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A B S T R A C T

In the present study, we investigate solitary wave solutions to the Drinfeld–Sokolov system. This system
describes the dispersive water waves in fluid mechanics and is known as an anisotropic integrable system along
with a Lax extension of the famous Korteweg–De Vries equation. The pivotal aim of this study is to make much
more contributions to the fluid mechanics by extracting various versions of traveling waves which are helpful
to further understand the mechanism of propagation of the dispersive waves. The presented method used for
achieving our main goal is the generalized exponential rational function method. Several different categories
of solutions are all determined using a single structure in the utilized technique. After comparing with the
existing methods, such as the Exp-function method, the generated exact wave solutions show the efficiency
of the utilized method. For the sake of discovering more facts about the numerical nature of obtained wave
solutions, several 2D diagrams have been shown. Further, the acquired results of this paper also pave the way
for the use of the technique in solving other nonlinear models.
Introduction

Many practical phenomena around us are described by the lan-
guage of differential equations. This great importance has led to many
attempts to determine the exact solution or in some cases approxi-
mate solutions for these models. In some cases, investigating exact
traveling wave solutions principally exact solitary wave solutions has
a significant role in the study of physical phenomena. For example,
exact N-soliton solutions to pKP-BKP and other NPDE equations have
been obtained in [1–4] via the Hirota bilinear operation. Kuo extracted
the resonant multi-soliton solutions by using the linear superposi-
tion principle [5–7]. Some exact solutions to the fifth-order potential
Bogoyavlenskii–Schiff equation have been obtained in [8]. Refs. [9–26]
show examples of the successful application of differential equations in
solving some applied models. In [27] Gao et al. have employed a newly
extended direct algebraic technique to acquire novel explicit solutions
for the nonlinear Zoomeron. Also, some interesting applications of the
fractional calculus in image processing through designing novel frac-
tional masks have been presented in [28–30]. Moreover, Yel and her
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collaborators performed some complex simulations with dark–bright
to the Hirota–Maccari system [31]. To the approaching numerical
methods, Ghanbari derived the approaching approximate solutions to
a model in forecasting the second wave of out-breaking COVID-19 in
Iran [32]. McCue and his collaborators studied exact sharp-fronted
traveling wave solutions of the Fisher–KPP equation in [33]. In [34],
some new results for the time-fractional Phi-four equation using q-
homotopy analysis transform method were presented. Optical solitons
were also studied for various other models in nonlinear optics [35–
40]. Further, the wave theory arising in phenomena in the framework
of plasma, fluid dynamics, optical fibers, and in shallow water were
studied in the literature [41–47]. On the other hand, in some problems,
determining the exact solution for equations using existing methods
is not possible and often we have to utilize numerical techniques in
approximating the solution of such problems [48–56].

In the last decade, the research of finding new methods in solv-
ing solutions and seeking different types of solitary wave solutions
has not slowed down. In this direction, there are some theoretical
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aspects and results in terms of establishing supplementary approaches
in the literature. For example, decomposition method [57], sine–cosine
method [58], Darboux transformation [59], a modified 𝜙6 method [60],
the Hirota method [61], Lie group analysis [62], modified simple equa-
tion method [63], similarity reduced method, tanh method, and inverse
scattering scheme [64]. Some other methodologies in the literature
can be found in [65–71]. Recently, Ghanbari et al. proposed the so-
called generalized exponential rational function method (GERFM) [72–
77], to retrieve analytical solutions to general nonlinear partial dif-
ferential equations. This technique has a general approach as some
known methodologists, such as the transformed rational function tech-
nique [78], tanh–coth method, and what is considered in [79] as
so-called seed solutions. The Ref. [80] has presented a general class
of explicit solutions to the general Riccati equation, which could yield
explicit traveling wave solutions to nonlinear PDEs via polynomial or
rational function expansions.

In this paper, we study the Drinfeld–Sokolov (DS) system given
by [81–83]

𝑢𝑡 +
(

𝑣2
)

𝑥 = 0,

𝑣𝑡 − 𝛿𝑣𝑥𝑥𝑥 + 3𝜆𝑢𝑥𝑣 + 3𝜎𝑢𝑣𝑥 = 0.
(1)

here 𝑢 = 𝑢(𝑥, 𝑡), 𝑣 = 𝑣(𝑥, 𝑡) and 𝛿, 𝜆, 𝜎 are nonzero constants. The system
as developed by Drinfeld and Sokolov as an example of a system of
onlinear equations that possesses Lax pairs of a special form. This
roperty has been proved in [84]. The nonlocal symmetry of the system
as obtained, and infinitely many nonlocal symmetries are obtained by

ntroducing the internal parameters [85].
Due to the high importance of this system, so far it has been

tudied using many different tools. Exp-function and its modification
ethods have been employed in [81] to obtain an exact solution of

he nonlinear Drinfeld–Sokolov system. In [83], a variety of exact
raveling wave solutions to the Drinfeld–Sokolov system is investigated
y using the tanh method and the sine–cosine method. It is also notable
hat, Gao et al. applied the q-homotopy analysis transform method to
ind the numerical solutions for the fractional Drinfeld–Sokolov–Wilson
quation with Mittag-Leffler law [86]. Novel solutions to the time-
ractional of Drinfeld–Sokolov–Wilson system, which is based upon
he Liouville–Caputo fractional integral (LCFI), the Caputo–Fabrizio
ractional integral, and the Atangana–Baleanu fractional integral in
he sense of the LCFI is constructed in [87] using the Adomian de-
omposition method. This article contains the following sections. The
econd section of the present paper discusses the analysis of the method
n detail. In the third section, we will use the method to find the
xact solutions of the DS system. In this section, we observe that our
esults differ from those solutions presented in the literature for the
rinfeld–Sokolov system. Further, several 2D numerical simulations
orresponding to some of these solutions are depicted in this section.
inally, conclusions are presented in the last section of the article.

formal description of the technique

In the recent literature, many nonlinear models have been solved
sing the GERFM. For instance, please see [72–77]. These successful
xperiences encourage us to use the method in solving the DS system.

The general process of applying the method is outlined below for
olving a nonlinear model such as

(𝒰 ,𝒰𝑥,𝒰𝑡,𝒰𝑥𝑥,…) = 0. (2)

1. Taking 𝒰 = 𝒰(𝜁 ) and 𝜁 = 𝜅𝑥 − 𝜔𝑡 into account in Eq. (2), we
attain

ℱ (𝒰 , 𝜅𝒰 ′
𝜁 ,−𝜔𝒰

′
𝜁 , 𝜅

2𝒰 ′′
𝜁 ,…) = 0, (3)

where the values of 𝜅 and 𝜔 are two unknowns.
2

2. Now, we assume that the solution of the equation Eq. (3) follows
the following general formulation

𝒰(𝜁 ) = 𝑎0 +
𝑛0
∑

𝑘=1
𝑎𝑘ℋ

𝑘(𝜁 ) +
𝑛0
∑

𝑘=1

𝑏𝑘
ℋ 𝑘(𝜁 )

, (4)

where

ℋ (𝜁 ) =
𝜇1𝑒𝑥𝑝(𝜈1𝜁 ) + 𝜇2𝑒𝑥𝑝(𝜈2𝜁 )
𝜇3𝑒𝑥𝑝(𝜈3𝜁 ) + 𝜇4𝑒𝑥𝑝(𝜈4𝜁 )

. (5)

The unknowns in these structures, including 𝜇𝑖, 𝜈𝑖(1 ≤ 𝑖 ≤ 4),
𝑎0, 𝑎𝑘 and 𝑏𝑘(1 ≤ 𝑘 ≤ 𝑛0), are determined later. To calculate 𝑛0,
we also use some known rules of balancing.

3. Inserting Eq. (4) into Eq. (3), we will arrive to a algebraic
equation in terms of 𝛬𝑖 = 𝑒𝜈𝑖𝜁 for 𝑖 = 1,… , 4. After setting each
of the coefficients of different powers of 𝜁 to zero, a system of
nonlinear equations is characterized.

4. After solving this nonlinear system using symbolic computa-
tional packages such as Maple, and proper placement of the
resulting solutions, analytical solutions for the original equation
are introduced.

t is notable that the algorithm outlined in (4) and (5) is a particular
ase of the algorithm for the multiple exp-function method (refer to the
ef. [88] for more information on the multiple exp-function method).

athematical analysis for the DS system

Let us start with the following assumptions for the solutions

(𝑥, 𝑡) = 𝒰(𝜁 ), 𝑣(𝑥, 𝑡) = 𝒱 (𝜁 ), 𝜁 = 𝑥 − 𝜔𝑡, (6)

here 𝜔 is an arbitrary constant needs to be calculated.
If we use transformation (6) in Eq. (1), the following nonlinear

ystem of ODEs is obtained [81]

− 𝜔𝒰 ′(𝜁 ) + (𝒱 2(𝜁 ))′ = 0,

− 𝜔𝒱 ′(𝜁 ) − 𝛿𝒱 ′′′(𝜁 ) + 3𝜆𝒰 ′(𝜁 )𝒱 (𝜁 ) + 3𝜎𝒰(𝜁 )𝒱 ′(𝜁 ) = 0.
(7)

rom the first equation in (7), we obtain

(𝜁 ) = 1
𝜔
𝒱 2(𝜁 ). (8)

Substituting Eq. (8) into the second equation of the system and inte-
grating, one gets

𝜔𝛿𝒱 ′′(𝜁 ) − (2𝜆 + 𝜎)𝒱 3(𝜁 ) + 𝜔2𝒱 (𝜁 ) = 0. (9)

Application of balancing principles between 𝒱 ′′(𝜁 ) and 𝒱 3(𝜁 ) in Eq. (9)
suggests 3𝑛0 = 𝑛0+2. So, we get 𝑛0 = 1. Subsequently, the solution takes
he following structure

(𝜁 ) = 𝑎0 + 𝑎1ℋ (𝜁 ) +
𝑏1

ℋ (𝜁 )
. (10)

where ℋ (𝜁 ) is giving by (5).
By following the required steps for the method, the main results in

this paper are as follows.

Set 1: Supposing 𝜇 = [−1,−1, 1,−1] and 𝜈 = [1,−1, 1,−1] yields

ℋ (𝜁 ) = −
cosh (𝜁 )
sinh (𝜁 )

. (11)

ubset 1: For 𝜎 + 2𝜆 > 0,

= 2𝛿, 𝑎0 = 0, 𝑎1 = 0, 𝑏1 =
2𝛿2

√

2𝜆 + 𝜎
.

After considering these results in Eqs. (10) and (11), it reads

𝒱 (𝜁 ) = − 2𝛿
√

2𝜆 + 𝜎 coth (𝜁 )
.

In this way, the following analytical solution of Eq. (1) is extracted

𝑣1 (𝑥, 𝑡) = − 2𝛿
√

. (12)

2𝜆 + 𝜎 coth (𝑥 − 2𝛿𝑡)
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Fig. 1. 2D contour plot corresponding to 𝑣1(𝑥, 𝑦) for 𝜆 = 0.7, 𝜎 = 0.5 different 𝛿’s.
The graphical depictions related to this solution in 2D contour plots are
provided in Fig. 1.

Subset 2: For 𝜎 < −2𝜆,

𝜔 = −4𝛿, 𝑎0 = 0, 𝑎1 =
4𝛿

√

−4𝜆 − 2𝜎
, 𝑏1 = − 4𝛿

√

−4𝜆 − 2𝜎
.

After considering these results in Eqs. (10) and (11), it reads

𝒱 (𝜁 ) = − 4𝛿
√

−4𝜆 − 2𝜎 sinh (𝜁 ) cosh (𝜁 )
.

In this way, the following analytical solution of Eq. (1) is extracted

𝑣2 (𝑥, 𝑡) = − 4𝛿
√

−4𝜆 − 2𝜎 sinh (𝑥 + 4𝛿𝑡) cosh (𝑥 + 4𝛿𝑡)
. (13)

Subset 3: For 𝜎 + 2𝜆 > 0,

𝜔 = 8𝛿, 𝑎0 = 0, 𝑎1 =
4𝛿

√

2𝜆 + 𝜎
, 𝑏1 =

4𝛿
√

2𝜆 + 𝜎
.

After considering these results in Eqs. (10) and (11), it reads

𝒱 (𝜁 ) = −
4𝛿

(

(coth (𝜁 ))2 + 1
)

√

2𝜆 + 𝜎 coth (𝜁 )
.

In this way, the following analytical solution of Eq. (1) is extracted

𝑣3 (𝑥, 𝑡) = −
4𝛿

(

(coth (𝑥 − 8𝛿𝑡))2 + 1
)

√

2𝜆 + 𝜎 coth (𝑥 − 8𝛿𝑡)
. (14)

The graphical depictions related to this solution in 2D contour plots are
provided in Fig. 2.

Set 2: Supposing 𝜇 = [1,−3,−1, 1] and 𝜈 = [1,−1, 1,−1] yields

ℋ (𝜁 ) =
cosh (𝜁 ) − 2 sinh (𝜁 )

sinh (𝜁 )
. (15)

Subset 1: For 𝜎 + 2𝜆 > 0,

𝜔 = 2𝛿, 𝑎0 = − 4𝛿
√

2𝜆 + 𝜎
, 𝑎1 = 0, 𝑏1 = − 6𝛿

√

2𝜆 + 𝜎
.

After considering these results in Eqs. (10) and (15), it reads

𝒱 (𝜁 ) = −
2𝛿 (− sinh (𝜁 ) + 2 cosh (𝜁 ))

√

2𝜆 + 𝜎 (cosh (𝜁 ) − 2 sinh (𝜁 ))
.

In this way, the following analytical solution of Eq. (1) is extracted

𝑣4 (𝑥, 𝑡) = −
2𝛿 (− sinh (𝑥 − 2𝛿𝑡) + 2 cosh (𝑥 − 2𝛿𝑡))

√

2𝜆 + 𝜎 (cosh (𝑥 − 2𝛿𝑡) − 2 sinh (𝑥 − 2𝛿𝑡))
. (16)

The graphical depictions related to this solution in 2D contour plots are
provided in Fig. 3.

Set 3: Supposing 𝜇 = [−2, 0,−1, 1] and 𝜈 = [1,−1, 1,−1] yields

ℋ (𝜁 ) =
cosh (𝜁 ) + sinh (𝜁 )

. (17)
3

sinh (𝜁 )
Subset 1: For 𝜎 + 2𝜆 > 0,

𝜔 = 2𝛿, 𝑎0 =
2𝛿

√

2𝜆 + 𝜎
, 𝑎1 = − 2𝛿

√

2𝜆 + 𝜎
, 𝑏1 = 0.

After considering these results in Eqs. (10) and (17), it reads

𝒱 (𝜁 ) = −
2𝛿 cosh (𝜁 )

√

2𝜆 + 𝜎 sinh (𝜁 )
.

In this way, the following analytical solution of Eq. (1) is extracted

𝑣5 (𝑥, 𝑡) = −
2𝛿 cosh (𝑥 − 2𝛿𝑡)

√

2𝜆 + 𝜎 sinh (𝑥 − 2𝛿𝑡)
. (18)

The graphical depictions related to this solution in 2D contour plots are
provided in Fig. 4.

Set 4: Supposing 𝜇 = [2 − 𝑖,−2 − 𝑖,−1, 1] and 𝜈 = [𝑖,−𝑖, 𝑖,−𝑖] yields

ℋ (𝜁 ) =
−2 sin (𝜁 ) + cos (𝜁 )

sin (𝜁 )
. (19)

Subset 1: For 𝜎 < −2𝜆,

𝜔 = −2𝛿, 𝑎0 = − 4𝛿
√

−𝜎 − 2𝜆
, 𝑎1 = 0, 𝑏1 = − 10𝛿

√

−𝜎 − 2𝜆
.

After considering these results in Eqs. (10) and (19), it reads

𝒱 (𝜁 ) = −
2𝛿 (2 cos (𝜁 ) + sin (𝜁 ))

√

−𝜎 − 2𝜆 (−2 sin (𝜁 ) + cos (𝜁 ))
.

In this case, Eq. (1) possesses the following wave soliton solution

𝑣6 (𝑥, 𝑡) = −
2𝛿 (2 cos (𝑥 + 2𝛿𝑡) + sin (𝑥 + 2𝛿𝑡))

√

−𝜎 − 2𝜆 (−2 sin (𝑥 + 2𝛿𝑡) + cos (𝑥 + 2𝛿𝑡))
. (20)

The graphical depictions related to this solution in 2D contour plots are
provided in Fig. 5.

Set 5: Supposing 𝜇 = [−1 − 𝑖, 1 − 𝑖,−1, 1] and 𝜈 = [𝑖,−𝑖, 𝑖,−𝑖] yields

ℋ (𝜁 ) =
cos (𝜁 ) + sin (𝜁 )

sin (𝜁 )
. (21)

Subset 1: For 𝜎 < −2𝜆,

𝜔 = −2𝛿, 𝑎0 = − 2𝛿
√

−𝜎 − 2𝜆
, 𝑎1 = 0, 𝑏1 =

4𝛿
√

−𝜎 − 2𝜆
.

After considering these results in Eqs. (10) and (21), it reads

𝒰 (𝜁 ) = −
2𝛿 (cos (𝜁 ) − sin (𝜁 ))

√

−𝜎 − 2𝜆 (cos (𝜁 ) + sin (𝜁 ))
.

In this way, the following analytical solution of Eq. (1) is extracted

𝑣7 (𝑥, 𝑡) = −
2𝛿 (cos (𝑥 + 2𝛿𝑡) − sin (𝑥 + 2𝛿𝑡))

√
. (22)
−𝜎 − 2𝜆 (cos (𝑥 + 2𝛿𝑡) + sin (𝑥 + 2𝛿𝑡))
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Fig. 2. 2D contour plot corresponding to 𝑣3(𝑥, 𝑦) for 𝜆 = 1.3, 𝜎 = 0.9 different 𝛿’s.
Fig. 3. 2D contour plot corresponding to 𝑣4(𝑥, 𝑦) for 𝜆 = 1.2, 𝜎 = 0.1 different 𝛿’s.
Fig. 4. 2D contour plot corresponding to 𝑣5(𝑥, 𝑦) for 𝜆 = 1.2, 𝜎 = 0.2 different 𝛿’s.
The graphical depictions related to this solution in 2D contour plots are
provided in Fig. 6.

Set 6: Supposing 𝜇 = [−2 − 𝑖, 2 − 𝑖,−1, 1] and 𝜈 = [1,−1, 1,−1] yields

ℋ (𝜁 ) =
cos (𝜁 ) + 2 sin (𝜁 )

sin (𝜁 )
. (23)

Subset 1: For 𝜎 < −2𝜆,

𝜔 = −2𝛿, 𝑎0 = − 4𝛿
√

−𝜎 − 2𝜆
, 𝑎1 = 0, 𝑏1 =

10𝛿
√

−𝜎 − 2𝜆
.

After considering these results in Eqs. (10) and (23), it reads

𝒱 (𝜁 ) = −
2𝛿 (− sin (𝜁 ) + 2 cos (𝜁 ))

√
.

4

−𝜎 − 2𝜆 (cos (𝜁 ) + 2 sin (𝜁 ))
In this way, the following analytical solution of Eq. (1) is extracted

𝑣8 (𝑥, 𝑡) = −
2𝛿 (− sin (𝑥 + 2𝛿𝑡) + 2 cos (𝑥 + 2𝛿𝑡))

√

−𝜎 − 2𝜆 (cos (𝑥 + 2𝛿𝑡) + 2 sin (𝑥 + 2𝛿𝑡))
. (24)

Set 7: Supposing 𝜇 = [1 − 𝑖,−1 − 𝑖,−1, 1] and 𝜈 = [𝑖,−𝑖, 𝑖,−𝑖] yields

ℋ (𝜁 ) =
cos (𝜁 ) − sin (𝜁 )

sin (𝜁 )
. (25)

Subset 1: For 𝜎 < −2𝜆,

𝜔 = −2𝛿, 𝑎0 = − 2𝛿
√

, 𝑎1 = 0, 𝑏1 = − 4𝛿
√

.

−𝜎 − 2𝜆 −𝜎 − 2𝜆
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Fig. 5. 2D contour plot corresponding to 𝑣6(𝑥, 𝑦) for 𝜆 = 0.3, 𝜎 = −0.7 different 𝛿’s.
Fig. 6. 2D contour plot corresponding to 𝑣7(𝑥, 𝑦) for 𝜆 = 0.5, 𝜎 = −0.9 different 𝛿’s.
After considering these results in Eqs. (10) and (25), it reads

𝒱 (𝜁 ) = −
2𝛿 (cos (𝜁 ) + sin (𝜁 ))

√

−𝜎 − 2𝜆 (cos (𝜁 ) − sin (𝜁 ))
.

In this way, the following analytical solution of Eq. (1) is extracted

𝑣9 (𝑥, 𝑡) = −
2𝛿 (cos (𝑥 + 2𝛿𝑡) + sin (𝑥 + 2𝛿𝑡))

√

−𝜎 − 2𝜆 (cos (𝑥 + 2𝛿𝑡) − sin (𝑥 + 2𝛿𝑡))
. (26)

Set 8: Supposing 𝜇 = [−3,−2, 1, 1] and 𝜈 = [0, 1, 0, 1] yields

ℋ (𝜁 ) = −3 − 2e𝜁

1 + e𝜁
. (27)

Subset 1: For 𝜎 + 2𝜆 > 0,

𝜔 = 𝛿
2
, 𝑎0 = − 5𝛿

2
√

2𝜆 + 𝜎
, 𝑎1 = 0, 𝑏1 = − 6𝛿

√

2𝜆 + 𝜎
.

After considering these results in Eqs. (10) and (27), it reads

𝒱 (𝜁 ) =
𝛿
(

2e𝜁 − 3
)

2
√

2𝜆 + 𝜎
(

3 + 2e𝜁
)

.

In this case, Eq. (1) possesses the following wave soliton solution

𝑣10 (𝑥, 𝑡) =
𝛿
(

2e
(

𝑥− 𝛿
2 𝑡
)

− 3
)

2
√

2𝜆 + 𝜎
(

3 + 2e
(

𝑥− 𝛿
2 𝑡
))

. (28)

The graphical depictions related to this solution in 2D contour plots are
provided in Fig. 7.

Set 9: Supposing 𝜇 = [−1,−2, 1, 1] and 𝜈 = [1, 0, 1, 0] yields

ℋ (𝜁 ) = −e𝜁 − 2 . (29)
5

e𝜁 + 1
Subset 1: For 𝜎 + 2𝜆 > 0,

𝜔 = 𝛿
2
, 𝑎0 =

3𝛿
2
√

2𝜆 + 𝜎
, 𝑎1 = 0, 𝑏1 =

2𝛿
√

2𝜆 + 𝜎
.

After considering these results in Eqs. (10) and (29), it reads

𝒱 (𝜁 ) = −
𝛿
(

e𝜁 − 2
)

2
√

2𝜆 + 𝜎
(

e𝜁 + 2
)

.

In this way, the following analytical solution of Eq. (1) is extracted

𝑣11 (𝑥, 𝑡) = −
𝛿
(

e
(

𝑥− 𝛿
2 𝑡
)

− 2
)

2
√

2𝜆 + 𝜎
(

e
(

𝑥− 𝛿
2 𝑡
)

+ 2
)
. (30)

Set 10: Supposing 𝜇 = [2, 1, 1, 1] and 𝜈 = [1, 0, 1, 0] yields

ℋ (𝜁 ) = 2e𝜁 + 1
e𝜁 + 1

. (31)

Subset 1: For 𝜎 + 2𝜆 > 0,

𝜔 = 𝛿
2
, 𝑎0 =

3𝛿
2
√

2𝜆 + 𝜎
, 𝑎1 = 0, 𝑏1 = − 2𝛿

√

2𝜆 + 𝜎
.

After considering these results in Eqs. (10) and (31), it reads

𝒱 (𝜁 ) =
𝛿
(

2e𝜁 − 1
)

2
√

2𝜆 + 𝜎
(

2e𝜁 + 1
)

.

In this way, the following analytical solution of Eq. (1) is extracted

𝑣12 (𝑥, 𝑡) =
𝛿
(

2e
(

𝑥− 𝛿
2 𝑡
)

− 1
)

2
√

2𝜆 + 𝜎
(

2e
(

𝑥− 𝛿
2 𝑡
)

+ 1
)
. (32)
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Fig. 7. 2D contour plot corresponding to 𝑣10(𝑥, 𝑦) for 𝜆 = 0.5, 𝜎 = 0.9 different 𝛿’s.
Fig. 8. 2D contour plot corresponding to 𝑣12(𝑥, 𝑦) for 𝜆 = 0.9, 𝜎 = 0.5 different 𝛿’s.
The graphical depictions related to this solution in 2D contour plots are
provided in Fig. 8.

Set 11: Supposing 𝜇 = [3, 2, 1, 1] and 𝜈 = [1, 0, 1, 0] yields

ℋ (𝜁 ) = 3e𝜁 + 2
e𝜁 + 1

. (33)

Subset 1: For 𝜎 + 2𝜆 > 0,

𝜔 = 𝛿
2
, 𝑎0 =

5𝛿
2
√

2𝜆 + 𝜎
, 𝑎1 = 0, 𝑏1 = − 6𝛿

√

2𝜆 + 𝜎
.

After considering these results in Eqs. (10) and (33), it reads

𝒱 (𝜁 ) =
𝛿
(

3e𝜁 − 2
)

2
√

2𝜆 + 𝜎
(

3e𝜁 + 2
)

.

In this way, the following analytical solution of Eq. (1) is extracted

𝑣13 (𝑥, 𝑡) =
𝛿
(

3e
(

𝑥− 𝛿
2 𝑡
)

− 2
)

2
√

2𝜆 + 𝜎
(

3e
(

𝑥− 𝛿
2 𝑡
)

+ 2
)
. (34)

Set 12: Supposing 𝜇 = [−1, 0, 1, 1] and 𝜈 = [0, 1, 0, 1] yields

ℋ (𝜁 ) = − 1
e𝜁 + 1

. (35)

Subset 1: For 𝜎 + 2𝜆 > 0,

𝜔 = 𝛿
2
, 𝑎0 = − 𝛿

2
√

2𝜆 + 𝜎
, 𝑎1 = − 𝛿

√

2𝜆 + 𝜎
, 𝑏1 = 0.

After considering these results in Eqs. (10) and (35), it reads

𝒱 (𝜁 ) = −
𝛿
(

e𝜁 − 1
)

√
(

𝜁
)

.

6

2 2𝜆 + 𝜎 e + 1
In this way, the following analytical solution of Eq. (1) is extracted

𝑣14 (𝑥, 𝑡) = −
𝛿
(

e
(

𝑥− 𝛿
2 𝑡
)

− 1
)

2
√

2𝜆 + 𝜎
(

e
(

𝑥− 𝛿
2 𝑡
)

+ 1
)
. (36)

Remark 1. Using 𝑢 (𝑥, 𝑡) = 1
𝜔𝑣

2 (𝑥, 𝑡), another solution for the system is
obtained.

Remark 2. To ensure the correctness of the obtained solutions, we
have put them all in the original equation and found that they are all
correct.

Conclusion

In this survey, by utilizing the generalized exponential rational func-
tion method along with twelve categories of assumed solution forms
fourteen new exact traveling wave solutions are formally extracted
to the Drinfeld–Sokolov system. After comparing with the existing
literature the presented results are brand new. Moreover, these ob-
tained exact solutions can be naturally considered as the standard to
the approaching solutions. Further, to better understand the dynamic
behavior of solutions to the dispersive waves, various numerical simu-
lations have been added to the paper, including solitary and periodic
waves. We have checked the correctness of all the solutions and the
satisfaction of the original equation for all the results presented in this
contribution. It can be observed that the proposed method is more pow-
erful and introduces various novel solutions which have not reported
in the past literature. We deduce that our method is explicit, reliable,
and straightforward which is helpful to solve complicated nonlinear
models in various branches of nonlinear science. Our achievements can
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be considered as efficient and new results for the considered equation.
These achievements have several applications in physical sciences.
Numerical simulations related to this article have been performed in
Wolfram Mathematica 12.0.
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