λ5] − m1m j (λ4m1 + λ6 p1)

λ1mMnM
, bi = −mMnM

ai
,

ci = (3λ2mMnM − λ4)(a2i + m2
1) − λ6m1 p1

λ6ai
, λ1λ6r1aim jnM �= 0. (34)

The proof of Theorem 4 can be analogously referenced to the proof of Theorem 1.
Based on the aforementioned four cases, we can generate different types of mixed
wave cosh-sin-type solutions. By substituting expressions (31) and (30) into the trans-
formation (2), the mixed wave cosh-sin-type solutions for Eq. (1) can be expressed
as

uD = 6
λ2

λ3
(ln fD)x + u0(z, t), fD = r0 exp(η3) + exp(−η3)

+
N∑

i=1

ki cosh(φi ) +
M∑

j=1

g j sin(ϕ j ),

η3 = r1x − mMnM
r1

y + r3z + r1[r1(λ4r1 + λ6r3) − mMnM (4λ2r21 + λ5)]
λ1mMnM

t,

φi = ai x − mMnM
ai

y + (3λ2mMnM − λ4)(a2i − r21 ) + λ6r1r3
λ6ai

z

+ ai (λ4r21 + λ6r1r3) − aimMnM [λ2(a2i + 3r21 ) + λ5]
λ1mMnM

t,

ϕ j = m j x + mMnM
m j

y + (3λ2mMnM − λ4)(m2
j + r21 ) − λ6r1r3

λ6m j
z

+ m j (λ4r21 + λ6r1r3) + m jmMnM [λ2(m2
j − 3r21 ) − λ5]

λ1mMnM
t .

(35)

To more clearly elucidate the dynamic behavior of the mixed wave cosh-sin-type
solutions, specific parameters are chosen for illustration in the casewhere N = M = 1.
In Fig. 4, panels (A1), (A2) and (A3) examine the interaction between a roguewave and
double bending kink waves against a sine periodic background. In Fig. 4, panels (B1),



  150 Page 16 of 22 P-F. Han et al.

Fig. 4 (A1), (A2), (A3): the interaction between rogue wave and double bending kink waves under the
background of sin period via mixed wave cosh-sin-type solutions (35) with u0(z, t) = sin(z)/5. (B1),
(B2), (B3): the interaction between rogue wave and double bending kink waves under a kink wave via
mixed wave cosh-sin-type solutions (35) with u0(z, t) = sech[exp(z)]. The parameters of (A1), (A2),
(A3), (B1), (B2) and (B3) are the same as λ1 = λ5 = r0 = 1, λ2 = λ4 = −1, λ3 = 6, λ6 = g1 = 2,
k1 = 0.6, r1 = −0.1, r3 = 1.4, a1 = −1.1, m1 = −1.4 and n1 = −0.3

(B2) and (B3) simulate the interaction between a rogue wave and double bending kink
waves under a kink wave background. Fig. 4 illustrates the interaction between a rogue
wave and double bending kink waves. The rogue wave is characterized by an upward
peak and a downward valley. As the parameter t increases and y decreases, both the
rogue wave and the double bending kink waves propagate in the positive direction
along the x-axis and z-axis. Upon collision with the double bending kink waves, the
rogue wave splits into two, with a reduction in amplitude. Subsequently, under the
influence of the compressive force exerted by the double bending kink waves, the
two rogue waves merge back into one, and the amplitude returns to its original level.
Throughout this investigation, occurrences of rogue waves undergoing both fission
and fusion have been identified.

The interaction between a rogue wave and double bending kink waves under dif-
ferent backgrounds reveals the complex dynamics of nonlinear wave systems. Under
a periodic background, the interaction is characterized by periodic modulations and
transient changes in wave amplitudes. Under a kink wave background, the interaction
is influenced by the structured environment provided by the kink wave, leading to
distinct patterns of wave splitting and recombination [85].

Breather wave cos-type solutions (29) and mixed wave cosh-sin-type solutions (35)
have been investigated by selecting different parameters and function numbers. Newly
observed nonlinear phenomena include the merging and splitting of breather and bell-
shaped waves. Additionally, occurrences of rogue waves’ division and coalescence
have been documented. The physical properties of these solutions are analyzed with
the aid of Figs. 3 and 4. Similarly, we can also study the superposition solutions of
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more kinds of functions as follows:

fE =
N∑

i=1

ki cosh(φi ) +
M∑

j=1

g j sin(ϕ j ) +
R∑

r=1

hr sinh(θr ) +
E∑

e=1

se cos(ηe),

φi = ai x + bi y + ci z + di t, ϕ j = m j x + n j y + p j z + q j t,

θr = αr x + βr y + γr z + ωr t, ηe = χex + 
e y + δez + τet,

(36)

where ki , ai , bi , ci , di , g j , m j , n j , p j , q j , hr , αr , βr , γr , ωr , se, χe, 
e, δe and τe are
real constants, with N , M , R and E are positive integers. Likewise, the examination
of parameter interdependencies can be facilitated through the application of symbolic
computation techniques. It is hoped that the superposition solutions (36) can simulate
more wave interactions and some new nonlinear phenomena.

4 Discussion and Final Remarks

Based on the Hirota bilinear method and symbolic computation, we have derived the
bilinear auto-Bäcklund transformation (9), lump kink exp-type solutions (18), lump
wave cosh-type solutions (24), breather wave cos-type solutions (29), and mixed wave
cosh-sin-type solutions (35). The construction of these superposition solutions not
only encompasses the solutions of the studied special equations but also yields novel
superposition solutions for these equations. However, the limitations of this work arise
from the fact that the selected functions are not arbitrary elementary functions, such
as Jacobian elliptic functions and inverse trigonometric functions. Future work will
aim to address these limitations to achieve more extensive results.

Several appropriate examples are provided, and the dynamic analysis of these novel
superposition solutions is conducted with the aid of several three-dimensional dia-
grams. Specifically, Fig. 1 illustrates the variations in the amplitude of the lump wave
resulting from the interaction between two kink waves and the lump wave within
diverse environmental contexts. Fig. 2 presents the phenomenon of two kink waves
splitting, as well as the emergence and decay of the lump wave across various back-
ground conditions. Through the selection of suitable parameters, Fig. 3 depicts the
coalescence and subsequent separation of the bell-shaped wave and the breather wave
under different background conditions. Finally, Fig. 4 shows the interaction of rogue
waves in double bending kink waves under different backgrounds.

Shallow water wave equations play a vital role in understanding the dynamics of
water waves in rivers, reservoirs, and oceans. They are widely applicable in modeling
atmospheric andoceanicflows, aswell as in studyingwave interactions in various phys-
ical contexts [86]. Future research can focus on developing more accurate numerical
methods to solve these equations, especially for complex scenarios involving variable
bottom topography and non-linear interactions [87]. This is crucial for better predict-
ing and managing coastal and riverine processes, such as tsunamis, storm surges, and
river flooding. Additionally, extending the shallow water models to include higher-
order corrections can help capture more complex wave behaviors, such as resonant
interactions and dispersive shock waves. The study of wave interactions is crucial for
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deepening our comprehension of the dynamics inherent in the superposition of func-
tional solutions. Such an analysis not only broadens our theoretical knowledge but
also holds the potential to elucidate intricate real-world phenomena that are governed
by wave mechanics. By examining how different waves interact and influence each
other, we can uncover underlying principles that govern their behavior. This insight
is invaluable for developing a more nuanced understanding of wave dynamics, which
can be applied to a wide array of scientific and engineering challenges.
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