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In this paper, an extended (3 + 1)-dimensional Kadomtsev–Petviashvili (KP) equation

is studied via the Hirota bilinear derivative method. Soliton, breather, lump and rogue

waves, which are four types of localized waves, are obtained. N -soliton solution is de-
rived by employing bilinear method. Then, line or general breathers, two-order line or

general breathers, interaction solutions between soliton and line or general breathers

are constructed by complex conjugate approach. These breathers own different dynamic
behaviors in different planes. Taking the long wave limit method on the multi-soliton so-

lutions under special parameter constraints, lumps, two- and three-lump and interaction

solutions between dark soliton and dark lump are constructed, respectively. Finally, dark
rogue waves, dark two-order rogue waves and related interaction solutions between dark
soliton and dark rogue waves or dark lump are also demonstrated. Moreover, dynami-

cal characteristics of these localized waves and interaction solutions are further vividly
demonstrated through lots of three-dimensional graphs.

Keywords: Hirota bilinear method; rogue wave; lump; breather; interaction solution.

1. Introduction

Nonlinear evolution equations (NLEEs) have been used to describe many nonlinear

phenomena in the nature, such as fluid mechanics, plasma physics, optical fibers and

solid state physics.1–3 Among the NLEEs, (KP)-type equations have been regarded
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as the models to describe some nonlinear phenomena in plasmas and fluids.4,5

Some researchers have proposed the following (3 + 1)-dimensional generalized KP

equation6,7 in recent years:

(ut + k1uux + k2uxxx)x + k3uxx + k4uyy

+ k5uzz + k6uxy + k7uxz + k8uyz = 0 . (1)

Equation (1) models the evolution of long water waves and small-amplitude surface

waves with the weak nonlinearity, weak dispersion and weak perturbation in a fluid.

The coefficients ki (1 ≤ i ≤ 8) are all parameters which represent different physical

meanings.

Multi-soliton solutions and multi-periodic wave solutions for Eq. (1) have been

received by virtue of the binary Bell polynomials and Riemann theta function

method.6 Bright breather, lump and rogue wave solutions for Eq. (1) have been

studied via the Hirota method.7 Special cases of Eq. (1) have been explored in

physical sciences such as the (1 + 1)-dimensional KdV equation8 and generalized

KP equation.9

Letting k4 = k5, k3 = k6 = k7 = k8 = 0, Eq. (1) has been reduced to a

(3 + 1)-dimensional generalized KP equation.10

(ut + k1uux + k2uxxx)x + k4(uyy + uzz) = 0 , (2)

which can describe many nonlinear phenomena in fluid dynamics. Soliton, rogue

wave and interaction solutions for Eq. (2) have been derived via the Bell polyno-

mials.

In recent decades, more and more attention has been paid to the construction

of exact solutions of NLEEs. For a given nonlinear system, Hirota method is an

effective and direct method to seek the corresponding explicit solutions. Soliton,

lump, breather and rogue wave, as four types of localized wave solutions, have

aroused great interest in both theories and experiments.

Solitons have been seen as the localized waves in certain directions.10 Breathers

demonstrate themselves as a localized spatial or temporal structure that exhibit

oscillatory behavior.11,12 Rogue waves are considered as the spontaneous nonlinear

waves whose amplitudes are larger than the surrounding backgrounds and have

been proved to be a kind of the rational solutions localized in both space and

time.13–15 Lump solutions, another kind of the rational solutions, have been found

to be localized in all directions of the space.16,17

When k1 = σ, k2 = 1, k3 = α, k4 = β, k5 = γ, ki = 0 (6 ≤ i ≤ 8), Eq. (1) is

reduced to

(ut + σuux + uxxx)x + αuxx + βuyy + γuzz = 0 , (3)

which models nonlinear wave in liquid containing gas bubbles. Bäuklund trans-

formations, infinite conservation laws and periodic wave solutions of Eq. (3) are

explored by using the Bell polynomial approach.18
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If setting σ = 6, β = ±1, when α = γ = 0 or α = −γ, z = x, Eq. (3) is reduced

to classical KP equation that can model the water waves of long wavelength with

the weakly nonlinear restoring forces and frequency dispersion, waves in the ferro-

magnetic media, and (2 + 1)-dimensional matter-wave pulses in the Bose–Einstein

condensates.19 Higher-dimensional NLEEs have been proposed for that they can

describe the nonlinear phenomena more accurately than those lower-dimensional

ones.20

As far as we know, the breather, lump and rogue wave for Eq. (3) have not

been studied. So, the goal of this paper is to explore four types of localized waves

and interaction solutions among them to Eq. (3) by virtue of the method applied

in Refs. 21–23. N -soliton solutions are derived according to the Hirota bilinear

approach in Sec. 2. Then, the breathers and interaction solutions are obtained by

taking complex conjugate of the parameters. Finally, the lumps, rogue waves and

interaction solutions between localized waves are also derived by applying long wave

limit method on multi-soliton solutions. In particular, the rich dynamic phenomena

of the interaction solutions between localized waves are also studied in detail in

addition to obtaining the four basic localized waves. Section 3 is a short conclusion.

2. Localized Wave and Interaction Solutions

2.1. The N-soliton solutions

Equation (3) can be mapped into bilinear form24

(DxDt +D4
x + αD2

x + βD2
y + γD2

z)f · f = 0 , (4)

under the transformation

u =
12

σ

(
ln f

)
xx
, (5)

where f = f(x, y, z, t) and the bilinear derivative operators are defined by

Dl
xD

m
y D

n
zD

p
t (f · g) =

(
∂

∂x
− ∂

∂x′

)l(
∂

∂y
− ∂

∂y′

)m(
∂

∂z
− ∂

∂z′

)n
×
(
∂

∂t
− ∂

∂t′

)p
f(x, y, z, t)g(x′, y′, z′, t′)|x′=x,y′=y,z′=z,t′=t.

(6)

It is quite evident that u = u
(
x, y, z, t

)
is a solution of Eq. (3) under the trans-

formation (5), if and only if f solves Eq. (4).

Substituting

u = expηi , ηi = ki(x+ piy + qiz + ωit) + η0i , (7)

into the linear terms of Eq. (3), and solving the resulting equation for ωi we obtain

the dispersion relation as

ωi = −(α+ k2i + βp2i + γq2i ), i = 1, 2, . . . , N , (8)
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and hence the wave variable ηi becomes

ηi = ki(x+ piy + qiz − (α+ k2i + βp2i + γq2i )t) + η0i , i = 1, 2, . . . , N . (9)

When N = 1, supposing f = 1 + expη1 , then one-soliton solution for Eq. (3) is

obtained by transformation (5). When N = 2, supposing f = 1 + expη1 + expη2 +

A12expη1+η2 . Substituting f into Eq. (4), and solving for the phase shift Aij , we

find

Aij =
β(pi − pj

)2
+ γ(qi − qj)2 − 3(ki − kj)2

β(pi − pj)2 + γ(qi − qj)2 − 3(ki + kj)2
, 1 ≤ i < j ≤ 3 . (10)

When N = 3, supposing f = 1+expη1+expη2+expη3+A12expη1+η2+A13expη1+η3+

A23expη2+η3 +A123expη1+η2+η3 , analogously we derive A123 = A12A13A23 which is

a condition for the integrability of the three-soliton.

Recursively, we derive N -soliton solutions of Eq. (3), which can be obtained by

substituting

f =
∑
µ=0,1

exp

 N∑
i=1

µiηi +
N∑

1≤i<j

µiµj ln(Aij)

 , (11)

into Eq. (4) via the simplified Hirota method, and

ηi = ki(x+ piy + qiz − (α+ k2i + βp2i + γq2i )t) + η0i , i = 1, 2, . . . , N ,

Aij =
β(pi − pj)2 + γ(qi − qj)2 − 3(ki − kj)2

β(pi − pj)2 + γ(qi − qj)2 − 3(ki + kj)2
, 1 ≤ i < j ≤ N ,

(12)

where ki, pi, qi and η0i are arbitrary constants,
∑
µ=0,1 is the summation with pos-

sible combinations of µi = 0, 1 (i = 1, 2, . . . , N).

To demonstrate the dynamic phenomena of the soliton solutions, we take N =

1, 2, 3 for example. Then, the explicit one-, two- and three-soliton solutions can be

obtained with the following parameters:

α = 1, β = γ = −1, σ = 6 ,

N = 1, k1 = 1, p1 = 1, q1 = 2, η01 = 0 ,

N = 2, k1 = 1, p1 = 2, q1 = 1, k2 = 1, p2 = 1 ,

q2 = 2, η01 = η02 = 0 ,

N = 3, k1 = 1, p1 = 0.5, q1 = 2, k2 = 1, p2 = 1 ,

q2 = 1, k3 = 1, p3 = 3, q3 = 1, η01 = η02 = η03 = 0 .

(13)

It is visually shown that the collisions are elastic, which can be seen in Fig. 1.

After the collision of the solitons, their speeds and shapes are kept unchanged, but

the phases have a change. When σ is positive or negative, bright and dark solitons

are obtained, respectively. In addition, the amplitude increases with σ decreasing,

hence amplitude of the solitons is negative correlation with σ.
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(a) (b) (c)

(d) (e) (f)

Fig. 1. (Color online) (a–c): three dimension graphs of bright one-, two- and three-soliton solu-
tions of Eq. (3) at (x, y) plane by choosing z = 0, t = 0; (d–f): the corresponding dark soliton

solutions only with σ = −3 in Eq. (13).

2.2. The breather solutions

By taking complex conjugate approach for arbitrary parameters in Eq. (11),

breather solutions of the extended KP Eq. (3) can be constructed and they ex-

hibit different dynamic phenomena on different planes.

When N = 2, letting the parameters in Eq. (11) satisfy the following constraints:

k1 = k∗2 = ai, p1 = p∗2 = c+ di, q1 = q2 = b, (i2 = −1) . (14)

Now, f in Eq. (11) can be rewritten as

f = 1 + 2exp(−ad(y − 2βct))cos(a(x+ cy + bz + (a2 − γb2 − βc2 + βd2 − α)t))

+

(
1− 3a2

βd2

)
exp(−2ad(y − 2βct)) . (15)

Then, the general breathers can be derived by choosing suitable parameters in

Eq. (14), whose dynamical behaviors are demonstrated in Fig. 2. These breathers

propagate along the axis with stable shape, amplitude and velocity. The line

breather in (x, z) plane can be constructed with the same parameters, whose three-

dimensional graphs are demonstrated in Fig. 3. These periodic line waves are line

breathers, whose limiting cases can generate the fundamental line rogue waves.
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(a) (b) (c)

(d) (e)

Fig. 2. (Color online) General breathers of Eq. (3) in different planes with parameters constrained
by a = b = c = d = 1, α = 1, β = γ = −1, σ = 6, η01 = η02 = 0.

(a) (b) (c)

Fig. 3. (Color online) Line breathers of Eq. (3) in (x, z) plane at y = 0: (a) t = −1, (b) t = 0

and (c) t = 3. The parameters are the same as in Fig. 2.

The line breathers originate from a plane and then they gradually reach the maxi-

mum amplitude 1.332 at t = 0. Finally, they gradually return to the original state.

When σ increases, amplitude of general or line breather decreases, but period-

icity keeps unchanged. The shape, amplitude and periodicity are all influenced and

controlled by the parameters α, β and γ.

In the case of N = 3, we derive interaction solutions between solitons and

breathers by choosing suitable parameters. When the parameters of Eq. (11) and
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(a) (b) (c)

Fig. 4. (Color online) The spatial structure of interaction solutions between soliton and line

breather in (x, z) plane at y = 0, (a) t = −0.5, (b) t = 0 and (c) t = 2. The parameters are
constrained in Eq. (16).

coefficients of Eq. (3) are selected as follows:

k1 = k∗3 = i, p1 = p∗3 = 2 + i, (i2 = −1), q1 = q3 = 2 ,

k2 = 3, p2 = 2, q2 = 2, η01 = η02 = η03 = 0, σ = 6 ,

α = 1, β = γ = −1 ,

(16)

the expression of f in Eq. (11) can be adduced that

f = 1 + exp(3x+ 6y + 6z − 6t) + 4exp(−2y − 8t) + 4exp(3x+ 4y + 6z − 14t)

+ 2exp(−y − 4t)cos(x+ 2y + 2z + 7t)

+
410

853
exp(3x+ 5y + 6z − 10t)cos(x+ 2y + 2z + 7t)

+
1656

853
exp(3x+ 5y + 6z − 10t)sin(x+ 2y + 2z + 7t) . (17)

Then, we receive two categories of interaction solutions between soliton and

line breather or general breather by choosing suitable parameters in Eq. (11). The

interaction phenomena and dynamical behaviors can be seen in Figs. 4 and 5.

From Fig. 4, it can be seen that the amplitude of the interaction solution reaches

maximum 5.13 at t = 0. The soliton divides the line breather into two parts. The

line breather disappears and soliton will be left alone as time goes by. Obviously,

the periodicity and propagation directions of these interaction solutions between

soliton and general breather are distinct with each other from Fig. 5.

In the case of N = 4, interaction solutions between breathers are derived by

choosing suitable parameters. The function f in the four-soliton solution u has the

following form:

f = 1 + expη1 + expη2 + expη3 + expη4 +A12expη1+η2 +A13expη1+η3

+A14expη1+η4 +A23expη2+η3 +A24expη2+η4 +A34expη3+η4

+A12A13A23expη1+η2+η3 +A12A14A24expη1+η2+η4

2050076-7
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(a) (b) (c)

(d) (e)

Fig. 5. (Color online) The spatial structure of interaction solutions between soliton and general
breathers in different planes. The parameters are constrained in Eq. (16) only p1 should be replaced

with 2 + 3i.

+A13A14A34expη1+η3+η4 +A23A24A34expη2+η3+η4

+A12A13A14A23A24A34 expη1+η2+η3+η4 , (18)

with the parameters in accordance with Eq. (12). The parameters in Eq. (18) are

set as follows:

k1 = k∗2 = i, k3 = k∗4 = 2i, p1 = p∗2 = 1 + i ,

p3 = p∗4 = 2 + i, (i2 = −1) ,

q1 = q2 = 1, q3 = q4 = 2, η0j = 0 ,

(j = 1, 2, 3, 4), σ = 6, α = 1, β = γ = −1 .

(19)

Similar to the case of N = 3, two kinds of two-order breathers are demonstrated

in Figs. 6–7. In Fig. 6, as t goes on, we can observe that one breather fissions into

two-order smaller period breathers. In Fig. 7, the two line breathers emerge from

a constant plane and the amplitude reaches to the maximum 3.649 at t = 0 and

then they tend to the original plane. The interaction solutions of two-soliton and

general breather can be obtained by selecting another set of suitable parameters.

Dynamic phenomena can be seen in Fig. 8 and the parameters are constrained

as: k1 = k∗2 = i, p1 = p∗2 = 1 + 3i, q1 = q2 = 1, k3 = 1, p3 = 2, q3 = 3, k4 = 2,

p4 = 1, q4 = 4, σ = 6, α = 1, β = γ = −1.

2050076-8
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(a) (b) (c)

Fig. 6. (Color online) Interaction phenomenon of two-order general breathers in (x, y) plane: (a)

t = 0, (b) t = 2 and (c) t = 7. Parameters are given in Eq. (19).

(a) (b) (c)

Fig. 7. (Color online) Interaction phenomenon of two-order line breathers in (x, z) plane: (a)

t = −0.5, (b) t = 0 and (c) t = 2 and parameters are given in Eq. (19).

(a) (b) (c)

Fig. 8. (Color online) Interaction phenomenon of two-soliton and general breathers in (x, y) plane
at z = 0: (a) t = −1, (b) t = 0 and (c) t = 1.

2.3. The lump solutions

In this section, we will derive lump solutions by using long wave limit method25 on

multi-soliton solutions. There are many kinds of excitation phenomena in physics,

for example, dromions, ring-shape and bubble-like excitations for self-dual Yang–

Mills system are obtained by Lou.26 When N = 2, we can construct lump solutions

2050076-9
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by choosing appropriate parameters in Eq. (11) as follows:

N = 2, k1 = l1ε, k2 = l2ε, η01 = η0∗2 = iπ , (20)

it thus transpires that

f = (θ1θ2 + θ0)l1l2ε
2 +O(ε3) . (21)

By taking the limit of ε→ 0 in Eq. (21), it follows:

u = −12(θ21 + θ22 − 2θ0)

σ(θ1θ2 + θ0)2
, (22)

with

θ0 =
12

β(p1 − p2)2 + γ(q1 − q2)2
,

θi = x+ piy + qiz − (α+ βp2i + γq2i )t (i = 1, 2) .

(23)

If setting p2 = p∗1, q2 = q∗1 , the solution u in Eq. (22) is obviously nonsingular.

In order to demonstrate the characteristics of the solution (22), we assume p1 =

a1 + ib1, q1 = a2 + ib2 and a1, a2, b1, b2 are all real constants.

When a1 6= 0, the trajectory can be defined along the path [x(t), y(t)] as follows:

x+ a1y + a2z − (α+ β(a21 − b21) + γ(a22 − b22))t = 0 ,

a2y + b2z − 2(βa1b1 + γa2b2)t = 0 .
(24)

Meanwhile, formula (22) can be rewritten as

u = −24

σ

(x′ + a1y
′ + a2z

′)2 − (b1y
′ + b2z

′)2 + 3
βb21+γb

2
2[

(x′ + a1y′ + a2z′)2 + (b1y′ + b2z′)2 − 3
βb21+γb

2
2

]2 , (25)

where

x′ = x+ [β(a21 + b21) + γ(a22 + b22)− α]t, y′ = y − 2βa1t, z′ = z − 2γa2t .

From Ref. 27, it can be adduced that the solution u in Eq. (25) is a constant

and keeps the permanent lump conditions in the process of propagating along

the trajectory (24) with the condition βb21 + γb22 < 0. This solution is decay-

ing as O(1/x2, 1/y2, 1/z2) for |x|, |y|, |z| → ∞ and moving with the velocity

vx = −[β(a21 + b21) + γ(a22 + b22)− α], vy = 2βa1t, vz = 2γa2t.

The spatial structures of lumps are visually demonstrated in Fig. 9 and localized

in all directions. When σ increases, amplitude of the lump decreases, and location

of the peak remains unchanged; when β or γ increases, lump wave’s amplitude

increases and meanwhile it becomes tall and slender, but location of peak remain

unchanged; when β increases, amplitude and peak of the lump remains unchanged.

In the case of N = 3, by applying the long wave limit approach on the three-

soliton solution, we can derive interaction solutions between solitons and lumps in

different planes. We constraint the parameters similar in Eq. (20)

N = 3, k1 = l1ε, k2 = l2ε, k3 = k3, η01 = η0∗2 = iπ, η03 = η03 , (26)

2050076-10
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(a) (b) (c)

(d) (e) (f)

Fig. 9. (Color online) The lump solutions in different planes with a1 = 1, b1 = 2, a2 = 2,

b2 = 1, σ = 6, α = 1, β = γ = −1 in Eq. (22).

and taking limit ε→ 0, it then follows:

f = (θ1θ2 + a12)l1l2 + (θ1θ2 + a12 + a13θ2 + a23θ1 + a13a23)l1l2e
η3 , (27)

where

a12 =
12

β(p1 − p2)2 + γ(q1 − q2)2
,

θi = x+ piy + qiz − (α+ βp2i + γq2i )t ,

ai3 =
12k3

β(pi − p3)2 + γ(qi − q3)2 − 3k23
(i = 1, 2) .

(28)

Let

p1 = p∗2 = 1 + i, q1 = q∗2 = 3 + i, k3 = 1, p3 = 2 ,

q3 = 1, η03 = 0, σ = −6, α = 1, β = γ = −1 .
(29)

We derive interaction solutions of Eq. (3) in (x, y) plane, whose dynamical phe-

nomena are exhibited in Fig. 10. At t = 0, the peak and valley of the dark lump

are divided by the dark soliton and then they keep propagating with the same am-

plitude, velocity and shape. So, the collision between them is elastic and the other

planes have a similar process.

In the case of N = 4, with the same method applied above, assuming

k1 = l1ε, k2 = l2ε, k3 = l3ε, k4 = l4ε, η01 = η0∗2 = η03 = η0∗4 = iπ , (30)

2050076-11
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(a) (b) (c)

Fig. 10. (Color online) Elastic collision between dark soliton and dark lump in (x, y) plane with

z = 0: (a) t = −1, (b) t = 0 and (c) t = 1. Parameters are given in Eq. (29).

it follows:

f = (θ1θ2θ3θ4 + a12θ3θ4 + a13θ2θ4 + a14θ2θ3 + a23θ1θ4 + a24θ1θ3

+ a34θ1θ2 + a12a34 + a13a24 + +a14a23)l1l2l3l4ε
4 +O(ε5) , (31)

where

θi = x+ piy + qiz − (α+ βp2i + γq2i )t, i = 1, 2, 3, 4 ,

aij =
12

β(pi − pj)2 + γ(qi − qj)2
(1 ≤ i < j ≤ 4) .

(32)

Let

p1 = p∗2 = a1 + ib1, q1 = q∗2 = a2 + ib2 ,

p3 = p∗4 = c1 + id1, q3 = q∗4 = c2 + id2 ,
(33)

where ai, bi, ci, di (i = 1, 2) are all real constants. Interaction solutions can be

derived with the choices of appropriate parameters. Without loss of generality,

setting

a1 =
1

2
, b1 =

3

2
, a2 = 1, b2 =

1

2
,

c1 =
1

2
, d1 = 1, c2 = 2, d2 =

3

2
,

(34)

we get a nonsingular solution named as two-lump of Eq. (3). Dynamical behaviors

in (x, y) plane are visually shown in Fig. 11. In particular, one lump catch up with

the stable one and then they collide with each other at t = 0, finally they return to

the initial state along their original path with the development of time. There is a

similar interaction phenomenon between two-lump in other planes.

When N = 6, the expression of f contains 76 terms, and it is omitted here

due to the limited space. Substituting f into Eq. (5), and taking p1 = p∗2, q1 = q∗2 ,

p3 = p∗4, q3 = q∗4 , p5 = p∗6, q5 = q∗6 , we get a nonsingular three-lump solution of

Eq. (3). In Fig. 12, the three-lump solution is drawn for a particular choice of the

2050076-12
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(a) (b) (c)

Fig. 11. (Color online) Elastic collision of two-lump in (x, y) plane. Parameters are constrained

in Eq. (34) with σ = 6, α = 1, β = γ = −1 and (a) t = −3, (b) t = 0 and (c) t = 3.

(a) (b) (c)

Fig. 12. (Color online) Elastic collision of three-lump in (x, y) plane with σ = 6, α = 1, β =

γ = −1 and (a) t = −1, (b) t = 0 and (c) t = 1.

parameters in p1 = p∗2 = 2 + i, q1 = q∗2 = 2 + 3i, p3 = p∗4 = 1 + 2i, q3 = q∗4 =

3 + i, p5 = p∗6 = 1 + i, q5 = q∗6 = 3 + 2i.

2.4. The rogue wave solutions

In the following, we will construct rogue wave and interaction solutions for the

extended KP — Eq. (3). For N = 2, when b2 = 0, dark line rogue wave of Eq. (3) can

be obtained which comes from a constant background and disappears on a plane.

The states of propagation can be seen in Fig. 13(a) with parameters constrained

as: p1 = p∗2 = 1 + 2i, q1 = q2 = 2, σ = −6, α = 1, β = γ = −1.

In the case of N = 3, by assuming p1 = p∗2 = 1 + i, q1 = q2 = 1, k3 = 2, p3 =

q3 = −1, η03 = 0, σ = −3, α = 1, β = γ = −1, interaction solutions between dark

soliton and dark line rogue wave will be generated in (x, z) plane. The dynamic

features of the interaction solutions are exhibited in Fig. 13(b).

In the case of N = 4, two kinds of interaction solutions can be obtained by

selecting distinct parameters. When p1 = p∗2 = 2 + i, p3 = p∗4 = 1 + 2i, q1 = q2 =

1, q3 = q4 = 3, σ = −6, α = 1, β = γ = −1, two-order dark line rogue wave could

be obtained in (x, z) plane. Dynamic phenomena are clearly plotted in Fig. 13(c).

When p1 = p∗2 = 1 + i, p3 = p∗4 = 1 + 2i, q1 = q∗2 = 1 + i, q3 = q4 = 2, σ = −6, α =

1, β = γ = −1, another interaction solutions between dark lump and dark line

rogue wave are derived in (x, z) plane. The phenomena of their collision are similar
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(a) (b) (c) (d)

Fig. 13. (Color online) Graphs of dark line rogue wave and related interaction solutions for f in

Eqs. (21), (27) and (31) under transformation (5): (a) y = 0, t = 0, (b) y = 0, t = 0, (c) y = 0, t = 1

and (d) y = 0, t = 2.

to the collision between dark soliton and dark line rogue wave which can be seen

in Fig. 13(d).

The position and amplitude of dark line rogue cannot be influenced by coeffi-

cients α, γ in Eq. (3). However, the amplitude of dark line rogue wave is negative

correlation with σ. When mode of β increases, amplitude of the dark line rogue

wave increases, but width decreases. For interaction solutions between dark lump

and dark line rogue wave, when mode of β increases, amplitude of the dark line

rogue wave decreases, but the location keeps unchanged. The location and ampli-

tude of interaction solution are controlled and affected by coefficients α, β and γ.

3. Conclusions

To conclude, four kinds of localized wave solutions of the (3 + 1)-dimensional ex-

tended KP equation are investigated in this paper. By Hirota bilinear method, the

formula of N -soliton solution is constructed and the graphs of explicit one-, two-

and three-soliton in (x, y) plane are plotted as an example (see Fig. 1). By the com-

plex conjugate method on multi-soliton solutions, breathers and related interaction

solutions are obtained in six different planes. General breathers (see Fig. 2), line

breathers (see Fig. 3), interaction solutions between soliton and line breather (see

Fig. 4) or general breather (see Figs. 5 and 8) and two-order breathers (see Figs. 6

and 7) are obtained, respectively. Line breathers are periodic line waves and they

begin at a constant background and then tend to the original plane, nevertheless

general breathers are periodic steady state of wave propagating in one direction. By

long wave limit method, lumps and rogue waves are derived by choosing suitable

parameters. Lumps and related interaction solutions are exhibited in this paper,

including lumps (see Fig. 9), interaction solutions between dark soliton and dark

lump (see Fig. 10) in (x, y) plane, interaction solutions of two- and three-lump (see

Figs. 11 and 12) in (x, y) plane. In the same way, three types of solutions related

with rogue waves are also exhibited in (x, z) plane, including dark line rogue wave

(see Fig. 13(a)), interaction solutions between dark soliton and dark line rogue

wave (see Fig. 13(b)), interaction solutions of two-order dark line rogue waves (see

2050076-14
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Fig. 13(c)), interaction solutions between dark lump and dark line rogue wave (see

Fig. 13(d)).

In order to predict the correctness and stability of the localized wave solutions,

it is worthy of further exploration to apply numerical simulation method to the

above theoretical solutions in the future.
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