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1 | INTRODUCTION

A plenty of matrix spectral problems can produce Hamiltonian operators that have a component that is linear with respect
to the involved potential vector u = (u!, ... ,u™) and the partial derivatives of u (this component is said to be u-linear
and can often be proven to be Hamiltonian as well), in their Hamiltonian structure. Especially when m = 2 and the
notation u = (p, q)7 is usually applied, such Hamiltonian operators are found in many soliton hierarchies that were dis-
covered in recent decades, such as the generalized Wadati-Konno-Ichikawa hierarchy,' the coupled Burgers hierarchy,?
and also a soliton hierarchy that was reported in 1992.° It frequently occurs that some soliton hierarchies whose origi-
nal matrix problems and their deduced Hamiltonian structures might be looking rather different are indeed found to be
mutually convertible through Gauge transformation of Bicklund type*® - this constitutes one of the major concerns for
the mathematicians cultivating in this field. In this paper we shall present through mathematical proofs the Gauge trans-
formations of Bicklund type among the mathematical forms of a few matrix differential operators that are Hamiltonian,
whose implications of the Gauge equivalences therein seem still not well realized.

Math Meth Appl Sci. 2018;41:3779-3789. wileyonlinelibrary.com/journal/mma Copyright © 2018 John Wiley & Sons, Ltd. 3779


https://doi.org/10.1002/mma.4864
http://orcid.org/0000-0002-8915-844X
http://orcid.org/0000-0001-5309-1493

3780 Wl LEY GU AND MA

It is also discovered that some u-linear operators are Hamiltonian, too, and they can be coupled with matrix differential
operators with constant coefficients to generate new Hamiltonian operators.” One may take it for granted that such kind
of coupling might go up to rather high (or even infinite) differential orders, and the thus, involved situation could be pretty
complicated. We investigated this behavior in this paper for a special class of u-linear Hamiltonian operators and observed
however that such coupling may take effect only up to a certain differential order, which for this work is determined to
be three.

We begin with the terminologies and notations that will be used throughout the paper. Let x = (x!, ... ,x") € R so that
0; = % denote partial derivatives. Let u = (u!, ... ,u™), where u' = u'(x) (1 < i < m) are sufficiently smooth functions of
x. Leta = (a3, ... ,a) be a n-tuple multiindex that has @; > 0 for all 1 < i < n. Define accordingly

u, =D, with D*=0;" ... 9", 1<i<m. 1)

Assume that A denotes the space of all functions fix, u, ... , u®)y (k> 0isan integer), where f'is a smooth local function
of the involved variables with u®) denoting the set of all possible k-th order partial derivatives of u with respect to x.
The locality here implies that the dependence of f on u, ie, (f(u))(x), is completely determined by the behavior of u in a
sufficiently small neighborhood of x. A typical example of A is the space of differential functions, ie, polynomial functions
of x, u, ..., u®. Moreover, assume also that 3 denotes the space, which is defined exactly as that for .4, with the only
exception that the functions in the space are allowed to be nonlocal (for instance, /_xlz x'?0;udx’? is admitted in 5, but not
in A-note that the superscript 2 of X' here means the second component of X’ instead of power). Define alsofor1 <i <r
the r-th direct products of A and 5:

A ={(f1, ... . f)Ifi€ Ay, B ={(f1, ... . f)Ifi € B} ()

Definition 1. Let K = K(u) = K(x, t,u), S = S(u) = S(x, t,u) € B". The Gateaux derivative of K(u) in the direction of
S(u) with respect to u is defined by

K'[S] = K'@IS@] = SK(u+ eS)]ezo. 3)
K(u) is said to be Gateaux differentiable at u, provided that the Gateaux derivative K'[S] exists for all S(u) € B".

We define in B the following equivalence relation.

Definition 2. Let P,Q € B. P is said to be equivalent to Q, denoted by P ~ Q, if there exists R = (Ry, ... ,R,) € B",
such that P— Q = DivR = 2:1:1 OR;. Let P = / Pdx denote the equivalence class to which P € B belongs. One defines
also the inner product (P,Q) = [ PTQdx = [ ¥_, PiQidx for P=(Py, ... ,P)T,Q=(Q1, ... ,.Q)T € B".

Definition 3. A linear operator ® : B" — B3 is said to have an adjoint operator ¥ : B* — B’, provided that
(P, ®Q) = (Q,¥P) for all P € B, Q € B". The adjoint operator of @ is often denoted as ®*, too. If ®* = —®, then P is
said to be skew-symmetric.

Definition 4. A linear operatorJ : B™ — B™ is called Hamiltonian, provided that J is skew-symmetric and satisfies
the so-called Jacobi identity, ie, for all P, Q,R € B™,

{P,Q,R} +{R,P,Q} + {Q,R,P} = {P,Q,R} +cycle(P,Q,R) =0, (@))

where

{P,Q,R} = (P,J'[JQIR) = /PTJ'[JQ]Rdx.

Definition 5. (Olver!?)
The linear operators J and M are said to constitute a Hamiltonian pair, if a1J + ;M is always Hamiltonian for any real
constants a; and a5.

To be simple and brief, in this paper we assume always n = 1 and m = 2 unless otherwise stated; ie, we shall always
apply u = u(x, t) = [p,q]" = [px, 1), q(x, D7, x, t € R. Also, we define 9 = %, 0l = / dx, where the constant of integral
involved in the latter is always selected such that 99~ = 97'9 = 1. Furthermore, from now on throughout this paper, we
let 0*g denote the k-th order total derivative of g with respect to x, except somewhere when k = 1 or 2, we use g, or g,
instead for convenience.



GU AND MA WI L EY 3781

Let g be a sufficiently smooth function of x, ¢, and u = [p, q]”. Let k and [ be nonnegative integers. One can quickly
conclude through a straightforward computation using integration by parts that with ~ in the sense of the equivalence
relation given in Definition 2,

kgl 0, if k<l,
YOE™\ (=D = 1) ... (k= 1+ Dxklg, if k> I;

and in particular, x*o*g ~ (—1)*k!g. This conclusion is going to be called for multiple times below.

This article will be organized as follows. In Section 2 we discuss a class of matrix differential Hamiltonian operators
H and their Gauge equivalence. The coupling of H with matrix differential operators with constant coefficients will be
elucidated in Section 3, where it is particularly proven that such a coupling ceases to take effect for differential orders
greater than 4. Several representative examples of matrix spectral problems are illustrated in Section 4 for the readers to
perceive how the Gauge equivalence discussed in Section 2 works. Finally, a couple of concluding remarks will end the

paper.

2 | ACLASS OF MATRIX DIFFERENTIAL HAMILTONIAN OPERATORS AND
THEIR GAUGE EQUIVALENCE

It has been proven in Ma’® that matrix differential operators in the form of

0+ dp qo
le[p aql’qo] (5)
where u = [p,q]7 is a column vector of 2 potentials, are u-linear Hamiltonian operators. Following his work, matrix
differential operators in the shape of

_ [0 dp
HZ—[pa q0+6q] ©)

can likewise be verified to be Hamiltonian.
Furthermore, one can also show that matrix differential operators, which are constructed from linear combinations of

H; and H, through arbitrary constants § and «, ie,

0 + dp) ad 0
H = pHy + aH, = [g% g a(qpa-:-ﬁdqq)] @)
are Hamiltonian operators as well. Note that H;, H,, and H are all u-linear. To prove this claim, the conventional approach
published in the same paper is certainly the most straightforward proof that one can follow. However, an alternative
approach in light of the Gauge transformation of Bécklund type for Hamiltonian operators® comes out to be not only even
more brief, but also more insightful, in the sense that it reveals in addition that the families of matrix differential operators
described by H;, H,, and H are indeed mutually “Gauge equivalent,” which is the terminology indicating throughout this
paper that 2 systems can be transformed into one another via a Gauge transformation of Bicklund type.

Theorem 1. Let the matrix differential operators H;, H,, and H be defined by Equations 5, 6, and 7, respectively. Let it
be nontrivially that p* + a® # 0. Then H;, H,, and H are pairwise Gauge equivalent. It follows also that H is a u-linear
Hamiltonian operator.

Proof. From the definition in (7), H it is obviously u-linear. First let

T= [—10: 2 that suggests { g ZI(”_ap + 89). (8)
It follows immediately that
H=THT*
=[ Bpd + pop ﬁ(—ap+ﬁq)0] =ﬂ[ﬁ0+~0ﬁ qa]7 ©)
po(—ap + pq) 0 ag o

where T denotes the Hermitian conjugate of T (which reduces to the transpose of T when f, a are real), is a
Hamiltonian operator of H;-type scaled by # (hence still of H;-type). Recalling the work by Fuchssteiner and Fokas,’
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His thus Gauge equivalent to H;. Alternatively, H is found to be Gauge equivalent to the H,-type Hamiltonian operator

scaled by «
H =a [ ﬁ(’)d q’aafac}/ (10)
through
T = [a —p ] that suggests { g', - Z{’ - pq, an

Furthermore, provided we start from a matrix differential operator of H; -type, then it could be first transformed Gauge
equivalently into H-type through T~!, and next to H,-type through T’. Finally, this pairwise Gauge equivalence among
H,, H,, and H guarantees that H is a Hamiltonian operator. O

The conclusion of the above theorem suggests that the 3 families of Hamiltonian operators Hy, H;, and H defined by
Equations 5, 6, and 7 respectively, are indeed Gauge equivalent in the sense that any two of them can be transformed
into one another through Gauge transformations of Bicklund type. Also, these transformations are local since both T
and T’ are matrices with constant entries. This fact is yet realized by few people although its proof comes out to be
rather brief.

3 | COUPLING OF HTO DIFFERENTIAL OPERATORS WITH CONSTANT
COEFFICIENTS

Itis already known that more Hamiltonian operators can be constructed by coupling matrix differential operators in forms
of Hy, H,, or H with differential operators in low orders with constant coefficients.*!1* Let

k
K= Bnd", Bn=(bymra (12)
m=0

be a matrix differential operator up to the k-th order with constant entries b;;, (where 1 < i,j <2and0 < m < k). Kis
apparently skew-symmetric if and only if

bijm = (1) bjim, (13)
is satisfied. This condition guarantees also the balance of the Jacobi identity; therefore, K is automatically a Hamiltonian
operator. We now prove the following theorem as a generalization to the work from 1993.°

Theorem 2. Let the matrix differential operators H and K be given by Equations 7 and 12, respectively, where all the
coefficients by, in K satisfy the conditions in Equation 13. Let it be nontrivially that B> + a® # 0. Then the matrix
differential operator

J=H+K (14)
is a Hamiltonian operator if and only if
_ | b bin 0 biz| y2, [bus bz | 33
K= [bm bZZI] I+ [_b122 0 ] ot b123 baas 7, (15)

where by;;, bio1, baag, and by, are arbitrary real constants; whereas, by;s, bios, and b,zs are real constants satisfying

biiza — b3 =0 and byp3f — bipza = 0. (16)

Proof. The required skew-symmetry is obvious. Hence, we focus on showing the Jacobi Identity.
First of all, since the H-component of .7 is Hamiltonian, the computation thus gives directly

{P,QR} = Z /[fk(R Q.R) + g(P, Q. R) + hi(P, Q, R) + ji(P, Q, R)]dx,
k=0

where
J(P,Q,R) = f(P1Ryx — P1,xR1)b11kakQ1, (17a)
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8c(P,Q,R) = B(P1Ryx — Py xR1)b12k0*Qz + a(P2R1 x — Py xR2)b1110*Qy

+ p(P1Ryx — PZ,le)bZIkales
hi(P, Q,R) = a(P3R1 x — P1xR2)b12kd* Qs + B(P1R2x — P3xR1)b2d* Q,

+ a(P2Ryx — Pz,sz)bmkale,
Jjk(P,Q,R) = a(P2R2x — P2xR2)b2kd*Qs, (17d)

for 0 < k < m. Noticing the differential orders and subscripts of P;, Q;, R;, it follows directly that the Jacobi identity
for H + K holds if and only if

(17b)

(17¢)

fx(P,Q,R) = fr(P,Q,R) +cycle(P,Q,R) ~ 0, (18a)
8(P, Q,R) = g(P,Q,R) + cycle(P,Q,R) ~ 0, (18b)
hi(P,Q,R) = hi(P,Q,R) + cycle(P, Q,R) ~ 0, (18¢)
Jk(P,Q,R) = ji(P,Q,R) + cycle(P,Q,R) ~ 0, (18d)

where 0 < k < m.

Let us first consider the case of k = 0. Upon noticing by19 = by = 0 and by19 = —b120, a special choice of (18b) with
P, =rQ, =0,R; =xand Q, = 1, and a special choice of (18c) with P; = 1, P, = 0, Q, = s and R, = x (here one
might choose r and s be arbitrary functions of x), generate

80(P, Q,R) = fbioo(r — xry) ~ 2Pb1or,
ho(P, Q,R) = abiz(s — xsx) ~ 2abiys,

respectively. It then follows the arbitrariness of r and s that b1,y = 0. Thus, when k = 0, (18a) to (18d) hold if and only
lfB() =0.

Secondly, we consider the case of k = 1. We automatically have f1(P, Q, R)= j1(P, Q, R) = 0. Moreover, the condition
by11 = by guarantees that (P, Q, R) = h;(P, Q,R) = 0. So nothing is required more than BIT = B;.

Next we investigate the case of k = 2. The conditions by1; = by, = 0 and by, = —biy, guarantee f>(P,Q,R) =
j2(P,Q,R) =0 and

_ d
&(@P,Q,R) = a[ﬂbIZZ(PIRI,x — P1xR1)Q2x + cycle(P, Q,R)] ~ 0,

= d
hy(P,Q,R) = E[ablzz(PzQz,x — P,xQ>)R:1x + cycle(P, Q,R)] ~ 0.

Hence nothing is required more than BZT = —B, fork = 2.
A little longer discussion must be carried out for the case of k = 3. On the one hand, we have

Fs(P.Q.R) = %[ﬂbmpl (RixQux — QuxRuw) + cycle(P, Q. R)] ~ 0,

- d
J3(P,Q,R) = a[ab223p2(R2,xQ2,xx — Q2xR2.x) + cycle(P,Q,R)] ~ 0.

Again by taking the advantages of r and s that were used above, a special choice of (18b) with P; =1, R; =x, Q, = g—s'
and Q; = P, = R, = 0 gives
83(P,Q,R) = fb1as (1’ — XIx + %x3d3r) - %ab113x363r ~ (=fb1z3 + abi13)r,
based on which, (18b) would require
Bbiaz — aby1z = 0. (19)
Likewise, a special choice of (18c) with P, = s, Q; = 2—3' Ry=xand P =Ry = Q, =0leads to
Pbrz — abyyz = 0. (20)

On the other hand, when (19) and (20) are satisfied, we have

_ d
8P, Q,R) = Cla[(PlRl,x = P1xR1)Q2xx + (Q2xR1 — Q2R1 x)P1 xx

+ (P1xQ2 — P1Q2)R1 x + cycle(P, Q,R)] ~ 0,
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where ¢; = fb1y3 = aby13, and
= d
h;(P,Q,R) = Cza[(Ple,x — P1xRy) Q2 + (Q2xRs — Q2R3 )Py xx

+ (P1xQ2 — P1Q2)R; x + cycle(P, Q,R)] ~ 0
where ¢, = fbyy; = abiys. Thus, (19) and (20) suffice to guarantee that (18a) to (18d) hold when k = 3.
Finally, we consider the case of 4 < k < m. A special choice of (18a) with P, = r, Q; = o and R; = x, and a special

choice of (18d) with P, =5, Q, = — and R, = x, will generate

f = Bbiik [r —xry + (k — 1)%akr ~ Bb11k[2 + (=D¥(k — D]r,
; 1)
Ji = abyi [s — xSy + (k — 1)%5’%] ~ abyi[2 + (=D (k = 1)]s,

respectively. Since k > 4, thus
bk =0, aby =0, (22)
are required to guarantee that f; ~ 0 and j; ~ 0. Then by using (22), 2 special choices of (18b) with P, =1, Q; =0,

R, =x,and Q, = ', and of (18c) with P; = 0, Q; = =, R, = x, and P, = s will give

k' ’
= _ _ _ 1 koky
8(P,Q,R) = fbio(r — xry) 0 abyix o (k 1), ——— fbyx*o 23)
~ Bbiak(2 = k)r — (=1)*abyyr,
(P, Q. R) = abyni(s — Xsy) — = fbyyada’s + ——abyyorkoks
k! (k ! (24)

~ abyi(2 = k)s = (=1)* Bbaas.
Since f? + a2 # 0, without loss of generality, assume f # 0. Thus, (22) implies by;x = 0, based on which (23) gives
b12x = 0. It must be then by, = 0 due to (13), based on which by, = 0 is finally determined again from (23). Likewise
we obtain again b1k = bk = baik = bk = 0 if @ # 0 is assumed. In short, the conditions in (22), (23), and (24)
combine to give the only possibility that By = 0 for4 < k < m.
Therefore, to conclude, H + K is Hamiltonian if and only if K is determined by (15) and (16). This completes the
proof. O

On the basis of early Hamiltonian theory,*>!* Fokas'® proved that hereditary symmetry in the form of ® = MJ™! can
be constructed, provided that the differential operators M and J are known to form a Hamiltonian pair, with J being
invertible. Following their conclusion, for a Hamiltonian operator M = H + K with H, K given by (7), (15), respectively
(and certainly all the coefficients in K satisfy the conditions given by (16), let

_|dida 0 a 2 4 dy ds
d ds

where - Lo 4 g they are all nonzero, or by;3 = 0 if and only if dy = 0, and likewise for b1,3 and ds, by,3 and dg

113 b123 b223
(this condition is introduced to ensure that any linear combination of J and M is again Hamiltonian, which turns out to

be a sufficient and necessary condition for J and M to constitute a Hamiltonian pair). Furthermore dy, d,, ds, and a are
selected properly so that Jis invertible. It follows then that any linear combination of J and M is again a Hamiltonian, and
J, M thus constitute a Hamiltonian. Two examples of such Hamiltonian operators J given by (25) could be, for instance,
typically illustrated by (but not limited to)

_|di dz a_ 1 [ds =dy| 01
I= [dZ d3]a > J _A [—dz d1 ]a ’ (26)

with A =dd; — d% # 0; or another one which is relatively rarely used,
_|1 0 ajlp ds ds| 3
J= [ ] 7+ [ds ol
gl = i d6d‘1 —dsa_ —ao™?
—dsa_l +a0™? d40_1 ’

with a # 0 and d4ds — dé = 0. Therefore, it comes up immediately with
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Theorem 3. Let H, K and J be given by (7), (15), and (25), respectively. Let M = H + K. Then ® = MJ ! is a hereditary
symmetry.

The hereditary symmetry @ given by Theorem 3, being implicitly dependent on x only, obviously comes out to be
translational invariant with respect to x. Hence VS € /3%, we obtain a vanishing Lie derivative," ie,

(L, ®)S = ®[uy, S] — [, DS] = 0. (27)
Therefore by corollary 1 in Ref. [18] we can conclude
[®"u,, ®"u,] =0, Vm,n >0,
and it follows naturally also that

Theorem 4. Let H, K, and J be given by (7), (15), and (25), respectively. Let M = H + K. Then the class of evolution
equations

Uur = Qmux, m > 0 (28)

has a hierarchy of infinitely many common symmetries {K,, = ®"u,} (m > 0) and ® is a common hereditary strong
symmetry of the hierarchy (28).

The hierarchy of evolution equations (28) is in general nonlinear and integrable in the sense that it possesses infinitely
many K-symmetries. 68

4 | EXAMPLES

4.1 | ExampleI

We present in this section a few solid examples trying to show how this kind of Gauge equivalence works. For instance,
the following matrix spectral problem was computed in *:

b =U¢p=Uu, ¢, with u=[p,q]" and ¢=I[¢1, 1",

where the spectral matrix U € s~l(2, R) possesses the form

—(__ _|—-4-q »p
U=(-1 Q)€1+P€2+733—[ vy A+ql (29)
with y # 0 being a constant, and
10 01 00
€1 = [0 _1:|, e = [0 O:l’ €3 = [1 0] (30)

constitute the basis of the Lie algebra sl(2, R). The soliton hierarchy derived from this matrix spectral problem was found
to be Liouville integrable and possess the bi-Hamiltonian structure

OHp, OHm-1

U, =J——=M , forall m>1, (31)
" ou ou
where H,,, H,,—1 are the corresponding Hamiltonian functionals, with J and M constituting the Hamiltonian pair:
1 1 1
2(po+0p) =0*+ -qo
J=-1 [gg], M=| 7 5, 1. %7 & . (32)

Clearly, J is invertible, and M is characteristically a case of the [J operator presented in Theorem 2 with « = 0 (or in
another word, the H component of .7 reduces to H; given in (5). If by specifically letting y = 1/, and one modifies the
matrix spectral problem (29) to (let &t = [5,§]7 )

p—Bq p

- L - _ —-A-
be=UG=Uang U= [ O (33)

through the Gauge transformation

pl_p|P : _]10
HEI o9
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will finally yield the Hamiltonian operator

i B(pO + 0p) 20% — adp + o

= | 102 - wpo+ pog — 20 - a@o +0g) (35)

which is obviously again characteristically a case of the .7 operator presented in Theorem 2. According to this theorem
M is associated with M in (32) via

M=T"'MT". (36)
In particular, the K component in M apparently undergoes the same Gauge transformation of Biacklund type and remains
to be a (Hamiltonian) matrix differential operator with constant coefficients. This example justifies our conclusions in
Theorem 2.

4.2 | Example II

In 2002, Xu generalized the Wadati-Konno-Ichikawa (WKI) hierarchy*° by computing the following matrix spectral
problem (for convenience of calculation, the matrix problem is presented here in a slightly different form from the original
work; they are however exactly equivalent):

b =U¢p=Uu, ¢, with u=[p,q]" and ¢=I[¢1, ¢]",

where the spectral matrix U € s~l(2, R) takes the form

a A=Z2p Ap
— - = — 2
U=(4 21;)e1+,1,;e2+,u1e33_[ iq _ng] (37)
By solving the stationary zero-curvature equation W, = [U, W] with also W € s~1(2, RR) chosen to be
A—%pya— L Apa+b
W (A=3Zpa-— pa <, 38)
Aqa + ¢y —(A - Ep)a + o

where a, b, and c are functions of 4, x, and ¢ taking the form of Laurent expansions:

a= Z al™ b= Z bia7l, c= Z ciAl, (39)
i>0 i>0 i20
it was derived that this generalized WKI soliton hierarchy possesses the bi-Hamiltonian structure u, = = MY = yPn
forall m > 1, where H,,, H,,—; are the corresponding Hamiltonian functionals, with Jand M constituting the Hamiltonian
pair. In particular M reads
_ 0 0%+ adp
M= [—62 + apd a(qo + 0q)] ’ (40)

which is characteristically a case of the .J operator presented in Theorem 2 with # = 0 (or in another word, the H
component of .J reduces to H, given in (6). This soliton hierarchy is interestingly also Liouville integrable although J in
the Hamiltonian pair does not take the form of (25). The matrix spectral problem (37) of the generalized WKI hierarchy,
if modified to (letit = [, §]7)

T m I Fre - [A-35@b-Bd  aip—pAG
=U¢p =U(i1, 1), U= 20 @, = s 41
¢x=Ud = U@, [ Py’ i+ Eap - p3) (41)
by admitting the Gauge transformation
pPl_r|P ' _|*-#
[q]_T[q], with T—[O 1], “2)
will finally yield the Hamiltonian operator
_ B0 +0p) =0+ adp+ fGo
M= 4 e TR 43)
—-0°+apo+fog  a(go+0q)

which is obviously again characteristically a case of the .7 operator presented in Theorem 2 and is associated with M in
(40) through
M=TMT". (44)
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Still, the K component in M apparently undergoes the same Gauge transformation of Bicklund type and remains to be a
(Hamiltonian) matrix differential operator with constant coefficients. This example precisely illustrates our conclusions
in Theorem 2.

An alternative form of the generalized WKI hierarchy was computed in Ma et al,” for which rather similar arguments
upon Gauge transformation of Bicklund type are also applicable.

4.3 | Example III

Zhang et al reported in 2015 the coupled Burgers hierarchy based on the matrix spectral problem:
¢x=Up=Uw,D¢p, with u=[p,ql" and ¢ =[¢1,¢al",

where the spectral matrix U € s~1(2, R) takes the form

_ _|-A+ap+pq p
U—(—ﬂ+ap+ﬁq)e1+pe2+qeg—[ q A—ap—pq |- (45)
To emphasize, the constants «, f are in this model subject to the constraint aff = —1/4. This soliton hierarchy is also

characterized by Liouville integrability and bi-Hamiltonian structure u;, = J % =M % (m > 1), in which the
Hamiltonian pair reads

d+0 —20% + adp + fiqo
=09 y- 12ﬂ(p p) 0% +adp + fiq ’ (46)
90 S0 +apd+pog  a(qd+0q)
where J is clearly invertible, and M is characteristically a case of the .J operator presented in Theorem 2 (af = —1/4).
This matrix spectral problem (45), if modified to (letit = [, §]7)
- 08 < U6 DE {7 —A+2ap+q p -
¢X_ ¢_ (u’ )(b’ - %p"_’_%q /'{_zaﬁ_q s ( )
by admitting the Gauge transformation
5 10
Pl=r|2|, with T=|a1 (48)
q q Y]
will finally yield the Hamiltonian operator
. 50 + 0p) —=po* + fgo
& < 1ﬂ(p2 p)~ SPo° + pq ’ (49)
2po* + pog 0

which is apparently characteristically a case of the .J operator, with its H-component reducing to the form of H; in (5),
presented in Theorem 2. The matrix spectral problem could also alternatively be modified into (let&t = [p, §]”)

T S b | —A—p+28G —2p+24
=U¢ = U(ll, A, U= R al g 50
e = U = U(@, D [ A (50)
by admitting the Gauge transformation
. 18
p p - -= £
=T]|% th T= a a 51
will yield the Hamiltonian operator
. 0 100% + a0p
M = 2 , 52
[ —2ad® + apd a(go +0g) (52)

which is apparently also characteristically a case of the .J operator, with its H-component reducing to the form of H, in
(6), presented in Theorem 2. In this example, both M given by (49) and M given by (52) can be associated with M in (46)
through M(or M) = T-'MT-"".

4.4 | Example IV

As a separate final example, we consider the Hamiltonian operator possessing the following form:

_ 2 3_ | didy 0 af ds ds | 3
J = B,0 + By0 + B30 _[dz o+ Sole+la alo (53)
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where a # 0, and det B; = d4dg — dﬁ = 0. Generally, there is no way that one can compute in an explicit way the inverse
of (53), which, however, can formally be written as

d3 + d662 d2 +ad+ d502

-1 __ —-1,3-1
I = a0+ ds® dy+di® | D9 (4)

where
A = d1d3 - d% + (d1d6 + d3d4 + a2 - 2d2d5)62. (55)
Let M = H (ie, M has only the H component of J = H + K in Theorem 2) satisfy the conditions in Theorems 3 and 4,
it follows immediately that the recursion operator ® = MJ! is a hereditary strong symmetry, and the class of evolution
equations u; = ®"u, (m > 0) hence possesses a hierarchy of infinitely many common symmetries {K,,, = ®"u,} (m > 0).
This example involves a Hamiltonian operator J in (53) that contains a differential component in third order, and the
appearance of /\ in (55) attributes J with some features like the characteristic of a Camassa-Holm type hierarchy.”
The first nonlinear evolution equation of such a hierarchy, u, = (p,,q,)" = ®u, (® = MJ'), under the introduction
of another 2 implicit variables r, s (a typical treatment when computing Camassa-Holm type models) that are associated

with p, q via
p = Ar + Bry,
{ q = AsS + Bsyy, (56)

where A = did3 — d}, B = didg + dpds + a® — 2d3d,, can be written down a little lengthily as follows:

[ 0 = 28p(dsrc — dose) + Ppe(dsr — das) — pq(dars — disy)
= Pq(dsroo — daSpnd) + 28p(dsTo — dsSxor)
+ Bpx (T — dsSx) — Pa(pxSx + 2PSxx — qrx)
+alp(dis — dor)lx + a[ p(daSe — dsTa)lx + aa(pryy, ( )
3 57
qt = ﬂ[Q(dSV - dZS)]x + ﬂ[q(d6rxx - dSSxx)]x - ﬂa(qsx)x
—2aq(dyry — di8y) — agx(dor — dis) + ap(dsry — dasy)
+ap(dsroo — dsSeo) — 2aq(dshox — A4Sy
—aqx(dsro — daSx) + aa(gxry + 2qre — pSe).

If alternatively, one imposes in (53)B, = 0 (ie, a = 0) and admits but detB; < 0, or to put it more precisely,

d2 d d 2
detB; =dyds —d2 = ——(ds — == ) , 58
et by 143 2 di < 5 d; (58)
which is indeed an equivalent version of the condition d;dg + dsds — 2d>ds = 0, J will possess under these assumptions
an explicit inverse that reads
1 _ 1 dgo + d3d‘1 —ds0 — d20‘1
= det B, [ —ds0 — dza_l ds0 + dld_l (59)

Likewise, the Hamiltonian operator J in (53) satisfying (58), together with M = H+K, yields a hereditary strong symmetry
® = MJ!, and the class of evolution equations u, = ®"u, (m > 0) is associated with a hierarchy of infinitely many
common symmetries {K,, = ®"u,} (m > 0).

5 | CONCLUSION

In this paper we showed that matrix differential operators in forms of Hy, H,, and H given by (5), (6), and (7), respec-
tively, are u-linear Hamiltonian operators that are also pairwise Gauge equivalent. The transformations among them are
performed in terms of 2 X 2 matrices with constant entries (and hence the transformations can certainly be viewed as
local). We think the Gauge equivalence among H;, H,, and H may offer some insights to the classification of some soliton
hierarchies.

Furthermore, we proved also that these matrix differential operators can be coupled with differential operators with
constant coefficients to generate new Hamiltonian operators. Also derived were the corresponding required conditions
(15) and (16). The most interesting fact revealed by Theorem 2 is that such a coupling takes effect only up to the third
order of the differential operators with constant coefficients, and this extremely succinct conclusion (which is simpler
than we expected in advance) would motivate us to further explore what is hidden behind the corresponding Hamiltonian
structures!!.
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