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A B S T R A C T

The inverse scattering transform for the defocusing–defocusing coupled Hirota equations with non-zero
boundary conditions at infinity is thoroughly discussed. We delve into the analytical properties of the Jost
eigenfunctions and scrutinize the characteristics of the scattering coefficients. To enhance our investigation
of the fundamental eigenfunctions, we have derived additional auxiliary eigenfunctions with the help of the
adjoint problem. Two symmetry conditions are studied to constrain the behavior of the eigenfunctions and
scattering coefficients. Utilizing these symmetries, we precisely delineate the discrete spectrum and establish
the associated symmetries of the scattering data. By framing the inverse problem within the context of the
Riemann–Hilbert problem, we develop suitable jump conditions to express the eigenfunctions. Consequently,
we have not only derived the pure soliton solutions from the defocusing–defocusing coupled Hirota equations
but also provided the multiple double-pole solutions for the first time.

1. Introduction

In the vastness of nature, nonlinear wave phenomena play an important role. Their dynamic behavior is described by nonlinear wave equations,
which are a class of evolutionary nonlinear partial differential equations [1]. These equations are the basis for understanding a large number of
phenomena in various scientific fields. In particular, the nonlinear Schrödinger (NLS) equation which is expressed in scalar [2], vector [3], and
matrix [4] forms, serves as a universal model for the evolution of weakly nonlinear dispersive wave trains. This makes it an indispensable tool in
the study of deep-water waves [5] and nonlinear optics. Furthermore, the NLS equations are instrumental in elucidating the complex phenomena
of modulational instability [6] and the genesis of rogue waves [7].

In order to solve the mystery of these nonlinear systems, the inverse scattering transform (IST) is a powerful analytical technique. IST was first
proposed by Gardner, Greene, Kruskal, and Miura in 1967 [8], aiming to provide an exact solution to the initial value problem of the Korteweg–
de-Vries equation by using the Lax pairs [9]. This pioneering method was later extended to many integrable systems characterized by Lax pairs,
providing a principled method for solving the initial value problems [10,11]. When applicable, the IST serves as an efficacious tool for dissecting
the intricate behavior of solutions [12–14]. Despite its utility, the formulation of the IST remains an open challenge in certain scenarios, indicating
that there is still much to explore and understand in this intricate field of study.

The Ablowitz–Kaup–Newell–Segur (AKNS) hierarchy is an important research field that provides a powerful mathematical framework for
understanding various nonlinear phenomena. In the case of local group reduction, the AKNS hierarchy can be simplified by applying two local
group reductions to obtain a specific instance of the Sasa-Satsuma type matrix integrable hierarchies [15]. From a mathematical perspective, the
general coupled Hirota equations are a linear combination of a special case of a reduced AKNS hierarchy with one local group reduction [16].

The general coupled Hirota equations [17–28] offer a comprehensive model for studying the wave propagation of two ultrashort optical fields
in optical fibers, accounting for the intricate interplay of nonlinear and dispersive effects that govern the evolution of the pulses as they travel
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through the fiber.

i𝑞1,𝑡+𝑞1,𝑥𝑥 + 2(𝜎1 ||𝑞1||2 + 𝜎2 ||𝑞2||2)𝑞1 + i𝜎[𝑞1,𝑥𝑥𝑥 + (6𝜎1 ||𝑞1||2 + 3𝜎2 ||𝑞2||2)𝑞1,𝑥 + 3𝜎2𝑞1𝑞∗2𝑞2,𝑥] = 0, (1a)

i𝑞2,𝑡+𝑞2,𝑥𝑥 + 2(𝜎1 ||𝑞1||2 + 𝜎2 ||𝑞2||2)𝑞2 + i𝜎[𝑞2,𝑥𝑥𝑥 + (6𝜎2 ||𝑞2||2 + 3𝜎1 ||𝑞1||2)𝑞2,𝑥 + 3𝜎1𝑞2𝑞∗1𝑞1,𝑥] = 0, (1b)

where 𝑞1 = 𝑞1(𝑥, 𝑡) and 𝑞2 = 𝑞2(𝑥, 𝑡) are the two-component electric fields, the parameters 𝜎1, 𝜎2 and 𝜎 are real constants [17]. Given the positivity of
𝜎1 and 𝜎2, the Eqs. (1) are designated as the focusing–focusing coupled Hirota equations, which lead to the energy concentration of the wave during
the interaction and the focusing effect. With the assumption that 𝜎1 and 𝜎2 are negative, the set of Eqs. (1) is referred to as the defocusing–defocusing
coupled Hirota equations, which lead to the energy concentration of the wave during the interaction and the defocusing effect. Supposing 𝜎1 and
𝜎2 exhibit opposite signs, the Eqs. (1) are categorized as the mixed coupled Hirota equations [17], which lead to the coexistence of focusing and
defocusing of waves, resulting in more complex wave dynamics.

In 1992, Tasgal and Potasek [18] employed the IST to derive soliton solutions for the coupled higher-order NLS equations within a specific
arameter regime. This work underscores the integrability of the general coupled Hirota equations, characterized by the presence of the Lax pair,
th order Darboux transformation and a variety of localized wave solutions, as further elaborated in [17,19]. It has been shown that the general

oupled Hirota equations also admit the dark soliton solutions [20], the high-order rational rogue waves and multi-dark soliton structures [21],
rogue wave solutions [22,23], semirational solutions [24], analytical solutions [25], dark-bright-rogue wave solutions [26], the interactions between
breathers and rogue waves [27], the interactions between dark-bright solitons and rogue waves [27]. Utilizing nonlinear steepest descent techniques,
the leading-order asymptotic expressions and consistent error bounds for solutions to the coupled Hirota equations were meticulously examined,
as detailed in [28].

Recently, the IST and Riemann-Hilbert (RH) method have been extensively applied to investigate soliton solutions for the Hirota equation, as
evidenced by recent studies [29–32]. Furthermore, these methods have yet to be explored in the context of the more complex, general coupled

irota equations with the non-zero boundary conditions (NZBCs) at infinity. In light of this gap in the literature, the present paper aims to delve
nto the application of the IST to the defocusing–defocusing coupled Hirota equations, offering a novel perspective on this under-explored area.

hen 𝜎1 = 𝜎2 = −1, Eqs. (1) can be converted to the defocusing–defocusing coupled Hirota equations:

i𝐪𝑡 + 𝐪𝑥𝑥 − 2‖𝐪‖2𝐪 + i𝜎[𝐪𝑥𝑥𝑥 − 3‖𝐪‖2𝐪𝑥 − 3(𝐪†𝐪𝑥)𝐪] = 𝟎, (2)

where 𝐪(𝑥, 𝑡) = (𝑞1(𝑥, 𝑡), ̃𝑞2(𝑥, 𝑡))𝑇 . Employing the variable transformation 𝐪(𝑥, 𝑡) = 𝐪(𝑥, 𝑡)e−2i𝑞20 𝑡, we can derive the defocusing–defocusing coupled
Hirota equations with the NZBCs, namely

i𝐪𝑡 + 𝐪𝑥𝑥 − 2(‖𝐪‖2 − 𝑞20 )𝐪 + i𝜎[𝐪𝑥𝑥𝑥 − 3‖𝐪‖2𝐪𝑥 − 3(𝐪†𝐪𝑥)𝐪] = 𝟎, (3)

and the corresponding NZBCs at infinity are

lim
𝑥→±∞

𝐪(𝑥, 𝑡) = 𝐪± = 𝐪0𝐞i𝛿± , (4)

where 𝐪 = 𝐪(𝑥, 𝑡) = (𝑞1(𝑥, 𝑡), 𝑞2(𝑥, 𝑡))𝑇 and 𝐪0 are two-component vectors, 𝑞0 = ‖𝐪0‖, with 𝛿± are real numbers. For the defocusing–defocusing coupled
irota equations with the NZBCs 𝐪+ and 𝐪− at infinity, the scenarios of parallel and non-parallel orientations have not yet been explored. This
aper initially focuses on the case where 𝐪+ is parallel to 𝐪−, with the intention to address the non-parallel case of 𝐪+ and 𝐪− in future research
ndeavors.

Compared with the defocusing Hirota equation [29], the defocusing–defocusing coupled Hirota equations [17] are associated with a 3 × 3
atrix Lax pair, which makes the study of spectral analysis very difficult. In the case of the NZBCs, the study of a 3 × 3 matrix Lax pair usually
as the problem that the analytical Jost eigenfunction is not analytical, which will make it more difficult to construct the IST. Specifically, the
ST has demonstrated its unique value in the study of nonlinear wave equations with specific boundary conditions [33,34]. For example, when
tudying the focusing [35] and defocusing [36] Manakov systems with the NZBCs at infinity, the application of IST enables researchers to analyze
he dynamic characteristics of dark–dark and dark-bright solitons in detail. In addition, the IST has also proved its effectiveness in solving the
oupled Gerdjikov-Ivanov equation [37] with the NZBCs, which not only helps to reveal the existence of the dark–dark solitons, bright–bright and

breather–breather, but also provides insight into understanding their interaction. Based on these studies [33–37], it is planned to further explore
the application of IST in solving nonlinear equations with more complex boundary conditions [38]. In this paper, we will use the IST method to
tudy the defocusing–defocusing coupled Hirota equations with the parallel NZBCs at infinity in order to more fully understand and predict their
nalytical and asymptotic properties.

The structure of the remaining sections of this paper is outlined as follows. Section 2 delves into the intricacies of the direct scattering problem.
nitially, we delineate the Jost functions associated with the Lax pair, ensuring they adhere to the stipulated boundary conditions. Subsequently, we
crutinize the analytical characteristics of the modified eigenfunctions, leveraging the foundational definitions of the Jost functions. Furthermore,
e rigorously establish the analytical properties of the corresponding coefficients of the scattering matrix, based on the precise formulation of the

cattering matrix. Ultimately, we address the adjoint problem by delineating the auxiliary eigenfunctions, facilitating the derivation of symmetries
or the Jost eigenfunctions, scattering coefficients, and auxiliary eigenfunctions. In Section 3, we delve into the characterization of the discrete
pectrum. Additionally, we systematically analyze the asymptotic behavior of the modified Jost eigenfunctions and the scattering matrix elements
or 𝑧 → ∞ and 𝑧 → 0. In Section 4, based on the RH problem to formulate the inverse problem, we construct appropriate jump conditions to

express the eigenfunctions. By using the meromorphic matrices, the corresponding residue conditions and norming constants are obtained. We
onstruct the formal solutions of the RH problem and reconstruction formula with the help of the Plemelj’s formula. The pure soliton solutions are

derived within the framework of reflectionless potentials and comprehensively proven. Subsequently, the discussion delves into the categorization
of solitons possessing discrete eigenvalues, both within and beyond the specified circumference. In Section 5, we derive the solutions associated
with multiple double zeros of the analytic scattering coefficients, and explicitly present the solutions for multiple double poles. The results are
ummarized in Section 6.
2 
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2. Direct scattering problem

Generally speaking, the IST of integrable nonlinear equations needs to be studied through the formula of their Lax pairs. Our calculations are
based on the following 3 × 3 Lax pair, which corresponds to the defocusing–defocusing coupled Hirota equations (3)

𝜓𝑥 = 𝐗𝜓 , 𝜓𝑡 = 𝐓𝜓 , (5)

where 𝜓 = 𝜓(𝑥, 𝑡), the matrices 𝐗 and 𝐓 are written as

𝐗 = 𝐗(𝑘; 𝑥, 𝑡) = i𝑘𝐉 + i𝐐, (6a)

𝐓 = 𝐓(𝑘; 𝑥, 𝑡) = 4i𝜎 𝑘3𝐉 − i𝑞20𝐉 + 𝑘2(4i𝜎𝐐 + 2i𝐉) + 𝑘(2i𝐐 − 2𝜎𝐐𝑥𝐉 − 2i𝜎𝐉𝐐2) − 2i𝜎𝐐3 − i𝐉𝐐2 − i𝜎𝐐𝑥𝑥 −𝐐𝑥𝐉 + 𝜎[𝐐,𝐐𝑥], (6b)

with
[

𝑄𝑎, 𝑄𝑏
]

= 𝑄𝑎𝑄𝑏 −𝑄𝑏𝑄𝑎, while the definitions of 𝐉 and 𝐐 = 𝐐(𝑥, 𝑡) are as follows:

𝐉 =
(

1 𝟎𝟏×𝟐
𝟎𝟐×𝟏 −𝐈𝟐×𝟐

)

, 𝐐 =
(

0 −𝐪†
𝐪 𝟎𝟐×𝟐

)

, 𝐉𝐐 = −𝐐𝐉, (7)

where 𝑘 is the spectral parameter and † denotes conjugate transpose. The compatibility condition 𝜓𝑥𝑡 = 𝜓𝑡𝑥 is ascertained through the zero-curvature
equation 𝐗𝑡 − 𝐓𝑥 + [𝐗,𝐓] = 𝟎.

2.1. Jost solutions and scattering matrix

Taking into account the Jost eigenfunctions as 𝑥 → ±∞, the spatial and temporal evolution of the solutions for the asymptotic Lax pair can be
escribed as follows:

𝜓𝑥 = 𝐗±𝜓 , 𝜓𝑡 = 𝐓±𝜓 , (8)

where

lim
𝑥→±∞

𝐗 = 𝐗± = i𝑘𝐉 + i𝐐±, (9a)

lim
𝑥→±∞

𝐓 = 𝐓± = 4i𝜎 𝑘3𝐉 − i𝑞20𝐉 + 𝑘2(4i𝜎𝐐± + 2i𝐉) + 𝑘(2i𝐐± − 2i𝜎𝐉𝐐2
±) − 2i𝜎𝐐3

± − i𝐉𝐐2
±. (9b)

By the definition of 𝐗± and 𝐓± in (9), the eigenvalues of the corresponding matrix can be derived as follows:

𝐗±,1 = −i𝑘, 𝐗±,2,3 = ±i𝜆, 𝐓±,1 = −i(𝜆2 + 𝑘2 + 4𝜎 𝑘3), 𝐓±,2,3 = ±2i𝜆[𝑘 + 𝜎(3𝑘2 − 𝜆2)], (10)

where

𝜆(𝑘) =
√

𝑘2 − 𝑞20 . (11)

Biondini et al. introduced the two-sheeted Riemann surface [36] defined by (11), and 𝜆(𝑘) is a single-valued function of 𝑘 that satisfies 𝜆(±𝑞0) = 0.
Then, the branch points are 𝑘 = ±i𝑞0. We define the uniformization variable

𝑧 = 𝑘 + 𝜆, (12)

whose corresponding inverse map is given by

𝑘(𝑧) = 1
2

(

𝑧 +
𝑞20
𝑧

)

, 𝜆(𝑧) = 1
2

(

𝑧 −
𝑞20
𝑧

)

. (13)

The relevant theories and property descriptions of the two-sheeted Riemann surface can be referred to in [36]. Therefore, it can be defined that

D+ = {𝑧 ∈ C ∶ Im 𝑧 > 0} , D− = {𝑧 ∈ C ∶ Im 𝑧 < 0} . (14)

The analytical regions of the eigenfunctions are determined by the sign of Im 𝜆(𝑧). Therefore, all 𝑘 dependencies will be rewritten as dependencies
on 𝑧. The continuous spectrum of 𝑘 is given by 𝑘 ∈ R∖(−𝑞0, 𝑞0). In the complex 𝑧-plane, the corresponding set is the whole real axis. Let us define
a two-component vector 𝐯 = (𝑣1, 𝑣2)𝑇 and its corresponding orthogonal vector as 𝐯⟂ = (𝑣2,−𝑣1)†. Consider the eigenvector matrix of the asymptotic
Lax pair (8) as follows:

𝐘±(𝑧) =
⎛

⎜

⎜

⎜

⎝

i 0
𝑞0
𝑧

i𝐪±
𝑧

𝐪⟂±
𝑞0

𝐪±
𝑞0

⎞

⎟

⎟

⎟

⎠

, det 𝐘±(𝑧) = i𝜌(𝑧), 𝜌(𝑧) = 1 −
𝑞20
𝑧2
, (15)

where

𝐘−1
± (𝑧) = 1

i𝜌(𝑧)

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 −
𝐪†±
𝑧

0
i𝜌(𝑧)
𝑞0

(𝐪⟂±)
†

−
i𝑞0
𝑧

i𝐪†±
𝑞0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, det 𝐘−1
± (𝑧) = 1

i𝜌(𝑧)
, (16)

so that

𝐗±𝐘± = i𝐘±Λ1, 𝐓±𝐘± = i𝐘±Λ2, (17)
3 
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where 𝐘± = 𝐘±(𝑧), the definitions of Λ1 = Λ1(𝑧) and Λ2 = Λ2(𝑧) are as follows:

Λ1(𝑧) = diag (𝜆,−𝑘,−𝜆) , (18a)

Λ2(𝑧) = diag (2𝜆[𝑘 + 𝜎(3𝑘2 − 𝜆2)],−(𝜆2 + 𝑘2 + 4𝜎 𝑘3),−2𝜆[𝑘 + 𝜎(3𝑘2 − 𝜆2)]) . (18b)

Since the NZBCs are constant, the relationship [𝐗±,𝐓±] = 𝟎 can be calculated using expression (9). Therefore, 𝐗± and 𝐓± have a common
eigenvector. Then, the Jost solutions 𝜓(𝑧; 𝑥, 𝑡) of the Lax pair (8) on 𝑧 ∈ R satisfying the boundary conditions

𝜓±(𝑧; 𝑥, 𝑡) = 𝐘±(𝑧)ei∆(𝑧;𝑥,𝑡) + 𝑜(1), 𝑥→ ±∞, (19)

where ∆(𝑧; 𝑥, 𝑡) = diag (𝛿1, 𝛿2,−𝛿1
)

and

𝛿1 = 𝛿1(𝑧; 𝑥, 𝑡) = 𝜆𝑥 + 2𝜆[𝑘 + 𝜎(3𝑘2 − 𝜆2)]𝑡, 𝛿2 = 𝛿2(𝑧; 𝑥, 𝑡) = −𝑘𝑥 − (𝜆2 + 𝑘2 + 4𝜎 𝑘3)𝑡. (20)

Consistently, we define the modified eigenfunctions

𝜈±(𝑧; 𝑥, 𝑡) = 𝜓±(𝑧; 𝑥, 𝑡)e−i∆(𝑧;𝑥,𝑡), (21)

so that lim𝑥→±∞ 𝜈±(𝑧; 𝑥, 𝑡) = 𝐘±(𝑧). We perform factor decomposition on the asymptotic behavior of the potential and rewrite the Lax pair (8) as
follows:

(𝜓±)𝑥 = 𝐗±𝜓± + (𝐗 − 𝐗±)𝜓±, (𝜓±)𝑡 = 𝐓±𝜓± + (𝐓 − 𝐓±)𝜓±, (22)

where 𝜓± = 𝜓±(𝑧; 𝑥, 𝑡) and the following systems can be exported through the Lax pair (22)

(𝐘−1
± 𝜈±)𝑥 = iΛ1𝐘−1

± 𝜈± − i𝐘−1
± 𝜈±Λ1 + 𝐘−1

± (𝐗 − 𝐗±)𝜈±, (𝐘−1
± 𝜈±)𝑡 = iΛ2𝐘−1

± 𝜈± − i𝐘−1
± 𝜈±Λ2 + 𝐘−1

± (𝐓 − 𝐓±)𝜈±, (23)

where 𝐘−1
± = 𝐘−1

± (𝑧) and 𝜈± = 𝜈±(𝑧; 𝑥, 𝑡). Subsequently, the systems (23) can be expressed in complete differential form

d[e−i∆𝐘−1
± 𝜈±ei∆] = e−i∆[𝐘−1

± (𝐗 − 𝐗±)𝜈± d𝑥 + 𝐘−1
± (𝐓 − 𝐓±)𝜈± d𝑡]ei∆, (24)

where ∆ = ∆(𝑧; 𝑥, 𝑡). The choice of integration path is independent of 𝑡, it has been confirmed that the spectral problem concerning 𝜈±(𝑧; 𝑥, 𝑡) is
equivalent to the Volterra integral equations

𝜈−(𝑧; 𝑥, 𝑡) = 𝐘− + ∫

𝑥

−∞
𝐘−ei(𝑥−𝑦)Λ1 [𝐘−1

− (𝐗(𝑧; 𝑦, 𝑡) − 𝐗−(𝑧))𝜈−(𝑧; 𝑦, 𝑡)]e−i(𝑥−𝑦)Λ1 d𝑦, (25a)

𝜈+(𝑧; 𝑥, 𝑡) = 𝐘+ − ∫

∞

𝑥
𝐘+ei(𝑥−𝑦)Λ1 [𝐘−1

+ (𝐗(𝑧; 𝑦, 𝑡) − 𝐗+(𝑧))𝜈+(𝑧; 𝑦, 𝑡)]e−i(𝑥−𝑦)Λ1 d𝑦. (25b)

In Appendix A, we provide a detailed proof of the following theorems.

Theorem 1. Suppose that 𝐪(⋅, 𝑡) − 𝐪− ∈ 𝐿1(−∞, 𝜎3) (𝐪(⋅, 𝑡) − 𝐪+ ∈ 𝐿1(𝜎3,∞)) for every fixed 𝜎3 ∈ R, the ensuing columns of 𝜈−(𝑧; 𝑥, 𝑡) (𝜈+(𝑧; 𝑥, 𝑡)) fulfill
the requisite properties:

𝜈−,1(𝑧; 𝑥, 𝑡) and 𝜈+,3(𝑧; 𝑥, 𝑡) ∶ 𝑧 ∈ D−, 𝜈−,3(𝑧; 𝑥, 𝑡) and 𝜈+,1(𝑧; 𝑥, 𝑡) ∶ 𝑧 ∈ D+. (26)

Eq. (21) suggests that the columns of 𝜓±(𝑧; 𝑥, 𝑡) and 𝜈±(𝑧; 𝑥, 𝑡) have the same analytic and bounded characteristics. Assuming 𝜓(𝑧; 𝑥, 𝑡) is a solution
f the Lax pair (5), it can be obtained that

𝜕𝑥[det 𝜓±] = t r 𝐗 det 𝜓± = −i𝑘 det 𝜓±, 𝜕𝑡[det 𝜓±] = t r 𝐓 det 𝜓± = −i(𝜆2 + 𝑘2 + 4𝜎 𝑘3) det 𝜓±. (27)

From Abel’s theorem, it can be inferred that 𝜕 𝑥[det 𝜈±] = 0 and 𝜕 𝑡[det 𝜈±] = 0. Then (19) implies

det 𝜓±(𝑧; 𝑥, 𝑡) = i𝜌(𝑧)ei𝛿2(𝑧;𝑥,𝑡), (𝑥, 𝑡) ∈ R2, 𝑧 ∈ R∖{±𝑞0}. (28)

The scattering matrix 𝐇(𝑧) and 𝐒(𝑧) are characterized through the following definition

𝜓+(𝑧; 𝑥, 𝑡) = 𝜓−(𝑧; 𝑥, 𝑡)𝐇(𝑧), 𝑧 ∈ R∖{±𝑞0}, (29)

where 𝐇(𝑧) = (ℎ𝑖𝑗 (𝑧)). According to the definition, 𝐇(𝑧) is independent of 𝑥 and 𝑡 variables. Using (28) and (29) can indicate that

det𝐇(𝑧) = 1, 𝑧 ∈ R∖{±𝑞0}. (30)

Similarly, define 𝐒(𝑧) = 𝐇−1(𝑧) = (𝑠𝑖𝑗 (𝑧)).

Theorem 2. According to the same assumption in Theorem 1, the scattering coefficients have the following properties:

𝑠33(𝑧) and ℎ11(𝑧) ∶ 𝑧 ∈ D+, 𝑠11(𝑧) and ℎ33(𝑧) ∶ 𝑧 ∈ D−. (31)

2.2. Adjoint problem

Since the 𝜈±,2(𝑧; 𝑥, 𝑡) is not analytic, then solving the inverse problem requires handling this non-analytic term. In order to set up the scattering
problem, it is essential to possess a fully analytic function. We now turn our attention to the so-called ‘‘adjoint’’ Lax pair, which is a key component
in this context.

𝜓̃𝑥 = 𝐗̃𝜓̃ , 𝜓̃𝑡 = 𝐓̃𝜓̃ , (32)
4 



P.-F. Han et al.

a

Physica D: Nonlinear Phenomena 471 (2025) 134434 
where

𝐗̃ = 𝐗̃(𝑘; 𝑥, 𝑡) = −i𝑘𝐉 − i𝐐∗, (33a)

𝐓̃ = 𝐓̃(𝑘; 𝑥, 𝑡) = −4i𝜎 𝑘3𝐉 + i𝑞20𝐉 − 𝑘2(4i𝜎𝐐∗ + 2i𝐉) + 𝑘(2i𝜎𝐉(𝐐∗)2 − 2i𝐐∗ − 2𝜎𝐐∗
𝑥𝐉) + 2i𝜎(𝐐∗)3 + i𝐉(𝐐∗)2 + i𝜎𝐐∗

𝑥𝑥 −𝐐∗
𝑥𝐉 + 𝜎[𝐐

∗,𝐐∗
𝑥], (33b)

where 𝜓̃ = 𝜓̃(𝑧, 𝑥, 𝑡), with 𝐗̃ = 𝐗∗ and 𝐓̃ = 𝐓∗ for all 𝑧 ∈ R. The following proposition can be directly proven through properties 𝐉𝐐 = −𝐐𝐉,
𝐉𝐐∗ = −𝐐∗𝐉, 𝐉𝐐∗ = 𝐐𝑇 𝐉 and the identity in [36,37].

Proposition 1. If 𝐯2(𝑧; 𝑥, 𝑡) and 𝐯3(𝑧; 𝑥, 𝑡) are two arbitrary solutions of the ‘‘adjoint’’ Lax pair (32), while ‘‘×’’ denotes the usual cross product, then

𝐯1(𝑧; 𝑥, 𝑡) = ei𝛿2(𝑧;𝑥,𝑡)𝐉[𝐯2(𝑧; 𝑥, 𝑡) × 𝐯3(𝑧; 𝑥, 𝑡)], (34)

is a solution of the Lax pair (5).
As 𝑥 → ±∞, the behavior of the solutions derived from the ‘‘adjoint’’ Lax pair (32) will approach an asymptotic state in terms of both spatial

nd temporal

𝜓̃𝑥 = 𝐗̃±𝜓̃ , 𝜓̃𝑡 = 𝐓̃±𝜓̃ , (35)

where

lim
𝑥→±∞

𝐗̃ = 𝐗̃± = −i𝑘𝐉 − i𝐐∗
±, (36a)

lim
𝑥→±∞

𝐓̃ = 𝐓̃± = −4i𝜎 𝑘3𝐉 + i𝑞20𝐉 − 𝑘2(4i𝜎𝐐∗
± + 2i𝐉) + 𝑘(2i𝜎𝐉(𝐐∗

±)
2 − 2i𝐐∗

±) + 2i𝜎(𝐐∗
±)

3 + i𝐉(𝐐∗
±)

2. (36b)

The eigenvalues of 𝐗̃± are i𝑘 and ±i𝜆, the eigenvalues of 𝐓̃± are i(𝜆2 + 𝑘2 + 4𝜎 𝑘3) and ±2i𝜆[𝑘 + 𝜎(3𝑘2 − 𝜆2)]. Additionally, properties 𝐘̃±(𝑧) = 𝐘∗
±(𝑧)

and det 𝐘̃±(𝑧) = −i𝜌(𝑧) are present. It can be straightforwardly determined that 𝐗̃± and 𝐓̃± fulfill the subsequent conditions:

𝐗̃±𝐘̃± = −i𝐘̃±Λ1, 𝐓̃±𝐘̃± = −i𝐘̃±Λ2, (37)

where 𝐘̃± = 𝐘̃±(𝑧). Similarly, the Jost solutions of the ‘‘adjoint’’ Lax pair (32)

𝜓̃±(𝑧; 𝑥, 𝑡) = 𝐘̃±(𝑧)e−i∆(𝑧;𝑥,𝑡) + 𝑜(1), 𝑥 → ±∞, 𝑧 ∈ R. (38)

Introducing the modified Jost solutions

𝜈±(𝑧; 𝑥, 𝑡) = 𝜓̃±(𝑧; 𝑥, 𝑡)ei∆(𝑧;𝑥,𝑡), (39)

the subsequent columns of the function 𝜈±(𝑧; 𝑥, 𝑡) adhere to the ensuing properties:

𝜈−,3(𝑧; 𝑥, 𝑡) and 𝜈+,1(𝑧; 𝑥, 𝑡) ∶ 𝑧 ∈ D−, 𝜈−,1(𝑧; 𝑥, 𝑡) and 𝜈+,3(𝑧; 𝑥, 𝑡) ∶ 𝑧 ∈ D+. (40)

The modified Jost solutions imply that the columns of 𝜓̃±(𝑧; 𝑥, 𝑡) exhibit analogous properties of analyticity and boundedness. In a similar
fashion, the ‘‘adjoint’’ scattering matrix can likewise be defined as follows:

𝜓̃+(𝑧; 𝑥, 𝑡) = 𝜓̃−(𝑧; 𝑥, 𝑡)𝐇̃(𝑧), (41)

where 𝐇̃(𝑧) = (ℎ̃𝑖𝑗 (𝑧)). Similarly, define 𝐒̃(𝑧) = 𝐇̃−1(𝑧) = (𝑠̃𝑖𝑗 (𝑧)). The following scattering coefficients satisfy the following properties:

𝑠̃33(𝑧) and ℎ̃11(𝑧) ∶ 𝑧 ∈ D−, 𝑠̃11(𝑧) and ℎ̃33(𝑧) ∶ 𝑧 ∈ D+. (42)

In order to fully construct the analytical eigenfunctions, two new solutions for the original Lax pair (5) are defined:

𝛾(𝑧) = − iei𝛿2(𝑧)𝐉[𝜓̃−,3(𝑧) × 𝜓̃+,1(𝑧)]
𝜌(𝑧)

, 𝑧 ∈ D−, 𝛾̃(𝑧) = − iei𝛿2(𝑧)𝐉[𝜓̃−,1(𝑧) × 𝜓̃+,3(𝑧)]
𝜌(𝑧)

, 𝑧 ∈ D+, (43)

where 𝛾(𝑧) = 𝛾(𝑧; 𝑥, 𝑡), 𝛾̃(𝑧) = 𝛾̃(𝑧; 𝑥, 𝑡) and 𝜓̃±,𝑗 (𝑧) = 𝜓̃±,𝑗 (𝑧; 𝑥, 𝑡) for 𝑗 = 1, 3. Then we can directly derive the following three conclusions:

Corollary 1. For all cyclic indices 𝑗, 𝑙 and 𝑚 with 𝑧 ∈ R,

𝜓±,𝑗 (𝑧) = − iei𝛿2(𝑧)𝐉[𝜓̃±,𝑙(𝑧) × 𝜓̃±,𝑚(𝑧)]
𝜌𝑗 (𝑧)

, 𝜓̃±,𝑗 (𝑧) =
ie−i𝛿2(𝑧)𝐉[𝜓±,𝑙(𝑧) × 𝜓±,𝑚(𝑧)]

𝜌𝑗 (𝑧)
, (44)

where

𝜌1(𝑧) = −1, 𝜌2(𝑧) = 𝜌(𝑧), 𝜌3(𝑧) = 1. (45)

Corollary 2. The scattering matrix 𝐒(𝑧) and 𝐒̃(𝑧) are related as follows:

𝐒̃−1(𝑧) = 𝐉1(𝑧)𝐒𝑇 (𝑧)𝐉−11 (𝑧), 𝐉1(𝑧) = diag (−1, 𝜌(𝑧), 1). (46)

Corollary 3. The Jost eigenfunctions exhibit the following decompositions for 𝑧 ∈ R

𝜓−,2(𝑧) =
𝑠32(𝑧)𝜓−,3(𝑧) − 𝛾̃(𝑧)

𝑠33(𝑧)
=
𝑠12(𝑧)𝜓−,1(𝑧) + 𝛾(𝑧)

𝑠11(𝑧)
, 𝜓+,2(𝑧) =

ℎ12(𝑧)𝜓+,1(𝑧) − 𝛾̃(𝑧)
ℎ11(𝑧)

=
ℎ32(𝑧)𝜓+,3(𝑧) + 𝛾(𝑧)

ℎ33(𝑧)
, (47)

where 𝜓±,𝑗 (𝑧) = 𝜓±,𝑗 (𝑧; 𝑥, 𝑡) for 𝑗 = 1, 2, 3.

Furthermore, the modified auxiliary eigenfunctions are delineated as follows:
𝑑(𝑧; 𝑥, 𝑡) = 𝛾(𝑧)e−i𝛿2(𝑧), 𝑧 ∈ D−, 𝑑(𝑧; 𝑥, 𝑡) = 𝛾̃(𝑧)e−i𝛿2(𝑧), 𝑧 ∈ D+. (48)
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2.3. Symmetries

Compared with the equation with the initial value condition of ZBCs, when dealing with the equation with NZBCs, the corresponding symmetry
becomes complicated due to the existence of Riemann surface. Hence, it is imperative to recognize that the symmetry inherent in the potential
within the Lax pair engenders the corresponding symmetry in the scattering data. To ensure symmetry, it is essential to contemplate the subsequent
involutions: 𝑧↦ 𝑧∗ and 𝑧↦ 𝑞20∕𝑧.

2.3.1. First symmetry
Consider the first involution: 𝑧↦ 𝑧∗, implying (𝑘, 𝜆) ↦ (𝑘∗, 𝜆∗).

Proposition 2. If 𝜓(𝑧; 𝑥, 𝑡) is a non-singular solution of the Lax pair (5), so is
𝐯4(𝑧; 𝑥, 𝑡) = 𝐉[𝜓†(𝑧∗; 𝑥, 𝑡)]−1. (49)

By using property [ei∆(𝑧∗;𝑥,𝑡)]† = e−i∆(𝑧;𝑥,𝑡), the Jost eigenfunctions exhibit the specific symmetry:

𝜓±(𝑧; 𝑥, 𝑡) = 𝐉[𝜓†
±(𝑧

∗; 𝑥, 𝑡)]−1𝐉2(𝑧), 𝐉2(𝑧) = diag (𝜌(𝑧),−1,−𝜌(𝑧)), 𝑧 ∈ R. (50)

Subsequently, employing the Schwarz reflection principle, we obtain the subsequent results:

𝜓∗
−,1(𝑧

∗) = i𝐉e−i𝛿2(𝑧)[𝛾̃(𝑧) × 𝜓−,3(𝑧)]
𝑠33(𝑧)

, Im 𝑧 ≥ 0, (51a)

𝜓∗
+,1(𝑧

∗) = i𝐉e−i𝛿2(𝑧)[𝛾(𝑧) × 𝜓+,3(𝑧)]
−ℎ33(𝑧)

, Im 𝑧 ≤ 0, (51b)

𝜓∗
−,3(𝑧

∗) = i𝐉e−i𝛿2(𝑧)[𝛾(𝑧) × 𝜓−,1(𝑧)]
−𝑠11(𝑧)

, Im 𝑧 ≤ 0, (51c)

𝜓∗
+,3(𝑧

∗) = i𝐉e−i𝛿2(𝑧)[𝛾̃(𝑧) × 𝜓+,1(𝑧)]
ℎ11(𝑧)

, Im 𝑧 ≥ 0. (51d)

In addition, using the scattering relationship (29), (50) and the property 𝐉2(𝑧) = −𝜌(𝑧)𝐉−11 (𝑧), the scattering matrices are interrelated as follows:

𝐒†(𝑧) = 𝐉−11 (𝑧)𝐇(𝑧)𝐉1(𝑧), 𝑧 ∈ R. (52)

Accordingly, it can be deduced that for 𝑧 ∈ R

ℎ11(𝑧) = 𝑠∗11(𝑧), ℎ12(𝑧) = −
𝑠∗21(𝑧)
𝜌(𝑧)

, ℎ13(𝑧) = −𝑠∗31(𝑧), ℎ32(𝑧) =
𝑠∗23(𝑧)
𝜌(𝑧)

, ℎ21(𝑧) = −𝜌(𝑧)𝑠∗12(𝑧), (53a)

ℎ22(𝑧) = 𝑠∗22(𝑧), ℎ23(𝑧) = 𝜌(𝑧)𝑠∗32(𝑧), ℎ31(𝑧) = −𝑠∗13(𝑧), ℎ33(𝑧) = 𝑠∗33(𝑧). (53b)

According to the Schwarz reflection principle, we can draw this conclusion:

ℎ11(𝑧) = 𝑠∗11(𝑧
∗), Im 𝑧 ≥ 0, ℎ33(𝑧) = 𝑠∗33(𝑧

∗), Im 𝑧 ≤ 0. (54)

The property 𝜓∗
±(𝑧

∗; 𝑥, 𝑡) = 𝜓̃±(𝑧; 𝑥, 𝑡) is obtained, so the following conditions are established

𝜓∗
±,1(𝑧

∗) = 𝜓̃±,1(𝑧), Im 𝑧 ≶ 0, 𝜓∗
±,3(𝑧

∗) = 𝜓̃±,3(𝑧), Im 𝑧 ≷ 0. (55)

Through the properties (55) and new auxiliary eigenfunctions (43), we derive the following conclusion:

Corollary 4. The new auxiliary eigenfunctions (43) adhere to the symmetry relations:

𝛾(𝑧) = −
iei𝛿2(𝑧)𝐉[𝜓∗

−,3(𝑧
∗) × 𝜓∗

+,1(𝑧
∗)]

𝜌(𝑧)
, 𝑧 ∈ D−, 𝛾̃(𝑧) = −

iei𝛿2(𝑧)𝐉[𝜓∗
−,1(𝑧

∗) × 𝜓∗
+,3(𝑧

∗)]

𝜌(𝑧)
, 𝑧 ∈ D+. (56)

Furthermore, the symmetrical properties are also present:

𝜓∗
±,𝑗 (𝑧) =

ie−i𝛿2(𝑧)𝐉[𝜓±,𝑙(𝑧) × 𝜓±,𝑚(𝑧)]
𝜌𝑗 (𝑧)

, 𝑧 ∈ R, (57)

where 𝑗, 𝑙 and 𝑚 are cyclic indices.

2.3.2. Second symmetry
Consider the second involution: 𝑧↦ 𝑞20∕𝑧, implying (𝑘, 𝜆) ↦ (𝑘,−𝜆).

Proposition 3. If 𝜓(𝑧; 𝑥, 𝑡) is a non-singular solution of the Lax pair (5), so is

𝐯5(𝑧; 𝑥, 𝑡) = 𝜓(
𝑞20
𝑧
; 𝑥, 𝑡). (58)
6 
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The subsequent properties can be derived from the principle of progressiveness

𝜓±(𝑧; 𝑥, 𝑡) = 𝜓±(
𝑞20
𝑧
; 𝑥, 𝑡)𝐉3(𝑧), 𝐉3(𝑧) =

⎛

⎜

⎜

⎜

⎜

⎝

0 0 −
i𝑞0
𝑧

0 1 0
i𝑞0
𝑧

0 0

⎞

⎟

⎟

⎟

⎟

⎠

, 𝑧 ∈ R. (59)

Consistent with the previous discussion, the eigenfunctions exhibit the following analytical characteristics:

𝜓±,1(𝑧) =
i𝑞0
𝑧
𝜓±,3(

𝑞20
𝑧
), Im 𝑧 ≷ 0, (60a)

𝜓±,3(𝑧) = − i𝑞0
𝑧
𝜓±,1(

𝑞20
𝑧
), Im 𝑧 ≶ 0, (60b)

𝜓±,2(𝑧) = 𝜓±,2(
𝑞20
𝑧
), 𝑧 ∈ R. (60c)

Utilizing the scattering relationships given by Eqs. (29) and (59), the scattering matrices exhibit the following relationship:

𝐒(
𝑞20
𝑧
) = 𝐉3(𝑧)𝐒(𝑧)𝐉−13 (𝑧), 𝑧 ∈ R. (61)

Accordingly, it can be deduced that

𝑠11(𝑧) = 𝑠33(
𝑞20
𝑧
), 𝑠12(𝑧) = − i𝑧

𝑞0
𝑠32(

𝑞20
𝑧
), 𝑠13(𝑧) = −𝑠31(

𝑞20
𝑧
), 𝑠21(𝑧) =

i𝑞0
𝑧
𝑠23(

𝑞20
𝑧
), 𝑠22(𝑧) = 𝑠22(

𝑞20
𝑧
), (62a)

𝑠23(𝑧) = − i𝑞0
𝑧
𝑠21(

𝑞20
𝑧
), 𝑠31(𝑧) = −𝑠13(

𝑞20
𝑧
), 𝑠32(𝑧) = i𝑧

𝑞0
𝑠12(

𝑞20
𝑧
), 𝑠33(𝑧) = 𝑠11(

𝑞20
𝑧
), (62b)

the analytical domain of the scattering coefficients

𝑠11(𝑧) = 𝑠33(
𝑞20
𝑧
), ℎ33(𝑧) = ℎ11(

𝑞20
𝑧
), Im 𝑧 ≤ 0. (63)

The auxiliary eigenfunctions exhibit the following characteristics:

𝛾̃(𝑧) = −𝛾(
𝑞20
𝑧
), Im 𝑧 ≥ 0. (64)

We introduce the new reflections as follows:

𝛽1(𝑧) =
𝑠13(𝑧)
𝑠11(𝑧)

= −
ℎ∗31(𝑧)
ℎ∗11(𝑧)

, 𝛽1(
𝑞20
𝑧
) = − 𝑠31(𝑧)

𝑠33(𝑧)
=
ℎ∗13(𝑧)
ℎ∗33(𝑧)

, 𝛽2(𝑧) =
ℎ21(𝑧)
ℎ11(𝑧)

= −𝜌(𝑧)
𝑠∗12(𝑧)
𝑠∗11(𝑧)

, 𝛽2(
𝑞20
𝑧
) = i𝑧

𝑞0

ℎ23(𝑧)
ℎ33(𝑧)

=
i𝑧𝜌(𝑧)
𝑞0

𝑠∗32(𝑧)
𝑠∗33(𝑧)

. (65)

3. Discrete spectrum and asymptotic behavior

A direct link is established between the zeros of the scattering coefficients and the discrete eigenvalues, each signifying the presence of a bound
tate within the system [36]. 𝐶𝑜 is a circle with a radius of 𝑞0 centered at the origin of the complex 𝑧-plane. It has been established that discrete

eigenvalues are excluded from the continuous spectrum, hence they are confined to the domain within the circle 𝐶𝑜. Furthermore, the self-adjoint
property of the scattering problem ensures that the discrete eigenvalues 𝑘 must be real numbers, and there are no discrete eigenvalues within the
continuous spectrum. Consequently, these discrete eigenvalues are found only within the circle 𝐶𝑜 on the 𝑧-plane.

Proposition 4. Let 𝐯(𝑧; 𝑥, 𝑡) denote a nontrivial solution to the scattering problem in (5). If 𝐯(𝑧; 𝑥, 𝑡) ∈ 𝐿2(R), then 𝑧 ∈ 𝐶𝑜.

In order to fully represent the characteristics of the inverse problem, it is necessary to consider the zeros of the analytical scattering coefficient
outside the circle 𝐶𝑜. This view does not conflict with Proposition 4, which states that the zero point of the analytical scattering coefficient outside
the circle 𝐶𝑜 does not lead to the generation of bound states. The discrete spectrum is the set of all 𝑧 ∈ C∖R such that ℎ11(𝑧) = 0 or 𝑠11(𝑧∗) = 0,
values for which the Jost eigenfunctions belong to 𝐿2(R). Consequently, the existence of zeros for ℎ11(𝑧) within 𝐶𝑜 is permissible, and such zeros
ead to eigenfunctions that do not exhibit decay towards both spatial infinities.

3.1. Discrete spectrum

To delve into the discrete spectrum, we define two 3 × 3 matrices

Ψ+(𝑧) = (𝜓+,1(𝑧),−𝛾̃(𝑧), 𝜓−,3(𝑧)), 𝑧 ∈ D+, Ψ−(𝑧) = (𝜓−,1(𝑧), 𝛾(𝑧), 𝜓+,3(𝑧)), 𝑧 ∈ D−, (66)

where Ψ±(𝑧) = Ψ±(𝑧; 𝑥, 𝑡). By the decompositions (47) and taking the determinant, we obtain the following result:

detΨ+(𝑧) = iei𝛿2(𝑧)ℎ11(𝑧)𝑠33(𝑧)𝜌(𝑧), Im 𝑧 ≥ 0, detΨ−(𝑧) = iei𝛿2(𝑧)𝑠11(𝑧)ℎ33(𝑧)𝜌(𝑧), Im 𝑧 ≤ 0. (67)

Nevertheless, the symmetries inherent in the scattering coefficients imply that these zeros are interrelated and not mutually exclusive.

Proposition 5 (Off the Circle 𝐶𝑜). Suppose that ℎ11(𝑧) possesses a zero 𝜃𝑔 within the upper half plane of 𝑧, then

ℎ11(𝜃𝑔) = 0 ⟺ 𝑠11(𝜃∗𝑔 ) = 0 ⟺ 𝑠33(
𝑞20
𝜃∗𝑔

) = 0 ⟺ ℎ33(
𝑞20
𝜃𝑔

) = 0. (68)
7 
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Therefore, it can be considered that the discrete eigenvalues 𝑧𝑔 on the circle 𝐶𝑜 are {𝑧𝑔 , 𝑧∗𝑔} and the discrete eigenvalues 𝜃𝑔 off the circle 𝐶𝑜 are
{𝜃𝑔 , 𝜃∗𝑔 , 𝑞20∕𝜃𝑔 , 𝑞20∕𝜃∗𝑔}.

Proposition 6. If Im 𝜃𝑔 > 0 and 𝜃𝑔 ∉ 𝐶𝑜, then 𝛾̃(𝜃𝑔 ; 𝑥, 𝑡) ≠ 𝟎.

Proposition 7. Suppose Im 𝜃𝑔 > 0, the following conclusions are equivalent:

(1) 𝛾̃(𝜃𝑔) = 𝟎 ⟺ 𝛾(𝜃∗𝑔 ) = 𝟎 ⟺ 𝛾(
𝑞20
𝜃𝑔
) = 𝟎 ⟺ 𝛾̃(

𝑞20
𝜃∗𝑔
) = 𝟎.

(2) 𝜓−,3(𝜃𝑔) and 𝜓+,1(𝜃𝑔) are linearly correlated. 𝜓−,1(𝜃∗𝑔 ) and 𝜓+,3(𝜃∗𝑔 ) are linearly correlated.

(3) 𝜓−,3(
𝑞20
𝜃∗𝑔
) and 𝜓+,1(

𝑞20
𝜃∗𝑔
) are linearly correlated. 𝜓−,1(

𝑞20
𝜃𝑔
) and 𝜓+,3(

𝑞20
𝜃𝑔
) are linearly correlated.

With the premise of simplicity and non-repetition of the discrete eigenvalues, the subsequent two theorems are derived:

Theorem 3. Let 𝑧𝑔 be a zero of ℎ11(𝑧) in the upper half plane with |𝑧𝑔| = 𝑞0, then 𝛾̃(𝑧𝑔) = 𝛾(𝑧∗𝑔) = 𝟎, there exist constants 𝑐𝑔 , and 𝑐𝑔 such that

𝜓+,1(𝑧𝑔) = 𝑐𝑔𝜓−,3(𝑧𝑔), 𝜓+,3(𝑧∗𝑔) = 𝑐𝑔𝜓−,1(𝑧∗𝑔). (69)

Theorem 4. Let 𝜃𝑔 be a zero of ℎ11(𝑧) in the upper half plane with |𝜃𝑔| ≠ 𝑞0, then |𝜃𝑔| < 𝑞0 and 𝑠33(𝜃𝑔) ≠ 0, there exist constants 𝑓𝑔 , 𝑓𝑔 , 𝑓𝑔 and 𝑓𝑔 such
that

𝜓+,1(𝜃𝑔) =
𝑓𝑔

𝑠33(𝜃𝑔)
𝛾̃(𝜃𝑔), 𝜓+,3(

𝑞20
𝜃𝑔

) = 𝑓𝑔𝛾(
𝑞20
𝜃𝑔

), (70a)

𝛾(𝜃∗𝑔 ) = 𝑓𝑔𝜓−,1(𝜃∗𝑔 ), 𝛾̃(
𝑞20
𝜃∗𝑔

) = 𝑓𝑔𝜓−,3(
𝑞20
𝜃∗𝑔

). (70b)

In Appendix B, we provide a detailed proof of the following two corollaries.

Corollary 5. Suppose that ℎ11(𝑧) has simple zeros {𝑧𝑔}
𝐺1
𝑔=1 on 𝐶𝑜, it can be inferred that the norming constants adhere to the symmetry relationship:

𝑐𝑔 = −𝑐𝑔 , 𝑐∗𝑔 =
𝑠′11(𝑧

∗
𝑔)

ℎ′33(𝑧
∗
𝑔)
𝑐𝑔 , 𝑔 = 1, 2,… , 𝐺1. (71)

Corollary 6. Suppose that ℎ11(𝑧) has zeros {𝜃𝑔}
𝐺2
𝑔=1 off 𝐶𝑜, it is known that the norming constants adhere to the symmetry relationship:

𝑓𝑔 =
i𝜃𝑔

𝑞0𝑠33(𝜃𝑔)
𝑓𝑔 , 𝑓𝑔 = −

𝑓 ∗
𝑔

𝜌(𝜃∗𝑔 )
, 𝑓𝑔 =

i𝑞0
𝜃∗𝑔𝜌(𝜃∗𝑔 )

𝑓 ∗
𝑔 , 𝑔 = 1, 2,… , 𝐺2. (72)

3.2. Asymptotic behavior

The asymptotic behavior of the modified Jost eigenfunctions for 𝑧 → ∞ and 𝑧 → 0 can be analyzed using the Wentzel–Kramers–Brillouin
approximation technique. Specifically, when applied to the differential Eqs. (23), it reveals asymptotic characteristics:

Corollary 7. The asymptotic expansion as 𝑧→ ∞ is delineated as follows:

𝜈±,1(𝑧; 𝑥, 𝑡) =
(

i
i
𝑧𝐪(𝑥, 𝑡)

)

+ 𝑂( 1
𝑧2

), 𝜈±,3(𝑧; 𝑥, 𝑡) =
( 𝐪±
𝑞0𝑧

𝐪†(𝑥, 𝑡)
𝐪±
𝑞0

)

+ 𝑂( 1
𝑧2

). (73)

Similarly, the asymptotic expansion as 𝑧→ 0 is delineated as follows:

𝜈±,1(𝑧; 𝑥, 𝑡) =
⎛

⎜

⎜

⎝

i𝐪±
𝑞20

𝐪†(𝑥, 𝑡)
i𝐪±
𝑧

⎞

⎟

⎟

⎠

+ 𝑂(𝑧), 𝜈±,3(𝑧; 𝑥, 𝑡) =
( 𝑞0

𝑧
1
𝑞0
𝐪(𝑥, 𝑡)

)

+ 𝑂(𝑧). (74)

By combining the modified auxiliary eigenfunctions (48) with the asymptotic properties (73) and (74), the following results are obtained:

𝑑(𝑧) =
⎛

⎜

⎜

⎝

𝐪⊥−
𝑞0𝑧

𝐪†(𝑥, 𝑡)
𝐪⟂−
𝑞0

⎞

⎟

⎟

⎠

+ 𝑂( 1
𝑧2

), 𝑑(𝑧) =
⎛

⎜

⎜

⎝

− 𝐪⊥+
𝑞0𝑧

𝐪†(𝑥, 𝑡)
− 𝐪⟂+
𝑞0

⎞

⎟

⎟

⎠

+ 𝑂( 1
𝑧2

), 𝑧→ ∞, (75)

and

𝑑(𝑧) =
(

0
𝐪⟂+
𝑞0

)

+ 𝑂(𝑧), 𝑑(𝑧) =
(

0

− 𝐪⟂−
𝑞0

)

+ 𝑂(𝑧), 𝑧→ 0. (76)

Corollary 8. The asymptotic behavior of scattering matrix entries as 𝑧→ ∞ is delineated as follows:

𝑠11(𝑧) = 1 + 𝑂( 1 ), 𝑠22(𝑧) = ℎ33(𝑧) =
𝐪†−𝐪+

2
+ 𝑂( 1 ), 𝑠32(𝑧) =

𝐪†+𝐪⟂−
2

+ 𝑂( 1 ), 𝑠23(𝑧) =
(𝐪⟂+)

†𝐪−
2

+ 𝑂( 1 ), (77a)

𝑧 𝑞0 𝑧 𝑞0 𝑧 𝑞0 𝑧
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ℎ11(𝑧) = 1 + 𝑂( 1
𝑧
), ℎ22(𝑧) = 𝑠33(𝑧) =

𝐪†+𝐪−
𝑞20

+ 𝑂( 1
𝑧
), ℎ32(𝑧) =

𝐪†−𝐪
⟂
+

𝑞20
+ 𝑂( 1

𝑧
), ℎ23(𝑧) =

(𝐪⟂−)
†𝐪+
𝑞20

+ 𝑂( 1
𝑧
), (77b)

the asymptotic behavior of other entries as 𝑧→ ∞ in the scattering matrix is 𝑂(1∕𝑧). Similarly, one can show that as 𝑧→ 0

𝑠11(𝑧) = ℎ22(𝑧) =
𝐪†+𝐪−
𝑞20

+ 𝑂(𝑧), 𝑠21(𝑧) =
i(𝐪⟂+)

†𝐪−
𝑞0𝑧

+ 𝑂(1), 𝑠33(𝑧) = 1 + 𝑂(𝑧), (78a)

𝑠22(𝑧) = ℎ11(𝑧) =
𝐪†−𝐪+
𝑞20

+ 𝑂(𝑧), ℎ21(𝑧) =
i(𝐪⟂−)

†𝐪+
𝑞0𝑧

+ 𝑂(1), ℎ33(𝑧) = 1 + 𝑂(𝑧), (78b)

the asymptotic behavior of other entries as 𝑧→ 0 in the scattering matrix is 𝑂(𝑧).

3.3. Behavior at the branch points

Next, we will analyze the characteristics of the Jost eigenfunctions and the scattering matrix at the branching points 𝑘 = ±𝑞0. At the branching
points, the matrices 𝐘±(𝑧) are degenerate. However, the term 𝐘±(𝑧)𝐞i(𝑥−𝑦)Λ1𝐘−1

± (𝑧) remains finite at the branching points.

lim
𝑧→±𝑞0

𝐘±𝐞i(𝑥−𝑦)Λ1𝐘−1
± =

⎛

⎜

⎜

⎝

1 ± i𝑞0(𝑥 − 𝑦) i(𝑦 − 𝑥)𝐪†±
i(𝑥 − 𝑦)𝐪±

1
𝑞20

[

(1 ∓ i𝑞0(𝑥 − 𝑦))𝐪±𝐪†± + e∓i𝑞0(𝑥−𝑦)𝐪⟂±(𝐪⟂±)†
]

⎞

⎟

⎟

⎠

. (79)

For all (𝑥, 𝑡) ∈ R2, it can be inferred from expression (28) that det 𝜓±(±𝑞0; 𝑥, 𝑡) = 0. Then, the columns of 𝜓±(𝑞0; 𝑥, 𝑡) and 𝜓±(−𝑞0; 𝑥, 𝑡) are linearly
ependent. With the help of the analytical properties (60), the following conditions are obtained:

𝜓±,1(𝑞0; 𝑥, 𝑡) = i𝜓±,3(𝑞0; 𝑥, 𝑡), 𝜓±,1(−𝑞0; 𝑥, 𝑡) = −i𝜓±,3(−𝑞0; 𝑥, 𝑡). (80)

We examine the characteristics of the scattering matrix 𝐒(𝑧) in the neighborhood of the branch points, which can be expressed in terms of
ronskian determinants. Consequently, we express the scattering coefficients in terms of these Wronskians:

𝑠𝑗 𝑙(𝑧) = 𝑧2

i(𝑧2 − 𝑞20 )
𝑊𝑗 𝑙(𝑧)e−i𝛿2(𝑧) =

𝑊𝑗 𝑙(𝑧)
i𝜌(𝑧)

e−i𝛿2(𝑧), (81)

where

𝑊𝑗 𝑙(𝑧) = det (𝜓−,𝑙(𝑧), 𝜓+,𝑗+1(𝑧), 𝜓+,𝑗+2(𝑧)), (82)

where 𝑗 + 1 and 𝑗 + 2 are calculated modulo 3. The scattering coefficients as 𝑧→ ±𝑞0 are articulated as follows:

𝑠𝑖𝑗 (𝑧) =
𝑠𝑖𝑗 ,±
𝑧 ∓ 𝑞0

+ 𝑠(𝑜)𝑖𝑗 ,± + 𝑂(𝑧 ∓ 𝑞0), 𝑧 ∈ R∖{±𝑞0}, (83)

where

𝑠𝑖𝑗 ,± = ∓ i𝑞0
2
𝑊𝑖𝑗 (±𝑞0; 𝑥, 𝑡)e[i𝑞

2
0 𝑡±i𝑞0(𝑥+4𝜎 𝑞20 𝑡)], 𝑠(𝑜)𝑖𝑗 ,± =

[

∓
i𝑞0
2

𝜕
𝜕 𝑧 𝑊𝑖𝑗 (𝑧; 𝑥, 𝑡)||

|𝑧=±𝑞0
− i𝑊𝑖𝑗 (±𝑞0; 𝑥, 𝑡)

]

e[i𝑞
2
0 𝑡±i𝑞0(𝑥+4𝜎 𝑞20 𝑡)]. (84)

Subsequently, the asymptotic series for 𝐒(𝑧) in the vicinity of the branch points can be described as follows:

𝐒(𝑧) = 𝐒±
𝑧 ∓ 𝑞0

+ 𝐒(𝑜)± + 𝑂(𝑧 ∓ 𝑞0), (85)

where

𝐒(𝑜)± =
(

𝑠(𝑜)𝑖𝑗 ,±
)

, 𝐒± = 𝑠11,±
⎛

⎜

⎜

⎝

1 0 ∓i
0 0 0
∓i 0 −1

⎞

⎟

⎟

⎠

+ 𝑠12,±
⎛

⎜

⎜

⎝

0 1 0
0 0 0
0 ∓i 0

⎞

⎟

⎟

⎠

. (86)

The asymptotic behavior of the reflection coefficients (65) at the branching points can be directly obtained through (86) and the symmetry (53):

lim
𝑧→±𝑞0

𝛽1(𝑧) = ∓i, lim
𝑧→±𝑞0

𝛽2(𝑧) = 0. (87)

4. Inverse problem

Generally, the IST is formulated as a suitable RH problem, which allows for the study of its various properties. Thus, the meromorphic
eigenfunctions in the upper half 𝑧-plane are related to those in the lower half 𝑧-plane through an appropriate jump condition.

4.1. Riemann-Hilbert problem

To formulate the matrix RH problem, it is essential to establish appropriate transition conditions that define the behavior of eigenfunctions,
hich are characterized by their meromorphic nature within the specified domain. Given that certain Jost eigenfunctions lack analytic properties,

t is necessary to define new modified meromorphic functions in the corresponding regions.

Lemma 1. Define the piecewise meromorphic function 𝐑±(𝑧; 𝑥, 𝑡) = (𝐫±1 , 𝐫±2 , 𝐫±3 ) as follows:

𝐑+(𝑧; 𝑥, 𝑡) = Ψ+(𝑧)e−i∆(𝑧) diag
(

1 , 1 , 1
)

=

[

𝜈+,1(𝑧) ,−
𝑑(𝑧)

, 𝜈−,3(𝑧)
]

, 𝑧 ∈ D+, (88a)

ℎ11(𝑧) 𝑠33(𝑧) ℎ11(𝑧) 𝑠33(𝑧)

9 



P.-F. Han et al.

c

t
p

s

Physica D: Nonlinear Phenomena 471 (2025) 134434 
𝐑−(𝑧; 𝑥, 𝑡) = Ψ−(𝑧)e−i∆(𝑧) diag
(

1, 1
𝑠11(𝑧)

, 1
ℎ33(𝑧)

)

=
[

𝜈−,1(𝑧),
𝑑(𝑧)
𝑠11(𝑧)

,
𝜈+,3(𝑧)
ℎ33(𝑧)

]

, 𝑧 ∈ D−, (88b)

where Ψ±(𝑧) = Ψ±(𝑧; 𝑥, 𝑡), 𝑑(𝑧) = 𝑑(𝑧; 𝑥, 𝑡), 𝑑(𝑧) = 𝑑(𝑧; 𝑥, 𝑡) and 𝜈±,𝑗 (𝑧) = 𝜈±,𝑗 (𝑧; 𝑥, 𝑡) for 𝑗 = 1, 3. The corresponding jump condition is
𝐑+(𝑧; 𝑥, 𝑡) = 𝐑−(𝑧; 𝑥, 𝑡)[𝐈 − ei∆(𝑧)𝐋(𝑧)e−i∆(𝑧)], 𝑧 ∈ R, (89)

and

𝐋(𝑧) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

[

|

|

𝛽2||
2

𝜌
− 𝛽∗1𝛽

∗
1 −

i𝑞0
𝑧𝜌
𝛽∗1𝛽

∗
2𝛽2

] [

𝛽∗2
𝜌

+
𝑞20
𝑧2𝜌2

𝛽∗2
|

|

|

𝛽2
|

|

|

2
−

i𝑞0
𝑧𝜌
𝛽∗1𝛽

∗
2

]

[

i𝑞0
𝑧𝜌
𝛽∗2𝛽2 + 𝛽

∗
1

]

i𝑞0
𝑧
𝛽∗1𝛽2 − 𝛽2 −

𝑞20
𝑧2𝜌

|

|

|

𝛽2
|

|

|

2
−
i𝑞0
𝑧
𝛽2

𝛽∗1
i𝑞0
𝑧𝜌
𝛽∗2 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (90)

with 𝜌 = 𝜌(𝑧), 𝛽𝑗 = 𝛽𝑗 (𝑧) and 𝛽𝑗 = 𝛽𝑗 (𝑞20∕𝑧) for 𝑗 = 1, 2.

To guarantee a unique solution to the aforementioned RH problem, it is imperative to establish an appropriate normalization condition. By
onsidering the asymptotic behavior of 𝑧→ ∞ and 𝑧→ 0, we provide the following lemma.

Lemma 2. The matrices 𝐑±(𝑧; 𝑥, 𝑡) defined in (88) have the following asymptotic behavior:

𝐑±(𝑧; 𝑥, 𝑡) = 𝐑∞ + 𝑂( 1
𝑧
), 𝑧→ ∞, 𝑧 ∈ D±, (91a)

𝐑±(𝑧; 𝑥, 𝑡) = 1
𝑧
𝐑0 + 𝑂(1), 𝑧→ 0, 𝑧 ∈ D±, (91b)

where

𝐑∞ + 1
𝑧
𝐑0 = 𝐘−(𝑧), 𝐑∞ =

(

i 0 0
𝟎𝟐×𝟏

1
𝑞0
𝐪⟂−

1
𝑞0
𝐪−

)

, 𝐑0 =
(

0 0 𝑞0
i𝐪− 𝟎𝟐×𝟏 𝟎𝟐×𝟏

)

. (92)

Due to the scattering matrix breaking the symmetry between 𝜈+(𝑧) and 𝜈−(𝑧), the asymptotic behavior as 𝑧 → ∞ and 𝑧 → 0 is obtained using
he potential value at 𝑥→ −∞ (rather than 𝑥→ ∞). In addition to the asymptotic behavior outlined in Eq. (88), to fully formulate the RH problem
resented in Eq. (89), it is also necessary to specify the residue conditions.

Lemma 3. By using the meromorphic matrices 𝐑±(𝑧; 𝑥, 𝑡) as described in Lemma 1, the corresponding residue conditions are as follows:
[

Res𝑧=𝑧𝑔 𝐑
+(𝑧; 𝑥, 𝑡)

]

= 𝐶𝑔
[

𝐫+3 (𝑧𝑔), 𝟎, 𝟎
]

,
[

Res𝑧=𝑧∗𝑔 𝐑
−(𝑧; 𝑥, 𝑡)

]

= 𝐶̄𝑔
[

𝟎, 𝟎, 𝐫−1 (𝑧
∗
𝑔)
]

, (93a)
[

Res𝑧=𝜃𝑔 𝐑
+(𝑧; 𝑥, 𝑡)

]

= −𝐹𝑔
[

𝐫+2 (𝜃𝑔), 𝟎, 𝟎
]

,
[

Res𝑧=𝑞20∕𝜃𝑔
𝐑−(𝑧; 𝑥, 𝑡)

]

= 𝐹𝑔
[

𝟎, 𝟎, 𝐫−2 (𝑞
2
0∕𝜃𝑔)

]

, (93b)
[

Res𝑧=𝜃∗𝑔 𝐑
−(𝑧; 𝑥, 𝑡)

]

= 𝐹𝑔
[

𝟎, 𝐫−1 (𝜃
∗
𝑔 ), 𝟎

]

,
[

Res𝑧=𝑞20∕𝜃∗𝑔
𝐑+(𝑧; 𝑥, 𝑡)

]

= −𝐹𝑔
[

𝟎, 𝐫+3 (𝑞
2
0∕𝜃

∗
𝑔 ), 𝟎

]

, (93c)

where 𝛿𝑗 (𝑧) = 𝛿𝑗 (𝑧; 𝑥, 𝑡) for 𝑗 = 1, 2 and 𝐫±𝑗 (𝑧) = 𝐫±𝑗 (𝑧; 𝑥, 𝑡) for 𝑗 = 1, 2, 3, with norming constants

𝐶𝑔 = 𝐶𝑔(𝑥, 𝑡) =
𝑐𝑔

ℎ′11(𝑧𝑔)
e−2i𝛿1(𝑧𝑔 ), 𝐹𝑔 = 𝐹𝑔(𝑥, 𝑡) =

𝑓𝑔
ℎ′11(𝜃𝑔)

ei[𝛿2(𝜃𝑔 )−𝛿1(𝜃𝑔 )], 𝐹𝑔 = 𝐹𝑔(𝑥, 𝑡) =
𝑓𝑔𝑠11(𝑞20∕𝜃𝑔)

ℎ′33(𝑞
2
0∕𝜃𝑔)

ei[𝛿2(𝜃𝑔 )−𝛿1(𝜃𝑔 )], (94a)

𝐶̄𝑔 = 𝐶̄𝑔(𝑥, 𝑡) =
𝑐𝑔

ℎ′33(𝑧
∗
𝑔)
e2i𝛿1(𝑧

∗
𝑔 ), 𝐹𝑔 = 𝐹𝑔(𝑥, 𝑡) =

𝑓𝑔
𝑠′11(𝜃

∗
𝑔 )
ei[𝛿1(𝜃

∗
𝑔 )−𝛿2(𝜃

∗
𝑔 )], 𝐹𝑔 = 𝐹𝑔(𝑥, 𝑡) =

𝑓𝑔e
i[𝛿1(𝜃∗𝑔 )−𝛿2(𝜃

∗
𝑔 )]

𝑠′33(𝑞
2
0∕𝜃

∗
𝑔 )

, (94b)

where 𝑔 = 1,… , 𝐺1 for equations involving 𝑧𝑔 and 𝑔 = 1,… , 𝐺2 for equations involving 𝜃𝑔 .

Corollary 9. Through Corollaries 5 and 6, it can be seen that the norming constants satisfy the following symmetry relationship:

𝐶∗
𝑔 (𝑥, 𝑡) = 𝐶̄𝑔(𝑥, 𝑡) = e−2i ar g(𝑧𝑔 )𝐶𝑔(𝑥, 𝑡), 𝐹𝑔(𝑥, 𝑡) = − i𝑞0

𝜃𝑔
𝐹𝑔(𝑥, 𝑡), 𝐹𝑔(𝑥, 𝑡) = −

𝐹 ∗
𝑔 (𝑥, 𝑡)
𝜌(𝜃∗𝑔 )

, 𝐹𝑔(𝑥, 𝑡) = −
i𝑞30
(𝜃∗𝑔 )3

𝐹 ∗
𝑔 (𝑥, 𝑡)
𝜌(𝜃∗𝑔 )

. (95)

4.2. Reconstruction formula, existence and uniqueness of the solutions of the Riemann-Hilbert problem

Regularize the RH problem by subtracting the leading asymptotics and any pole contributions associated with the discrete spectrum, then the
olutions of the RH problem can be obtained with the help of the Plemelj’s formula. In Appendix C, we provide a detailed proof of the following

theorems.

Theorem 5. The solutions of the RH problem defined by Lemmas 1, 2 and 3 are given by

𝐑(𝑧; 𝑥, 𝑡) = 𝐘−(𝑧) − 1
2𝜋i ∫R

𝐑−(𝜉)̃𝐋(𝜉)
𝜉 − 𝑧

d𝜉 +
𝐺1
∑

𝑖=1

[

Res𝑧=𝑧𝑖 𝐑
+

𝑧 − 𝑧𝑖
+

Res𝑧=𝑧∗𝑖 𝐑
−

𝑧 − 𝑧∗𝑖

]

+
𝐺2
∑

[

Res𝑧=𝜃𝑗 𝐑
+

𝑧 − 𝜃
+

Res𝑧=𝜃∗𝑗 𝐑
−

𝑧 − 𝜃∗

]

+
𝐺2
∑

⎡

⎢

⎢

Res𝑧=𝑞20∕𝜃∗𝑗
𝐑+

𝑧 − (𝑞2∕𝜃∗) +
Res𝑧=𝑞20∕𝜃𝑗

𝐑−

𝑧 − (𝑞2∕𝜃 )

⎤

⎥

⎥

,

(96)
𝑗=1 𝑗 𝑗 𝑗=1
⎣ 0 𝑗 0 𝑗

⎦
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where 𝐋̃(𝑧) = 𝐞i∆(𝑧)𝐋(𝑧)𝐞−i∆(𝑧), with 𝐑(𝑧; 𝑥, 𝑡) = 𝐑±(𝑧; 𝑥, 𝑡) = (𝐫±1 , 𝐫±2 , 𝐫±3 ) for 𝑧 ∈ D±. Furthermore, the eigenfunctions are given by

𝐫−1 (𝑧) =
(

i
i𝐪−∕𝑧

)

− 1
2𝜋i ∫R

[

𝐑−(𝜉 )̃𝐋(𝜉)
]

1
𝜉 − 𝑧

d𝜉 +
𝐺1
∑

𝑖=1

[

𝐶𝑖𝐫+3 (𝑧𝑖)
𝑧 − 𝑧𝑖

]

−
𝐺2
∑

𝑗=1

[

𝐹𝑗𝐫+2 (𝜃𝑗 )
𝑧 − 𝜃𝑗

]

, 𝑧 = 𝑧∗𝑔 , 𝜃∗𝑔 , (97)

𝐫+3 (𝑧) =
(

𝑞0∕𝑧
𝐪−∕𝑞0

)

− 1
2𝜋i ∫R

[

𝐑−(𝜉)̃𝐋(𝜉)
]

3
𝜉 − 𝑧

d𝜉 +
𝐺1
∑

𝑖=1

[

𝐶̄𝑖𝐫−1 (𝑧
∗
𝑖 )

𝑧 − 𝑧∗𝑖

]

+
𝐺2
∑

𝑗=1

[

𝐹𝑗𝐫−2 (𝑞
2
0∕𝜃𝑗 )

𝑧 − (𝑞20∕𝜃𝑗 )

]

, 𝑧 = 𝑧𝑔 , 𝑞20∕𝜃∗𝑔 , (98)

𝐫+2 (𝜃𝑔) =
(

0
𝐪⊥−∕𝑞0

)

− 1
2𝜋i ∫R

[

𝐑−(𝜉 )̃𝐋(𝜉)
]

2
𝜉 − 𝜃𝑔

d𝜉 +
𝐺2
∑

𝑗=1

[

𝐹𝑗𝐫−1 (𝜃
∗
𝑗 )

𝜃𝑔 − 𝜃∗𝑗

]

−
𝐺2
∑

𝑗=1

[

𝐹𝑗𝐫+3 (𝑞
2
0∕𝜃

∗
𝑗 )

𝜃𝑔 − (𝑞20∕𝜃∗𝑗 )

]

, (99)

𝐫−2 (
𝑞20
𝜃𝑔

) =
(

0
𝐪⊥−∕𝑞0

)

− 1
2𝜋i ∫R

[

𝐑−(𝜉 )̃𝐋(𝜉)
]

2

𝜉 − (𝑞20∕𝜃𝑔)
d𝜉 +

𝐺2
∑

𝑗=1

[

𝐹𝑗𝐫−1 (𝜃
∗
𝑗 )

(𝑞20∕𝜃𝑔) − 𝜃∗𝑗

]

−
𝐺2
∑

𝑗=1

[

𝐹𝑗𝐫+3 (𝑞
2
0∕𝜃

∗
𝑗 )

(𝑞20∕𝜃𝑔) − (𝑞20∕𝜃∗𝑗 )

]

, (100)

where 𝑔 = 1,… , 𝐺1 for equations involving 𝑧𝑔 and 𝑔 = 1,… , 𝐺2 for equations involving 𝜃𝑔 .
Usually, upon obtaining the solutions to the RH problem, the potential can be reconstructed using the norming constants and scattering

oefficients. This is achieved by comparing the asymptotic behavior of the eigenfunctions with the asymptotics derived from the direct scattering
process. For details on the process, see Appendix C.

Theorem 6 (Reconstruction Formula). Pure soliton solutions 𝐪(𝑥, 𝑡) of the defocusing–defocusing coupled Hirota equations with NZBCs (3) are reconstructed
s follows:

𝑞𝑘(𝑥, 𝑡) = 𝑞−,𝑘 −
1
2𝜋 ∫R

[

𝐑−(𝜉 )̃𝐋(𝜉)
]

(𝑘+1)1
d𝜉 −

𝐺1
∑

𝑖=1
i𝐶𝑖𝐫+(𝑘+1)3(𝑧𝑖) +

𝐺2
∑

𝑗=1
i𝐹𝑗𝐫+(𝑘+1)2(𝜃𝑗 ), 𝑘 = 1, 2. (101)

Within the framework of the IST, we have derived the expression (96) for the solutions to the RH problem. This leads to a pertinent and
significant question: can we obtain a rigorous proof regarding the existence and uniqueness of this solution? In Appendix C, we provide a rigorous
roof that the existence and uniqueness of solutions to the RH problem (for simplicity, we only consider the case where there is no discrete spectrum,
nd the case where discrete spectra exist can also be similarly proven) are guaranteed under certain conditions.

Theorem 7 (Uniqueness). Under the assumption that no discrete spectrum exists, if the RH problem defined by Lemmas 1, 2 and 3 admits a solution, this
olution is unique.

Theorem 8 (Existence). Under the assumption that no discrete spectrum exists, if 𝐋(⋅) ∈ 𝐿2(R) ∩ 𝐿∞(R) and 𝐼 − 𝐸𝐁 has Fredholm index zero, the RH
problem defined by Lemmas 1, 2 and 3 admits a unique solution.

Remark 1. By employing methods similar to those outlined in Refs. [39–43], we can attain more robust outcomes. The defocusing–defocusing
coupled Hirota equations may give rise to particularly severe spectral singularities as described in [44]. It can be shown that if 𝐪(𝑥, 𝑡) − 𝐪± decays
ufficiently rapidly as 𝑥 → ±∞, the scattering coefficients are infinitely differentiable functions, thereby eliminating the need for the condition
(⋅) ∈ 𝐿∞(R). Furthermore, a slow decay of 𝐪(𝑥, 𝑡) − 𝐪± as 𝑥 → ±∞ precludes the relevant definition of the associated Zakharov-Shabat scattering
roblem under zero boundary conditions considered in [44]. Similarly, it can be demonstrated that the asymptotic behavior presented in Corollary 8

implies 𝐋(⋅) ∈ 𝐿2(R). Consequently, the existence and uniqueness of the RHP solution in the presence of a discrete spectrum can be established.

Remark 2. The requirement in Theorem 8 is that the Fredholm index of operator 𝐼 − 𝐸𝐁 is zero, which proves that under the assumption in
Theorem 8, the operator 𝐼 − 𝐸𝐁 is invertible on 𝐿2(R) [36]. Due to the zero Fredholm index of the operator 𝐼 − 𝐸𝐁, it is reversible if and only if
−𝐸𝐁 is injective. The methodologies presented in Refs. [39–43] substantiate that the outcome is a consequence of the scattering data’s properties.
evertheless, owing to the intricate nature of the proof, we forgo an exhaustive discussion at this juncture.

4.3. Trace formulae and pure soliton solutions

We need to reconstruct the analytical scattering coefficients ℎ11(𝑧) and 𝑠11(𝑧) based on the scattering data [36]. We can define

𝜒+(𝑧) = ℎ11(𝑧)
𝐺1
∏

𝑔=1

𝑧 − 𝑧∗𝑔
𝑧 − 𝑧𝑔

𝐺2
∏

𝑔=1

𝑧 − 𝜃∗𝑔
𝑧 − 𝜃𝑔

, 𝑧 ∈ D+, 𝜒−(𝑧) = 𝑠11(𝑧)
𝐺1
∏

𝑔=1

𝑧 − 𝑧𝑔
𝑧 − 𝑧∗𝑔

𝐺2
∏

𝑔=1

𝑧 − 𝜃𝑔
𝑧 − 𝜃∗𝑔

, 𝑧 ∈ D−. (102)

Using the definition of the reflection coefficients (65) and the corresponding calculation of the scattering coefficients, then we have

ln𝜒+(𝑧) + ln𝜒−(𝑧) = − ln
[

1 − |

|

𝛽1(𝑧)||
2 −

|

|

𝛽2(𝑧)||
2

𝜌(𝑧)

]

, 𝑧 ∈ R. (103)

By combining (102) with (103) and using the Plemelj’s formula, it can be concluded that

𝜒+(𝑧) = exp
[

− 1
2𝜋i ∫R

ln

[

1 − |

|

𝛽1(𝜉)||
2 −

|

|

𝛽2(𝜉)||
2

𝜌(𝜉)

]

d𝜉
𝜉 − 𝑧

]

, 𝑧 ∈ D+, (104a)

𝜒−(𝑧) = exp
[

1
2𝜋i ∫R

ln

[

1 − |

|

𝛽1(𝜉)||
2 −

|

|

𝛽2(𝜉)||
2

𝜌(𝜉)

]

d𝜉
𝜉 − 𝑧

]

, 𝑧 ∈ D−. (104b)
11 
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By substituting expression (104) into definition (102), the scattering coefficient display expression can be solved

ℎ11(𝑧) =
𝐺1
∏

𝑔=1

𝑧 − 𝑧𝑔
𝑧 − 𝑧∗𝑔

𝐺2
∏

𝑔=1

𝑧 − 𝜃𝑔
𝑧 − 𝜃∗𝑔

exp

[

− 1
2𝜋i ∫R

ln

[

1 − |

|

𝛽1(𝜉)||
2 −

|

|

𝛽2(𝜉)||
2

𝜌(𝜉)

]

d𝜉
𝜉 − 𝑧

]

, 𝑧 ∈ D+, (105a)

𝑠11(𝑧) =
𝐺1
∏

𝑔=1

𝑧 − 𝑧∗𝑔
𝑧 − 𝑧𝑔

𝐺2
∏

𝑔=1

𝑧 − 𝜃∗𝑔
𝑧 − 𝜃𝑔

exp

[

1
2𝜋i ∫R

ln

[

1 − |

|

𝛽1(𝜉)||
2 −

|

|

𝛽2(𝜉)||
2

𝜌(𝜉)

]

d𝜉
𝜉 − 𝑧

]

, 𝑧 ∈ D−. (105b)

By comparing the behavior of trace formula (105) as 𝑧→ 0 and the asymptotic behavior of ℎ11(𝑧) and 𝑠11(𝑧) in (78), we can calculate the asymptotic
hase difference:

𝛥𝛿 = 𝛿+ − 𝛿− = 2
𝐺1
∑

𝑔=1
ar g(𝑧𝑔) + 2

𝐺2
∑

𝑔=1
ar g(𝜃𝑔) + 1

2𝜋 ∫R
ln

[

1 − |

|

𝛽1(𝜉)||
2 −

|

|

𝛽2(𝜉)||
2

𝜌(𝜉)

]

d𝜉
𝜉
. (106)

Since the discrete eigenvalues on 𝐶𝑜 satisfy the restrictions ar g(𝐶𝑔) = ar g(𝑧𝑔) for 𝑔 = 1,… , 𝐺1, the functions 𝐶𝑔(𝑥, 𝑡) in Theorem 5 can be
parameterized

𝐶𝑔(𝑥, 𝑡)e2i𝛿1(𝑧𝑔 ) = 2 ||
|

𝜆(𝑧𝑔)
|

|

|

e2
|

|

|

𝜆(𝑧𝑔 )
|

|

|

𝜅𝑔+i𝜒𝑔 , 𝑔 = 1,… , 𝐺1, (107)

where 𝜅𝑔 and 𝜒𝑔 are real parameters and 𝜒𝑔 = ar g(𝑧𝑔) + 𝑘𝜋 for 𝑘 = 0, 1.

Theorem 9. In the reflectionless case, the pure soliton solutions (101) of the defocusing–defocusing coupled Hirota equations with NZBCs (3) may be
ritten

𝐪(𝑥, 𝑡) = 1
det𝐊(𝑥, 𝑡)

(

det𝐊aug
1 (𝑥, 𝑡)

det𝐊aug
2 (𝑥, 𝑡)

)

, 𝐊aug
𝑛 (𝑥, 𝑡) =

(

𝑞−,𝑛 𝐄(𝑥, 𝑡)
𝐀𝑛(𝑥, 𝑡) 𝐊(𝑥, 𝑡)

)

, 𝑛 = 1, 2, (108)

the components in vector 𝐄(𝑥, 𝑡) =
(

𝐸1(𝑥, 𝑡),… , 𝐸𝐺1+𝐺2
(𝑥, 𝑡)

)

are

𝐸𝑔(𝑥, 𝑡) =
{

i𝐶𝑔(𝑥, 𝑡), 𝑔 = 1,… , 𝐺1,

−i𝐹𝑔−𝐺1
(𝑥, 𝑡), 𝑔 = 𝐺1 + 1,… , 𝐺1 + 𝐺2,

(109)

the components in vector 𝐀𝑛(𝑥, 𝑡) =
(

𝐴𝑛1(𝑥, 𝑡),… , 𝐴𝑛(𝐺1+𝐺2)(𝑥, 𝑡)
)𝑇

are

𝐴𝑛𝑖′ (𝑥, 𝑡) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑞−,𝑛
𝑞0

, 𝑖′ = 1,… , 𝐺1,

(−1)𝑛+1
𝑞∗−, ̄𝑛
𝑞0

+
𝐺2
∑

𝑗=1

i𝑞−,𝑛
𝜃∗𝑗

𝑓𝑗 𝑖′ (𝑥, 𝑡), 𝑖′ = 𝐺1 + 1,… , 𝐺1 + 𝐺2,
(110)

the matrix 𝐊(𝑥, 𝑡) = 𝐈 + 𝐏(𝑥, 𝑡), the entries of matrix 𝐏(𝑥, 𝑡) = (𝑃𝑗 𝑘(𝑥, 𝑡)) are defined as

𝑃𝑗 𝑘(𝑥, 𝑡) =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

−
i𝑧𝑘
𝑞0
𝑓 (2)
𝑘 (𝑧𝑗 ; 𝑥, 𝑡), 𝑗 , 𝑘 = 1,… , 𝐺1,

−𝑓 (5)
𝑘−𝐺1

(𝑧𝑗 ; 𝑥, 𝑡), 𝑗 = 1,… , 𝐺1, 𝑘 = 𝐺1 + 1,… , 𝐺1 + 𝐺2,

−
𝐺2
∑

𝑎=1
𝑓𝑎𝑗 (𝑥, 𝑡)𝑓 (1)

𝑘 (𝜃∗𝑎 ; 𝑥, 𝑡), 𝑗 = 𝐺1 + 1,… , 𝐺1 + 𝐺2, 𝑘 = 1,… , 𝐺1,

𝐺2
∑

𝑎=1
𝑓𝑎𝑗 (𝑥, 𝑡)𝑓 (3)

𝑘−𝐺1
(𝜃∗𝑎 ; 𝑥, 𝑡), 𝑗 , 𝑘 = 𝐺1 + 1,… , 𝐺1 + 𝐺2,

(111)

where

𝑓𝑗 𝑘(𝑥, 𝑡) = 𝑓 (4)
𝑗 (𝜃𝑘−𝐺1

; 𝑥, 𝑡) +
i𝜃∗𝑗
𝑞0
𝑓 (6)
𝑗 (𝜃𝑘−𝐺1

; 𝑥, 𝑡), 𝑛̄ = 𝑛 + (−1)𝑛+1. (112)

4.4. Varieties of soliton solutions

Here, the different possibilities of soliton solutions (108) for the defocusing–defocusing coupled Hirota equations with NZBCs (3) are analyzed.
dditionally, various schemes for these soliton solutions are studied when there is either one or two discrete eigenvalues located on or outside the

circle 𝐶𝑜.

4.4.1. Soliton solutions for the scenario where 𝐺1 + 𝐺2 = 1
Discuss the case where there is only one discrete eigenvalue on or outside the circle 𝐶𝑜, i.e., 𝐺1+𝐺2 = 1. Firstly, we focus on the scenario where

he eigenvalues are situated on the circle with (𝐺1 = 1 and 𝐺2 = 0) and express the discrete eigenvalues and normalization constants as follows:

𝑧1 = 𝑞0ei𝛼1 , 𝑐1 = e𝜅1+i[𝛼1+(𝑘− 1
2 )𝜋], 0 < 𝛼1 < 𝜋 , 𝑘 = 0, 1, (113)

from (108) one obtains the one-soliton solution of the defocusing–defocusing coupled Hirota equations with NZBCs (3):

𝐪(𝑥, 𝑡) = ei𝛼1
[

cos(𝛼 ) − i sin(𝛼 )
[

t anh(𝑄 )
](−1)𝑘+1

]

𝐪 , (114)
1 1 1 −

12 
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Fig. 1. (a1) and (a2): One dark–dark soliton solution by taking 𝐪− = (
√

2
2
,−

√

2
2
)𝑇 , 𝜎 = 𝜅1 = 1, 𝛼1 = 1

2
𝜋, 𝑘 = 1. (b1) and (b2): One bright–bright soliton solution by taking

𝐪− = ( 1
2
,−

√

3
2
)𝑇 , 𝜎 = 1, 𝜅1 = exp(− 2

5
− 9

5
i), 𝛼1 =

1
2
𝜋, 𝑘 = 0.

Fig. 2. (a1) and (a2): One dark-bright soliton solution by taking 𝐪− = (1, 0)𝑇 , 𝜎 = 𝜅2 = 1, 𝜒2 = −1, 𝐾2 = 0.5, 𝛼2 = 1
2
𝜋. (b1) and (b2): One bright–bright soliton solution by taking

𝐪− = (1, 0)𝑇 , 𝜎 = 𝜒2 = 1, 𝐾2 = 0.5, 𝜅2 = exp( 3
5
− 3

5
i), 𝛼2 = 1

2
𝜋. (c1) and (c2): One breather–breather soliton solution by taking 𝐪− = ( 1

2
e−

1
10
i𝜋 ,−

√

3
2
e−

1
10
i𝜋 )𝑇 , 𝜎 = 10−3, 𝜅2 = 0.5, 𝜒2 = 1,

𝐾2 = 0.9, 𝛼2 =
1
2
𝜋. (d1) and (d2): Two dark–dark soliton solutions by taking 𝐪− = (

√

2
2
,−

√

2
2
)𝑇 , 𝜎 = 10−1, 𝜅3 = 𝜅4 = 1, 𝛼3 =

1
2
𝜋, 𝛼4 =

1
4
𝜋, 𝑘1 = 𝑘2 = 1.

where

𝑄1 = −𝑞0 sin(𝛼1)
[

𝑥 + [2𝑞0 cos(𝛼1) + 2𝑞20𝜎 cos(2𝛼1) + 4𝑞20𝜎]𝑡
]

−
𝜅1
2
. (115)

Remark 3. In case (113), two types of soliton solutions are obtained. For 𝑘 = 1 and 𝜅1 ∈ R, one dark–dark soliton solution is given by panels
(a1) and (a2) in Fig. 1. Moreover, setting 𝑘 = 0 and 𝜅1 ∈ C generates one bright–bright soliton solution in panels (b1) and (b2) of Fig. 1.

Next, we focus on a solitary quartet of eigenvalues situated outside the circle (𝐺1 = 0 and 𝐺2 = 1) and proceed to establish the relevant
parameters:

𝜃1 = 𝐾2ei𝛼2 , 𝑓1 = e𝜅2+i𝜒2 , 0 < 𝐾2 < 𝑞0, 0 < 𝛼2 < 𝜋 , 𝜒2 ∈ R, (116)

from (108) one generates the corresponding one-soliton solution

𝐪(𝑥, 𝑡) =
𝐾2

2 (e
𝑄21 − 1) + 𝑞20

𝐾2
2 (e

𝑄22 − 1) + 𝑞20
𝐪− +

ie𝑄23𝐾2(𝐾2
2 − 𝑞20 )

𝑞30 + 𝑞0𝐾
2
2 (e

𝑄22 − 1)𝐪
⟂
−, (117)

where

𝑄21 = 2𝜅2 + 2i𝛼2 − 2i𝐾2(𝑥 + 3𝑞20𝜎 𝑡) sinh(i𝛼2) − 2i𝐾2
2 𝑡 sinh(2i𝛼2) − 2i𝐾3

2𝜎 𝑡 sinh(3i𝛼2), (118a)

𝑄23 = (1 − e2i𝛼2 )[𝜅2 + i(𝜒2 − 𝛼2) − i𝐾2ei𝛼2 (𝑥 + 3𝑞20𝜎 𝑡) − i𝐾2
2 e

2i𝛼2 𝑡 − i𝐾3
2𝜎e

3i𝛼2 𝑡], (118b)

𝑄22 = 2𝜅2 − i𝐾2(e−i𝛼2 − e−3i𝛼2 )[𝐾2𝑡(ei𝛼2 + e3i𝛼2 ) +𝐾2
2𝜎 𝑡(1 + e4i𝛼2 ) + e2i𝛼2 (𝑥 + (𝐾2

2 + 3𝑞20 )𝜎 𝑡)]. (118c)

Remark 4. In case (116), for 𝑞−,1𝑞−,2 = 0 and 𝜅2 ∈ R, one dark-bright soliton solution is given by panels (a1) and (a2) in Fig. 2. Moreover, setting
𝑞−,1𝑞−,2 = 0 and 𝜅2 ∈ C yields one bright–bright soliton solution in panels (b1) and (b2) of Fig. 2. Additionally, selecting parameters such that
𝑞−,1𝑞−,2 ≠ 0 results in one breather–breather soliton solution, illustrated in panels (c1) and (c2) of Fig. 2.

4.4.2. Soliton solutions for the scenario where 𝐺1 + 𝐺2 = 2
Discuss the case where there is only one discrete eigenvalue on or outside the circle 𝐶𝑜, i.e., 𝐺1 + 𝐺2 = 2. Firstly, taking into account a pair of

eigenvalues located on the circumference (𝐺1 = 2 and 𝐺2 = 0) and considering the discrete eigenvalues and normalization constants as follows:
𝑧1 = 𝑞0ei𝛼3 , 𝑧2 = 𝑞0ei𝛼4 , 𝑐1 = e𝜅3+i[𝛼3+(𝑘1− 1
2 )𝜋], 0 < 𝛼3, 𝛼4 < 𝜋 , 𝑘1, 𝑘2 = 0, 1, 𝑐2 = e𝜅4+i[𝛼4+(𝑘2− 1

2 )𝜋]. (119)

13 
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Fig. 3. (a1) and (a2): Two bright–bright soliton solutions by taking 𝐪− = ( 1
2
,−

√

3
2
)𝑇 , 𝜎 = 10−2, 𝜅3 = e−1− 3

2
i, 𝜅4 = e−1−i, 𝛼3 = 1

2
𝜋, 𝛼4 =

3
4
𝜋, 𝑘1 = 𝑘2 = 0. (b1) and (b2): One dark–dark

and one bright–bright soliton solutions by taking 𝐪− = ( 1
2
,−

√

3
2
)𝑇 , 𝜎 = 10−1, 𝜅3 = 1, 𝜅4 = e−1− 3

2
i, 𝛼3 =

1
2
𝜋, 𝛼4 =

3
4
𝜋, 𝑘1 = 1, 𝑘2 = 0. (c1) and (c2): One bright–bright and one dark–dark

soliton solutions by taking 𝐪− = (
√

2
2
,−

√

2
2
)𝑇 , 𝜎 = 10−2, 𝜅3 = e 1

10
+i, 𝜅4 = 1, 𝛼3 = 1

2
𝜋, 𝛼4 = 3

4
𝜋, 𝑘1 = 0, 𝑘2 = 1. (d1) and (d2): Two parallel dark-bright soliton solutions by taking

𝐪− = (1, 0)𝑇 , 𝜎 = 10−3, 𝐾6 = 𝜅5 = 𝜅6 = 𝜒6 = 0.5, 𝛼5 = 𝛼6 =
1
2
𝜋, 𝑘 = 1.

Remark 5. Through the expressions (119), soliton solutions and the reflectionless potentials, it can be inferred that the different structures of
the two-soliton solutions are obtained. For 𝑘1 = 𝑘2 = 1 and 𝜅3, 𝜅4 ∈ R, the two dark–dark soliton solutions are given by panels (d1) and (d2) in
Fig. 2. Moreover, setting 𝑘1 = 𝑘2 = 0 and 𝜅3, 𝜅4 ∈ C generates two bright–bright soliton solutions in panels (a1) and (a2) of Fig. 3. In addition, one
dark–dark and one bright–bright soliton solutions are obtained by selecting parameters 𝑘1 = 1, 𝑘2 = 0, 𝜅3 ∈ R and 𝜅4 ∈ C in panels (b1) and (b2)
of Fig. 3. Finally, setting 𝑘1 = 0, 𝑘2 = 1, 𝜅3 ∈ C and 𝜅4 ∈ R yields one bright–bright and one dark–dark soliton solutions in (c1) and (c2) of Fig. 3.

-
One can discern a scenario in which one discrete eigenvalue lies on the circle while the other is situated off the circle: 𝐺1 = 𝐺2 = 1. Subsequently,

we encapsulate the discrete eigenvalues and norming constants within the following expressions:

𝑧1 = 𝑞0ei𝛼5 , 𝑐1 = e𝜅5+i[𝛼5+(𝑘− 1
2 )𝜋], 𝑘 = 0, 1, 0 < 𝛼5, 𝛼6 < 𝜋 , 𝜃1 = 𝐾6ei𝛼6 , 𝑓1 = e𝜅6+i𝜒6 , 0 < 𝐾6 < 𝑞0, 𝜒6 ∈ R. (120)

Remark 6. Based on the analysis of two types of one-soliton solutions, the combination of these two types of soliton solutions (120) leads to
six distinct outcomes in the case of 𝐺1 = 𝐺2 = 1. For 𝑘 = 1, 𝑞−,1𝑞−,2 = 0 and 𝜅5, 𝜅6 ∈ R, two parallel dark-bright soliton solutions are given by
panels (d1) and (d2) in Fig. 3. In Fig. 3, panels (d1) and (d2) can be regarded as 𝑊 -type soliton and 𝑀-type soliton solutions. Moreover, setting
𝑘 = 1, 𝑞−,1𝑞−,2 = 0, 𝜅5 ∈ R and 𝜅6 ∈ C generates one parallel dark-bright and one parallel bright–bright soliton solutions in panels (a1) and (a2) of
Fig. 4. Furthermore, two parallel bright–bright soliton solutions are obtained by selecting parameters 𝑘 = 0, 𝑞−,1𝑞−,2 = 0 and 𝜅5, 𝜅6 ∈ C in panels
(b1) and (b2) of Fig. 4. Then, setting 𝑘 = 0, 𝑞−,1𝑞−,2 = 0, 𝜅5 ∈ C and 𝜅6 ∈ R yields one parallel bright–bright and one parallel dark-bright soliton
solutions in panels (c1) and (c2) of Fig. 4. Additionally, setting 𝑘 = 1, 𝑞−,1𝑞−,2 ≠ 0 and 𝜅5 ∈ R generates one dark–dark and one breather–breather
soliton solutions in panels (d1) and (d2) of Fig. 4. In Fig. 4, panels (b1) and (b2) can be regarded as 𝑀-type soliton and 𝑀-type soliton solutions.
In addition, one bright–bright and one breather–breather soliton solutions are obtained by selecting parameters 𝑘 = 0, 𝑞1− × 𝑞2− = 0 and 𝜅5 ∈ C in
panels (a1) and (a2) of Fig. 5.

Following that, we examine the case where both eigenvalues are located outside the circle (𝐺1 = 0 and 𝐺2 = 2) and define additional parameters
accordingly.

𝜃1 = 𝐾7ei𝛼7 , 𝜃2 = 𝐾8ei𝛼8 , 𝑓1 = e𝜅7+i𝜒7 , 𝑓2 = e𝜅8+i𝜒8 , 0 < 𝐾7, 𝐾8 < 𝑞0, 𝜒7, 𝜒8 ∈ R. (121)

Remark 7. Through the expressions (121), soliton solutions and the reflectionless potentials, it can be inferred that the different structures of
the two-soliton solutions are obtained. For 𝑞−,1𝑞−,2 = 0 and 𝜅7, 𝜅8 ∈ R, two dark-bright soliton solutions are given by panels (b1) and (b2) in
Fig. 5. Moreover, setting 𝑞−,1𝑞−,2 = 0 and 𝜅7, 𝜅8 ∈ C generates two bright–bright soliton solutions in panels (c1) and (c2) of Fig. 5. In addition, two
breather–breather soliton solutions are obtained by selecting parameters 𝑞−,1𝑞−,2 ≠ 0 in panels (d1) and (d2) of Fig. 5.

5. Multiple double-pole solutions

The situation of the defocusing–defocusing coupled Hirota equations with NZBCs (3) when the analytical scattering coefficient has double zeros
was obtained in [36]. We shall denote the pertinent solutions as the ‘‘multiple double-pole’’ solutions associated with the Eqs. (3).

Given that ℎ11(𝜃𝑔) = ℎ′11(𝜃𝑔) = 0 and ℎ′′11(𝜃𝑔) ≠ 0 with |

|

|

𝜃𝑔
|

|

|

< 𝑞0, we proceed to regularize the RH problem (89) by accounting for the residue
contributions, as previously discussed. However, we observe that the principal part of the Laurent series expansion of the meromorphic matrices
introduces additional terms that require subtraction. Consequently, this leads to the appearance of derivatives of the eigenfunctions with respect
to 𝑧 as new unknowns in the RH problem. Therefore, there are additional norming constants and corresponding symmetries.
14 
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Fig. 4. (a1) and (a2): One parallel dark-bright and one parallel bright–bright soliton solutions by taking 𝐪− = (1, 0)𝑇 , 𝜎 = 10−3, 𝐾6 = 0.5, 𝜅5 = 𝜒6 = 1, 𝜅6 = e 7
10
+ 3

5
i, 𝛼5 = 𝛼6 = 1

2
𝜋,

𝑘 = 1. (b1) and (b2): Two parallel bright–bright soliton solutions by taking 𝐪− = (1, 0)𝑇 , 𝜎 = 10−3, 𝐾6 = 0.5, 𝜅5 = e2−2i, 𝜅6 = e 3
5
− 6

5
i, 𝜒6 = 1.5, 𝛼5 = 𝛼6 =

1
2
𝜋, 𝑘 = 0. (c1) and (c2): One

parallel bright–bright and one parallel dark-bright soliton solutions by taking 𝐪− = (1, 0)𝑇 , 𝜎 = 10−3, 𝐾6 = 0.5, 𝜅5 = e 7
10
+ 3

10
i, 𝜅6 = 2.8, 𝜒6 = −0.2, 𝛼5 = 𝛼6 = 1

2
𝜋, 𝑘 = 0. (d1) and (d2):

One dark–dark and one breather–breather soliton solutions by taking 𝐪− = ( 1
2
e−

1
10
i𝜋 ,−

√

3
2
e−

1
10
i𝜋 )𝑇 , 𝜎 = 10−3, 𝐾6 = 0.98, 𝜅5 = 𝜒6 = 1, 𝜅6 = 0.5, 𝛼5 =

1
2
𝜋, 𝛼6 =

4
5
𝜋, 𝑘 = 1.

Fig. 5. (a1) and (a2): One bright–bright and one breather–breather soliton solutions by taking 𝐪− = ( 1
2
e−

1
10
i𝜋 ,−

√

3
2
e−

1
10
i𝜋 )𝑇 , 𝜎 = 10−3, 𝐾6 = 0.98, 𝜅5 = e 1

5
−i, 𝜒6 = 1, 𝜅6 = 0.2, 𝛼5 =

1
2
𝜋,

𝛼6 = 4
5
𝜋, 𝑘 = 0. (b1) and (b2): Two dark-bright soliton solutions by taking 𝐪− = (1, 0)𝑇 , 𝜎 = 10−1, 𝐾7 = 𝐾8 = 0.5, 𝜒7 = 1, 𝜅7 = 𝜅8 = 𝜒8 = −1, 𝛼7 = 1

2
𝜋, 𝛼8 = 3

4
𝜋. (c1) and (c2): Two

bright–bright soliton solutions by taking 𝐪− = (1, 0)𝑇 , 𝜎 = 10−3, 𝐾7 = 𝐾8 = 0.5, 𝜒7 = 1, 𝜒8 = 0.8, 𝜅7 = e 1
5
− 3

2
i, 𝜅8 = e 1

2
+ 7

10
i, 𝛼7 = 1

5
𝜋, 𝛼8 = 4

5
𝜋. (d1) and (d2): Two breather–breather

soliton solutions by taking 𝐪− = ( 1
2
e

1
5
i𝜋 ,−

√

3
2
e

1
5
i𝜋 )𝑇 , 𝜎 = 10−3, 𝐾7 = 𝐾8 = 0.98, 𝜒7 = 0.5, 𝜒8 = 1.5, 𝜅7 = −1.5, 𝜅8 = 2, 𝛼7 =

1
2
𝜋, 𝛼8 =

3
5
𝜋.

5.1. Behavior of the eigenfunctions at multiple double poles

This section explores the behavior of eigenfunctions at multiple double poles, contrasting with the focus in [36], which is on studying the
behavior at a single double pole. For the sake of brevity, we will omit the variables (𝑥, 𝑡) from the right-hand side of the eigenfunction expressions,
as they are not essential to the discussion.

Proposition 8. Suppose that ℎ11(𝜃𝑔) = ℎ′11(𝜃𝑔) = 0 and ℎ′′11(𝜃𝑔) ≠ 0 with |

|

|

𝜃𝑔
|

|

|

< 𝑞0, then there exist constants 𝑏𝑔 , 𝑏̂𝑔 , 𝑏̌𝑔 , 𝑏̄𝑔 , 𝑓𝑔 , 𝑓𝑔 , 𝑓𝑔 , 𝑓𝑔 , 𝑒𝑔 , 𝑒𝑔 , 𝑒𝑔 and
̄𝑔 such that

𝜓 ′
+,1(𝜃𝑔 ; 𝑥, 𝑡) =

𝑓𝑔
𝑠33(𝜃𝑔)

𝛾̃ ′(𝜃𝑔) + 𝑏𝑔 𝛾̃(𝜃𝑔) + 𝑒𝑔𝜓−,3(𝜃𝑔), (122a)

𝛾̃ ′(
𝑞20
𝜃∗𝑔

; 𝑥, 𝑡) = 𝑓𝑔𝜓
′
−,3(

𝑞20
𝜃∗𝑔

) + 𝑏̂𝑔𝜓−,3(
𝑞20
𝜃∗𝑔

) + 𝑒𝑔𝜓+,1(
𝑞20
𝜃∗𝑔

), (122b)

𝜓 ′
+,3(

𝑞20 ; 𝑥, 𝑡) = 𝑓𝑔𝛾
′(
𝑞20 ) + 𝑏̌𝑔𝛾(

𝑞20 ) + 𝑒𝑔𝜓−,1(
𝑞20 ), (122c)
𝜃𝑔 𝜃𝑔 𝜃𝑔 𝜃𝑔
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𝛾 ′(𝜃∗𝑔 ; 𝑥, 𝑡) = 𝑓𝑔𝜓
′
−,1(𝜃

∗
𝑔 ) + 𝑏̄𝑔𝜓−,1(𝜃∗𝑔 ) + 𝑒𝑔𝜓+,3(𝜃∗𝑔 ), (122d)

and corresponding modified eigenfunctions are

𝜈′+,1(𝜃𝑔 ; 𝑥, 𝑡) = −i𝛿′1(𝜃𝑔)𝜈+,1(𝜃𝑔) + 𝑒𝑔𝜈−,3(𝜃𝑔)e−2i𝛿1(𝜃𝑔 ) +
[(

i𝑓𝑔𝛿′2(𝜃𝑔)
𝑠33(𝜃𝑔)

+ 𝑏𝑔

)

𝑑(𝜃𝑔) +
𝑓𝑔

𝑠33(𝜃𝑔)
𝑑′(𝜃𝑔)

]

ei[𝛿2(𝜃𝑔 )−𝛿1(𝜃𝑔 )], (123)

𝑑′(
𝑞20
𝜃∗𝑔

; 𝑥, 𝑡) = −i𝛿′2(
𝑞20
𝜃∗𝑔

)𝑑(
𝑞20
𝜃∗𝑔

) + 𝑒𝑔𝜈+,1(
𝑞20
𝜃∗𝑔

)e−i[𝛿1(𝜃
∗
𝑔 )+𝛿2(𝜃

∗
𝑔 )] +

[(

𝑏̂𝑔 − i𝑓𝑔𝛿′1(
𝑞20
𝜃∗𝑔

)

)

𝜈−,3(
𝑞20
𝜃∗𝑔

) + 𝑓𝑔𝜈′−,3(
𝑞20
𝜃∗𝑔

)

]

ei[𝛿1(𝜃
∗
𝑔 )−𝛿2(𝜃

∗
𝑔 )], (124)

𝑑′(𝜃∗𝑔 ; 𝑥, 𝑡) = −i𝛿′2(𝜃∗𝑔 )𝑑(𝜃∗𝑔 ) + 𝑒𝑔𝜈+,3(𝜃∗𝑔 )e−i[𝛿1(𝜃
∗
𝑔 )+𝛿2(𝜃

∗
𝑔 )] +

[(

i𝑓𝑔𝛿′1(𝜃
∗
𝑔 ) + 𝑏̄𝑔

)

𝜈−,1(𝜃∗𝑔 ) + 𝑓𝑔𝜈′−,1(𝜃∗𝑔 )
]

ei[𝛿1(𝜃
∗
𝑔 )−𝛿2(𝜃

∗
𝑔 )], (125)

𝜈′+,3(
𝑞20
𝜃𝑔

; 𝑥, 𝑡) = i𝛿′1(
𝑞20
𝜃𝑔

)𝜈+,3(
𝑞20
𝜃𝑔

) + 𝑒𝑔𝜈−,1(
𝑞20
𝜃𝑔

)e−2i𝛿1(𝜃𝑔 ) +

[(

𝑏̌𝑔 + i𝑓𝑔𝛿′2(
𝑞20
𝜃𝑔

)

)

𝑑(
𝑞20
𝜃𝑔

) + 𝑓𝑔𝑑′(
𝑞20
𝜃𝑔

)

]

ei[𝛿2(𝜃𝑔 )−𝛿1(𝜃𝑔 )], (126)

where 𝑓𝑔 , 𝑓𝑔 , 𝑓𝑔 and 𝑓𝑔 are the same norming constants in the symmetry relationship (72), whereas 𝑏𝑔 , 𝑏̂𝑔 , 𝑏̌𝑔 , 𝑏̄𝑔 , 𝑒𝑔 , 𝑒𝑔 , 𝑒𝑔 and 𝑒𝑔 appear as a result of
the double multiplicity.

Proposition 9. Assuming that 𝑦(𝑧) and ℎ(𝑧) are analytic in D+ and 𝜃𝑔 are double zeros of ℎ(𝑧), then expanding 𝑦(𝑧) and ℎ(𝑧) as Taylor expansions at
𝑧 = 𝜃𝑔

𝑦(𝑧)
ℎ(𝑧)

=

[

2𝑦′(𝜃𝑔)
ℎ′′(𝜃𝑔)

−
2𝑦(𝜃𝑔)ℎ′′′(𝜃𝑔)

3[ℎ′′(𝜃𝑔)]2

]

1
(𝑧 − 𝜃𝑔)

+
2𝑦(𝜃𝑔)
ℎ′′(𝜃𝑔)

1
(𝑧 − 𝜃𝑔)2

+⋯ . (127)

Therefore, it can be seen that the coefficients of (𝑧 − 𝜃𝑔)−1 and (𝑧 − 𝜃𝑔)−2 in the series expansion of 𝑦(𝑧)∕ℎ(𝑧) near 𝑧 = 𝜃𝑔 are as follows:

Res
𝑧=𝜃𝑔

[

𝑦(𝑧)
ℎ(𝑧)

]

=
2𝑦′(𝜃𝑔)
ℎ′′(𝜃𝑔)

−
2𝑦(𝜃𝑔)ℎ′′′(𝜃𝑔)

3[ℎ′′(𝜃𝑔)]2
, Y−2

𝑧=𝜃𝑔

[

𝑦(𝑧)
ℎ(𝑧)

]

=
2𝑦(𝜃𝑔)
ℎ′′(𝜃𝑔)

. (128)

Corollary 10. The generalization of the negative second power coefficients and negative first power coefficients will be obtained

Y−2
𝑧=𝜃𝑔

[ 𝜈+,1(𝑧)
ℎ11(𝑧)

]

= 𝑊𝑔𝑑(𝜃𝑔), Y−2
𝑧=𝜃∗𝑔

[

𝑑(𝑧)
𝑠11(𝑧)

]

= 𝑊̄𝑔𝜈−,1(𝜃∗𝑔 ), Y−2
𝑧=𝑞20∕𝜃𝑔

[ 𝜈+,3(𝑧)
ℎ33(𝑧)

]

= 𝑊̌𝑔𝑑(
𝑞20
𝜃𝑔

), Y−2
𝑧=𝑞20∕𝜃

∗
𝑔

[

−
𝑑(𝑧)
𝑠33(𝑧)

]

= −𝑊̂𝑔𝜈−,3(
𝑞20
𝜃∗𝑔

), (129)

and

Res
𝑧=𝜃𝑔

[ 𝜈+,1(𝑧)
ℎ11(𝑧)

]

= 𝑊𝑔𝑑
′(𝜃𝑔) +𝐷𝑔𝜈−,3(𝜃𝑔) +

[

𝐵𝑔 − i𝑥 − i𝑡
(

2𝜃𝑔 + 3𝜎(𝑞20 + 𝜃2𝑔 )
)]

𝑊𝑔𝑑(𝜃𝑔), (130)

Res
𝑧=𝜃∗𝑔

[

𝑑(𝑧)
𝑠11(𝑧)

]

= 𝑊̄𝑔𝜈
′
−,1(𝜃

∗
𝑔 ) + 𝐷̄𝑔𝜈+,3(𝜃∗𝑔 ) +

[

𝐵̄𝑔 + i𝑥 + i𝑡
(

2𝜃∗𝑔 + 3𝜎(𝑞20 + (𝜃∗𝑔 )2)
)]

𝑊̄𝑔𝜈−,1(𝜃∗𝑔 ), (131)

Res
𝑧=𝑞20∕𝜃𝑔

[ 𝜈+,3(𝑧)
ℎ33(𝑧)

]

= 𝑊̌𝑔𝑑
′(
𝑞20
𝜃𝑔

) + 𝐷̌𝑔𝜈−,1(
𝑞20
𝜃𝑔

) +
[

𝐵̌𝑔 +
i𝜃2𝑔
𝑞20

(

𝑥 + 𝑡(2𝜃𝑔 + 3𝜎(𝑞20 + 𝜃2𝑔 ))
)

]

𝑊̌𝑔𝑑(
𝑞20
𝜃𝑔

), (132)

Res
𝑧=𝑞20∕𝜃

∗
𝑔

[

−
𝑑(𝑧)
𝑠33(𝑧)

]

=

[

i(𝜃∗𝑔 )
2

𝑞20

(

𝑥 + 𝑡(2𝜃∗𝑔 + 3𝜎(𝑞20 + (𝜃∗𝑔 )2))
)

− 𝐵̂𝑔

]

𝑊̂𝑔𝜈−,3(
𝑞20
𝜃∗𝑔

) − 𝑊̂𝑔𝜈
′
−,3(

𝑞20
𝜃∗𝑔

) − 𝐷̂𝑔𝜈+,1(
𝑞20
𝜃∗𝑔

), (133)

where

𝑊𝑔(𝑥, 𝑡) =
2𝑓𝑔e

i[𝛿2(𝜃𝑔 )−𝛿1(𝜃𝑔 )]

𝑠33(𝜃𝑔)ℎ′′11(𝜃𝑔)
, 𝐵𝑔 =

𝑏𝑔
𝑓𝑔
𝑠33(𝜃𝑔) −

ℎ′′′11(𝜃𝑔)

3ℎ′′11(𝜃𝑔)
, 𝑊̄𝑔(𝑥, 𝑡) =

2𝑓𝑔e
i[𝛿1(𝜃∗𝑔 )−𝛿2(𝜃

∗
𝑔 )]

𝑠′′11(𝜃
∗
𝑔 )

, 𝐷̄𝑔(𝑥, 𝑡) =
2𝑒𝑔e

−i[𝛿1(𝜃∗𝑔 )+𝛿2(𝜃
∗
𝑔 )]

𝑠′′11(𝜃
∗
𝑔 )

, (134a)

𝑊̌𝑔(𝑥, 𝑡) =
2𝑓𝑔e

i[𝛿2(𝜃𝑔 )−𝛿1(𝜃𝑔 )]

ℎ′′33(𝑞
2
0∕𝜃𝑔)

, 𝐷̌𝑔(𝑥, 𝑡) =
2𝑒𝑔e

−2i𝛿1(𝜃𝑔 )

ℎ′′33(𝑞
2
0∕𝜃𝑔)

, 𝐵̄𝑔 =
𝑏̄𝑔
𝑓𝑔

−
𝑠′′′11(𝜃

∗
𝑔 )

3𝑠′′11(𝜃
∗
𝑔 )
, 𝑊̂𝑔(𝑥, 𝑡) =

2𝑓𝑔e
i[𝛿1(𝜃∗𝑔 )−𝛿2(𝜃

∗
𝑔 )]

𝑠′′33(𝑞
2
0∕𝜃

∗
𝑔 )

, (134b)

𝐷̂𝑔(𝑥, 𝑡) =
2𝑒𝑔e

−i[𝛿1(𝜃∗𝑔 )+𝛿2(𝜃
∗
𝑔 )]

𝑠′′33(𝑞
2
0∕𝜃

∗
𝑔 )

, 𝐷𝑔(𝑥, 𝑡) =
2𝑒𝑔e

−2i𝛿1(𝜃𝑔 )

ℎ′′11(𝜃𝑔)
, 𝐵̂𝑔 =

𝑏̂𝑔
𝑓𝑔

−
𝑠′′′33(𝑞

2
0∕𝜃

∗
𝑔 )

3𝑠′′33(𝑞
2
0∕𝜃

∗
𝑔 )
, 𝐵̌𝑔 =

𝑏̌𝑔
𝑓𝑔

−
ℎ′′′33(𝑞

2
0∕𝜃𝑔)

3ℎ′′33(𝑞
2
0∕𝜃𝑔)

. (134c)

5.2. Symmetries with multiple double poles

The symmetries associated with the eigenfunctions and scattering coefficients exhibit greater complexity compared to scenarios involving only
simple zeros.

Proposition 10. Suppose that ℎ11(𝜃𝑔) = ℎ′11(𝜃𝑔) = 0 and ℎ′′11(𝜃𝑔) ≠ 0 with |

|

|

𝜃𝑔
|

|

|

< 𝑞0, then analytic scattering coefficients has the following symmetry
relationship:

ℎ′′11(𝜃𝑔) =
[

𝑠′′11(𝑧)
]∗|
|

|𝑧=𝜃∗𝑔
, 𝑠′′33(𝜃𝑔) =

[

ℎ′′33(𝑧)
]∗|
|

|𝑧=𝜃∗𝑔
, 𝑠′′33(

𝑞20
𝜃∗𝑔

) =
(𝜃∗𝑔 )

4

𝑞4
𝑠′′11(𝑧)

|

|

|

|

|

, (135a)

0

|𝑧=𝜃∗𝑔

16 
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ℎ′′′11(𝜃𝑔) =
[

𝑠′′′11(𝑧)
]∗|
|

|𝑧=𝜃∗𝑔
, 𝑠′′′33(𝜃𝑔) =

[

ℎ′′′33(𝑧)
]∗|
|

|𝑧=𝜃∗𝑔
, ℎ′′11(𝜃𝑔) =

𝑞40
𝜃4𝑔
ℎ′′33(𝑧)

|

|

|

|

|

|𝑧=𝑞20∕𝜃𝑔

, (135b)

𝑠′′′33(
𝑞20
𝜃∗𝑔

) = −
(𝜃∗𝑔 )

5

𝑞60

[

6𝑠′′11(𝑧) + 𝜃∗𝑔𝑠′′′11(𝑧)
]

|

|

|

|

|

|𝑧=𝜃∗𝑔

, ℎ′′′11(𝜃𝑔) = −
𝑞40
𝜃5𝑔

[

6ℎ′′33(𝑧) +
𝑞20
𝜃𝑔
ℎ′′′33(𝑧)

]

|

|

|

|

|

|𝑧=𝑞20∕𝜃𝑔

. (135c)

The eigenfunctions has the following symmetry relationship:

𝜓 ′
−,1(𝜃

∗
𝑔 ) = − i𝑞0

(𝜃∗𝑔 )2

[

𝜓−,3(
𝑞20
𝜃∗𝑔

) +
𝑞20
𝜃∗𝑔
𝜓 ′
−,3(

𝑞20
𝜃∗𝑔

)

]

, 𝜓 ′
+,1(𝜃𝑔) = − i𝑞0

𝜃2𝑔

[

𝜓+,3(
𝑞20
𝜃𝑔

) +
𝑞20
𝜃𝑔
𝜓 ′
+,3(

𝑞20
𝜃𝑔

)

]

, (136a)

𝜓 ′
−,3(𝜃𝑔) =

i𝑞0
𝜃2𝑔

[

𝜓−,1(
𝑞20
𝜃𝑔

) +
𝑞20
𝜃𝑔
𝜓 ′
−,1(

𝑞20
𝜃𝑔

)

]

, 𝜓 ′
+,3(𝜃

∗
𝑔 ) =

i𝑞0
(𝜃∗𝑔 )2

[

𝜓+,1(
𝑞20
𝜃∗𝑔

) +
𝑞20
𝜃∗𝑔
𝜓 ′
+,1(

𝑞20
𝜃∗𝑔

)

]

, (136b)

𝛾̃ ′(𝜃𝑔) =
𝑞20
𝜃2𝑔
𝛾 ′(
𝑞20
𝜃𝑔

), 𝛾 ′(𝜃∗𝑔 ) =
𝑞20

(𝜃∗𝑔 )2
𝛾̃ ′(

𝑞20
𝜃∗𝑔

). (136c)

Corollary 11. The norming constants follows the following symmetry relationship:

𝑓𝑔 = −
𝑓 ∗
𝑔

𝜌(𝜃∗𝑔 )
, 𝑓𝑔 =

i𝑞0
𝜃∗𝑔𝜌(𝜃∗𝑔 )

𝑓 ∗
𝑔 , 𝑓𝑔 =

i𝜃𝑔
𝑞0𝑠33(𝜃𝑔)

𝑓𝑔 , 𝑒𝑔 = 𝑒𝑔 = 𝑒𝑔 = 𝑒𝑔 = 0, (137a)

𝑏𝑔 =
i𝑞0
𝜃𝑔

[

𝑏̌𝑔
𝜃𝑔

+
𝑞20
𝜃2𝑔
𝑏̌𝑔

]

, 𝑏𝑔 = −
𝑏̄∗𝑔𝜌(𝜃𝑔)

𝑠33(𝜃𝑔)
− 𝑓 ∗

𝑔

[

𝜌(𝑧)
𝑠33(𝑧)

]′
|

|

|

|

|𝑧=𝜃𝑔

, (137b)

𝑏̄𝑔 =
i𝜃∗𝑔
𝑞0

[

𝑏̂𝑔
𝜃∗𝑔

−
𝑞20

(𝜃∗𝑔 )2
𝑏̂𝑔

]

, 𝑏̄∗𝑔 = − 𝑏𝑔𝑠33(𝜃𝑔)
𝜌(𝜃𝑔)

+ 𝑓 ∗
𝑔 ln

[

𝑠33(𝑧)
𝜌(𝑧)

]′
|

|

|

|

|𝑧=𝜃𝑔

, (137c)

and

𝑊̂𝑔(𝑥, 𝑡) =
i𝑞50

[

𝑠33(𝜃𝑔)
]∗

(𝜃∗𝑔 )5𝜌(𝜃∗𝑔 )
𝑊 ∗
𝑔 (𝑥, 𝑡), 𝐵̌𝑔 =

𝜃𝑔
𝑞20

−
𝜃2𝑔
𝑞20
𝐵̄∗
𝑔 −

𝜃2𝑔𝑠33(𝜃𝑔)

𝑞20𝜌(𝜃𝑔)

[

𝜌(𝑧)
𝑠33(𝑧)

]′|
|

|

|

|

|𝑧=𝜃𝑔

, (138a)

𝑊̄𝑔(𝑥, 𝑡) = −
[

𝑠33(𝜃𝑔)
]∗

𝜌(𝜃∗𝑔 )
𝑊 ∗
𝑔 (𝑥, 𝑡), 𝑊̌𝑔(𝑥, 𝑡) =

i𝑞30
𝜃3𝑔
𝑊𝑔(𝑥, 𝑡), 𝐵̂𝑔 =

3𝜃∗𝑔
𝑞20

−
(𝜃∗𝑔 )

2

𝑞20
𝑊̄𝑔 , (138b)

𝐷𝑔(𝑥, 𝑡) = 𝐷̄𝑔(𝑥, 𝑡) = 𝐷̂𝑔(𝑥, 𝑡) = 𝐷̌𝑔(𝑥, 𝑡) = 0, 𝐵𝑔 = 𝐵̄∗
𝑔 +

𝑠33(𝜃𝑔)
𝜌(𝜃𝑔)

[

𝜌(𝑧)
𝑠33(𝑧)

]′
|

|

|

|

|𝑧=𝜃𝑔

. (138c)

Therefore, the residue conditions are obtained through Corollary 10:

𝐑+
−1,𝜃𝑔

(𝑥, 𝑡) =
[

Res
𝑧=𝜃𝑔

[ 𝜈+,1(𝑧)
ℎ11(𝑧)

]

, 𝟎, 𝟎
]

, 𝐑+
−1,𝑞20∕𝜃

∗
𝑔
(𝑥, 𝑡) =

[

𝟎, Res
𝑧=𝑞20∕𝜃

∗
𝑔

[

−
𝑑(𝑧)
𝑠33(𝑧)

]

, 𝟎
]

, (139a)

𝐑+
−2,𝜃𝑔

(𝑥, 𝑡) =
[

Y−2
𝑧=𝜃𝑔

[ 𝜈+,1(𝑧)
ℎ11(𝑧)

]

, 𝟎, 𝟎
]

, 𝐑+
−2,𝑞20∕𝜃

∗
𝑔
(𝑥, 𝑡) =

⎡

⎢

⎢

⎣

𝟎, Y−2
𝑧=𝑞20∕𝜃

∗
𝑔

[

−
𝑑(𝑧)
𝑠33(𝑧)

]

, 𝟎
⎤

⎥

⎥

⎦

, (139b)

𝐑−
−1,𝜃∗𝑔

(𝑥, 𝑡) =
[

𝟎, Res
𝑧=𝜃∗𝑔

[

𝑑(𝑧)
𝑠11(𝑧)

]

, 𝟎
]

, 𝐑−
−1,𝑞20∕𝜃𝑔

(𝑥, 𝑡) =
[

𝟎, 𝟎, Res
𝑧=𝑞20∕𝜃𝑔

[ 𝜈+,3(𝑧)
ℎ33(𝑧)

]

]

, (139c)

𝐑−
−2,𝜃∗𝑔

(𝑥, 𝑡) =
[

𝟎,Y−2
𝑧=𝜃∗𝑔

[

𝑑(𝑧)
𝑠11(𝑧)

]

, 𝟎
]

, 𝐑−
−2,𝑞20∕𝜃𝑔

(𝑥, 𝑡) =
⎡

⎢

⎢

⎣

𝟎, 𝟎, Y−2
𝑧=𝑞20∕𝜃𝑔

[ 𝜈+,3(𝑧)
ℎ33(𝑧)

]

⎤

⎥

⎥

⎦

. (139d)

5.3. Reflectionless solutions with multiple double poles

Regularize the RH problem by subtracting the asymptotic behavior at infinity and any pole contributions associated with the discrete spectrum,
then the solutions of the RH problem can be obtained with the help of Cauchy projectors. In Appendix D, we provide a detailed proof of the
ollowing theorems.

Theorem 10. Suppose that ℎ11(𝜃𝑔) = ℎ′11(𝜃𝑔) = 0 and ℎ′′11(𝜃𝑔) ≠ 0 with |

|

|

𝜃𝑔
|

|

|

< 𝑞0, the multiple double-pole solutions of the RH problem defined by Lemmas 1
and 2 with residue conditions (139) are shown below:

𝐑(𝑧; 𝑥, 𝑡) =
𝐺
∑

𝑗=1

⎡

⎢

⎢

⎣

𝐑+
−1,𝜃𝑗

𝑧 − 𝜃𝑗
+

𝐑−
−1,𝜃∗𝑗

𝑧 − 𝜃∗𝑗
+

𝐑+
−2,𝜃𝑗

(𝑧 − 𝜃𝑗 )2
+

𝐑−
−2,𝜃∗𝑗

(𝑧 − 𝜃∗𝑗 )2

⎤

⎥

⎥

⎦

+
𝐺
∑

𝑗=1

⎡

⎢

⎢

⎢

⎣

𝐑+
−1,𝑞20∕𝜃

∗
𝑗

𝑧 − (𝑞20∕𝜃∗𝑗 )
+

𝐑−
−1,𝑞20∕𝜃𝑗

𝑧 − (𝑞20∕𝜃𝑗 )
+

𝐑+
−2,𝑞20∕𝜃

∗
𝑗

[𝑧 − (𝑞20∕𝜃∗𝑗 )]2
+

𝐑−
−2,𝑞20∕𝜃𝑗

[𝑧 − (𝑞20∕𝜃𝑗 )]2

⎤

⎥

⎥

⎥

⎦

+ 𝐘−(𝑧) − 1
2𝜋i ∫R

𝐑−(𝜉 )̃𝐋(𝜉)
𝜉 − 𝑧

d𝜉 ,

(140)

where 𝐋̃(𝑧) = ei∆(𝑧)𝐋(𝑧)e−i∆(𝑧) and 𝐑(𝑧; 𝑥, 𝑡) = 𝐑±(𝑧; 𝑥, 𝑡) for Im𝑧 ≷ 0. Moreover, the eigenfunctions are given by
17 
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𝜈−,1(𝜃∗𝑔 ; 𝑥, 𝑡) =
(

i
i𝐪−∕𝜃∗𝑔

)

− 1
2𝜋i ∫R

[

𝐑−(𝜉 )̃𝐋(𝜉)
]

1
𝜉 − 𝜃∗𝑔

d𝜉 +
𝐺
∑

𝑗=1

⎡

⎢

⎢

⎢

⎣

[

𝐵𝑗 − i𝑥 − i𝑡
(

2𝜃𝑗 + 3𝜎(𝑞20 + 𝜃2𝑗 )
)]

𝑊𝑗𝑑(𝜃𝑗 )

𝜃∗𝑔 − 𝜃𝑗
+
𝑊𝑗𝑑′(𝜃𝑗 )
𝜃∗𝑔 − 𝜃𝑗

+
𝑊𝑗𝑑(𝜃𝑗 )

[𝜃∗𝑔 − 𝜃𝑗 ]2

⎤

⎥

⎥

⎥

⎦

, (141)

−
𝑑(𝜃𝑔 ; 𝑥, 𝑡)
𝑠33(𝜃𝑔)

=
(

0
𝐪⟂−∕𝑞0

)

− 1
2𝜋i ∫R

[

𝐑−(𝜉 )̃𝐋(𝜉)
]

2
𝜉 − 𝜃𝑔

d𝜉 +
𝐺
∑

𝑗=1

{

𝑊̄𝑗

(𝜃𝑔 − 𝜃∗𝑗 )2
[

1 + (𝜃𝑔 − 𝜃∗𝑗 )
[

𝐵̄𝑗 + i𝑥 + i𝑡
(

2𝜃∗𝑗 + 3𝜎(𝑞20 + (𝜃∗𝑗 )2)
)]]

+
i𝜃∗𝑗 𝑊̂𝑗

𝑞0[𝜃𝑔 − (𝑞20∕𝜃∗𝑗 )]2

[

1 −
(

𝜃𝑔 −
𝑞20
𝜃∗𝑗

) [
i(𝜃∗𝑗 )

2

𝑞20
𝑡
(

2𝜃∗𝑗 + 3𝜎(𝑞20 + (𝜃∗𝑗 )2)
)

− 𝐵̂𝑗 +
i(𝜃∗𝑗 )

2

𝑞20
𝑥 +

𝜃∗𝑗
𝑞20

]]}

𝜈−,1(𝜃∗𝑗 )

+
𝐺
∑

𝑗=1

[

𝑊̄𝑗

𝜃𝑔 − 𝜃∗𝑗
−

i(𝜃∗𝑗 )
3𝑊̂𝑗

𝑞30 [𝜃𝑔 − (𝑞20∕𝜃∗𝑗 )]

]

𝜈′−,1(𝜃
∗
𝑗 ),

(142)

𝜈′−,1(𝜃
∗
𝑔 ; 𝑥, 𝑡) =

(

i
−i𝐪−∕(𝜃∗𝑔 )

2

)

− 1
2𝜋i ∫R

[

𝐑−(𝜉)̃𝐋(𝜉)
]

1

[𝜉 − 𝜃∗𝑔 ]2
d𝜉 −

𝐺
∑

𝑗=1

⎡

⎢

⎢

⎢

⎣

[

𝐵𝑗 − i𝑥 − i𝑡
(

2𝜃𝑗 + 3𝜎(𝑞20 + 𝜃2𝑗 )
)]

𝑊𝑗𝑑(𝜃𝑗 )

[𝜃∗𝑔 − 𝜃𝑗 ]2
+
𝑊𝑗𝑑′(𝜃𝑗 )

[𝜃∗𝑔 − 𝜃𝑗 ]2
+

2𝑊𝑗𝑑(𝜃𝑗 )

[𝜃∗𝑔 − 𝜃𝑗 ]3

⎤

⎥

⎥

⎥

⎦

, (143)

−
𝑑′(𝜃𝑔 ; 𝑥, 𝑡)
𝑠33(𝜃𝑔)

= −
𝑑(𝜃𝑔)𝑠′33(𝜃𝑔)

[𝑠33(𝜃𝑔)]2
− 1

2𝜋i ∫R

[

𝐑−(𝜉 )̃𝐋(𝜉)
]

2

(𝜉 − 𝜃𝑔)2
d𝜉 −

𝐺
∑

𝑗=1

{

𝑊̄𝑗

(𝜃𝑔 − 𝜃∗𝑗 )3
[

2 + (𝜃𝑔 − 𝜃∗𝑗 )
[

𝐵̄𝑗 + i𝑥 + i𝑡
(

2𝜃∗𝑗 + 3𝜎(𝑞20 + (𝜃∗𝑗 )2)
)]]

+
i𝜃∗𝑗 𝑊̂𝑗

𝑞0[𝜃𝑔 − (𝑞20∕𝜃∗𝑗 )]3

[

2 −
(

𝜃𝑔 −
𝑞20
𝜃∗𝑗

) [
i(𝜃∗𝑗 )

2

𝑞20
𝑡
(

2𝜃∗𝑗 + 3𝜎(𝑞20 + (𝜃∗𝑗 )2)
)

− 𝐵̂𝑗 +
i(𝜃∗𝑗 )

2

𝑞20
𝑥 +

𝜃∗𝑗
𝑞20

]]}

𝜈−,1(𝜃∗𝑗 )

+
𝐺
∑

𝑗=1

[

i(𝜃∗𝑗 )
3𝑊̂𝑗

𝑞30 [𝜃𝑔 − (𝑞20∕𝜃∗𝑗 )]2
−

𝑊̄𝑗

(𝜃𝑔 − 𝜃∗𝑗 )2

]

𝜈′−,1(𝜃
∗
𝑗 ).

(144)

Theorem 11 (Reconstruction Formula). Multiple double-pole solutions 𝐪(𝑥, 𝑡) of the defocusing–defocusing coupled Hirota equations with NZBCs (3) are
econstructed as

𝑞𝑘(𝑥, 𝑡) = 𝑞−,𝑘 −
1
2𝜋 ∫R

[

𝐑−(𝜉 )̃𝐋(𝜉)
]

(𝑘+1)1
d𝜉 −

𝐺
∑

𝑗=1
i𝑊𝑗𝑑

′
(𝑘+1)(𝜃𝑗 ) −

𝐺
∑

𝑗=1
i𝑊𝑗

[

𝐵𝑗 − i𝑥 − i𝑡
(

2𝜃𝑗 + 3𝜎(𝑞20 + 𝜃2𝑗 )
)]

𝑑(𝑘+1)(𝜃𝑗 ), 𝑘 = 1, 2. (145)

5.4. Trace formulae and the multiple double-pole solutions

The construction method for the trace formula of the multiple double-pole solutions differs from that for a single pole, therefore it is assumed
hat

𝜒+
𝑎 (𝑧) = ℎ11(𝑧)

𝐺
∏

𝑔=1

(𝑧 − 𝜃∗𝑔 )
2

(𝑧 − 𝜃𝑔)2
, 𝑧 ∈ D+, 𝜒−

𝑎 (𝑧) = 𝑠11(𝑧)
𝐺
∏

𝑔=1

(𝑧 − 𝜃𝑔)2

(𝑧 − 𝜃∗𝑔 )2
, 𝑧 ∈ D−. (146)

Using Eq. (65) and the scattering coefficients, we can derive the following result:

ln𝜒+
𝑎 (𝑧) + ln𝜒−

𝑎 (𝑧) = − ln
[

1 − |

|

𝛽1(𝑧)||
2 −

|

|

𝛽2(𝑧)||
2

𝜌(𝑧)

]

, 𝑧 ∈ R. (147)

By combining (146) with (147) and using the Plemelj’s formula, it can be concluded that

𝜒+
𝑎 (𝑧) = exp

[

− 1
2𝜋i ∫R

ln

[

1 − |

|

𝛽1(𝜉)||
2 −

|

|

𝛽2(𝜉)||
2

𝜌(𝜉)

]

d𝜉
𝜉 − 𝑧

]

, 𝑧 ∈ D+, (148a)

𝜒−
𝑎 (𝑧) = exp

[

1
2𝜋i ∫R

ln

[

1 − |

|

𝛽1(𝜉)||
2 −

|

|

𝛽2(𝜉)||
2

𝜌(𝜉)

]

d𝜉
𝜉 − 𝑧

]

, 𝑧 ∈ D−. (148b)

By substituting expression (148) into definition (146), the scattering coefficient display expression can be solved

ℎ11(𝑧) =
𝐺
∏

𝑔=1

(𝑧 − 𝜃𝑔)2

(𝑧 − 𝜃∗𝑔 )2
exp

[

− 1
2𝜋i ∫R

ln

[

1 − |

|

𝛽1(𝜉)||
2 −

|

|

𝛽2(𝜉)||
2

𝜌(𝜉)

]

d𝜉
𝜉 − 𝑧

]

, 𝑧 ∈ D+, (149a)

𝑠11(𝑧) =
𝐺
∏

𝑔=1

(𝑧 − 𝜃∗𝑔 )
2

(𝑧 − 𝜃𝑔)2
exp

[

1
2𝜋i ∫R

ln

[

1 − |

|

𝛽1(𝜉)||
2 −

|

|

𝛽2(𝜉)||
2

𝜌(𝜉)

]

d𝜉
𝜉 − 𝑧

]

, 𝑧 ∈ D−. (149b)

Subsequently, the asymptotic phase difference between the respective double poles is considered

𝛥𝛿 = 𝛿+ − 𝛿− = 4
𝐺
∑

𝑔=1
ar g(𝜃𝑔) + 1

2𝜋 ∫R
ln

[

1 − |

|

𝛽1(𝜉)||
2 −

|

|

𝛽2(𝜉)||
2

𝜌(𝜉)

]

d𝜉
𝜉
. (150)
18 
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Fig. 6. (a1) and (a2): One dark-bright double-pole solution by taking 𝐪− = (1, 0)𝑇 , 𝜎 = 10−3, 𝐾1 = 0.5, 𝐾2 = 𝐾3 = 2, 𝜅1 = 𝜒2 = 0.5, 𝜒1 = −2, 𝜅2 = −0.5, 𝛼1 = 1
2
𝜋. (b1) and (b2): One

bright-breather–dark-breather double-pole solution by taking 𝐪− = ( 1
2
e−

1
5
i𝜋 ,−

√

3
2
e−

1
5
i𝜋 )𝑇 , 𝜎 = 10−2, 𝐾1 = 0.98, 𝜅2 = 𝐾2 = 𝐾3 = 2, 𝜅1 = −1.5, 𝜒2 = −0.2, 𝜒1 = 1, 𝛼1 =

3
5
𝜋.

Theorem 12. In the reflectionless case, the multiple double-pole solutions (145) of the defocusing–defocusing coupled Hirota equation with NZBCs (3)
may be written

𝐪(𝑥, 𝑡) = 1
det 𝐊̂(𝑥, 𝑡)

(

det 𝐊̂aug
1 (𝑥, 𝑡)

det 𝐊̂aug
2 (𝑥, 𝑡)

)

, 𝐊̂aug
𝑛 (𝑥, 𝑡) =

(

𝑞−,𝑛 𝐄̂(𝑥, 𝑡)
𝐀̂𝑛(𝑥, 𝑡) 𝐊̂(𝑥, 𝑡)

)

, 𝑛 = 1, 2, (151)

where the matrix 𝐊̂(𝑥, 𝑡) = 𝐈 + 𝐏̂(𝑥, 𝑡), the components in vector 𝐄̂(𝑥, 𝑡) =
(

𝐸1(𝑥, 𝑡),… , 𝐸2𝐺(𝑥, 𝑡)
)

are

𝐸𝑔(𝑥, 𝑡) =
{

i𝑊𝑔(𝑥, 𝑡)𝐵(1)
𝑔 (𝑥, 𝑡), 𝑔 = 1,… , 𝐺 ,

i𝑊𝑔−𝐺(𝑥, 𝑡), 𝑔 = 𝐺 + 1,… , 2𝐺 ,
(152)

the components in vector 𝐀̂𝑛(𝑥, 𝑡) =
(

𝐴𝑛1(𝑥, 𝑡),… , 𝐴𝑛(2𝐺)(𝑥, 𝑡)
)𝑇

are

𝐴𝑛𝑖′ (𝑥, 𝑡) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(−1)𝑛𝑠33(𝜃𝑖′ )
𝑞∗−, ̄𝑛
𝑞0

+
𝐺
∑

𝑎=1
i𝑞−,𝑛𝑊 (7)

𝑎 (𝜃𝑖′ ), 𝑖′ = 1,… , 𝐺 ,

(−1)𝑛𝑠′33(𝜃𝑖′−𝐺)
𝑞∗−, ̄𝑛
𝑞0

+
𝐺
∑

𝑎=1
i𝑞−,𝑛𝑊 (8)

𝑎 (𝜃𝑖′−𝐺), 𝑖′ = 𝐺 + 1,… , 2𝐺 ,
(153)

where 𝑛̄ = 𝑛 + (−1)𝑛+1. For 𝑗 = 1,… , 𝐺 and 𝑘 = 1,… , 𝐺, the entries of matrix 𝐏̂(𝑥, 𝑡) = (𝑃𝑗 𝑘(𝑥, 𝑡)) are

𝑃𝑗 𝑘(𝑥, 𝑡) = 𝑠33(𝜃𝑗 )
𝐺
∑

𝑎=1

[

𝑊 (3)
𝑎 (𝜃𝑗 )𝑊

(1)
𝑘 (𝜃∗𝑎 ) −𝑊 (6)

𝑎 (𝜃𝑗 )𝑊
(2)
𝑘 (𝜃∗𝑎 )

]

. (154)

For 𝑗 = 1,… , 𝐺 and 𝑘 = 𝐺 + 1,… , 2𝐺, the entries of matrix 𝐏̂(𝑥, 𝑡) = (𝑃𝑗 𝑘(𝑥, 𝑡)) are

𝑃𝑗 𝑘(𝑥, 𝑡) = 𝑠33(𝜃𝑗 )
𝐺
∑

𝑎=1

[

𝑊 (3)
𝑎 (𝜃𝑗 )𝑏

(1)
𝑘−𝐺(𝜃

∗
𝑎 ) −

𝑊 (6)
𝑎 (𝜃𝑗 )𝑏

(1)
𝑘−𝐺(𝜃

∗
𝑎 )

𝜃∗𝑎 − 𝜃𝑘−𝐺

]

. (155)

For 𝑗 = 𝐺 + 1,… , 2𝐺, and 𝑘 = 1,… , 𝐺, the entries of matrix 𝐏̂(𝑥, 𝑡) = (𝑃𝑗 𝑘(𝑥, 𝑡)) are

𝑃𝑗 𝑘(𝑥, 𝑡) = −
𝐺
∑

𝑎=1

[

𝑊 (9)
𝑎 (𝜃𝑗−𝐺)𝑊

(1)
𝑘 (𝜃∗𝑎 ) +𝑊 (10)

𝑎 (𝜃𝑗−𝐺)𝑊
(2)
𝑘 (𝜃∗𝑎 )

]

. (156)

For 𝑗 = 𝐺 + 1,… , 2𝐺, and 𝑘 = 𝐺 + 1,… , 2𝐺, the entries of matrix 𝐏̂(𝑥, 𝑡) = (𝑃𝑗 𝑘(𝑥, 𝑡)) are

𝑃𝑗 𝑘(𝑥, 𝑡) = −
𝐺
∑

𝑎=1

[

𝑊 (9)
𝑎 (𝜃𝑗−𝐺)𝑏

(1)
𝑘−𝐺(𝜃

∗
𝑎 ) +

𝑊 (10)
𝑎 (𝜃𝑗−𝐺)𝑏

(1)
𝑘−𝐺(𝜃

∗
𝑎 )

𝜃∗𝑎 − 𝜃𝑘−𝐺

]

. (157)

We have now derived the multiple double-pole solutions of the defocusing–defocusing coupled Hirota equations with NZBCs (3). Considering
the one double-pole and parametrizing the discrete eigenvalues and normalization constants as follows:

𝜃1 = 𝐾1ei𝛼1 , 𝑓1 = 𝐾2e𝜅1+i𝜒1 , 𝑏̄1 = 𝐾3e𝜅2+i𝜒2 , 0 < 𝐾1 < 𝑞0, (158)

from (151) one obtains the one double-pole solution 𝐪one(𝑥, 𝑡) (223) (See Appendix D) of the defocusing–defocusing coupled Hirota equations with
NZBCs (3).

Remark 8. Through the expression (158) and the reflectionless potentials, it can be inferred that the different structures of one double-pole
solution are obtained. For 𝑞−,1𝑞−,2 = 0, one dark-bright double-pole solution is given by panels (a1) and (a2) of Fig. 6. Moreover, setting 𝑞−,1𝑞−,2 ≠ 0
generates one bright-breather–dark-breather double-pole solution in panels (b1) and (b2) of Fig. 6.

6. Discussion and final remarks

We apply the IST tool to the defocusing–defocusing coupled Hirota equations with NZBCs (3) and derive some interesting results by constructing
the matrix RH problem. We delve into the analytic properties of Jost eigenfunctions and scattering coefficients, by examining particular potential
conditions that guarantee such analyticity. Innovative the analytical eigenfunctions for the defocusing–defocusing coupled Hirota equations with
19 
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NZBCs (3) adhere to two symmetry conditions. These relations are subsequently utilized to provide a rigorous characterization of the discrete
pectrum. The discrete spectrum yields discrete eigenvalues in two distinct scenarios, each linked to a diverse array of soliton solution types. The
haracteristics of their soliton interactions are depicted through graphical illustrations. By discussing the different eigenvalues on the circle and off

the circle, corresponding combinations of dark solitons, bright solitons, and breather solitons are obtained. We derived the multiple double-pole
solutions of the defocusing–defocusing coupled Hirota equations with NZBCs (3) and proved the rationality of its algebraic closed system. For
the defocusing–defocusing coupled Hirota equations, we have found a novel bright-breather–dark-breather double-pole solution for the first time,
which may help in explaining and predicting certain characteristics in optical solitons and fluid dynamics phenomena.

In this paper, the pure soliton solutions and multiple double-pole solutions are obtained under reflectionless potential conditions. Though
imple, this method inevitably has limitations. When faced with reflective potentials, even if we can derive the corresponding solutions, they often
ontain implicit integral terms, posing challenges for analysis and application. In future research, we plan to explore how to use the IST technique to
liminate these integral terms, thereby constructing explicit soliton solutions. For the numerical inverse scattering [33], the computational efficiency
nd practicability of the solution are improved while maintaining the accuracy of the analytical solutions. By combining numerical methods, we
ope to understand and solve the soliton problem in the presence of reflection potential more comprehensively, and further expand the application
ange of IST technology in nonlinear physical phenomena.

It is worth noting that the IST technique also plays an important role in exploring the soliton solutions of nonlinear integrable flows involving
coordinate reflection points [45]. This technique provides a new perspective for the analysis of soliton solutions with its unique advantages [46,47].
Recently, with the in-depth study of the 4 × 4 matrix spectral problem, the IST has not only been successfully applied to the generation of coupled
and combined integrable models, but also has been analyzed in detail from the perspective of double Hamiltonian systems [48]. These models have
significant integrable properties and show great potential and value in the fields of physics, mechanical engineering, and materials science [49,50].

At present, the IST technique has been successfully applied to deal with the parallel boundary conditions of the defocusing–defocusing coupled
Hirota equations with NZBCs (3) at infinity. Similarly, this technique can also be extended to the study of non-parallel boundary conditions at
infinity [51], further enriching its application in the field of mathematical physics. At the same time, the application of the robust IST method [52]
n engineering and applied science will also be further developed to provide more effective solutions for practical problems. The RH representation
f the high-order Darboux dressing matrix has recently attracted considerable attention in the study of the asymptotic behavior of solutions. This
esearch investigated the far-field asymptotic behavior of multiple-pole solitons at the large-order limit of the focusing NLS equation [53]. It also

examined the near-field asymptotic behavior of these solitons under the same large-order limit [54]. Moreover, this study explored the asymptotic
ehavior and dynamic characteristics of both large-order and infinite-order solitons within the coupled NLS equation framework [55]. The multiple
igher-order poles solitons for the NLS equation [56], as well as the 𝑁th order soliton solutions for the Wadati–Konno–Ichikawa equation [57]
ave been successfully derived using the IST.

In this context, future research endeavors on the defocusing–defocusing coupled Hirota equations are likely to concentrate on the following key
areas:

• Non-parallel boundary problems pertain to the behavior of equations under specific boundary conditions, and they explore how these
boundaries influence the stability and asymptotic properties of the solutions.

• The application of robust IST, which can effectively handle singularities in the original RH problem, offering a new perspective for solutions.

• The far-field and near-field asymptotic behavior of multiple double-pole solutions under the large-order limit, which may involve changes in
the structure and dynamics of solutions at different scales.

• The asymptotic behavior of large-order and infinite-order solitons, which pertains to the stability of solitons and their applications in physical
systems under extreme conditions.

• The study of multiple high-order pole solutions of coupled equations in inverse scattering analysis faces theoretical and technical challenges,
such as computational complexity, uniqueness, and stability of solutions.

Future research could focus on addressing these challenges and exploring new application areas. As the fields of mathematics and physics continue
o advance, we anticipate the development of more accurate algorithms and more in-depth theoretical analyses. These advancements are expected
o aid in solving more complex physical problems, such as boundary issues in quantum field theory, nonlinear dynamics, and fluid mechanics.
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Appendix A. Direct scattering problem

Proof of Theorem 1. We begin by recasting the Volterra integral equation as presented in Eq. (25a):

𝜈−(𝑧; 𝑥, 𝑡) = 𝐘−(𝑧) +
[

𝐈 + ∫

𝑥

−∞
ei(𝑥−𝑦)Λ1 [𝐘−1

− (𝑧)(𝐗(𝑧; 𝑦, 𝑡) − 𝐗−(𝑧))𝜈−(𝑧; 𝑦, 𝑡)]e−i(𝑥−𝑦)Λ1 d𝑦
]

. (159)

The constraints of the integration boundaries indicate that the difference 𝑥−𝑦 is perpetually positive for 𝜈− (perpetually negative for 𝜈+). Specifically,
y defining 𝐆(𝑧; 𝑥, 𝑡) = 𝐘−(𝑧)𝜈−(𝑧; 𝑥, 𝑡), we can deduce that for the first column 𝐆1(𝑧; 𝑥, 𝑡) of 𝐆(𝑧; 𝑥, 𝑡), the following holds:

𝐆1(𝑧; 𝑥, 𝑡) = (1, 0, 0)𝑇 + ∫

𝑥

−∞
𝐅(𝑧; 𝑥 − 𝑦)[𝐐(𝑦, 𝑡) −𝐐−]𝐘−(𝑧)𝐆1(𝑧; 𝑦, 𝑡) d𝑦, (160)

where

𝐅(𝑧; 𝑥 − 𝑦) = diag (1, e−i[𝑘(𝑧)+𝜆(𝑧)](𝑥−𝑦), e2i𝜆(𝑧)(𝑥−𝑦)) i𝐘−1
− (𝑧). (161)

Next, we present a Neumann series expansion to represent 𝐆1(𝑧; 𝑥, 𝑡):

𝐆1(𝑧; 𝑥, 𝑡) =
∞
∑

𝑔=0
𝐆(𝑔)

1 (𝑧; 𝑥, 𝑡), (162)

with

𝐆(0)
1 = (1, 0, 0)𝑇 , 𝐆(𝑔+1)

1 (𝑧; 𝑥, 𝑡) = ∫

𝑥

−∞
P(𝑧; 𝑥, 𝑦, 𝑡)𝐆(𝑔)

1 (𝑧; 𝑦, 𝑡) d𝑦, (163)

where P(𝑧; 𝑥, 𝑦, 𝑡) = 𝐅(𝑧; 𝑥 − 𝑦)[𝐐(𝑦, 𝑡) − 𝐐−]𝐘−(𝑧). By defining the 𝐿1 vector norm ‖𝐆1(𝑧; 𝑥, 𝑡)‖ = |

|

𝐺11(𝑧; 𝑥, 𝑡)|| + |

|

𝐺21(𝑧; 𝑥, 𝑡)|| + |

|

𝐺31(𝑧; 𝑥, 𝑡)|| and its
ssociated matrix norm ‖P(𝑧; 𝑥, 𝑦, 𝑡)‖, we subsequently obtain:

‖

‖

‖

𝐆(𝑔+1)
1 (𝑧; 𝑥, 𝑡)‖‖

‖

≤ ∫

𝑥

−∞
‖P(𝑧; 𝑥, 𝑦, 𝑡)‖ ‖‖

‖

𝐆(𝑔)
1 (𝑧; 𝑦, 𝑡)‖‖

‖

d𝑦. (164)

Note that ‖
‖

𝐘±(𝑧)‖‖ ≤ 1 + 𝑞0∕|𝑧| and ‖

‖

‖

𝐘−1
± (𝑧)‖‖

‖

≤
(

1 + 𝑞0∕|𝑧|
)

∕|𝜌(𝑧)|, the characteristics of the matrix norm suggest that:

‖P(𝑧; 𝑥, 𝑦, 𝑡)‖ ≤ ‖

‖

‖

diag
(

1, e−i[𝑘(𝑧)+𝜆(𝑧)](𝑥−𝑦), e2i𝜆(𝑧)(𝑥−𝑦)
)

‖

‖

‖

‖

‖

‖

𝐘−1
− (𝑧)‖‖

‖

‖

‖

𝐐(𝑦, 𝑡) −𝐐−
‖

‖

‖

‖

𝐘−(𝑧)‖‖
≤ 𝑝(𝑧)

(

1 + e[𝑘im(𝑧)+𝜆im(𝑧)](𝑥−𝑦) + e2𝜆im(𝑧)(𝑥−𝑦)
)

‖

‖

𝐪(𝑦, 𝑡) − 𝐪−‖‖ ,
(165)

where 𝜆im(𝑧) = Im 𝜆(𝑧), 𝑘im(𝑧) = Im 𝑘(𝑧) and 𝑝(𝑧) = (

1 + 𝑞0∕|𝑧|
)2 ∕|𝜌(𝑧)|. Define D𝐼 as the region where Im 𝜆(𝑧) > 0 and D𝐼 𝐼 as the region where

Im 𝜆(𝑧) < 0. As 𝑧→ ±𝑞0, 𝑝(𝑧) tends towards infinity. Hence, for any 𝜀 > 0, we focus our analysis within the domain
(

D𝐼 𝐼
)

𝜀 = D𝐼 𝐼∖
(

𝐽𝜀
(

𝑞0
)

∪ 𝐽𝜀
(

−𝑞0
))

,
where 𝐽𝜀

(

±𝑞0
)

=
{

𝑧 ∈ C ∶ |

|

𝑧 ∓ 𝑞0|| < 𝜀𝑞0
}

. It can be directly proven that 𝑝𝜀 = max𝑧∈(D𝐼 𝐼 )𝜀 𝑝(𝑧) = 2 + 2∕𝜀. Subsequently, by employing mathematical
induction, we demonstrate that for every 𝑧 ∈

(

D𝐼 𝐼
)

𝜀 and any 𝑛 ∈ N,
‖

‖

‖

𝐆(𝑔)
1 (𝑧; 𝑥, 𝑡)‖‖

‖

≤ 𝑅𝑔(𝑥, 𝑡)
𝑔!

, 𝑅(𝑥, 𝑡) = 2𝑝𝜀 ∫
𝑥

−∞
‖

‖

𝐪(𝑦, 𝑡) − 𝐪−‖‖ d𝑦. (166)

When 𝑔 = 0, Eq. (166) clearly holds true. Additionally, observe that for any 𝑧 ∈ D𝐼 𝐼 and for all 𝑦 ≤ 𝑥, the inequality 1 + e[𝑘im(𝑧)+𝜆im(𝑧)](𝑥−𝑦)+ e2𝜆im(𝑥−𝑦) ≤
3 is satisfied. Consequently, if condition (166) is valid for 𝑔 = 𝑛, then Eq. (164) implies that:

‖

‖

‖

𝐆(𝑛+1)
1 (𝑧; 𝑥, 𝑡)‖‖

‖

≤
3𝑝𝜀
𝑛! ∫

𝑥

−∞
‖

‖

𝐪(𝑦, 𝑡) − 𝐪−‖‖𝑅
𝑛(𝑦, 𝑡) d𝑦 = 1

𝑛!(𝑛 + 1)𝑅
𝑛+1(𝑥, 𝑡), (167)

the condition (166) being satisfied for 𝑔 = 𝑛 implies its validity for 𝑔 = 𝑛 + 1 as well. Therefore, if 𝐪(𝑦, 𝑡) − 𝐪− ∈ 𝐿1(−∞, 𝜎3] for all finite 𝜎3 ∈ R
and for all 𝜀 > 0, the Neumann series converges absolutely and uniformly with respect to 𝑥 ∈ (−∞, 𝜎3) and 𝑧 ∈

(

D𝐼 𝐼
)

𝜀. Analogous outcomes are
observed for 𝜈+(𝑧; 𝑥, 𝑡). □

To elucidate the analytic properties of the scattering coefficients, we deemed it essential to establish an alternative integral representation for
the Jost solutions. We employ a methodology akin to that of the Manakov system as detailed in Ref. [36]. Given that the scattering matrix is
ndependent of time, the variable 𝑡 is not considered from the subsequent proof. We initially observe that the scattering problem given by Eq. (22)

is analogous to another problem:

𝜓𝑥(𝑧; 𝑥) = 𝐗̂(𝑧; 𝑥)𝜓(𝑧; 𝑥) +
[

𝐗(𝑧; 𝑥) − 𝐗̂(𝑧; 𝑥)
]

𝜓(𝑧; 𝑥), (168)

where

𝐗̂(𝑧; 𝑥) = 𝐻(𝑥)𝐗+(𝑧) +𝐻(−𝑥)𝐗−(𝑧), (169)

with 𝐻(𝑥) represents the Heaviside function, which equals 1 for 𝑥 ≥ 0 and 0 for 𝑥 < 0. For 𝑧 ∈ R, we define the fundamental eigenfunctions 𝜓̂±(𝑧; 𝑥)
as square matrix solutions to Eq. (168) that meet the following conditions:

𝜓̂±(𝑧; 𝑥) = e𝑥𝐗±(𝑧)[𝐈 + 𝑜(1)], 𝑥 → ±∞. (170)

Solving Eq. (168) yields:

𝜓̂−(𝑧; 𝑥) = 𝐅𝑚(𝑧; 𝑥, 0) + ∫

𝑥

−∞
𝐅𝑚(𝑧; 𝑥, 𝑦)

[

𝐗(𝑧; 𝑦) − 𝐗̂(𝑧; 𝑦)
]

𝜓̂−(𝑧; 𝑦) d𝑦, (171a)

𝜓̂+(𝑧; 𝑥) = 𝐅𝑚(𝑧; 𝑥, 0) −
∞
𝐅𝑚(𝑧; 𝑥, 𝑦)

[

𝐗(𝑧; 𝑦) − 𝐗̂(𝑧; 𝑦)
]

𝜓̂+(𝑧; 𝑦) d𝑦, (171b)
∫𝑥
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where 𝐅𝑚(𝑧; 𝑥, 𝑦) represents the particular solution to the homogeneous problem, i.e., 𝐅𝑥(𝑧; 𝑥, 𝑦) = 𝐗̂(𝑧; 𝑥)𝐅(𝑧; 𝑥, 𝑦), fulfilling the ‘‘initial conditions’’
𝐅(𝑧; 𝑥, 𝑥) = 𝐈. That is to say,

𝐅𝑚(𝑧; 𝑥, 𝑦) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

e(𝑥−𝑦)𝐗+(𝑧), 𝑥 ≥ 0, 𝑦 ≥ 0.

e(𝑥−𝑦)𝐗−(𝑧), 𝑥 ≤ 0, 𝑦 ≤ 0.

e𝑥𝐗+(𝑧)e−𝑦𝐗−(𝑧), 𝑥 ≥ 0, 𝑦 ≤ 0.

e𝑥𝐗−(𝑧)e−𝑦𝐗+(𝑧), 𝑥 ≤ 0, 𝑦 ≥ 0.

(172)

By applying Eqs. (171), we deduce that

𝜓̂±(𝑧; 𝑥) = 𝐅𝑚(𝑧; 𝑥, 0)
[

𝐒∓(𝑧) + 𝑜(1)
]

, 𝑥→ ∓∞, 𝑧 ∈ R, (173)

where

𝐒∓(𝑧) = 𝐈 ∓ ∫R
𝐅𝑚(𝑧; 0, 𝑦)

[

𝐗(𝑧; 𝑦) − 𝐗̂(𝑧; 𝑦)
]

𝜓̂+(𝑧; 𝑦) d𝑦. (174)

Given that e𝑥𝐗±(𝑧) remains bounded for 𝑥 ∈ R when 𝑧 ∈ R and assuming 𝐗(𝑧; 𝑥) − 𝐗̂(𝑧; 𝑥) ∈ 𝐿1(R), the application of Gronwall’s inequality ensures
hat 𝜓̂±(𝑧; 𝑥) remains bounded as 𝑥 → ∓∞. Furthermore, by comparing Eq. (172) with the solutions of the asymptotic scattering problem given

by Eq. (5), we find that 𝜙̄±(𝑥, 𝑧)𝐄±(𝑧) = 𝜙±(𝑥, 𝑧). Consequently, Eqs. (171) imply that:

𝜓−(𝑧; 𝑥) = 𝐅𝑚(𝑧; 𝑥, 0)𝐘−(𝑧) + ∫

𝑥

−∞
𝐅𝑚(𝑧; 𝑥, 𝑦)

[

𝐗(𝑧; 𝑦) − 𝐗̂(𝑧; 𝑦)
]

𝜓−(𝑧; 𝑦) d𝑦, (175a)

𝜓+(𝑧; 𝑥) = 𝐅𝑚(𝑧; 𝑥, 0)𝐘+(𝑧) − ∫

∞

𝑥
𝐅𝑚(𝑧; 𝑥, 𝑦)

[

𝐗(𝑧; 𝑦) − 𝐗̂(𝑧; 𝑦)
]

𝜓+(𝑧; 𝑦) d𝑦. (175b)

Observe that Eq. (175a) aligns with Eq. (25a) for all 𝑥 ≤ 0, and Eq. (175b) aligns with Eq. (25b) for all 𝑥 ≥ 0. Furthermore, the assumption that
(𝑥) −𝐪+ ∈ 𝐿1(0,∞) and 𝐪(𝑥) −𝐪− ∈ 𝐿1(−∞, 0) leads to the conclusion that 𝐗(𝑧; 𝑥) − 𝐗̂(𝑧; 𝑥) ∈ 𝐿1(R). Utilizing this insight along with Eqs. (175), we

can validate Theorem 1 and confirm that 𝜈±(𝑧; 𝑥) = 𝜓±(𝑧; 𝑥)e−i𝑥Λ1(𝑧) are bounded as 𝑥→ ∓∞. This will facilitate the demonstration of the analytical
properties of the scattering coefficient.

Proof of Theorem 2. By comparing the asymptotic behaviors of 𝜓−(𝑧; 𝑥) from Eq. (173) as 𝑥 → ∞ with those of 𝜓+(𝑧; 𝑥)𝐒(𝑧) from Eq. (19), we
derive:

𝐒(𝑧) = 𝐘−1
+ (𝑧)𝐒+(𝑧)𝐘−(𝑧). (176)

Eq. (176) reduces to the following integral representation for the scattering matrix:

𝐒(𝑧) = 𝐘−1
+ (𝑧)𝐘−(𝑧) + ∫

∞

0
e−i𝑦Λ1(𝑧)𝐘−1

+ (𝑧)
[

𝐐(𝑦) −𝐐+
]

𝜓−(𝑧; 𝑦) d𝑦

+ 𝐘−1
+ (𝑧)𝐘−(𝑧)∫

0

−∞
e−i𝑦Λ1(𝑧)𝐘−1

− (𝑧)
[

𝐐(𝑦) −𝐐−
]

𝜓−(𝑧; 𝑦) d𝑦,
(177)

An analogous expression can be derived for 𝐇(𝑧). Specifically, the 1,1 element of (177) provides an integral representation for 𝑠11(𝑧), the integral
rom 0 to ∞ is

e−i𝑦𝜆(𝑧)
i𝜌(𝑧)

[

𝐪†+[𝐪+ − 𝐪(𝑦)]
𝑧

𝜓−,11(𝑧; 𝑦) + (𝑞∗+,1 − 𝑞∗1 (𝑦))𝜓−,21(𝑧; 𝑦) + (𝑞∗+,2 − 𝑞∗2 (𝑦))𝜓−,31(𝑧; 𝑦)

]

, (178)

and the integral from −∞ to 0 is
3
∑

𝑗=1

[

𝑑11(𝑧)𝐷1𝑗 (𝑧; 𝑦) + 𝑑12(𝑧)𝐷2𝑗 (𝑧; 𝑦)ei𝑦[𝑘(𝑧)+𝜆(𝑧)] + 𝑑13(𝑧)𝐷3𝑗 (𝑧; 𝑦)e2i𝑦𝜆(𝑧)
]

𝜓−,𝑗1(𝑧; 𝑦)e−i𝑦𝜆(𝑧), (179)

where 𝐘−1
+ (𝑧)𝐘−(𝑧) =

(

𝑑𝑖𝑗 (𝑧)
)

and 𝐘−1
− (𝑧)

[

𝐐(𝑦) −𝐐−
]

=
(

𝐷𝑖𝑗 (𝑧; 𝑦)
)

. Note that 𝜓−,1(𝑧; 𝑦)e−i𝑦𝜆(𝑧) is analytic for Im 𝑧 < 0 and bounded over 𝑦 ∈ R.
Therefore, each term in (178) is analytic for Im 𝑧 < 0 and bounded when 𝑦 > 0. Hence, the integral expression (178) of 𝑠11(𝑧) is an analytic function
for Im 𝑧 < 0. Additionally, considering that the imaginary parts of −𝜆(𝑧) and −[𝑘(𝑧) + 𝜆(𝑧)] share the same sign, it can be inferred that every term
in Eq. (179) is analytic when Im 𝑧 < 0. Moreover, these terms are bounded when 𝑦 < 0, the integral expression (179) of 𝑠11(𝑧) is an analytic function
or Im 𝑧 < 0. Consequently, the integral expression (177) for 𝑠11(𝑧) can be extended analytically beyond the real axis of 𝑧 into the lower half-plane.
he remaining parts of Theorem 2 can be substantiated using a similar approach. □

Appendix B. Discrete spectrum and asymptotic behavior

Proof of Corollary 5. By applying the symmetries defined by Eqs. (60a) and (60b), we can derive a new relationship from the second part
f Eq. (69), specifically 𝜓+,3(𝑧∗𝑔) = 𝑐𝑔𝜓−,1(𝑧∗𝑔), leading to the equation 𝜓+,1(𝑧𝑔) = −𝑐𝑔𝜓−,3(𝑧𝑔). Upon comparison, the first of Eq. (71) can be obtained.

During the differentiation of 𝑧 in Eq. (51b), apply Eq. (60c) and set 𝑧→ 𝑧∗𝑔 to achieve the desired result:
i𝑠′11(𝑧

∗
𝑔)𝜓

∗
−,3(𝑧𝑔) + i𝑠11(𝑧∗𝑔)[𝜓∗

−,3(𝑧𝑔)]
′ + i𝛿′2(𝑧∗𝑔)𝐉[𝛾(𝑧∗𝑔) × 𝜓−,1(𝑧∗𝑔)]

= 𝐉
(

[𝛾 ′(𝑧∗𝑔) × 𝜓−,1(𝑧∗𝑔)] + [𝛾(𝑧∗𝑔) × 𝜓 ′
−,1(𝑧

∗
𝑔)]

)

e−i𝛿2(𝑧
∗
𝑔 ).

(180)
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During the differentiation of 𝑧 in Eq. (51b), apply Eq. (69) and set 𝑧→ 𝑧∗𝑔 to achieve the desired result:
i𝑐∗𝑔ℎ

′
33(𝑧

∗
𝑔)𝜓

∗
−,3(𝑧𝑔) + i𝑐∗𝑔ℎ33(𝑧∗𝑔)[𝜓∗

−,3(𝑧𝑔)]
′ + i𝑐𝑔𝛿′2(𝑧∗𝑔)𝐉[𝛾(𝑧∗𝑔) × 𝜓−,1(𝑧∗𝑔)]

= 𝑐𝑔𝐉
(

[𝛾 ′(𝑧∗𝑔) × 𝜓−,1(𝑧∗𝑔)] + [𝛾(𝑧∗𝑔) × 𝜓 ′
−,1(𝑧

∗
𝑔)]

)

e−i𝛿2(𝑧
∗
𝑔 ).

(181)

By comparing Eqs. (180) and (181), the second condition of Eq. (71) can be deduced. □

Proof of Corollary 6. Using the symmetries defined by Eqs. (60a), (60b) and (64), we can derive a new relationship from the first part of Eq. (70a),
hich results in the following equation:

𝜓+,3(
𝑞20
𝜃𝑔

) = i𝜃𝑔𝑓𝑔
𝑞0𝑠33(𝜃𝑔)

𝛾(
𝑞20
𝜃𝑔

). (182)

Comparing Eq. (182) with the second part of Eq. (70a), the first of Eq. (72) can be obtained. By substituting 𝑧→ 𝜃∗𝑔 into Eq. (51b) and considering
𝛾(𝜃∗𝑔 ) = 𝑓𝑔𝜓−,1(𝜃∗𝑔 ), and then taking the conjugate, the desired result can be obtained.

𝜓+,1(𝜃𝑔) = −
𝑓 ∗
𝑔 𝜌(𝜃𝑔)

ℎ∗33(𝜃
∗
𝑔 )
𝛾̃(𝜃𝑔). (183)

Comparing Eq. (183) with the first part of Eq. (70a) and considering 𝑠33(𝜃𝑔) = ℎ∗33(𝜃
∗
𝑔 ), the second of Eq. (72) can be obtained. Using the symmetry

efined by Eq. (64), we can derive a new relationship from the second part of Eq. (70b), which results in the equation 𝛾(𝜃∗𝑔 ) = i𝜃∗𝑔𝑓𝑔∕𝑞0. Comparing
the first part of Eq. (70b), we obtain 𝑓𝑔 = i𝜃∗𝑔𝑓𝑔∕𝑞0. Comparing the second part of Eq. (72) and 𝑓𝑔 = i𝜃∗𝑔𝑓𝑔∕𝑞0, the third of Eq. (72) can be
deduced. □

Appendix C. Inverse problem

Proof of Theorem 5. For the sake of simplicity, the variables 𝑥 and 𝑡 are excluded here. To solve Eq. (89), we perform a subtraction from both
sides involving the terms specified in Eq. (91) and account for the residue contributions originating from the poles both within and on the boundary
of the circle with radius 𝑞0. Essentially, the subtraction includes the following:

𝐑∞ + 1
𝑧
𝐑0 +

𝐺1
∑

𝑖=1

[

Res𝑧=𝑧𝑖 𝐑
+

𝑧 − 𝑧𝑖
+

Res𝑧=𝑧∗𝑖 𝐑
−

𝑧 − 𝑧∗𝑖

]

+
𝐺2
∑

𝑗=1

[

Res𝑧=𝜃𝑗 𝐑
+

𝑧 − 𝜃𝑗
+

Res𝑧=𝜃∗𝑗 𝐑
−

𝑧 − 𝜃∗𝑗

]

+
𝐺2
∑

𝑗=1

⎡

⎢

⎢

⎣

Res𝑧=𝑞20∕𝜃∗𝑗
𝐑+

𝑧 − (𝑞20∕𝜃∗𝑗 )
+

Res𝑧=𝑞20∕𝜃𝑗
𝐑−

𝑧 − (𝑞20∕𝜃𝑗 )
⎤

⎥

⎥

⎦

.
(184)

Upon regularization, the RH problem ensures that both sides exhibit a behavior of 𝑂(1∕𝑧) as 𝑧 → ∞, with the left-hand side being analytic in the
pper half 𝑧-plane and the right-hand side analytic in the lower half 𝑧-plane. We designate the identity operator on 𝐿2(R) as 𝐼 and proceed to

define the Cauchy projection operators as follows:
(

𝐸±𝑚
)

(𝑧) = 1
2𝜋i

lim
𝜀→0+ ∫R

𝑚(𝜉)
𝜉 − (𝑧 ± i𝜀) d𝜉 , (185)

which are also properly defined within the space 𝐿2(R). Additionally, it is important to remember that
(

𝐸±𝑚
)

(𝑧) = lim𝑠→𝑧(𝐸 𝑚)(𝑠), where 𝐸
epresents the Cauchy-type integral

(𝐸 𝑚)(𝑠) = 1
2𝜋i ∫R

𝑚(𝜉)
𝜉 − 𝑠

d𝜉 , 𝑠 ∉ R, (186)

and the limit is taken from the upper or lower half plane, respectively. If 𝑚± is analytic in the upper (resp., lower) half of the 𝑧-plane and 𝑚± = 𝑂(1∕𝑧)
s 𝑧 → ∞ in the appropriate half plane, then 𝐸±𝑚± = ±𝑚± and 𝐸+𝑚− = 𝐸−𝑚+ = 0. By applying Eq. (185) and the Plemelj’s formula to the
egularized RH problem, we obtain Eq. (96). By considering the corresponding column vectors in 𝐑±(𝑧; 𝑥, 𝑡) (96) and assigning related variables,
e can obtain (97), (98), (99) and (100). □

Proof of Theorem 6. Through the examination of solutions to the regularized RH problem, one can derive certain conditions by juxtaposing the
first column of the matrix 𝐑−(𝑧; 𝑥, 𝑡) (96) with the asymptotic properties of the modified Jost eigenfunctions as depicted in Eq. (73).

𝑞𝑘(𝑥, 𝑡) = −i lim
𝑧→∞

[𝑧𝜈−,(𝑘+1)1(𝑧; 𝑥, 𝑡)], 𝑘 = 1, 2. (187)

Carry out a Laurent series expansion of Eq. (96) around 𝑧→ ∞

𝐑(𝑧; 𝑥, 𝑡) = 𝐑∞ + 1
𝑧
𝐑0 +

1
2𝜋i𝑧 ∫R

𝐑−(𝜉)̃𝐋(𝜉) d𝜉 +
𝐺1
∑

𝑖=1

1
𝑧

[

Res
𝑧=𝑧𝑖

𝐑+ + Res
𝑧=𝑧∗𝑖

𝐑−

]

+
𝐺2
∑

𝑗=1

1
𝑧

[

Res
𝑧=𝜃𝑗

𝐑+ + Res
𝑧=𝜃∗𝑗

𝐑− + Res
𝑧=𝑞20∕𝜃

∗
𝑗

𝐑+ + Res
𝑧=𝑞20∕𝜃𝑗

𝐑−

]

+ 𝑂( 1
𝑧2

).
(188)

We take 𝐑(𝑧; 𝑥, 𝑡) = 𝐑−(𝑧; 𝑥, 𝑡) in (188) and compare it with the 2,1 element of Eq. (187)

i𝑞1(𝑥, 𝑡) = i𝑞−,1 + 1
2𝜋i ∫R

[

𝐑−(𝜉 )̃𝐋(𝜉)
]

21
d𝜉 +

𝐺1
∑

𝑖=1
𝐶𝑖𝑟

+
23(𝑧𝑖) −

𝐺2
∑

𝑗=1
𝐹𝑗𝑟

+
22(𝜃𝑗 ). (189)
23 
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Then, compare the result with the 3,1 element of Eq. (187)

i𝑞2(𝑥, 𝑡) = i𝑞−,2 + 1
2𝜋i ∫R

[

𝐑−(𝜉 )̃𝐋(𝜉)
]

31
d𝜉 +

𝐺1
∑

𝑖=1
𝐶𝑖𝑟

+
33(𝑧𝑖) −

𝐺2
∑

𝑗=1
𝐹𝑗𝑟

+
32(𝜃𝑗 ). (190)

We have proven the reconstruction formula (101) by combining (189) and (190). □

Proof of Theorem 7. For the sake of simplicity, the variables 𝑥 and 𝑡 are excluded here (as they do not affect other values). The proof employs
a conventional reasoning approach (refer to [39] for details). In scenarios where there is no discrete spectrum, 𝐑(𝑧) serves as a piecewise analytic
unction over C∖R, fulfilling the jump condition (89) and displaying the asymptotic behavior described in Lemma 2. Define 𝑟(𝑧) = det 𝐑(𝑧) and

compute the determinant of the jump condition (89) to obtain 𝑟+(𝑧) = 𝑟−(𝑧) for 𝑧 ∈ R. Furthermore, 𝑟+(𝑧) = 𝑟−(𝑧) suggests that 𝑟(𝑧) is an entire
unction, given the absence of a singularity at 𝑧 = 0, and it is also bounded at infinity. By Liouville’s theorem, since 𝑟(𝑧) is an entire function that
s bounded at infinity, it must be constant. Therefore, 𝑟(𝑧) = 1 for all 𝑧 ∈ C. This implies that 𝐑(𝑧) is invertible, and its inverse 𝐑−1(𝑧) is analytic
n C∖R.

Currently, consider 𝐑̂(𝑧) as an additional function that is analytic in sections, fulfilling the jump condition (89) and exhibiting the asymptotic
ehavior as outlined in Lemma 2. Let us define the matrix 𝐃(𝑧) = 𝐑̂(𝑧)𝐑−1(𝑧). By applying the jump condition (89) once more, we obtain
+(𝑧) = 𝐃−(𝑧) for 𝑧 ∈ R. Lemma 2 implies 𝐃(𝑧) = 𝐈 + 𝑂(1∕𝑧) as 𝑧 → ∞ and 𝐃(𝑧) = 𝐈 + 𝑂(𝑧) as 𝑧 → 0. Consequently, 𝐃(𝑧) emerges as an
ntire function that remains bounded at infinity. By invoking Liouville’s theorem, we deduce that 𝐃(𝑧) = 𝐈 for every 𝑧 ∈ C, which in turn implies
hat 𝐑̂(𝑧) = 𝐑(𝑧). □

Proof of Theorem 8. For the sake of simplicity, the variables 𝑥 and 𝑡 are excluded here (as they do not affect other values). In cases where the
iscrete spectrum is absent, as we approach 𝑧 ∈ R from the appropriate directions in the complex plane, the limiting values of the Cauchy projectors
± from Eq. (185) are bounded operators on 𝐿2(R) [44]. For any 𝑚 ∈ 𝐿2(R), elementary algebraic steps lead to:

∫R
𝑚(𝜉)

𝜉 − (𝑧 ± i𝜀) d𝜉 = ∫R
(𝜉 − 𝑧)𝑚(𝜉)
(𝜉 − 𝑧)2 + 𝜀2

d𝜉 ± ∫R
i𝜀𝑚(𝜉)

(𝜉 − 𝑧)2 + 𝜀2
d𝜉 . (191)

As 𝜀 → 0+, the first integral tends to −𝜋(𝐻 𝑚)(𝑧), with 𝐻 representing the Hilbert transform:

(𝐻 𝑚)(𝑧) = lim
𝛿→0+

1
𝜋 ∫

|𝜉−𝑧|≥𝛿

𝑚(𝜉)
𝑧 − 𝜉

d𝜉 . (192)

Additionally, the second integral approaches ±i𝜋 𝑚(𝑧), given that the integrand includes a form of the Dirac delta function. Consequently,
(

𝐸±𝑚
)

(𝑧) = ±1
2
𝑚(𝑧) + i

2
(𝐻 𝑚)(𝑧), 𝑧 ∈ R. (193)

Since it is known that 𝐻 is a bounded operator on 𝐿2(R) [44], and 𝐸± is also a bounded operator on 𝐿2(R) as the limit when 𝑧 → R, we can
everage the properties of the Hilbert transform 𝐻 once more to deduce that 𝐸+ − 𝐸− = 𝐼 .

Next, we apply the techniques from [39–43] to establish the existence of the solution to the RH problem. We initiate by recasting the jump
condition (89) as 𝐑+(𝑧) = 𝐑−(𝑧)𝐎(𝑧) for 𝑧 ∈ R, where the jump matrix is 𝐎(𝑧) = 𝐈− ei∆(𝑧)𝐋(𝑧)e−i∆(𝑧). For simplicity, we can assume without loss of
enerality that the jump matrix can be decomposed as 𝐎(𝑧) = 𝐎−1

+ (𝑧)𝐎−(𝑧) for 𝑧 ∈ R, where 𝐎±(𝑧) denote the upper and lower triangular matrices,
espectively. Next we define

𝐁±(𝑧) = ± [

𝐈 −𝐎±(𝑧)
]

, 𝐁(𝑧) = 𝐁+(𝑧) + 𝐁−(𝑧). (194)

Ultimately, we employ these quantities to introduce a novel operator 𝐸𝐁 within 𝐿2(R):

(𝐸𝐁𝑚)(𝑧) = [𝐸+(𝑚𝐁+)](𝑧) + [𝐸−(𝑚𝐁−)](𝑧). (195)

Due to the boundedness and invertibility of 𝐎(𝑧), it follows that 𝐎−1
+ (𝑧) and 𝐎−(𝑧) are both bounded in 𝐿∞(R) and invertible. Since 𝐋(𝑧) ∈ 𝐿∞(R), it

mplies that both 𝐎+(⋅) and 𝐎−(⋅) belong to 𝐿∞(R). Based on Eq. (194) and definition (195) of 𝐸𝐁, we can conclude from the preceding discussion
that 𝐸𝐁 is a bounded operator in 𝐿2(R). Assuming the absence of a discrete spectrum, if 𝐋(⋅) ∈ 𝐿2(R) ∩𝐿∞(R) and 𝐼 −𝐸𝐁 has Fredholm index zero,
it follows that the operator 𝐼 − 𝐸𝐁 is invertible in 𝐿2(R) [36]. Let 𝐖(𝑧) denote the unique solution to the ensuing integral equation:

[(

𝐼 − 𝐸𝐁
)

𝐖
]

(𝑧) = 𝐘−(𝑧), 𝑧 ∈ R, (196)

and 𝐈 −𝐖 ∈ 𝐿2(R). Subsequently, we define the matrix function as:

𝐑#(𝑧) = 𝐘−(𝑧) + [𝐸(𝐖𝐁)](𝑧), 𝑧 ∉ R. (197)

Next, we demonstrate that 𝐑#(𝑧) satisfies the RH problem as outlined in Lemmas 1, 2 and 3. Initially, observe that 𝐑#(𝑧) is analytic for all 𝑧 ∈ C∖R.
Next we prove that 𝐑#(𝑧) satisfies the jump condition. Based on the above properties for all 𝑧 ∈ R, we obtain that

𝐑+
# (𝑧) = 𝐘−(𝑧) + [𝐸+(𝐖𝐁)](𝑧) = 𝐘−(𝑧) + [𝐸+(𝐖𝐁+)](𝑧) + [𝐸+(𝐖𝐁−)](𝑧)

= 𝐘−(𝑧) + [𝐸+(𝐖𝐁+)](𝑧) + [𝐸−(𝐖𝐁−)](𝑧) + (𝐖𝐁−)(𝑧)
= 𝐘−(𝑧) + (𝐸𝐁𝐖)(𝑧) + (𝐖𝐁−)(𝑧) = [𝐖(𝐈 + 𝐁−)](𝑧) = (𝐖𝐎−)(𝑧).

(198)

In a similar manner, we deduce that 𝐑−
# (𝑧) = (𝐖𝐎+)(𝑧). Consequently, 𝐑+

# (𝑧) = 𝐑−
# (𝑧)𝐎(𝑧), which corresponds to the jump condition (89). Ultimately,

it is evident upon examination of the definition that 𝐑#(𝑧) exhibits the asymptotic properties outlined in Lemma 2 as 𝑧→ ∞ and 𝑧→ 0. Consequently,
#(𝑧) resolves the RH problem as delineated by Lemmas 1, 2 and 3. □

Proof of Theorem 9. For 𝑖 = 1,… , 𝐺1 and 𝑗 = 1,… , 𝐺2, define

𝑓 (1)
𝑖 (𝑧; 𝑥, 𝑡) = 𝐶𝑖(𝑥, 𝑡) , 𝑓 (3)

𝑗 (𝑧; 𝑥, 𝑡) = 𝐹𝑗 (𝑥, 𝑡) , 𝑓 (5)
𝑗 (𝑧; 𝑥, 𝑡) = 𝐹𝑗 (𝑥, 𝑡)

2
, (199a)
𝑧 − 𝑧𝑖 𝑧 − 𝜃𝑗 𝑧 − (𝑞0∕𝜃𝑗 )

24 
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𝑓 (2)
𝑖 (𝑧; 𝑥, 𝑡) = 𝐶̄𝑖(𝑥, 𝑡)

𝑧 − 𝑧∗𝑖
, 𝑓 (4)

𝑗 (𝑧; 𝑥, 𝑡) = 𝐹𝑗 (𝑥, 𝑡)
𝑧 − 𝜃∗𝑗

, 𝑓 (6)
𝑗 (𝑧; 𝑥, 𝑡) = 𝐹𝑗 (𝑥, 𝑡)

𝑧 − (𝑞20∕𝜃∗𝑗 )
. (199b)

Under the condition of the reflectionless, there are equations that hold true

𝑟−21(𝑧
∗
𝑖′ ) =

i𝑞−,1
𝑧∗𝑖′

+
𝐺1
∑

𝑖=1
𝑓 (1)
𝑖 (𝑧∗𝑖′ )𝑟

+
23(𝑧𝑖) −

𝐺2
∑

𝑗=1
𝑓 (3)
𝑗 (𝑧∗𝑖′ )𝑟

+
22(𝜃𝑗 ), (200a)

𝑟−21(𝜃
∗
𝑗′ ) =

i𝑞−,1
𝜃∗𝑗′

+
𝐺1
∑

𝑖=1
𝑓 (1)
𝑖 (𝜃∗𝑗′ )𝑟

+
23(𝑧𝑖) −

𝐺2
∑

𝑗=1
𝑓 (3)
𝑗 (𝜃∗𝑗′ )𝑟

+
22(𝜃𝑗 ), (200b)

𝑟+23(
𝑞20
𝜃∗𝑗′

) = 𝑞−,1
𝑞0

+
𝐺1
∑

𝑖=1
𝑓 (2)
𝑖 (

𝑞20
𝜃∗𝑗′

)𝑟−21(𝑧
∗
𝑖 ) +

𝐺2
∑

𝑗=1
𝑓 (5)
𝑗 (

𝑞20
𝜃∗𝑗′

)𝑟−22(
𝑞20
𝜃𝑗

), (200c)

𝑟−22(
𝑞20
𝜃𝑗′

) =
𝑞∗−,2
𝑞0

+
𝐺2
∑

𝑗=1
𝑓 (4)
𝑗 (

𝑞20
𝜃𝑗′

)𝑟−21(𝜃
∗
𝑗 ) −

𝐺2
∑

𝑗=1
𝑓 (6)
𝑗 (

𝑞20
𝜃𝑗′

)𝑟+23(
𝑞20
𝜃∗𝑗

), (200d)

𝑟+23(𝑧𝑖′ ) =
𝑞−,1
𝑞0

+
𝐺1
∑

𝑖=1
𝑓 (2)
𝑖 (𝑧𝑖′ )𝑟−21(𝑧

∗
𝑖 ) +

𝐺2
∑

𝑗=1
𝑓 (5)
𝑗 (𝑧𝑖′ )𝑟−22(

𝑞20
𝜃𝑗

), (200e)

𝑟+22(𝜃𝑗′ ) =
𝑞∗−,2
𝑞0

+
𝐺2
∑

𝑗=1
𝑓 (4)
𝑗 (𝜃𝑗′ )𝑟−21(𝜃

∗
𝑗 ) −

𝐺2
∑

𝑗=1
𝑓 (6)
𝑗 (𝜃𝑗′ )𝑟+23(

𝑞20
𝜃∗𝑗

), (200f)

where 𝑖′ = 1,… , 𝐺1 and 𝑗′ = 1,… , 𝐺2. With the help of the analytical properties (60) and (64), the elements in piecewise meromorphic functions

ave the following properties:

𝑟−21(𝑧
∗
𝑖 ) =

i𝑧𝑖
𝑞0
𝑟+23(𝑧𝑖), 𝑟−22(

𝑞20
𝜃𝑗

; 𝑥, 𝑡) = 𝑟+22(𝜃𝑗 ), 𝑟+23(
𝑞20
𝜃∗𝑗

) =
𝜃∗𝑗
i𝑞0

𝑟−21(𝜃
∗
𝑗 ). (201)

Substituting (201) into Eqs. (200) yields

𝑟+23(𝑧𝑖′ ) =
𝑞−,1
𝑞0

+
𝐺1
∑

𝑖=1

i𝑧𝑖
𝑞0
𝑓 (2)
𝑖 (𝑧𝑖′ )𝑟+23(𝑧𝑖) +

𝐺2
∑

𝑗=1
𝑓 (5)
𝑗 (𝑧𝑖′ )𝑟+22(𝜃𝑗 ), (202a)

𝑟+22(𝜃𝑗′ ) =
𝑞∗−,2
𝑞0

+
𝐺2
∑

𝑗=1

[

𝑓 (4)
𝑗 (𝜃𝑗′ ) +

i𝜃∗𝑗
𝑞0
𝑓 (6)
𝑗 (𝜃𝑗′ )

]

𝑟−21(𝜃
∗
𝑗 ), (202b)

and

𝑟+22(𝜃𝑗′ ) =
𝐺2
∑

𝑗=1

i𝑞−,1
𝜃∗𝑗

[

𝑓 (4)
𝑗 (𝜃𝑗′ ) +

i𝜃∗𝑗
𝑞0
𝑓 (6)
𝑗 (𝜃𝑗′ )

]

+
𝐺2
∑

𝑗=1

𝐺1
∑

𝑖=1

[

𝑓 (4)
𝑗 (𝜃𝑗′ ) +

i𝜃∗𝑗
𝑞0
𝑓 (6)
𝑗 (𝜃𝑗′ )

]

𝑓 (1)
𝑖 (𝜃∗𝑗 )𝑟

+
23(𝑧𝑖)

+
𝑞∗−,2
𝑞0

−
𝐺2
∑

𝑗=1

𝐺2
∑

𝑗′′=1

[

𝑓 (4)
𝑗 (𝜃𝑗′ ) +

i𝜃∗𝑗
𝑞0
𝑓 (6)
𝑗 (𝜃𝑗′ )

]

𝑓 (3)
𝑗′′ (𝜃

∗
𝑗 )𝑟

+
22(𝜃𝑗′′ ).

(203)

The equations pertaining to 𝑟+23(𝑧′𝑖) and 𝑟+22(𝜃𝑗′ ) constitute a self-contained set comprising 𝐺1 + 𝐺2 equations, each with 𝐺1 + 𝐺2 unknowns. In the

same way, a closed system containing 𝑟+33(𝑧
′
𝑖) and 𝑟+32(𝜃𝑗′ ) can be found. These two systems can be written as 𝐊(𝑥, 𝑡)𝐗𝑛(𝑥, 𝑡) = 𝐀𝑛(𝑥, 𝑡) for 𝑛 = 1, 2,

while 𝐗𝑛(𝑥, 𝑡) =
(

𝑋𝑛1(𝑥, 𝑡),… , 𝑋𝑛(𝐺1+𝐺2)(𝑥, 𝑡)
)𝑇

and

𝑋𝑛𝑖′ (𝑥, 𝑡) =
{

𝑟+(𝑛+1)3(𝑧𝑖′ ; 𝑥, 𝑡), 𝑖′ = 1,… , 𝐺1,

𝑟+(𝑛+1)2(𝜃𝑖′−𝐺1
; 𝑥, 𝑡), 𝑖′ = 𝐺1 + 1,… , 𝐺1 + 𝐺2.

(204)

Using Cramer’s rule, we have

𝑋𝑛𝑖(𝑥, 𝑡) =
det𝐊aug

𝑛𝑖 (𝑥, 𝑡)
det𝐊(𝑥, 𝑡) , 𝑖 = 1,… , 𝐺1 + 𝐺2, 𝑛 = 1, 2, (205)

where 𝐊aug
𝑛𝑖 (𝑥, 𝑡) =

(

𝐊1(𝑥, 𝑡),… ,𝐊𝑖−1(𝑥, 𝑡),𝐀𝑛(𝑥, 𝑡),𝐊𝑖+1(𝑥, 𝑡),… ,𝐊𝐺1+𝐺2
(𝑥, 𝑡)

)

. By inserting the determinant representation of the solutions from Eq. (20
into Eq. (101), one obtains (108). □
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Appendix D. Multiple double-pole solutions

Proof of Theorem 10. To solve Eq. (89), we subtract the term given in Eq. (91) and the principal parts of the Laurent series associated with the
𝐑±(𝑧; 𝑥, 𝑡) terms from both sides. Essentially, the subtraction includes the following:

𝐑∞ + 1
𝑧
𝐑0 +

𝐺
∑

𝑗=1

⎡

⎢

⎢

⎣

𝐑+
−1,𝜃𝑗

𝑧 − 𝜃𝑗
+

𝐑−
−1,𝜃∗𝑗

𝑧 − 𝜃∗𝑗
+

𝐑+
−2,𝜃𝑗

(𝑧 − 𝜃𝑗 )2
+

𝐑−
−2,𝜃∗𝑗

(𝑧 − 𝜃∗𝑗 )2

⎤

⎥

⎥

⎦

+
𝐺
∑

𝑗=1

⎡

⎢

⎢

⎢

⎣

𝐑+
−1,𝑞20∕𝜃

∗
𝑗

𝑧 − (𝑞20∕𝜃∗𝑗 )
+

𝐑−
−1,𝑞20∕𝜃𝑗

𝑧 − (𝑞20∕𝜃𝑗 )
+

𝐑+
−2,𝑞20∕𝜃

∗
𝑗

[𝑧 − (𝑞20∕𝜃∗𝑗 )]2
+

𝐑−
−2,𝑞20∕𝜃𝑗

[𝑧 − (𝑞20∕𝜃𝑗 )]2

⎤

⎥

⎥

⎥

⎦

.

(206)

By applying Eq. (185) and the Plemelj’s formula to the regularized RH problem, we obtain Eq. (140). By considering the corresponding column
vectors in 𝐑±(𝑧; 𝑥, 𝑡) (140) and assigning related variables, we can obtain (141) and (142). To derive Eqs. (143) and (144), we perform a
ifferentiation of Eq. (140) with respect to 𝑧.

𝐑′(𝑧; 𝑥, 𝑡) = − 1
𝑧2

𝐑0 −
1
2𝜋i ∫R

𝐑−(𝜉)̃𝐋(𝜉)
(𝜉 − 𝑧)2

d𝜉 −
𝐺
∑

𝑗=1

⎡

⎢

⎢

⎣

𝐑+
−1,𝜃𝑗

(𝑧 − 𝜃𝑗 )2
+

𝐑−
−1,𝜃∗𝑗

(𝑧 − 𝜃∗𝑗 )2
+

2𝐑+
−2,𝜃𝑗

(𝑧 − 𝜃𝑗 )3
+

2𝐑−
−2,𝜃∗𝑗

(𝑧 − 𝜃∗𝑗 )3

⎤

⎥

⎥

⎦

−
𝐺
∑

𝑗=1

⎡

⎢

⎢

⎢

⎣

𝐑+
−1,𝑞20∕𝜃

∗
𝑗

[𝑧 − (𝑞20∕𝜃∗𝑗 )]2
+

𝐑−
−1,𝑞20∕𝜃𝑗

[𝑧 − (𝑞20∕𝜃𝑗 )]2
+

2𝐑+
−2,𝑞20∕𝜃

∗
𝑗

[𝑧 − (𝑞20∕𝜃∗𝑗 )]3
+

2𝐑−
−2,𝑞20∕𝜃𝑗

[𝑧 − (𝑞20∕𝜃𝑗 )]3

⎤

⎥

⎥

⎥

⎦

,

(207)

By considering the corresponding column vectors in [𝐑±(𝑧; 𝑥, 𝑡)]′ (207) and assigning related variables, we can obtain (143) and (144). □

Proof of Theorem 11. The result can be deduced by scrutinizing the first column of 𝐑−(𝑧; 𝑥, 𝑡) in Eq. (140) and comparing it with equation:

𝑞𝑘(𝑥, 𝑡) = −i lim
𝑧→∞

[𝑧𝜈−,(𝑘+1)1(𝑧; 𝑥, 𝑡)], 𝑘 = 1, 2. (208)

Carry out a Laurent series expansion of Eq. (140) around 𝑧→ ∞

𝐑(𝑧; 𝑥, 𝑡) = 𝐑∞ + 1
𝑧
𝐑0 +

1
2𝜋i𝑧 ∫R

𝐑−(𝜉)̃𝐋(𝜉) d𝜉

+
𝐺
∑

𝑗=1

1
𝑧

[

𝐑+
−1,𝜃𝑗

+ 𝐑−
−1,𝜃∗𝑗

+ 𝐑+
−1,𝑞20∕𝜃

∗
𝑗
+ 𝐑−

−1,𝑞20∕𝜃𝑗

]

+ 𝑂( 1
𝑧2

).
(209)

We take 𝐑(𝑧; 𝑥, 𝑡) = 𝐑−(𝑧; 𝑥, 𝑡) in (209) and compare it with the 2,1 element of Eq. (208)

i𝑞1(𝑥, 𝑡) = i𝑞−,1 + 1
2𝜋i ∫R

[

𝐑−(𝜉 )̃𝐋(𝜉)
]

21
d𝜉 +

𝐺
∑

𝑗=1
𝑊𝑗𝑑

′
2(𝜃𝑗 )

+
𝐺
∑

𝑗=1
𝑊𝑗

[

𝐵𝑗 − i𝑥 − i𝑡
(

2𝜃𝑗 + 3𝜎(𝑞20 + 𝜃2𝑗 )
)]

𝑑2(𝜃𝑗 ).
(210)

Then, compare the result with the 3,1 element of Eq. (208)

i𝑞2(𝑥, 𝑡) = i𝑞−,2 + 1
2𝜋i ∫R

[

𝐑−(𝜉 )̃𝐋(𝜉)
]

31
d𝜉 +

𝐺
∑

𝑗=1
𝑊𝑗𝑑

′
3(𝜃𝑗 )

+
𝐺
∑

𝑗=1
𝑊𝑗

[

𝐵𝑗 − i𝑥 − i𝑡
(

2𝜃𝑗 + 3𝜎(𝑞20 + 𝜃2𝑗 )
)]

𝑑3(𝜃𝑗 ).
(211)

We have proven the reconstruction formula (145) by combining (210) and (211). □

Proof of Theorem 12. For 𝑗 = 1,… , 𝐺, define

𝑏(1)𝑗 (𝑧) = 𝑊𝑗

𝑧 − 𝜃𝑗
, 𝑏(2)𝑗 (𝑧) = 𝑊̄𝑗

𝑧 − 𝜃∗𝑗
, 𝑏(3)𝑗 (𝑧) = 𝑊̂𝑗

𝑧 − (𝑞20∕𝜃∗𝑗 )
, (212a)

𝐵(1)
𝑗 (𝑥, 𝑡) = 𝐵𝑗 − i𝑥 − i𝑡[2𝜃𝑗 + 3𝜎(𝑞20 + 𝜃2𝑗 )], 𝐵(2)

𝑗 (𝑥, 𝑡) = 𝐵̄𝑗 + i𝑥 + i𝑡[2𝜃∗𝑗 + 3𝜎(𝑞20 + (𝜃∗𝑗 )2)], (212b)

𝐵(3)
𝑗 (𝑥, 𝑡) =

𝜃∗𝑗
𝑞20

− 𝐵̂𝑗 +
i(𝜃∗𝑗 )

2

𝑞20
[𝑥 + 𝑡(2𝜃∗𝑗 + 3𝜎(𝑞20 + (𝜃∗𝑗 )2))], (212c)

and

𝑊 (1)
𝑗 (𝑧) = 𝑏(1)𝑗 (𝑧)

[

𝐵(1)
𝑗 + 1

𝑧 − 𝜃𝑗

]

, 𝑊 (2)
𝑗 (𝑧) =

𝑏(1)𝑗 (𝑧)

𝑧 − 𝜃𝑗

[

𝐵(1)
𝑗 + 2

𝑧 − 𝜃𝑗

]

, (213a)

𝑊 (3)
𝑗 (𝑧) =

𝑏(2)𝑗 (𝑧)

𝑧 − 𝜃∗𝑗

[

1 + (𝑧 − 𝜃∗𝑗 )𝐵(2)
𝑗

]

+
i𝜃∗𝑗 𝑏

(3)
𝑗 (𝑧)

𝑞0[𝑧 − (𝑞20∕𝜃∗𝑗 )]

[

1 −
(

𝑧 −
𝑞20
𝜃∗𝑗

)

𝐵(3)
𝑗

]

, (213b)

𝑊 (4)
𝑗 (𝑧) =

𝑏(2)𝑗 (𝑧)
∗ 2

[

2 + (𝑧 − 𝜃∗𝑗 )𝐵(2)
𝑗

]

+
i𝜃∗𝑗 𝑏

(3)
𝑗 (𝑧)
2 ∗ 2

[

2 −
(

𝑧 −
𝑞20
𝜃∗

)

𝐵(3)
𝑗

]

, (213c)

(𝑧 − 𝜃𝑗 ) 𝑞0[𝑧 − (𝑞0∕𝜃𝑗 )] 𝑗
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𝑊 (5)
𝑗 (𝑧) =

i(𝜃∗𝑗 )
3𝑏(3)𝑗 (𝑧)

𝑞30 [𝑧 − (𝑞20∕𝜃∗𝑗 )]
−
𝑏(2)𝑗 (𝑧)

𝑧 − 𝜃∗𝑗
, 𝑊 (6)

𝑗 (𝑧) = 𝑏(2)𝑗 (𝑧) −
i(𝜃∗𝑗 )

3𝑏(3)𝑗 (𝑧)

𝑞30
, (213d)

with

𝑊 (7)
𝑗 (𝑧) = 𝑠33(𝑧)

[

𝑊 (6)
𝑗 (𝑧)∕(𝜃∗𝑗 )

2 −𝑊 (3)
𝑗 (𝑧)∕𝜃∗𝑗

]

, (214a)

𝑊 (8)
𝑗 (𝑧) = 𝑠33(𝑧)

⎡

⎢

⎢

⎣

𝑊 (5)
𝑗 (𝑧)

(𝜃∗𝑗 )2
+
𝑊 (4)
𝑗 (𝑧)

𝜃∗𝑗

⎤

⎥

⎥

⎦

+ 𝑠′33(𝑧)
⎡

⎢

⎢

⎣

𝑊 (6)
𝑗 (𝑧)

(𝜃∗𝑗 )2
−
𝑊 (3)
𝑗 (𝑧)

𝜃∗𝑗

⎤

⎥

⎥

⎦

, (214b)

𝑊 (9)
𝑗 (𝑧) = 𝑠33(𝑧)𝑊

(4)
𝑗 (𝑧) − 𝑠′33(𝑧)𝑊 (3)

𝑗 (𝑧), 𝑊 (10)
𝑗 (𝑧) = 𝑠33(𝑧)𝑊

(5)
𝑗 (𝑧) + 𝑠′33(𝑧)𝑊 (6)

𝑗 (𝑧). (214c)

Under the condition of the reflectionless, there are equations that hold true

𝜈−,21(𝜃∗𝑗 ; 𝑥, 𝑡) =
i𝑞−,1
𝜃∗𝑗

+
𝐺
∑

𝑗′=1

[(

𝐵(1)
𝑗′ + 1

𝜃∗𝑗 − 𝜃𝑗′

)

𝑏(1)𝑗′ (𝜃
∗
𝑗 )𝑑2(𝜃𝑗′ ) + 𝑏(1)𝑗′ (𝜃∗𝑗 )𝑑′2(𝜃𝑗′ )

]

, (215)

𝜈′−,21(𝜃
∗
𝑗 ; 𝑥, 𝑡) = − i𝑞−,1

(𝜃∗𝑗 )2
−

𝐺
∑

𝑗′=1

⎡

⎢

⎢

⎣

(

𝐵(1)
𝑗′ + 2

𝜃∗𝑗 − 𝜃𝑗′

) 𝑏(1)𝑗′ (𝜃
∗
𝑗 )𝑑2(𝜃𝑗′ )

𝜃∗𝑗 − 𝜃𝑗′
+
𝑏(1)𝑗′ (𝜃

∗
𝑗 )𝑑

′
2(𝜃𝑗′ )

𝜃∗𝑗 − 𝜃𝑗′

⎤

⎥

⎥

⎦

, (216)

𝑑2(𝜃𝑖′ ; 𝑥, 𝑡) = −𝑠33(𝜃𝑖′ )
[

𝑞∗−,2
𝑞0

+
𝐺
∑

𝑗=1
𝑊 (6)
𝑗 (𝜃𝑖′ )𝜈′−,21(𝜃

∗
𝑗 ) +𝑊 (3)

𝑗 (𝜃𝑖′ )𝜈−,21(𝜃∗𝑗 )

]

, (217)

𝑑′2(𝜃𝑖′ ; 𝑥, 𝑡) = −𝑠′33(𝜃𝑖′ )
𝑞∗−,2
𝑞0

+
𝐺
∑

𝑗=1

[

𝑠33(𝜃𝑖′ )𝑊
(4)
𝑗 (𝜃𝑖′ ) − 𝑠′33(𝜃𝑖′ )𝑊 (3)

𝑗 (𝜃𝑖′ )
]

𝜈−,21(𝜃∗𝑗 ) −
𝐺
∑

𝑗=1

[

𝑠33(𝜃𝑖′ )𝑊
(5)
𝑗 (𝜃𝑖′ ) + 𝑠′33(𝜃𝑖′ )𝑊 (6)

𝑗 (𝜃𝑖′ )
]

𝜈′−,21(𝜃
∗
𝑗 ), (218)

where 𝑖′ = 1,… , 𝐺. Substituting (215) and (216) into Eqs. (217) and (218) respectively yields

𝑑2(𝜃𝑖′ ; 𝑥, 𝑡) = −𝑠33(𝜃𝑖′ )
𝑞∗−,2
𝑞0

+
𝐺
∑

𝑗=1

𝐺
∑

𝑗′=1
𝑠33(𝜃𝑖′ )

[

𝑊 (6)
𝑗 (𝜃𝑖′ )𝑊

(2)
𝑗′ (𝜃∗𝑗 ) −𝑊 (3)

𝑗 (𝜃𝑖′ )𝑊
(1)
𝑗′ (𝜃∗𝑗 )

]

𝑑2(𝜃𝑗′ )

+
𝐺
∑

𝑗=1
i𝑞−,1𝑊

(7)
𝑗 (𝜃𝑖′ ) +

𝐺
∑

𝑗=1

𝐺
∑

𝑗′=1
𝑠33(𝜃𝑖′ )𝑏

(1)
𝑗′ (𝜃

∗
𝑗 )
⎡

⎢

⎢

⎣

𝑊 (6)
𝑗 (𝜃𝑖′ )

𝜃∗𝑗 − 𝜃𝑗′
−𝑊 (3)

𝑗 (𝜃𝑖′ )
⎤

⎥

⎥

⎦

𝑑′2(𝜃𝑗′ ),

(219)

and

𝑑′2(𝜃𝑖′ ; 𝑥, 𝑡) = −𝑠′33(𝜃𝑖′ )
𝑞∗−,2
𝑞0

+
𝐺
∑

𝑗=1

𝐺
∑

𝑗′=1

[

𝑊 (9)
𝑗 (𝜃𝑖′ )𝑊

(1)
𝑗′ (𝜃∗𝑗 ) +𝑊 (10)

𝑗 (𝜃𝑖′ )𝑊
(2)
𝑗′ (𝜃∗𝑗 )

]

𝑑2(𝜃𝑗′ )

+
𝐺
∑

𝑗=1
i𝑞−,1𝑊

(8)
𝑗 (𝜃𝑖′ ) +

𝐺
∑

𝑗=1

𝐺
∑

𝑗′=1
𝑏(1)𝑗′ (𝜃

∗
𝑗 )
⎡

⎢

⎢

⎣

𝑊 (10)
𝑗 (𝜃𝑖′ )

𝜃∗𝑗 − 𝜃𝑗′
+𝑊 (9)

𝑗 (𝜃𝑖′ )
⎤

⎥

⎥

⎦

𝑑′2(𝜃𝑗′ ).

(220)

The equations for 𝑑2(𝜃𝑖′ ; 𝑥, 𝑡) and 𝑑′2(𝜃𝑖′ ; 𝑥, 𝑡) form a closed system of 2𝐺 equations with 2𝐺 unknowns. In the same way, a closed system
ontaining 𝑑3(𝜃𝑖′ ; 𝑥, 𝑡) and 𝑑′3(𝜃𝑖′ ; 𝑥, 𝑡) can be found. These two systems can be written as 𝐊̂(𝑥, 𝑡)𝐗̂𝑛(𝑥, 𝑡) = 𝐀̂𝑛(𝑥, 𝑡) for 𝑛 = 1, 2, while 𝐗̂𝑛(𝑥, 𝑡) =
𝑋𝑛1(𝑥, 𝑡),… , 𝑋𝑛(2𝐺)(𝑥, 𝑡)

)𝑇
and

𝑋𝑛𝑖′ (𝑥, 𝑡) =
{

𝑑(𝑛+1)(𝜃𝑖′ ; 𝑥, 𝑡), 𝑖′ = 1,… , 𝐺 ,
𝑑′(𝑛+1)(𝜃𝑖′−𝐺; 𝑥, 𝑡), 𝑖′ = 𝐺 + 1,… , 2𝐺 . (221)

Using Cramer’s rule, we have

𝑋𝑛𝑖(𝑥, 𝑡) =
det 𝐊̂aug

𝑛𝑖 (𝑥, 𝑡)
det 𝐊̂(𝑥, 𝑡)

, 𝑖 = 1,… , 2𝐺 , 𝑛 = 1, 2, (222)

where 𝐊̂aug
𝑛𝑖 (𝑥, 𝑡) =

(

𝐊̂1(𝑥, 𝑡),… , 𝐊̂𝑖−1(𝑥, 𝑡), 𝐀̂𝑛(𝑥, 𝑡), 𝐊̂𝑖+1(𝑥, 𝑡),… , 𝐊̂2𝐺(𝑥, 𝑡)
)

. By inserting the determinant representation of the solutions from Eq. (222)
into Eq. (145), one obtains (151). □

One double-pole solution is obtained when 𝐺 = 1 is considered in Eq. (151).

𝐪one(𝑥, 𝑡) = 1
det 𝐊̂one(𝑥, 𝑡)

⎛

⎜

⎜

⎝

det 𝐊̂aug
one,1(𝑥, 𝑡)

det 𝐊̂aug
one,2(𝑥, 𝑡)

⎞

⎟

⎟

⎠

, 𝐊̂one(𝑥, 𝑡) =
(

1 + 𝑃11 𝑃12
𝑃21 1 + 𝑃22

)

, (223)

where

𝐊̂aug
one,1(𝑥, 𝑡) =

⎛

⎜

⎜

⎜

⎝

𝑞−,1 i𝑊1𝐵
(1)
1 i𝑊1

𝐴11 1 + 𝑃11 𝑃12
𝐴12 𝑃21 1 + 𝑃22

⎞

⎟

⎟

⎟

⎠

, 𝐊̂aug
one,2(𝑥, 𝑡) =

⎛

⎜

⎜

⎜

⎝

𝑞−,2 i𝑊1𝐵
(1)
1 i𝑊1

𝐴21 1 + 𝑃11 𝑃12
𝐴22 𝑃21 1 + 𝑃22

⎞

⎟

⎟

⎟

⎠

, (224)
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and

𝐴11 =
(𝑞20 − 𝜃1𝜃

∗
1 )

2

−(𝑞20 − 𝜃
2
1 )

2

𝑞∗−,2
𝑞0

+ i𝑞−,1𝑊 (7)
1 (𝜃1), 𝐴12 =

2𝑞20 (𝜃
∗
1 − 𝜃1)(𝑞

2
0 − 𝜃1𝜃

∗
1 )

(𝑞20 − 𝜃
2
1 )

3

𝑞∗−,2
𝑞0

+ i𝑞−,1𝑊 (8)
1 (𝜃1), (225a)

𝐴21 =
(𝑞20 − 𝜃1𝜃

∗
1 )

2

(𝑞20 − 𝜃
2
1 )

2

𝑞∗−,1
𝑞0

+ i𝑞−,2𝑊 (7)
1 (𝜃1), 𝐴22 =

2𝑞20 (𝜃1 − 𝜃
∗
1 )(𝑞

2
0 − 𝜃1𝜃

∗
1 )

(𝑞20 − 𝜃
2
1 )

3

𝑞∗−,1
𝑞0

+ i𝑞−,2𝑊 (8)
1 (𝜃1), (225b)

with

𝑃11 =
(𝑞20 − 𝜃1𝜃

∗
1 )

2

(𝑞20 − 𝜃
2
1 )

2

[

𝑊 (3)
1 (𝜃1)𝑊

(1)
1 (𝜃∗1 ) −𝑊 (6)

1 (𝜃1)𝑊
(2)
1 (𝜃∗1 )

]

, (226a)

𝑃12 =
(𝑞20 − 𝜃1𝜃

∗
1 )

2

(𝑞20 − 𝜃
2
1 )

2

[

𝑊 (3)
1 (𝜃1)𝑏

(1)
1 (𝜃∗1 ) −

𝑊 (6)
1 (𝜃1)𝑏

(1)
1 (𝜃∗1 )

𝜃∗1 − 𝜃1

]

, (226b)

𝑃21 = −𝑊 (9)
1 (𝜃1)𝑊

(1)
1 (𝜃∗1 ) −𝑊 (10)

1 (𝜃1)𝑊
(2)
1 (𝜃∗1 ), (226c)

𝑃22 =
𝑊 (10)

1 (𝜃1)𝑏
(1)
1 (𝜃∗1 )

𝜃1 − 𝜃∗1
−𝑊 (9)

1 (𝜃1)𝑏
(1)
1 (𝜃∗1 ), (226d)

where

𝑊 (1)
1 (𝜃∗1 ) = 𝑏(1)1 (𝜃∗1 )

[

𝐵(1)
1 + 1

𝜃∗1 − 𝜃1

]

, 𝑊 (2)
1 (𝜃∗1 ) =

𝑏(1)1 (𝜃∗1 )
𝜃∗1 − 𝜃1

[

𝐵(1)
1 + 2

𝜃∗1 − 𝜃1

]

, (227a)

𝑊 (3)
1 (𝜃1) =

𝑏(2)1 (𝜃1)
𝜃1 − 𝜃∗1

[

1 + (𝜃1 − 𝜃∗1 )𝐵(2)
1

]

+
i𝜃∗1𝑏

(3)
1 (𝜃1)

𝑞0[𝜃1 − (𝑞20∕𝜃∗1 )]

[

1 −
(

𝜃1 −
𝑞20
𝜃∗1

)

𝐵(3)
1

]

, (227b)

𝑊 (4)
1 (𝜃1) =

𝑏(2)1 (𝜃1)

(𝜃1 − 𝜃∗1 )
2

[

2 + (𝜃1 − 𝜃∗1 )𝐵(2)
1

]

+
i𝜃∗1𝑏

(3)
1 (𝜃1)

𝑞0[𝜃1 − (𝑞20∕𝜃∗1 )]2

[

2 −
(

𝜃1 −
𝑞20
𝜃∗1

)

𝐵(3)
1

]

, (227c)

𝑊 (5)
1 (𝜃1) =

i(𝜃∗1 )
3𝑏(3)1 (𝜃1)

𝑞30 [𝜃1 − (𝑞20∕𝜃∗1 )]
−
𝑏(2)1 (𝜃1)
𝜃1 − 𝜃∗1

, 𝑊 (6)
1 (𝜃1) = 𝑏(2)1 (𝜃1) −

i(𝜃∗1 )
3𝑏(3)1 (𝜃1)

𝑞30
, (227d)

𝑊 (7)
1 (𝜃1) =

(𝑞20 − 𝜃1𝜃
∗
1 )

2

(𝑞20 − 𝜃
2
1 )

2

[

𝑊 (6)
1 (𝜃1)

(𝜃∗1 )
2

−
𝑊 (3)

1 (𝜃1)
𝜃∗1

]

, (227e)

𝑊 (8)
1 (𝜃1) =

(𝑞20 − 𝜃1𝜃
∗
1 )

2

(𝑞20 − 𝜃
2
1 )

2

[

𝑊 (5)
1 (𝜃1)

(𝜃∗1 )
2

+
𝑊 (4)

1 (𝜃1)
𝜃∗1

]

+
2𝑞20 (𝜃1 − 𝜃

∗
1 )(𝑞

2
0 − 𝜃1𝜃

∗
1 )

(𝑞20 − 𝜃
2
1 )

3

[

𝑊 (6)
1 (𝜃1)

(𝜃∗1 )
2

−
𝑊 (3)

1 (𝜃1)
𝜃∗1

]

, (227f)

𝑊 (9)
1 (𝜃1) =

(𝑞20 − 𝜃1𝜃
∗
1 )

2

(𝑞20 − 𝜃
2
1 )

2
𝑊 (4)

1 (𝜃1) −
2𝑞20 (𝜃1 − 𝜃

∗
1 )(𝑞

2
0 − 𝜃1𝜃

∗
1 )

(𝑞20 − 𝜃
2
1 )

3
𝑊 (3)

1 (𝜃1), (227g)

𝑊 (10)
1 (𝜃1) =

(𝑞20 − 𝜃1𝜃
∗
1 )

2

(𝑞20 − 𝜃
2
1 )

2
𝑊 (5)

1 (𝜃1) +
2𝑞20 (𝜃1 − 𝜃

∗
1 )(𝑞

2
0 − 𝜃1𝜃

∗
1 )

(𝑞20 − 𝜃
2
1 )

3
𝑊 (6)

1 (𝜃1), (227h)

and

𝑏(1)1 (𝜃∗1 ) =
𝑓1(𝜃∗1 − 𝜃1)(𝑞

2
0 − 𝜃

2
1 )

2

(𝑞20 − 𝜃1𝜃
∗
1 )

2
e[−i𝜃1[𝑥+(𝜃1+𝜎 𝜃21+3𝜎 𝑞20 )𝑡]], (228a)

𝑏(2)1 (𝜃1) =
𝑓 ∗
1 (𝜃

∗
1 )

2(𝜃∗1 − 𝜃1)

(𝜃∗1 )
2 − 𝑞20

e[i𝜃
∗
1 [𝑥+[𝜃

∗
1+𝜎(𝜃

∗
1 )

2+3𝜎 𝑞20 ]𝑡]], (228b)

𝑏(3)1 (𝜃1) =
i𝑓 ∗

1 𝑞
5
0 (𝜃1 − 𝜃

∗
1 )

2e[i𝜃
∗
1 [𝑥+[𝜃

∗
1+𝜎(𝜃

∗
1 )

2+3𝜎 𝑞20 ]𝑡]]

(𝜃∗1 )
2(𝑞20 − 𝜃1𝜃

∗
1 )[𝑞

2
0 − (𝜃∗1 )2]

, (228c)

𝑊1 =
𝑓1(𝜃1 − 𝜃∗1 )

2(𝑞20 − 𝜃
2
1 )

2

(𝑞20 − 𝜃1𝜃
∗
1 )

2
e[−i𝜃1[𝑥+(𝜃1+𝜎 𝜃21+3𝜎 𝑞20 )𝑡]], (228d)

𝐵(1)
1 = 2

𝜃1 − 𝜃∗1
−

2𝑞20 (𝑞
2
0 + 𝜃

2
1 − 2𝜃1𝜃∗1 )

𝜃1(𝑞20 − 𝜃
2
1 )(𝑞

2
0 − 𝜃1𝜃

∗
1 )

+
𝑏̄∗1
𝑓1

(

𝑞20
𝜃21

− 1
)

− i𝑥 − i𝑡[2𝜃1 + 3𝜎(𝑞20 + 𝜃21 )], (228e)

𝐵(2)
1 = 2

𝜃∗1 − 𝜃1
+
𝑏̄1
𝑓 ∗
1

(

𝑞20
(𝜃∗1 )

2
− 1

)

+ i𝑥 + i𝑡[2𝜃∗1 + 3𝜎(𝑞20 + (𝜃∗1 )2)], (228f)

𝐵(3)
1 =

𝜃∗1
𝑞20

[

2𝜃1
𝜃∗1 − 𝜃1

+
𝑏̄1𝜃∗1
𝑓 ∗
1

(

𝑞20
(𝜃∗1 )

2
− 1

)

+ i𝜃∗1 [𝑥 + 𝑡[2𝜃∗1 + 3𝜎(𝑞20 + (𝜃∗1 )2)]]
]

. (228g)
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Data will be made available on request.
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