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We discuss at first in this paper the Gauge equivalence among several u-linear
Hamiltonian operators and present explicitly the associated Gauge transfor-
mation of Bäcklund type among them. We then establish the sufficient and
necessary conditions for the linear superposition of the discussed u-linear oper-
ators and matrix differential operators with constant coefficients of arbitrary
order to be Hamiltonian, which interestingly shows that the resulting Hamilto-
nian operators survive only up to the third differential order. Finally, we explore
a few illustrative examples of integrable hierarchies from Hamiltonian pairs
embedded in the resulting Hamiltonian operators.
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1 INTRODUCTION

A plenty of matrix spectral problems can produce Hamiltonian operators that have a component that is linear with respect
to the involved potential vector u = (u1, … ,um) and the partial derivatives of u (this component is said to be u-linear
and can often be proven to be Hamiltonian as well), in their Hamiltonian structure. Especially when m = 2 and the
notation u = (p, q)T is usually applied, such Hamiltonian operators are found in many soliton hierarchies that were dis-
covered in recent decades, such as the generalized Wadati-Konno-Ichikawa hierarchy,1 the coupled Burgers hierarchy,2

and also a soliton hierarchy that was reported in 1992.3 It frequently occurs that some soliton hierarchies whose origi-
nal matrix problems and their deduced Hamiltonian structures might be looking rather different are indeed found to be
mutually convertible through Gauge transformation of Bäcklund type4-8 – this constitutes one of the major concerns for
the mathematicians cultivating in this field. In this paper we shall present through mathematical proofs the Gauge trans-
formations of Bäcklund type among the mathematical forms of a few matrix differential operators that are Hamiltonian,
whose implications of the Gauge equivalences therein seem still not well realized.
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It is also discovered that some u-linear operators are Hamiltonian, too, and they can be coupled with matrix differential
operators with constant coefficients to generate new Hamiltonian operators.9 One may take it for granted that such kind
of coupling might go up to rather high (or even infinite) differential orders, and the thus, involved situation could be pretty
complicated. We investigated this behavior in this paper for a special class of u-linear Hamiltonian operators and observed
however that such coupling may take effect only up to a certain differential order, which for this work is determined to
be three.

We begin with the terminologies and notations that will be used throughout the paper. Let x = (x1, … , xn) ∈ R so that
𝜕i = 𝜕

𝜕xi denote partial derivatives. Let u = (u1, … ,um), where ui = ui(x) (1 ≤ i ≤ m) are sufficiently smooth functions of
x. Let 𝛼 = (𝛼1, … , 𝛼n) be a n-tuple multiindex that has 𝛼i ≥ 0 for all 1 ≤ i ≤ n. Define accordingly

ui
𝛼 = D𝛼ui, with D𝛼 = 𝜕

𝛼1
1 … 𝜕

𝛼n
n , 1 ≤ i ≤ m. (1)

Assume that  denotes the space of all functions f(x,u, … ,u(k)) (k ≥ 0 is an integer), where f is a smooth local function
of the involved variables with u(k) denoting the set of all possible k-th order partial derivatives of u with respect to x.
The locality here implies that the dependence of f on u, ie, (f(u))(x), is completely determined by the behavior of u in a
sufficiently small neighborhood of x. A typical example of is the space of differential functions, ie, polynomial functions
of x, u, … , u(k). Moreover, assume also that  denotes the space, which is defined exactly as that for , with the only
exception that the functions in the space are allowed to be nonlocal (for instance, ∫ x2

−1 x′2𝜕3u1dx′2 is admitted in , but not
in –note that the superscript 2 of x′ here means the second component of x′ instead of power). Define also for 1 ≤ i ≤ r
the r-th direct products of  and :

r = {(𝑓1, … , 𝑓r)T|𝑓i ∈ }, r = {(𝑓1, … , 𝑓r)T|𝑓i ∈ }. (2)

Definition 1. Let K = K(u) = K(x, t,u), S = S(u) = S(x, t,u) ∈ r. The Gateaux derivative of K(u) in the direction of
S(u) with respect to u is defined by

K′[S] = K′(u)[S(u)] = 𝜕

𝜕𝜖
K(u + 𝜖S)|𝜖=0. (3)

K(u) is said to be Gateaux differentiable at u, provided that the Gateaux derivative K′[S] exists for all S(u) ∈ r.

We define in  the following equivalence relation.

Definition 2. Let P,Q ∈ . P is said to be equivalent to Q, denoted by P ∼ Q, if there exists R = (R1, … ,Rn) ∈ n,
such that P −Q = DivR =

∑n
i=1 𝜕iRi. Let P̃ = ∫ Pdx denote the equivalence class to which P ∈  belongs. One defines

also the inner product (P,Q) = ∫ PTQdx = ∫ ∑r
i=1 PiQidx for P = (P1, … ,Pr)T ,Q = (Q1, … ,Qr)T ∈ r.

Definition 3. A linear operator Φ ∶ r → s is said to have an adjoint operator Ψ ∶ s → r, provided that
(P,ΦQ) = (Q,ΨP) for all P ∈ s, Q ∈ r. The adjoint operator of Φ is often denoted as Φ∗, too. If Φ∗ = −Φ, then Φ is
said to be skew-symmetric.

Definition 4. A linear operator J ∶ m → m is called Hamiltonian, provided that J is skew-symmetric and satisfies
the so-called Jacobi identity, ie, for all P,Q,R ∈ m,

{P,Q,R} + {R,P,Q} + {Q,R,P} = {P,Q,R} + cycle(P,Q,R) = 0, (4)

where
{P,Q,R} = (P, J′[JQ]R) = ∫ PTJ′[JQ]Rdx.

Definition 5. (Olver10)
The linear operators J and M are said to constitute a Hamiltonian pair, if 𝛼1J+𝛼2M is always Hamiltonian for any real
constants 𝛼1 and 𝛼2.

To be simple and brief, in this paper we assume always n = 1 and m = 2 unless otherwise stated; ie, we shall always
apply u = u(x, t) = [p, q]T = [p(x, t), q(x, t)]T, x, t ∈ R. Also, we define 𝜕 = d

dx
, 𝜕−1 = ∫ dx, where the constant of integral

involved in the latter is always selected such that 𝜕𝜕−1 = 𝜕−1𝜕 = 1. Furthermore, from now on throughout this paper, we
let 𝜕kg denote the k-th order total derivative of g with respect to x, except somewhere when k = 1 or 2, we use gx or gxx
instead for convenience.
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Let g be a sufficiently smooth function of x, t, and u = [p, q]T. Let k and l be nonnegative integers. One can quickly
conclude through a straightforward computation using integration by parts that with ∼ in the sense of the equivalence
relation given in Definition 2,

xk𝜕lg ∼
{

0, if k < l,
(−1)lk(k − 1) … (k − l + 1)xk−lg, if k ≥ l;

and in particular, xk𝜕kg ∼ (−1)kk!g. This conclusion is going to be called for multiple times below.
This article will be organized as follows. In Section 2 we discuss a class of matrix differential Hamiltonian operators

H and their Gauge equivalence. The coupling of H with matrix differential operators with constant coefficients will be
elucidated in Section 3, where it is particularly proven that such a coupling ceases to take effect for differential orders
greater than 4. Several representative examples of matrix spectral problems are illustrated in Section 4 for the readers to
perceive how the Gauge equivalence discussed in Section 2 works. Finally, a couple of concluding remarks will end the
paper.

2 A CLASS OF MATRIX DIFFERENTIAL HAMILTONIAN OPERATORS AND
THEIR GAUGE EQUIVALENCE

It has been proven in Ma9 that matrix differential operators in the form of

H1 =
[
𝑝𝜕 + 𝜕𝑝 q𝜕

𝜕q 0

]
(5)

where u = [p, q]T is a column vector of 2 potentials, are u-linear Hamiltonian operators. Following his work, matrix
differential operators in the shape of

H2 =
[

0 𝜕𝑝
𝑝𝜕 q𝜕 + 𝜕q

]
(6)

can likewise be verified to be Hamiltonian.
Furthermore, one can also show that matrix differential operators, which are constructed from linear combinations of

H1 and H2 through arbitrary constants 𝛽 and 𝛼, ie,

H = 𝛽H1 + 𝛼H2 =
[
𝛽(𝑝𝜕 + 𝜕𝑝) 𝛼𝜕𝑝 + 𝛽q𝜕
𝛼𝑝𝜕 + 𝛽𝜕q 𝛼(q𝜕 + 𝜕q)

]
(7)

are Hamiltonian operators as well. Note that H1, H2, and H are all u-linear. To prove this claim, the conventional approach
published in the same paper is certainly the most straightforward proof that one can follow. However, an alternative
approach in light of the Gauge transformation of Bäcklund type for Hamiltonian operators5 comes out to be not only even
more brief, but also more insightful, in the sense that it reveals in addition that the families of matrix differential operators
described by H1, H2, and H are indeed mutually “Gauge equivalent,” which is the terminology indicating throughout this
paper that 2 systems can be transformed into one another via a Gauge transformation of Bäcklund type.

Theorem 1. Let the matrix differential operators H1, H2, and H be defined by Equations 5, 6, and 7, respectively. Let it
be nontrivially that 𝛽2 + 𝛼2 ≠ 0. Then H1, H2, and H are pairwise Gauge equivalent. It follows also that H is a u-linear
Hamiltonian operator.

Proof. From the definition in (7), H it is obviously u-linear. First let

T =
[

1 0
−𝛼 𝛽

]
that suggests

{
𝑝̃ = 𝑝,
q̃ = (−𝛼𝑝 + 𝛽q). (8)

It follows immediately that

H̃ = THT∗

=
[

𝛽𝑝𝜕 + 𝛽𝜕𝑝 𝛽(−𝛼𝑝 + 𝛽q)𝜕
𝛽𝜕(−𝛼𝑝 + 𝛽q) 0

]
= 𝛽

[
𝑝̃𝜕 + 𝜕𝑝̃ q̃𝜕

𝜕q̃ 0

]
,

(9)

where T∗ denotes the Hermitian conjugate of T (which reduces to the transpose of T when 𝛽, 𝛼 are real), is a
Hamiltonian operator of H1-type scaled by 𝛽 (hence still of H1-type). Recalling the work by Fuchssteiner and Fokas,5
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H is thus Gauge equivalent to H1. Alternatively, H is found to be Gauge equivalent to the H2-type Hamiltonian operator
scaled by 𝛼

H̃′ = 𝛼

[
0 𝜕𝑝̃′

𝑝̃′𝜕 q̃′𝜕 + 𝜕q̃′

]
(10)

through

T′ =
[
𝛼 −𝛽
0 1

]
that suggests

{
𝑝̃′ = 𝛼𝑝 − 𝛽q,
q̃′ = q. (11)

Furthermore, provided we start from a matrix differential operator of H1-type, then it could be first transformed Gauge
equivalently into H-type through T−1, and next to H2-type through T′. Finally, this pairwise Gauge equivalence among
H1, H2, and H guarantees that H is a Hamiltonian operator.

The conclusion of the above theorem suggests that the 3 families of Hamiltonian operators H1, H2, and H defined by
Equations 5, 6, and 7 respectively, are indeed Gauge equivalent in the sense that any two of them can be transformed
into one another through Gauge transformations of Bäcklund type. Also, these transformations are local since both T
and T′ are matrices with constant entries. This fact is yet realized by few people although its proof comes out to be
rather brief.

3 COUPLING OF H TO DIFFERENTIAL OPERATORS WITH CONSTANT
COEFFICIENTS

It is already known that more Hamiltonian operators can be constructed by coupling matrix differential operators in forms
of H1, H2, or H with differential operators in low orders with constant coefficients.9,11-14 Let

K =
k∑

m=0
Bm𝜕

m, Bm = (bi𝑗m)2×2 (12)

be a matrix differential operator up to the k-th order with constant entries bijm (where 1 ≤ i, j ≤ 2 and 0 ≤ m ≤ k). K is
apparently skew-symmetric if and only if

bi𝑗m = (−1)m+1b𝑗im (13)

is satisfied. This condition guarantees also the balance of the Jacobi identity; therefore, K is automatically a Hamiltonian
operator. We now prove the following theorem as a generalization to the work from 1993.9

Theorem 2. Let the matrix differential operators H and K be given by Equations 7 and 12, respectively, where all the
coefficients bijm in K satisfy the conditions in Equation 13. Let it be nontrivially that 𝛽2 + 𝛼2 ≠ 0. Then the matrix
differential operator

 = H + K (14)

is a Hamiltonian operator if and only if

K =
[

b111 b121
b121 b221

]
𝜕 +

[
0 b122

−b122 0

]
𝜕2 +

[
b113 b123
b123 b223

]
𝜕3, (15)

where b111, b121, b221, and b122 are arbitrary real constants; whereas, b113, b123, and b223 are real constants satisfying

b113𝛼 − b123𝛽 = 0 and b223𝛽 − b123𝛼 = 0. (16)

Proof. The required skew-symmetry is obvious. Hence, we focus on showing the Jacobi Identity.
First of all, since the H-component of  is Hamiltonian, the computation thus gives directly

{P,Q,R} =
m∑

k=0
∫ [𝑓k(P,Q,R) + gk(P,Q,R) + hk(P,Q,R) + 𝑗k(P,Q,R)]dx,

where
𝑓k(P,Q,R) = 𝛽(P1R1,x − P1,xR1)b11k𝜕

kQ1, (17a)
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gk(P,Q,R) = 𝛽(P1R1,x − P1,xR1)b12k𝜕
kQ2 + 𝛼(P2R1,x − P1,xR2)b11k𝜕

kQ1

+ 𝛽(P1R2,x − P2,xR1)b21k𝜕
kQ1,

(17b)

hk(P,Q,R) = 𝛼(P2R1,x − P1,xR2)b12k𝜕
kQ2 + 𝛽(P1R2,x − P2,xR1)b22k𝜕

kQ2

+ 𝛼(P2R2,x − P2,xR2)b21k𝜕
kQ1,

(17c)

𝑗k(P,Q,R) = 𝛼(P2R2,x − P2,xR2)b22k𝜕
kQ2, (17d)

for 0 ≤ k ≤ m. Noticing the differential orders and subscripts of Pi, Qi, Ri, it follows directly that the Jacobi identity
for H + K holds if and only if

𝑓k(P,Q,R) = 𝑓k(P,Q,R) + cycle(P,Q,R) ∼ 0, (18a)

ḡk(P,Q,R) = gk(P,Q,R) + cycle(P,Q,R) ∼ 0, (18b)

h̄k(P,Q,R) = hk(P,Q,R) + cycle(P,Q,R) ∼ 0, (18c)

𝑗k(P,Q,R) = 𝑗k(P,Q,R) + cycle(P,Q,R) ∼ 0, (18d)

where 0 ≤ k ≤ m.
Let us first consider the case of k = 0. Upon noticing b110 = b220 = 0 and b210 = −b120, a special choice of (18b) with

P1 = r, Q1 = 0, R1 = x and Q2 = 1, and a special choice of (18c) with P1 = 1, P2 = 0, Q2 = s and R2 = x (here one
might choose r and s be arbitrary functions of x), generate

ḡ0(P,Q,R) = 𝛽b120(r − xrx) ∼ 2𝛽b120r,

h̄0(P,Q,R) = 𝛼b120(s − xsx) ∼ 2𝛼b120s,

respectively. It then follows the arbitrariness of r and s that b120 = 0. Thus, when k = 0, (18a) to (18d) hold if and only
if B0 = 0.

Secondly, we consider the case of k = 1. We automatically have 𝑓1(P,Q,R)= 𝑗1(P,Q,R) = 0. Moreover, the condition
b211 = b121 guarantees that ḡ(P,Q,R) = h̄1(P,Q,R) = 0. So nothing is required more than BT

1 = B1.
Next we investigate the case of k = 2. The conditions b112 = b222 = 0 and b212 = −b122 guarantee 𝑓2(P,Q,R) =

𝑗2(P,Q,R) = 0 and

ḡ2(P,Q,R) = d
dx

[𝛽b122(P1R1,x − P1,xR1)Q2,x + cycle(P,Q,R)] ∼ 0,

h̄2(P,Q,R) = d
dx

[𝛼b122(P2Q2,x − P2,xQ2)R1,x + cycle(P,Q,R)] ∼ 0.

Hence nothing is required more than BT
2 = −B2 for k = 2.

A little longer discussion must be carried out for the case of k = 3. On the one hand, we have

𝑓3(P,Q,R) = d
dx

[𝛽b113P1(R1,xQ1,xx − Q1,xR1,xx) + cycle(P,Q,R)] ∼ 0,

𝑗3(P,Q,R) = d
dx

[𝛼b223P2(R2,xQ2,xx − Q2,xR2,xx) + cycle(P,Q,R)] ∼ 0.

Again by taking the advantages of r and s that were used above, a special choice of (18b) with P1 = r, R1 = x, Q2 = x3

3!
and Q1 = P2 = R2 = 0 gives

ḡ3(P,Q,R) = 𝛽b123

(
r − xrx +

1
2

x3𝜕3r
)
− 1

6
𝛼b113x3𝜕3r ∼ (−𝛽b123 + 𝛼b113)r,

based on which, (18b) would require
𝛽b123 − 𝛼b113 = 0. (19)

Likewise, a special choice of (18c) with P2 = s, Q1 = x3

3!
, R2 = x and P1 = R1 = Q2 = 0 leads to

𝛽b223 − 𝛼b123 = 0. (20)

On the other hand, when (19) and (20) are satisfied, we have

ḡ3(P,Q,R) = c1
d

dx
[(P1R1,x − P1,xR1)Q2,xx + (Q2,xR1 − Q2R1,x)P1,xx

+ (P1,xQ2 − P1Q2,x)R1,xx + cycle(P,Q,R)] ∼ 0,
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where c1 = 𝛽b123 = 𝛼b113, and

h̄3(P,Q,R) = c2
d

dx
[(P1R2,x − P1,xR2)Q2,xx + (Q2,xR2 − Q2R2,x)P1,xx

+ (P1,xQ2 − P1Q2,x)R2,xx + cycle(P,Q,R)] ∼ 0,

where c2 = 𝛽b223 = 𝛼b123. Thus, (19) and (20) suffice to guarantee that (18a) to (18d) hold when k = 3.
Finally, we consider the case of 4 ≤ k ≤ m. A special choice of (18a) with P1 = r, Q1 = xk

k!
and R1 = x, and a special

choice of (18d) with P2 = s, Q2 = xk

k!
and R2 = x, will generate

𝑓k = 𝛽b11k

[
r − xrx + (k − 1)xk

k!
𝜕kr

]
∼ 𝛽b11k[2 + (−1)k(k − 1)]r,

𝑗k = 𝛼b22k

[
s − xsx + (k − 1)xk

k!
𝜕ks

]
∼ 𝛼b22k[2 + (−1)k(k − 1)]s,

(21)

respectively. Since k ≥ 4, thus
𝛽b11k = 0, 𝛼b22k = 0, (22)

are required to guarantee that 𝑓k ∼ 0 and 𝑗k ∼ 0. Then, by using (22), 2 special choices of (18b) with P1 = r, Q1 = 0,
R1 = x, and Q2 = xk

k!
, and of (18c) with P1 = 0, Q1 = xk

k!
, R2 = x, and P2 = s will give

ḡk(P,Q,R) = 𝛽b12k(r − xrx) −
1
k!
𝛼b11kxk𝜕kr + 1

(k − 1)!
𝛽b21kxk𝜕kr

∼ 𝛽b12k(2 − k)r − (−1)k𝛼b11kr,
(23)

h̄k(P,Q,R) = 𝛼b21k(s − xsx) −
1
k!
𝛽b22kxk𝜕ks + 1

(k − 1)!
𝛼b12kxk𝜕ks

∼ 𝛼b21k(2 − k)s − (−1)k𝛽b22ks.
(24)

Since 𝛽2 + 𝛼2 ≠ 0, without loss of generality, assume 𝛽 ≠ 0. Thus, (22) implies b11k = 0, based on which (23) gives
b12k = 0. It must be then b21k = 0 due to (13), based on which b22k = 0 is finally determined again from (23). Likewise
we obtain again b11k = b12k = b21k = b22k = 0 if 𝛼 ≠ 0 is assumed. In short, the conditions in (22), (23), and (24)
combine to give the only possibility that Bk = 0 for 4 ≤ k ≤ m.

Therefore, to conclude, H + K is Hamiltonian if and only if K is determined by (15) and (16). This completes the
proof.

On the basis of early Hamiltonian theory,4,5,15 Fokas16 proved that hereditary symmetry in the form of Φ = MJ−1 can
be constructed, provided that the differential operators M and J are known to form a Hamiltonian pair, with J being
invertible. Following their conclusion, for a Hamiltonian operator M = H + K with H, K given by (7), (15), respectively
(and certainly all the coefficients in K satisfy the conditions given by (16), let

J =
[

d1 d2
d2 d3

]
𝜕 +

[
0 a
−a 0

]
𝜕2 +

[
d4 d5
d5 d6

]
𝜕3, (25)

where d4
b113

= d5

b123
= d6

b223
if they are all nonzero, or b113 = 0 if and only if d4 = 0, and likewise for b123 and d5, b223 and d6

(this condition is introduced to ensure that any linear combination of J and M is again Hamiltonian, which turns out to
be a sufficient and necessary condition for J and M to constitute a Hamiltonian pair). Furthermore d1, d2, d3, and a are
selected properly so that J is invertible. It follows then that any linear combination of J and M is again a Hamiltonian, and
J, M thus constitute a Hamiltonian. Two examples of such Hamiltonian operators J given by (25) could be, for instance,
typically illustrated by (but not limited to)

J =
[

d1 d2
d2 d3

]
𝜕 ⇒ J−1 = 1

△

[
d3 −d2
−d2 d1

]
𝜕−1, (26)

with △ = d1d3 − d2
2 ≠ 0; or another one which is relatively rarely used,

J =
[

0 a
−a 0

]
𝜕2 +

[
d4 d5
d5 d6

]
𝜕3 ⇒

J−1 = 1
a2

[
d6𝜕

−1 −d5𝜕
−1 − a𝜕−2

−d5𝜕
−1 + a𝜕−2 d4𝜕

−1

]
,

with a ≠ 0 and d4d6 − d2
5 = 0. Therefore, it comes up immediately with
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Theorem 3. Let H, K and J be given by (7), (15), and (25), respectively. Let M = H + K. Then Φ = MJ−1 is a hereditary
symmetry.

The hereditary symmetry Φ given by Theorem 3, being implicitly dependent on x only, obviously comes out to be
translational invariant with respect to x. Hence ∀S ∈ 2, we obtain a vanishing Lie derivative,17 ie,

(LuxΦ)S = Φ[ux, S] − [ux,ΦS] = 0. (27)

Therefore by corollary 1 in Ref. [18] we can conclude

[Φmux,Φnux] = 0, ∀m,n ≥ 0,

and it follows naturally also that

Theorem 4. Let H, K, and J be given by (7), (15), and (25), respectively. Let M = H + K. Then the class of evolution
equations

ut = Φmux, m ≥ 0 (28)

has a hierarchy of infinitely many common symmetries {Km = Φmux} (m ≥ 0) and Φ is a common hereditary strong
symmetry of the hierarchy (28).

The hierarchy of evolution equations (28) is in general nonlinear and integrable in the sense that it possesses infinitely
many K-symmetries. 16,18

4 EXAMPLES

4.1 Example I
We present in this section a few solid examples trying to show how this kind of Gauge equivalence works. For instance,
the following matrix spectral problem was computed in 3:

𝜙x = U𝜙 = U(u, 𝜆)𝜙, with u = [𝑝, q]T and 𝜙 = [𝜙1, 𝜙2]T ,

where the spectral matrix U ∈ s̃l(2,R) possesses the form

U = (−𝜆 − q)e1 + 𝑝e2 + 𝛾e3 =
[
−𝜆 − q 𝑝

𝛾 𝜆 + q

]
, (29)

with 𝛾 ≠ 0 being a constant, and

e1 =
[

1 0
0 −1

]
, e2 =

[
0 1
0 0

]
, e3 =

[
0 0
1 0

]
(30)

constitute the basis of the Lie algebra sl(2,R). The soliton hierarchy derived from this matrix spectral problem was found
to be Liouville integrable and possess the bi-Hamiltonian structure

utm = J 𝛿m

𝛿u
= M 𝛿m−1

𝛿u
, for all m ≥ 1, (31)

where m, m−1 are the corresponding Hamiltonian functionals, with J and M constituting the Hamiltonian pair:

J = −1
𝛾

[
0 𝜕
𝜕 0

]
, M =

[ 1
𝛾
(𝑝𝜕 + 𝜕𝑝) 1

2𝛾
𝜕2 + 1

𝛾
q𝜕

− 1
2𝛾
𝜕2 + 1

𝛾
𝜕q − 1

2
𝜕

]
. (32)

Clearly, J is invertible, and M is characteristically a case of the  operator presented in Theorem 2 with 𝛼 = 0 (or in
another word, the H component of  reduces to H1 given in (5). If by specifically letting 𝛾 = 1∕𝛽, and one modifies the
matrix spectral problem (29) to (let ũ = [𝑝̃, q̃]T )

𝜙̃x = Ũ𝜙̃ = Ũ(ũ, 𝜆)𝜙̃, Ũ =
[−𝜆 − 𝛼𝑝̃ − 𝛽q̃ 𝑝̃

1
𝛽

𝜆 + 𝛼𝑝̃ + 𝛽q̃

]
(33)

through the Gauge transformation [
𝑝
q

]
= T

[
𝑝̃
q̃

]
, with T =

[
1 0
𝛼 𝛽

]
, (34)
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will finally yield the Hamiltonian operator

M̃ =

[
𝛽(𝑝̃𝜕 + 𝜕𝑝̃) 1

2
𝜕2 − 𝛼𝜕𝑝̃ + 𝛽q̃𝜕

− 1
2
𝜕2 − 𝛼𝑝̃𝜕 + 𝛽𝜕q̃ − 1

2𝛽2 𝜕 − 𝛼(q̃𝜕 + 𝜕q̃)

]
(35)

which is obviously again characteristically a case of the  operator presented in Theorem 2. According to this theorem
M̃ is associated with M in (32) via

M̃ = T−1MT−1∗ . (36)
In particular, the K component in M apparently undergoes the same Gauge transformation of Bäcklund type and remains
to be a (Hamiltonian) matrix differential operator with constant coefficients. This example justifies our conclusions in
Theorem 2.

4.2 Example II
In 2002, Xu generalized the Wadati-Konno-Ichikawa (WKI) hierarchy1,19 by computing the following matrix spectral
problem (for convenience of calculation, the matrix problem is presented here in a slightly different form from the original
work; they are however exactly equivalent):

𝜙x = U𝜙 = U(u, 𝜆)𝜙, with u = [𝑝, q]T and 𝜙 = [𝜙1, 𝜙2]T ,

where the spectral matrix U ∈ s̃l(2,R) takes the form

U = (𝜆 − 𝛼

2
𝑝)e1 + 𝜆𝑝e2 + 𝜆qe3 =

[
𝜆 − 𝛼

2
𝑝 𝜆𝑝

𝜆q −𝜆 + 𝛼

2
𝑝

]
. (37)

By solving the stationary zero-curvature equation Wx = [U,W] with also W ∈ s̃l(2,R) chosen to be

W =

[
(𝜆 − 𝛼

2
𝑝)a − 𝛼bx

2𝜆
𝜆𝑝a + bx

𝜆qa + cx −(𝜆 − 𝛼

2
𝑝)a + 𝛼bx

2𝜆

]
, (38)

where a, b, and c are functions of 𝜆, x, and t taking the form of Laurent expansions:

a =
∑
i≥0

ai𝜆
−i, b =

∑
i≥0

bi𝜆
−i, c =

∑
i≥0

ci𝜆
−i, (39)

it was derived that this generalized WKI soliton hierarchy possesses the bi-Hamiltonian structure utm = M 𝛿m
𝛿u

= J 𝛿m−1
𝛿u

for all m ≥ 1, wherem,m−1 are the corresponding Hamiltonian functionals, with J and M constituting the Hamiltonian
pair. In particular M reads

M =
[

0 𝜕2 + 𝛼𝜕𝑝
−𝜕2 + 𝛼𝑝𝜕 𝛼(q𝜕 + 𝜕q)

]
, (40)

which is characteristically a case of the  operator presented in Theorem 2 with 𝛽 = 0 (or in another word, the H
component of  reduces to H2 given in (6). This soliton hierarchy is interestingly also Liouville integrable although J in
the Hamiltonian pair does not take the form of (25). The matrix spectral problem (37) of the generalized WKI hierarchy,
if modified to (let ũ = [𝑝̃, q̃]T)

𝜙̃x = Ũ𝜙̃ = Ũ(ũ, 𝜆)𝜙̃, Ũ =
[
𝜆 − 𝛼

2
(𝛼𝑝̃ − 𝛽q̃) 𝛼𝜆𝑝̃ − 𝛽𝜆q̃
𝜆q̃ −𝜆 + 𝛼

2
(𝛼𝑝̃ − 𝛽q̃)

]
(41)

by admitting the Gauge transformation [
𝑝
q

]
= T

[
𝑝̃
q̃

]
, with T =

[
𝛼 −𝛽
0 1

]
, (42)

will finally yield the Hamiltonian operator

M̃ =

[
𝛽(𝑝̃𝜕 + 𝜕𝑝̃) 1

𝛼
𝜕2 + 𝛼𝜕𝑝̃ + 𝛽q̃𝜕

− 1
𝛼
𝜕2 + 𝛼𝑝̃𝜕 + 𝛽𝜕q̃ 𝛼(q̃𝜕 + 𝜕q̃)

]
, (43)

which is obviously again characteristically a case of the  operator presented in Theorem 2 and is associated with M in
(40) through

M̃ = T−1MT−1∗ . (44)
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Still, the K component in M apparently undergoes the same Gauge transformation of Bäcklund type and remains to be a
(Hamiltonian) matrix differential operator with constant coefficients. This example precisely illustrates our conclusions
in Theorem 2.

An alternative form of the generalized WKI hierarchy was computed in Ma et al,20 for which rather similar arguments
upon Gauge transformation of Bäcklund type are also applicable.

4.3 Example III
Zhang et al reported in 20152 the coupled Burgers hierarchy based on the matrix spectral problem:

𝜙x = U𝜙 = U(u, 𝜆)𝜙, with u = [𝑝, q]T and 𝜙 = [𝜙1, 𝜙2]T ,

where the spectral matrix U ∈ s̃l(2,R) takes the form

U = (−𝜆 + 𝛼𝑝 + 𝛽q)e1 + 𝑝e2 + qe3 =
[
−𝜆 + 𝛼𝑝 + 𝛽q 𝑝

q 𝜆 − 𝛼𝑝 − 𝛽q

]
. (45)

To emphasize, the constants 𝛼, 𝛽 are in this model subject to the constraint 𝛼𝛽 = −1∕4. This soliton hierarchy is also
characterized by Liouville integrability and bi-Hamiltonian structure utm = J 𝛿m

𝛿u
= M 𝛿m−1

𝛿u
(m ≥ 1), in which the

Hamiltonian pair reads

J =
[

0 𝜕
𝜕 0

]
, M =

[
𝛽(𝑝𝜕 + 𝜕𝑝) − 1

2
𝜕2 + 𝛼𝜕𝑝 + 𝛽q𝜕

1
2
𝜕2 + 𝛼𝑝𝜕 + 𝛽𝜕q 𝛼(q𝜕 + 𝜕q)

]
, (46)

where J is clearly invertible, and M is characteristically a case of the  operator presented in Theorem 2 (𝛼𝛽 = −1∕4).
This matrix spectral problem (45), if modified to (let ũ = [𝑝̃, q̃]T)

𝜙̃x = Ũ𝜙̃ = Ũ(ũ, 𝜆)𝜙̃, Ũ =
[−𝜆 + 2𝛼𝑝̃ + q̃ 𝑝̃

𝛼

𝛽
𝑝̃ + 1

𝛽
q̃ 𝜆 − 2𝛼𝑝̃ − q̃

]
, (47)

by admitting the Gauge transformation [
𝑝
q

]
= T

[
𝑝̃
q̃

]
, with T =

[ 1 0
𝛼

𝛽

1
𝛽

]
(48)

will finally yield the Hamiltonian operator

M̃ =

[
𝛽(𝑝̃𝜕 + 𝜕𝑝̃) − 1

2
𝛽𝜕2 + 𝛽q̃𝜕

1
2
𝛽𝜕2 + 𝛽𝜕q̃ 0

]
, (49)

which is apparently characteristically a case of the  operator, with its H-component reducing to the form of H1 in (5),
presented in Theorem 2. The matrix spectral problem could also alternatively be modified into (let û = [𝑝̂, q̂]T)

𝜙̂x = Û𝜙̂ = Û(û, 𝜆)𝜙̂, Û =
[
−𝜆 − 𝑝̂ + 2𝛽q̂ − 1

𝛼
𝑝̂ + 𝛼

𝛽
q̂

q̂ 𝜆 + 𝑝̂ − 2𝛽q̂

]
(50)

by admitting the Gauge transformation [
𝑝
q

]
= T

[
𝑝̂
q̂

]
, with T =

[
− 1

𝛼

𝛽

𝛼
0 1

]
, (51)

will yield the Hamiltonian operator

M̂ =

[
0 1

2
𝛼𝜕2 + 𝛼𝜕𝑝̂

− 1
2
𝛼𝜕2 + 𝛼𝑝̂𝜕 𝛼(q̂𝜕 + 𝜕q̂)

]
, (52)

which is apparently also characteristically a case of the  operator, with its H-component reducing to the form of H2 in
(6), presented in Theorem 2. In this example, both M̃ given by (49) and M̂ given by (52) can be associated with M in (46)
through M̃(or M̂) = T−1MT−1∗ .

4.4 Example IV
As a separate final example, we consider the Hamiltonian operator possessing the following form:

J = B1𝜕 + B2𝜕
2 + B3𝜕

3 =
[

d1 d2
d2 d3

]
𝜕 +

[
0 a
−a 0

]
𝜕2 +

[
d4 d5
d5 d6

]
𝜕3, (53)
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where a ≠ 0, and det B3 = d4d6 − d2
5 = 0. Generally, there is no way that one can compute in an explicit way the inverse

of (53), which, however, can formally be written as

J−1 =
[

d3 + d6𝜕
2 d2 + a𝜕 + d5𝜕

2

d2 − a𝜕 + d5𝜕
2 d1 + d4𝜕

2

]
△−1𝜕−1, (54)

where
△ = d1d3 − d2

2 + (d1d6 + d3d4 + a2 − 2d2d5)𝜕2. (55)
Let M = H (ie, M has only the H component of  = H + K in Theorem 2) satisfy the conditions in Theorems 3 and 4,
it follows immediately that the recursion operator Φ = MJ−1 is a hereditary strong symmetry, and the class of evolution
equations ut = Φmux (m ≥ 0) hence possesses a hierarchy of infinitely many common symmetries {Km = Φmux} (m ≥ 0).
This example involves a Hamiltonian operator J in (53) that contains a differential component in third order, and the
appearance of △ in (55) attributes J with some features like the characteristic of a Camassa-Holm type hierarchy.21

The first nonlinear evolution equation of such a hierarchy, ut = (pt, qt)T = Φux (Φ = MJ−1), under the introduction
of another 2 implicit variables r, s (a typical treatment when computing Camassa-Holm type models) that are associated
with p, q via {

𝑝 = Ar + Brxx,
q = As + Bsxx,

(56)

where A = d1d3 − d2
2, B = d1d6 + d2d5 + a2 − 2d3d4, can be written down a little lengthily as follows:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝑝t = 2𝛽𝑝(d3rx − d2sx) + 𝛽𝑝x (d3r − d2s) − 𝛽q(d2rx − d1sx)
−𝛽q(d5rxxx − d4sxxx) + 2𝛽𝑝(d6rxxx − d5sxxx)
+𝛽𝑝x (d6rxx − d5sxx) − 𝛽a(𝑝xsx + 2𝑝sxx − qrxx)
+𝛼[𝑝(d1s − d2r)]x + 𝛼[𝑝(d4sxx − d5rxx)]x + 𝛼a(𝑝rx)x,

qt = 𝛽[q(d3r − d2s)]x + 𝛽 [q(d6rxx − d5sxx)]x − 𝛽a(qsx)x
−2𝛼q(d2rx − d1sx) − 𝛼qx (d2r − d1s) + 𝛼𝑝(d3rx − d2sx)
+𝛼𝑝 (d6rxxx − d5sxxx) − 2𝛼q(d5rxxx − d4sxxx)
−𝛼qx (d5rxx − d4sxx) + 𝛼a(qxrx + 2qrxx − 𝑝sxx).

(57)

If alternatively, one imposes in (53)B2 = 0 (ie, a = 0) and admits but detB1 < 0, or to put it more precisely,

det B1 = d1d3 − d2
2 = −

d2
1

d2
4

(
d5 −

d2d4

d1

)2

, (58)

which is indeed an equivalent version of the condition d1d6 + d4d3 − 2d2d5 = 0, J will possess under these assumptions
an explicit inverse that reads

J−1 = 1
det B1

[
d6𝜕 + d3𝜕

−1 −d5𝜕 − d2𝜕
−1

−d5𝜕 − d2𝜕
−1 d4𝜕 + d1𝜕

−1

]
. (59)

Likewise, the Hamiltonian operator J in (53) satisfying (58), together with M = H+K, yields a hereditary strong symmetry
Φ = MJ−1, and the class of evolution equations ut = Φmux (m ≥ 0) is associated with a hierarchy of infinitely many
common symmetries {Km = Φmux} (m ≥ 0).

5 CONCLUSION

In this paper we showed that matrix differential operators in forms of H1, H2, and H given by (5), (6), and (7), respec-
tively, are u-linear Hamiltonian operators that are also pairwise Gauge equivalent. The transformations among them are
performed in terms of 2 × 2 matrices with constant entries (and hence the transformations can certainly be viewed as
local). We think the Gauge equivalence among H1, H2, and H may offer some insights to the classification of some soliton
hierarchies.

Furthermore, we proved also that these matrix differential operators can be coupled with differential operators with
constant coefficients to generate new Hamiltonian operators. Also derived were the corresponding required conditions
(15) and (16). The most interesting fact revealed by Theorem 2 is that such a coupling takes effect only up to the third
order of the differential operators with constant coefficients, and this extremely succinct conclusion (which is simpler
than we expected in advance) would motivate us to further explore what is hidden behind the corresponding Hamiltonian
structures11.
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