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In this paper, an extended (3 + 1)-dimensional Kadomtsev—Petviashvili (KP) equation
is studied via the Hirota bilinear derivative method. Soliton, breather, lump and rogue
waves, which are four types of localized waves, are obtained. N-soliton solution is de-
rived by employing bilinear method. Then, line or general breathers, two-order line or
general breathers, interaction solutions between soliton and line or general breathers
are constructed by complex conjugate approach. These breathers own different dynamic
behaviors in different planes. Taking the long wave limit method on the multi-soliton so-
lutions under special parameter constraints, lumps, two- and three-lump and interaction
solutions between dark soliton and dark lump are constructed, respectively. Finally, dark
rogue waves, dark two-order rogue waves and related interaction solutions between dark
soliton and dark rogue waves or dark lump are also demonstrated. Moreover, dynami-
cal characteristics of these localized waves and interaction solutions are further vividly
demonstrated through lots of three-dimensional graphs.
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1. Introduction

Nonlinear evolution equations (NLEEs) have been used to describe many nonlinear
phenomena in the nature, such as fluid mechanics, plasma physics, optical fibers and
solid state physics.! Among the NLEEs, (KP)-type equations have been regarded
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as the models to describe some nonlinear phenomena in plasmas and fluids.*°
Some researchers have proposed the following (3 4 1)-dimensional generalized KP
6,7

equation®’ in recent years:

(ut + kluuw + k2uwzx)x + kBwa + k4uyy
+ ksu,, + k’6ugjy + krug, + kguyz =0. (1)

Equation (1) models the evolution of long water waves and small-amplitude surface
waves with the weak nonlinearity, weak dispersion and weak perturbation in a fluid.
The coefficients k; (1 < ¢ < 8) are all parameters which represent different physical
meanings.

Multi-soliton solutions and multi-periodic wave solutions for Eq. (1) have been
received by virtue of the binary Bell polynomials and Riemann theta function
method.® Bright breather, lump and rogue wave solutions for Eq. (1) have been
studied via the Hirota method.” Special cases of Eq. (1) have been explored in
physical sciences such as the (1 + 1)-dimensional KdV equation® and generalized
KP equation.?

Letting ky = ks, ks = k¢ = kv = ks = 0, Eq. (1) has been reduced to a

(3 + 1)-dimensional generalized KP equation.'’

(ut + kluuz + kQszz)z + k4(uyy + uzz) = 0; (2)

which can describe many nonlinear phenomena in fluid dynamics. Soliton, rogue
wave and interaction solutions for Eq. (2) have been derived via the Bell polyno-
mials.

In recent decades, more and more attention has been paid to the construction
of exact solutions of NLEEs. For a given nonlinear system, Hirota method is an
effective and direct method to seek the corresponding explicit solutions. Soliton,
lump, breather and rogue wave, as four types of localized wave solutions, have
aroused great interest in both theories and experiments.

Solitons have been seen as the localized waves in certain directions.1® Breathers
demonstrate themselves as a localized spatial or temporal structure that exhibit
oscillatory behavior.!1:12 Rogue waves are considered as the spontaneous nonlinear
waves whose amplitudes are larger than the surrounding backgrounds and have
been proved to be a kind of the rational solutions localized in both space and
time.'3"15 Lump solutions, another kind of the rational solutions, have been found
to be localized in all directions of the space.'617

When k1 = 0,ky = 1,ks = a,ky = B,ks = v,k; =0 (6 <i <8), Eq. (1) is
reduced to

(ut + ouug + uawz)z + Qg + 6uyy + YUzz = 07 (3)

which models nonlinear wave in liquid containing gas bubbles. Bauklund trans-
formations, infinite conservation laws and periodic wave solutions of Eq. (3) are
explored by using the Bell polynomial approach.'®
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If setting 0 = 6,8 = £1, when a =y =0 or a = —v,z = z, Eq. (3) is reduced
to classical KP equation that can model the water waves of long wavelength with
the weakly nonlinear restoring forces and frequency dispersion, waves in the ferro-
magnetic media, and (2 4 1)-dimensional matter-wave pulses in the Bose-Einstein
condensates.!? Higher-dimensional NLEEs have been proposed for that they can
describe the nonlinear phenomena more accurately than those lower-dimensional
ones.20

As far as we know, the breather, lump and rogue wave for Eq. (3) have not
been studied. So, the goal of this paper is to explore four types of localized waves
and interaction solutions among them to Eq. (3) by virtue of the method applied
in Refs. 21-23. N-soliton solutions are derived according to the Hirota bilinear
approach in Sec. 2. Then, the breathers and interaction solutions are obtained by
taking complex conjugate of the parameters. Finally, the lumps, rogue waves and
interaction solutions between localized waves are also derived by applying long wave
limit method on multi-soliton solutions. In particular, the rich dynamic phenomena
of the interaction solutions between localized waves are also studied in detail in
addition to obtaining the four basic localized waves. Section 3 is a short conclusion.

2. Localized Wave and Interaction Solutions

2.1. The N-soliton solutions

Equation (3) can be mapped into bilinear form?2*
(DyDy¢ + Dy + aD3 + 8D ++D2)f - f =0, (4)
under the transformation
12
u:;(lnf)m, (5)

where f = f(x,y, z,t) and the bilinear derivative operators are defined by

o 9 l ) o m o o n
I pym yn P . Y -~ Y -~ =
Dy Dy DDy (f-9) (896 8:2/) (81/ 8y’> (82 8z’>

(2.2 pf(w Y, 2,092,y 2 ) o —a =y =2 =-
at 3t’ IR AN ) ’ ) =T, Y =Y,z =z, =
(6)

It is quite evident that u = u(z,y, z,t) is a solution of Eq. (3) under the trans-
formation (5), if and only if f solves Eq. (4).
Substituting

u=-exp”, m; =ki(x+piy+qz+wit)+n), (7)

into the linear terms of Eq. (3), and solving the resulting equation for w; we obtain
the dispersion relation as

wi =—(a+k}+pp+74f), i=12,...,N, (8)
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and hence the wave variable 7; becomes
i = ki(x +piy + qiz — (a + k] + Bpf +ya))t) + 07, i=1,2,....N. (9

When N = 1, supposing f = 1 + exp™, then one-soliton solution for Eq. (3) is
obtained by transformation (5). When N = 2, supposing f = 1 + exp™ + exp™ +
Aj9exp™ T2, Substituting f into Eq. (4), and solving for the phase shift A4;;, we
find

B(pi — pj)2 + (g — q5)* = 3(ki — kj)?
B(pi — pj)? +(qi — q;)* = 3(ki + k;)?’
When N = 3, supposing f = 1+exp™ +exp”? +exp + Ajgexp™ 72 4+ A zexp™ 71 4
Agzexp™ T 4 Ajpgexp™ 721713 analogously we derive Aoz = A1 A13As3 which is
a condition for the integrability of the three-soliton.

Recursively, we derive N-soliton solutions of Eq. (3), which can be obtained by
substituting

Aij =

1<i<j<3. (10)

N N
F=exp | Y mim+ Y pinn(Ay) |, (11)
i=1

1u=0,1 1<i<j
into Eq. (4) via the simplified Hirota method, and
2 N2 12 (12)
B(pz pj)Q * ’Y(qz qj)z 3(kl kj)Qa 1 S Z <,] S N7
B(pi —pj)* + (¢ — q;)? — 3(ki + kj)

where k;, pi, q; and 70 are arbitrary constants, > 4=0,1 18 the summation with pos-
sible combinations of u; = 0,1 (i =1,2,...,N).

Aij =

To demonstrate the dynamic phenomena of the soliton solutions, we take N =
1,2, 3 for example. Then, the explicit one-, two- and three-soliton solutions can be
obtained with the following parameters:

a=1, pf=y=-1,0=6,

N=1, k=1, p=1, =2 1n!=0,

N=2 k=1, p=2 q=1, k=1 p=1,
@=2, 1 =1=0,

N=3, ki=1 p =05 ¢q=2 ko=1 ps=1,

@=1 k=1 p3=3, g=1 n)=n)=n3=0.

It is visually shown that the collisions are elastic, which can be seen in Fig. 1.
After the collision of the solitons, their speeds and shapes are kept unchanged, but
the phases have a change. When o is positive or negative, bright and dark solitons
are obtained, respectively. In addition, the amplitude increases with o decreasing,
hence amplitude of the solitons is negative correlation with o.
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Fig. 1. (Color online) (a—c): three dimension graphs of bright one-, two- and three-soliton solu-
tions of Eq. (3) at (z,y) plane by choosing z = 0,¢ = 0; (d—f): the corresponding dark soliton
solutions only with ¢ = —3 in Eq. (13).

2.2. The breather solutions

By taking complex conjugate approach for arbitrary parameters in Eq. (11),
breather solutions of the extended KP Eq. (3) can be constructed and they ex-
hibit different dynamic phenomena on different planes.

When N = 2, letting the parameters in Eq. (11) satisfy the following constraints:

ky=ky=ai, pp=ps=c+di, q=q=0b, (i*=-1). (14)
Now, f in Eq. (11) can be rewritten as

f =1+ 2exp(—ad(y — 2Bct))cos(a(x + cy + bz + (a* — b? — Bc? + Bd* — a)t))

3a?
+ (1 - W) exp(—2ad(y — 28ct)) . (15)

Then, the general breathers can be derived by choosing suitable parameters in
Eq. (14), whose dynamical behaviors are demonstrated in Fig. 2. These breathers
propagate along the axis with stable shape, amplitude and velocity. The line
breather in (z, z) plane can be constructed with the same parameters, whose three-
dimensional graphs are demonstrated in Fig. 3. These periodic line waves are line
breathers, whose limiting cases can generate the fundamental line rogue waves.
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(a) (b) (©)

(d) ()

Fig. 2. (Color online) General breathers of Eq. (3) in different planes with parameters constrained
bya=b=c=d=1l,a=1,8=y=-1,0=6,70 =28 =0.

©)

Fig. 3. (Color online) Line breathers of Eq. (3) in (z,2) plane at y = 0: (a) t = —1, (b) t =0
and (c) t = 3. The parameters are the same as in Fig. 2.

The line breathers originate from a plane and then they gradually reach the maxi-
mum amplitude 1.332 at ¢ = 0. Finally, they gradually return to the original state.
When o increases, amplitude of general or line breather decreases, but period-
icity keeps unchanged. The shape, amplitude and periodicity are all influenced and
controlled by the parameters «, § and ~.
In the case of N = 3, we derive interaction solutions between solitons and
breathers by choosing suitable parameters. When the parameters of Eq. (11) and
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(b)

Fig. 4. (Color online) The spatial structure of interaction solutions between soliton and line
breather in (z,z) plane at y = 0, (a) ¢t = —0.5, (b) ¢ = 0 and (c) ¢ = 2. The parameters are
constrained in Eq. (16).

coefficients of Eq. (3) are selected as follows:
ki=Fky=i, pp=p3=2+i, (*=-1), a1=g=2,
ke =3, p2=2 =2, n7l=7n
a=1, pf=y=-1,
the expression of f in Eq. (11) can be adduced that
f =1+ exp(3z + 6y + 62 — 6t) + dexp(—2y — 8t) + 4dexp(3z + 4y + 6z — 14t)
+ 2exp(—y — 4t)cos(x + 2y + 2z + Tt)

410
+ @exp(?)x + 5y + 62z — 10t)cos(x + 2y + 2z + Tt)

n 1656
853

Then, we receive two categories of interaction solutions between soliton and

exp(3z + by + 6z — 10¢)sin(x + 2y + 2z + 7¢) . (17)

line breather or general breather by choosing suitable parameters in Eq. (11). The
interaction phenomena and dynamical behaviors can be seen in Figs. 4 and 5.
From Fig. 4, it can be seen that the amplitude of the interaction solution reaches
maximum 5.13 at ¢ = 0. The soliton divides the line breather into two parts. The
line breather disappears and soliton will be left alone as time goes by. Obviously,
the periodicity and propagation directions of these interaction solutions between
soliton and general breather are distinct with each other from Fig. 5.

In the case of N = 4, interaction solutions between breathers are derived by
choosing suitable parameters. The function f in the four-soliton solution u has the
following form:

f =1 _|_eXp771 +exp”2 +exp’73 +expﬂ4 +A126Xp771+772 + Algexpfh-i-?]s
_|_A14exp771+774 +A23exp772+773 _|_A24exp772+774 +A34exp773+"74

+ A12A13A23exp771+772+773 + A12A14A24exp771+772+774
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Fig. 5. (Color online) The spatial structure of interaction solutions between soliton and general
breathers in different planes. The parameters are constrained in Eq. (16) only p; should be replaced
with 2 + 34.

+ A13A14Az4exp T 4 Ags Aoy Aggexp T8

+ A19A13A14 Aoz Aoy Agy exp™ T3 HL (18)

with the parameters in accordance with Eq. (12). The parameters in Eq. (18) are
set as follows:

ki=ky =i, ks=ki=2i, p1=ps=1+1,
ps=ps=2+i, (i¥=-1),

G=¢=1, @g=qu=2 1n5=0,
(j=1,2,34), o=6, a=1, B=y=-1.

Similar to the case of N = 3, two kinds of two-order breathers are demonstrated
in Figs. 6-7. In Fig. 6, as t goes on, we can observe that one breather fissions into
two-order smaller period breathers. In Fig. 7, the two line breathers emerge from
a constant plane and the amplitude reaches to the maximum 3.649 at t = 0 and
then they tend to the original plane. The interaction solutions of two-soliton and
general breather can be obtained by selecting another set of suitable parameters.
Dynamic phenomena can be seen in Fig. 8 and the parameters are constrained
as: k1 = k; = i,pl = p; =1 +3i7q1 = (g2 = 1,]€3 = ].,p3 = 2,(]3 = 3,k4 = 2,
pr=lqgu=40=6,a=1,=v=—-1.
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(a) (b) (©

Fig. 6. (Color online) Interaction phenomenon of two-order general breathers in (z,y) plane: (a)
t=0, (b) t =2 and (c) t = 7. Parameters are given in Eq. (19).

Fig. 7. (Color online) Interaction phenomenon of two-order line breathers in (z,z) plane: (a)
t = —0.5, (b) t =0 and (c) t = 2 and parameters are given in Eq. (19).

(b)

Fig. 8. (Color online) Interaction phenomenon of two-soliton and general breathers in (z, y) plane
at z=0: (a) t =—1, (b) t=0and (c) t =1.

2.3. The lump solutions

In this section, we will derive lump solutions by using long wave limit method?> on
multi-soliton solutions. There are many kinds of excitation phenomena in physics,
for example, dromions, ring-shape and bubble-like excitations for self-dual Yang—
Mills system are obtained by Lou.?6 When N = 2, we can construct lump solutions

2050076-9
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by choosing appropriate parameters in Eq. (11) as follows:
N=2 ky=lhe ky=Ilye, n°=nd=inr, (20)
it thus transpires that
[ = (01024 00)l1lae* + O(%). (21)
By taking the limit of ¢ — 0 in Eq. (21), it follows:

12(6F + 635 — 26o)
0'(9102 —+ 90)2 ’

with
B 12
Bp1 —p2)? + (a1 — q2)? (23)

0; =z +py+aqz— (a+Bp; +y¢)t (i=1,2).

If setting pa = pi,q2 = ¢f, the solution w in Eq. (22) is obviously nonsingular.
In order to demonstrate the characteristics of the solution (22), we assume p; =
ay +ib1,q1 = as + by and ay,ao, by, bo are all real constants.

When a; # 0, the trajectory can be defined along the path [z(t), y(¢)] as follows:

T+ a1y + azz — (a+ Blaf — b}) +v(a3 — b3))t =0,

(24)
asy + boz — 2(6&1[)1 + ’yagbg)t =0.
Meanwhile, formula (22) can be rewritten as
o4 (@' + a1y +azz")? — (y +b22' ) + =2
P p—— pbi+1b; , (25)

2
T (2 + a1y’ + az2’')? + (b1y’ + be2')? — ﬁ]
where
o' =z +[B(ad +b7) + (a3 +b3) —at, Yy =y—2Bait, 2 =z—2vyast.

From Ref. 27, it can be adduced that the solution u in Eq. (25) is a constant
and keeps the permanent lump conditions in the process of propagating along
the trajectory (24) with the condition Sb? + vb3 < 0. This solution is decay-
ing as O(1/2%,1/y?,1/2?) for |z|, |y|, |2] — oo and moving with the velocity
vy = —[B(a? 4+ b3) + (a3 + b3) — a], v, = 2Bait, v, = 2vast.

The spatial structures of lumps are visually demonstrated in Fig. 9 and localized
in all directions. When o increases, amplitude of the lump decreases, and location
of the peak remains unchanged; when 8 or v increases, lump wave’s amplitude
increases and meanwhile it becomes tall and slender, but location of peak remain
unchanged; when [ increases, amplitude and peak of the lump remains unchanged.

In the case of N = 3, by applying the long wave limit approach on the three-
soliton solution, we can derive interaction solutions between solitons and lumps in
different planes. We constraint the parameters similar in Eq. (20)

N=3, ki=le, ke=le ks=ks, nl=n=im, ni=n3, (26)

2050076-10



Localized waves and interaction solutions

(d) (e) ®

Fig. 9. (Color online) The lump solutions in different planes with a1 = 1,b1 = 2,a2 = 2,
by=1,0=6,a=1,8=v=—1in Eq. (22).

and taking limit € — 0, it then follows:

[ = (0102 + a12)lils + (6162 + a12 + a1302 + az3b + arzass)lile™ (27)

where
. 12
12 — 3
B(p1 —p2)? + (g1 — q2)?
0; =z +py + @iz — (o + Bp} +v¢))t, (28)
12ks .
a;3 = 1= ]., 2).
B(pi — p3)? + (g — q3)? — 3k3 ( )
Let

D1 :Z);:l—f—l, q1:q§:3+z, k'3:]_’ p3:2’ (29)
(I3:1, ng:o, 0':—6, a:]_7 5:7:_1

We derive interaction solutions of Eq. (3) in (z,y) plane, whose dynamical phe-
nomena are exhibited in Fig. 10. At ¢ = 0, the peak and valley of the dark lump
are divided by the dark soliton and then they keep propagating with the same am-
plitude, velocity and shape. So, the collision between them is elastic and the other
planes have a similar process.

In the case of N = 4, with the same method applied above, assuming
ki =le, ky=lse, ky=lse, ky=1lse, n) =ng"=nd=nd" =ir, (30)

2050076-11
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(b) ©

Fig. 10. (Color online) Elastic collision between dark soliton and dark lump in (z,y) plane with
z=20: (a) t=—1, (b) t =0 and (c) ¢t = 1. Parameters are given in Eq. (29).

it follows:

[ = (61020504 + a120304 + a130204 + 0146203 + a236104 + a240103

+ a34610 + a12a34 + a13a24 + Fa14a93)lilalsliet + O(°), (31)
where
0; = x +piy + qiz — (a+ Bp? +v¢H)t, i=1,2,3,4,
12 (32)
“ B P g S Y-
Let
p1=ps=a1+1ib1, ¢ =¢q5 =as+ibs,
(33)
ps=py=c1+id, ¢3=¢q; =ce+ide,
where a;,b;,¢;,d; (i = 1,2) are all real constants. Interaction solutions can be

derived with the choices of appropriate parameters. Without loss of generality,
setting

1 3 1
a1:§7 blzia a2:17 b2:§7

) 5 (34)
Clzia d1:17 cy =2, d2:§7

we get a nonsingular solution named as two-lump of Eq. (3). Dynamical behaviors
in (z,y) plane are visually shown in Fig. 11. In particular, one lump catch up with
the stable one and then they collide with each other at ¢ = 0, finally they return to
the initial state along their original path with the development of time. There is a
similar interaction phenomenon between two-lump in other planes.

When N = 6, the expression of f contains 76 terms, and it is omitted here
due to the limited space. Substituting f into Eq. (5), and taking p; = p,q1 = ¢3,
P3 = Pi,q3 = qi,P5 = Dg,q5 = q5, we get a nonsingular three-lump solution of
Eq. (3). In Fig. 12, the three-lump solution is drawn for a particular choice of the

2050076-12
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-10

(a) (b) (0)

Fig. 11. (Color online) Elastic collision of two-lump in (z,y) plane. Parameters are constrained
in Eq. (34) withoc =6,a=1,=~v=—1and (a) t = -3, (b) t =0 and (c) t = 3.

(b)

Fig. 12. (Color online) Elastic collision of three-lump in (z,y) plane with ¢ = 6,a = 1,
y=—-land (a) t=—1, (b) t=0and (c) t =1.

parameters in p; = p3 = 2+14,q1 = ¢35 = 2+ 3i,p3 = p; = 1+ 2i,q3 = q
3+4,ps=p5=14+14,¢5 =q§ =3+ 2i.

2.4. The rogue wave solutions

In the following, we will construct rogue wave and interaction solutions for the
extended KP — Eq. (3). For N = 2, when by = 0, dark line rogue wave of Eq. (3) can
be obtained which comes from a constant background and disappears on a plane.
The states of propagation can be seen in Fig. 13(a) with parameters constrained
asspr=ps =14+2i,1 =q@=2,0=—6,a=1,=v= -1

In the case of N = 3, by assuming p1 = p5 =1+4,q1 = q2 = 1,kg = 2,p3 =
g3 =—1,7y = 0,0 = =3,a = 1,8 = v = —1, interaction solutions between dark
soliton and dark line rogue wave will be generated in (x, z) plane. The dynamic
features of the interaction solutions are exhibited in Fig. 13(b).

In the case of N = 4, two kinds of interaction solutions can be obtained by
selecting distinct parameters. When p; = p5 =2+ 4,p3 =pj =1+ 2i,q1 = g2 =
1,3 =q4 = 3,0 = —6,aa = 1,8 = v = —1, two-order dark line rogue wave could
be obtained in (z, z) plane. Dynamic phenomena are clearly plotted in Fig. 13(c).
When py =p5 =1+i,ps=p; =1+2i,q1 =¢; =1+14,qg3 =q1 =2,0 =6, =
1,8 = v = —1, another interaction solutions between dark lump and dark line
rogue wave are derived in (z, z) plane. The phenomena of their collision are similar

2050076-13
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Fig. 13. (Color online) Graphs of dark line rogue wave and related interaction solutions for f in
Egs. (21), (27) and (31) under transformation (5): (a) y =0,t =0, (b)y =0,t =0, (c)y =0,t =1
and (d) y =0,t = 2.

to the collision between dark soliton and dark line rogue wave which can be seen
in Fig. 13(d).

The position and amplitude of dark line rogue cannot be influenced by coeffi-
cients «,~ in Eq. (3). However, the amplitude of dark line rogue wave is negative
correlation with . When mode of § increases, amplitude of the dark line rogue
wave increases, but width decreases. For interaction solutions between dark lump
and dark line rogue wave, when mode of 8 increases, amplitude of the dark line
rogue wave decreases, but the location keeps unchanged. The location and ampli-
tude of interaction solution are controlled and affected by coefficients «, 8 and ~.

3. Conclusions

To conclude, four kinds of localized wave solutions of the (3 + 1)-dimensional ex-
tended KP equation are investigated in this paper. By Hirota bilinear method, the
formula of N-soliton solution is constructed and the graphs of explicit one-, two-
and three-soliton in (z,y) plane are plotted as an example (see Fig. 1). By the com-
plex conjugate method on multi-soliton solutions, breathers and related interaction
solutions are obtained in six different planes. General breathers (see Fig. 2), line
breathers (see Fig. 3), interaction solutions between soliton and line breather (see
Fig. 4) or general breather (see Figs. 5 and 8) and two-order breathers (see Figs. 6
and 7) are obtained, respectively. Line breathers are periodic line waves and they
begin at a constant background and then tend to the original plane, nevertheless
general breathers are periodic steady state of wave propagating in one direction. By
long wave limit method, lumps and rogue waves are derived by choosing suitable
parameters. Lumps and related interaction solutions are exhibited in this paper,
including lumps (see Fig. 9), interaction solutions between dark soliton and dark
lump (see Fig. 10) in (x,y) plane, interaction solutions of two- and three-lump (see
Figs. 11 and 12) in (z,y) plane. In the same way, three types of solutions related
with rogue waves are also exhibited in (z, z) plane, including dark line rogue wave
(see Fig. 13(a)), interaction solutions between dark soliton and dark line rogue
wave (see Fig. 13(b)), interaction solutions of two-order dark line rogue waves (see
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Fig. 13(c)), interaction solutions between dark lump and dark line rogue wave (see
Fig. 13(d)).

In order to predict the correctness and stability of the localized wave solutions,
it is worthy of further exploration to apply numerical simulation method to the
above theoretical solutions in the future.
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