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Abstract In this paper, a (3+1)-dimensional nonlin-
ear evolution equation is cast into Hirota bilinear form
with a dependent variable transformation. A bilinear
Bäcklund transformation is then presented, which con-
sists of six bilinear equations and involves nine arbi-
trary parameters. With multiple exponential function
method and symbolic computation, nonresonant-typed
one-, two-, and three-wave solutions are obtained. Fur-
thermore, two classes of lump solutions to the dimen-
sionally reduced cases with y = x and y = z are both
derived. Finally, some figures are given to reveal the
propagation of multiple wave solutions and lump solu-
tions.
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1 Introduction

Nonlinear evolution equations (NLEEs) including soli-
ton equations play an important role in the areas of
mathematical physics [1–7]. Generally speaking, it is
very difficult to find exact solutions to NLEEs [8–24].
The transformed rational function method and multi-
ple exponential function method provide two effective
pathways to construct multiple wave solutions [13,14].
If we can get the Hirota bilinear form for a NLEE,
then we can derive the exact solutions with multi-
ple exponential function algorithm. Furthermore, the
Bäcklund transformation (BT) can also be used in solu-
tion aspects [20]. Based on a known solution, we can
obtain another solution by using BT.

In this paper, we will study the following (3 + 1)-
dimensional NLEE [7,12] as

uyt − uxxxy − 3 (ux uy)x − 3 uxx + 3 uzz = 0, (1)

which was proposed firstly in Ref. [7,12], and the res-
onant behavior of multiple wave solutions has been
investigated [12]. With symbolic computation, two
classes of lump solutions have been derived to the
dimensionally reduced equations in (2+1)-dimensions
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with z = y and z = t , respectively, by searching
for positive quadratic function solutions to associated
bilinear equation [7]. It is important to study other prop-
erties for Eq. (1) such asBT, nonresonantmultiplewave
solutions, and lump dynamics with novel dimensional
reductions.

The structure of this paper is as follows: In Sect. 2,
we will construct a BT for Eq. (1) based on its bilinear
form, and as an application, we will derive some exact
solutions via this BT. Note that the BT consists of six
bilinear equations and involves nine arbitrary param-
eters. Nonresonant-typed multiple wave solutions will
be solved in Sect. 3 by use ofmultiple exponential func-
tionmethod. In Sect. 4,wewill give two classes of lump
solutions to the dimensionally reduced equations in
(2+1)-dimensionswith y = x and y = z, respectively.
Finally, Sect. 5 presents discussions and conclusions,
and we will plot some figures to describe the character-
istics of multiple wave solutions and lump solutions.

2 Bilinear BT

2.1 Construction of BT

Substitution of the dependent variable transformation
u = 2 (ln f )x with f = f (x, y, z, t) into Eq. (1) yields
the bilinear representation for Eq. (1) as
(
Dt Dy − D3

x Dy − 3D2
x + 3 D2

z

)
f · f = 0, (2)

where Dt Dy , D3
x Dy , D2

x , and D2
z are all the bilinear

derivative operators [20] defined by

Dα
x D

β
y D

γ
t (ρ · �) =

(
∂

∂x
− ∂

∂x ′

)α (
∂

∂y
− ∂

∂y′

)β

×
(

∂

∂t
− ∂

∂t ′

)γ

ρ(x, y, t)�(x ′, y′, t ′)
∣∣∣∣
x ′=x, y′=y, t ′=t

.

(3)

To construct a bilinear BT by means of Eq. (2), we
consider

2P ≡ 2 f 2
(
Dt Dy − D3

x Dy − 3D2
x + 3D2

z

)
g · g

− 2g2
(
Dt Dy − D3

x Dy − 3D2
x + 3D2

z

)
f · f,

(4)

inwhich g = g(x, y, z, t) is another solution to Eq. (2).
By using exchange formulas, symbolic computation

on Eq. (4) leads to

−2P = −2
[(
Dt Dy − D3

x Dy − 3D2
x + 3D2

z

)
g · g] f 2

+ 2g2
[(
Dt Dy − D3

x Dy − 3D2
x + 3D2

z

)
f · f

]

= −2
[(
Dt Dyg · g) f 2 − g2(Dt Dy)

]

+ 2
[(
D3
x Dyg · g) f 2 − g2

(
D3
x Dy f · f

)]

+ 6
[(
D2
x g · g) f 2 − g2

(
D2
x f · f

)]

− 6
[(
D2
z g · g) f 2 − g2

(
D2
z f · f

)]

= Dx
(
3D2

x Dyg · f
) · f g + Dx

(
3D2

x g · f
) · (

Dy f · g)

+ Dx
(
6Dx Dyg · f

) · (Dx f · g) + Dx (12Dxg · f ) · f g

+ Dy
(
D3
x g · f

) · f g + Dy
(
3D2

x g · f
) · (Dx f · g)

+ Dt
(−4Dyg · f

) · f g − 12Dz (Dzg · f ) · f g

= Dx
[(
3D2

x Dy + λ1Dy

+ λ2 + 12Dx + 12λ8Dz) g · f
] · f g

+ Dy
[(
D3
x + λ3 − λ1Dx − 4Dt − 12λ9Dz

)
g · f

] · f g

+ Dx
[(
3D2

x + λ4Dy + λ6
)
g · f

] · (
Dy f · g)

+ Dy
[(
3D2

x + λ5Dx − λ6
)
g · f

] · (Dx f · g)
+ Dx

[(
6Dx Dy + 6λ7Dx

)
g · f

] · (Dx f · g)
− 12Dz

[(
Dz + λ8Dx + λ9Dy

)
g · f

] · f g, (5)

where we have introduced nine arbitrary coefficients of
λi (i = 1, 2, 3, 4, 5, 6, 7, 8, 9). To this stage, equation
decoupling of Eq. (5) gives rise to an alternative BT for
Eq. (2) as
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

B1g · f = (3D2
x Dy+λ1Dy+λ2 + 12Dx +12λ8Dz)g · f =0,

B2g · f = (D3
x + λ3 − λ1Dx − 4Dt − 12λ9Dz)g · f = 0,

B3g · f = (3D2
x + λ4Dy + λ6)g · f = 0,

B4g · f = (3D2
x + λ5Dx − λ6)g · f = 0,

B5g · f = (6Dx Dy + 6λ7Dx )g · f = 0,

B6g · f = (Dz + λ8Dx + λ9Dy)g · f = 0,

(6)
which consists of six bilinear equations and involves
nine arbitrary parameters.

2.2 Application of BT

We take f = 1 as a solution to Eq. (2), which corre-
sponds to the solution u = 2(ln f )x = 0 to Eq. (1).
Solving BT of Eq. (6), we obtain six linear partial dif-
ferential equations as
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3gxxy + 12gx + λ1gy + 12λ8gz + λ2g = 0,

gxxx − 4gt − λ1gx − 12λ9gz + λ3g = 0,

3gxx + λ5gx − λ6g = 0,

gxy + λ7gx = 0,

gz + λ8gx + λ9gz = 0,

3gxx + λ4gy + λ6g = 0.

(7)
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In the following, we will derive two classes of exact
solutions to Eq. (1) by solving Eq. (7) with symbolic
computation.

2.2.1 Exponential function solution to Eq. (7)

Firstly, we consider exponential function solutions to
Eq. (7) by taking g = 1 + εeθ with θ = kx + ly +
mz − wt , where ε, k, l,m, and w are all constants.

Selecting λ2 = λ3 = λ6 = 0, and solving Eq. (7),
we have

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3k2l + 12k + λ1l + 12λ8m = 0,

k3 + 4w − λ1k − 12λ9m = 0,

3k2 + λ5k = 0,

3k2 + λ4l = 0,

kl + λ7k = 0,

m + λ8k + λ9l = 0.

(8)

One choice of solutions to Eq. (8) is as follows

{
λ1 = 12λ28k + 12λ8λ9l − 3k2l − 12k

l
, λ4 = −3k2

l
,

λ5 = −3k, λ7 = −l, m = − (λ8k + λ9l) ,

ω = 3λ28k
2 − 3λ29l

2 − k3l − 3k2

l

}
, (9)

then,

u = 2(ln g)x

= 2kεekx+ly−(λ8k+λ9l)z− 3λ28k
2−3λ29l

2−k3l−3k2

l t

1 + εekx+ly−(λ8k+λ9l)z− 3λ28k
2−3λ29l

2−k3l−3k2

l t

, (10)

is a solution to Eq. (1).

2.2.2 First-order polynomial solution to Eq. (7)

Secondly,we take a first-order polynomial solution into
consideration as

g = kx + ly + mz − wt, (11)

where ε, k, l,m, and w are all constants.

Selecting λi = 0 (1 ≤ i ≤ 7) and putting Eq. (11)
into (7), we obtain the following algebraic equations

⎧⎨
⎩
12k + 12λ8m = 0,
4w − 12λ9m = 0,
m + λ8k + λ9l = 0,

(12)

which result in 3k2 − lw − 3m2 = 0.
To this stage,

u = 2(ln g)x

= 2k

kx + ly + mz − wt
with 3k2−lw− 3m2 = 0,

(13)

is a solution to Eq. (1).

3 Multiple wave solutions

3.1 One-wave solution

Substituting

f = 1 + εeθ , θ = kx + ly + mz − wt,

with ε, k, l,m, and w as constants into Eq. (2), we can
obtain

w = −k3 + 3m2 − 3k2

l
, (14)

which is called the dispersion relation. As a result, the
one-wave solution to Eq. (1) can be written as

u = 2εkekx+ly+mz−wt

1 + εekx+ly+mz−wt
. (15)

3.2 Two-wave solution

Substituting

f = 1 + ε1e
θ1 + ε2e

θ2

+ ε1ε2a12e
θ1+θ2 , θi = ki x + li y + mi z − wi t,

with ε1, ε2, ki , li ,mi , and wi (i = 1, 2) as constants
into Eq. (2), we get
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wi = −k3i + 3m2
i − 3k2i
li

, a12 = b12
c12

, (16)

where

b12 = k31l1 + k32l2 − k31l2 − k32l1 − 3k21k2l1 − 3k1k
2
2l2

+ 3k21k2l2 + 3k1k
2
2l1 + l1w1 + l2w2 − w1l2

− w2l1 + 3k21 + 3k22 − 6k1k2 − 3m2
1

− 3m2
2 + 6m1m2, (17)

c12 = −(k1 + k2)
3(l1 + l2) − (l1 + l2)(w1 + w2)

+ 3(m1 + m2)
2 − 3(k1 + k2)

2. (18)

As a result, the two-wave solution to Eq. (1) can be
written as

u = 2
[
k1ε1eθ1 + k2ε2eθ2 + a12(k1 + k2)ε1ε2eθ1+θ2

]

1 + ε1eθ1 + ε2eθ2 + a12ε1ε2eθ1+θ2
,

(19)

where wi and a12 are determined by Eq. (16).

3.3 Three-wave solution

Following the derivation of one- and two-wave solu-
tions, we assume

f = 1 + ε1e
θ1 + ε2e

θ2 + ε3e
θ3 + ε1ε2a12e

θ1+θ2

+ ε1ε3a13e
θ1+θ3

+ ε2ε3a23e
θ2+θ3 + ε1ε2ε3a123e

θ1+θ2+θ3 , (20)

where θi = ki x + li y + mi z − wi t , (i = 1, 2, 3),
a123 = a12a13a23, and ε1, ε2, ε3, ki , li ,mi , wi are con-
stants. With symbolic computation, we get

wi = −k3i + 3m2
i − 3k2i
li

, ai j = bi j
ci j

, (i = 1, 2, 3),

(21)

where

bi j = k3i li + k3j l j − k3i l j − k3j li − 3k2i k j li − 3ki k
2
j l j

+3k2i k j l j +3ki k
2
j li +liwi + l jw j − wi l j − w j li

+ 3k2i + 3k2j − 6ki k j − 3m2
i − 3m2

j + 6mim j ,

ci j = −(ki + k j )
3(li + l j ) − (li + l j )(wi + w j )

+ 3(mi + m j )
2 − 3(ki + k j )

2.

Finally, the three-wave solution to Eq. (1) is

u =
2

[∑3
i=1 kiεi e

θi + ∑
1≤i< j≤3(ki + k j )εiε j ai j eθi+θ j + (k1 + k2 + k3)ε1ε2ε3a123eθ1+θ2+θ3

]

1 + ∑3
i=1 εi eθi + ∑

1≤i< j≤3 εiε j ai j eθi+θ j + ε1ε2ε3a123eθ1+θ2+θ3
, (22)

where ε1, ε2, ki , li ,mi are arbitrary constants, and wi

and ai j are determined by Eq. (21).

4 Lump solutions

In this section, we will search for positive quadratic
function solutions to dimensionally reduced bilinear
Eq. (2) via taking y = x or y = z, correspondingly
to construct lump solutions to dimensionally reduced
forms of Eq. (1). We begin with the assumption

f = g2 + h2 + a9, (23)

and

g = a1x + a2z + a3t + a4,

h = a5x + a6z + a7t + a8,

where ai (1 ≤ i ≤ 9) are all real parameters to be deter-
mined. To construct the lump solutions, we note that the
conditions guaranteeing thewell definedness of f , pos-
itiveness of f and localization of u in all directions in
the space need to be satisfied.

4.1 Lump solutions to reduction with y = x

With y = x , the dimensionally reduced form of the
bilinear Eq. (2) turns out to be
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(
Dt Dx − D4

x − 3D2
x + 3 D2

z

)
f · f = 0, (24)

that is,

( fxt f − ft fx ) −
(
fxxxx f − 4 fxxx fx + 3 f 2xx

)

− 3
(
fxx f − f 2x

)
+ 3

(
fzz f − f 2z

)
= 0, (25)

which is transformed into

uxt − uxxxx − 6 uxuxx − 3 uxx + 3 uzz = 0. (26)

through the link between f and u:

u = 2
[
ln f (x, z, t)

]
x

= 2
fx (x, z, t)

f (x, z, t)
. (27)

Submitting Eq. (23) into (25), we obtain the follow-
ing set of constraining equations for the parameters:

{
a1 = a1, a2 = a2,

a3 = 3a1
(
a21 − a22 + a25 + a26

) − 6a2a5a6
a21 + a25

,

a4 = a4, a5 = a5, a6 = a6,

a7 = 3a5
(
a21 + a22 + a25 − a26

) − 6a1a2a6
a21 + a25

,

a8 = a8, a9 =
(
a21 + a25

)3
(a1a6 − a2a5)2

}
, (28)

which needs to satisfy |a6| > |a5| and a1a6−a2a5 �= 0.
The positive quadratic function solution to Eq. (25) is

f =
(
a1x + a2z + 3a1

(
a21 − a22 + a25 + a26

) − 6a2a5a6
a21 + a25

t + a4

)2

+
(
a5x + a6z + 3a5

(
a21 + a22 + a25 − a26

) − 6a1a2a6
a21 + a25

t + a8

)2

+
(
a21 + a25

)3
(a1a6 − a2a5)2

, (29)

which, in turn, generates a class of lump solutions to
dimensionally reduced Eq. (2) through the transforma-
tion u = 2 (ln f )x as

u(I) = 4(a1g + a5h)

f
, (30)

where the function f is defined by Eq. (29), and the
functions g and h are given as follows:

g = a1x + a2z

+ 3a1
(
a21 − a22 + a25 + a26

) − 6a2a5a6
a21 + a25

t + a4,

h = a5x + a6z

− 3a5
(
a21 + a22 + a25 − a26

) − 6a1a2a6
a21 + a25

t + a8.

4.2 Lump solutions to reduction with y = z

With y = z, the dimensionally reduced form of the
bilinear Eq. (2) turns out to be

(
Dt Dz − D3

x Dz − 3D2
x + 3D2

z

)
f · f = 0, (31)

that is,

( ft z f − ft fz) − ( fxxxz f − fxxx fz

−3 fxxz fx + 3 fxx fxz)

− 3
(
fxx f − f 2x

)
+ 3

(
fzz f − f 2z

)
= 0, (32)

which is transformed into

uzt − uxxxz − 3 (uxuz)x − 3 uxx + 3 uzz = 0, (33)

through the link of Eq. (27) between f and u.
Substituting f = g2 + h2 + a9 into Eq. (32), we

obtain the following set of constraining equations for
the parameters:

{
a1 = a1, a2 = a2,

a3 =
3a2

(
a21 − a22 − a25 − a26

)
+ 6a1a5a6

a22 + a26
,

a4 = a4, a5 = a5, a6 = a6,

a7 =
−3a6

(
a21 + a22 − a25 + a26

)
+ 6a1a2a5

a22 + a26
, a8 = a8,

a9 = −
(
a22 + a26

) (
a21 + a25

)
(a1a2 + a5a6)

(a1a6 − a2a5)
2

}
, (34)
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Fig. 1 a Characteristics of the one-wave solution via Eq. (15)
with ε = 1, k = 1, l = 1, m = 0, w = −4, and y = z = 0; b
characteristics of the two-wave solution via Eq. (19) with ε1 = 1,
ε2 = 1, k1 = 1, k2 = 2, l1 = 3, l2 = 3, m1 = 2, m2 = 0,
w1 = 2, w2 = −12, and y = z = 0

which needs to satisfy a1a6 − a2a5 �= 0 and a1a2 +
a5a6 < 0. The positive quadratic function solution to
Eq. (32) is

f =
⎛
⎝a1x + a2z+

3a2
(
a21−a22 − a25 − a26

)
+ 6a1a5a6

a22 + a26
t + a4

⎞
⎠
2

+
(
a5x+a6z+

−3a6(a
2
1+a22 − a25 + a26 ) + 6a1a2a5

a22 + a26
t + a8

)2

−
(
a22 + a26

) (
a21 + a25

)
(a1a2 + a5a6)

(a1a6 − a2a5)
2 , (35)

which, in turn, generates a class of lump solutions to
dimensionally reduced Eq. (2) through the transforma-
tion u = 2 (ln f )x as

u(II) = 4(a1g + a5h)

f
, (36)

−20
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0
10

20

−20

0

20
−5

0

5

xz

u
−10

−5
0

5
10

−10−50510
−20

−10

0

10

20

x
z

u

(a)

(b)

Fig. 2 a Characteristics of lump solution u(I) via Eq. (30) with
a1 = 1, a2 = 2, a4 = 0, a5 = 3, a6 = 4, a8 = 0, and t = 0; b
characteristics of lump solution u(II) via Eq. (36) with a1 = 1,
a2 = 2, a4 = 0, a5 = −3, a6 = 4, a8 = 0, and t = 0

where the function f is defined by Eq. (35), and the
functions g and h are shown as follows:

g = a1x + a2z

+ 3a2
(
a21 − a22 − a25 − a26

) + 6a1a5a6
a22 + a26

t + a4,

h = a5x + a6z

+ −3a6
(
a21 + a22 − a25 + a26

) + 6a1a2a5
a22 + a26

t + a8.

5 Discussions and conclusion

High-dimensional problems in soliton theory attract
much more attention in recent research. For example,
by using multiple exp-function method and symbolic
computation, one-wave, two-wave, and three-wave
solutions have been presented to (3 + 1)-dimensional
generalized KP and BKP equations [4,13,14]. Res-
onant behavior of multiple wave solutions and lump
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Fig. 3 a Contour of lump solution u(I); b contour of lump solu-
tion u(II)

dynamics has been studied for a (3 + 1)-dimensional
NLEE [7,19].

In this paper, we have firstly transformed the (3+1)-
dimensional nonlinear partial differential equation, that
is, Eq. (1) into Hirota bilinear form by a dependent
transformation. Then, a bilinear BT has been con-
structed [see Eq. (6)], which consists of six bilinear
equations and includes nine arbitrary parameters. As
an application, we have derived two classes of exact
solutions [see Eqs. (10) and (13)] to Eq. (1) by using
this BT. Moreover, with multiple exp-function method
and symbolic computation, nonresonant-typed multi-
ple wave solutions have been given to Eq. (1) includ-
ing one-wave, two-wave, and three-wave solutions [see
Eqs. (15), (19), and (22)]. Characteristics of the one-
wave and two-wave solutions are shown in Fig. 1.

Finally, two classes of lump solutions have been
investigated to the dimensionally reduced forms of
Eq. (1) with y = x and y = z, respectively, i.e.,
Eqs. (26) and (33). We found no lump solution in the
form of f = g2 +h2 +a9 to reduced Eq. (1) via taking
y = t . To reveal the lump dynamics, 3-dimensional

−10 −5 0 5 10
−8
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−2

0
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6

z

u

x=−1
x=−2
x=−3

−10 −5 0 5 10
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x

u
z=−2
z=−1
z=0

(a)

(b)

Fig. 4 a Plot of x curves of lump solution u(I) with x = −1,
x = −2, and x = −3; b plot of z curves of lump solution u(II)

with z = 0, z = −1, and z = −2

plots, density plots and 2-dimensional curves with par-
ticular choices of the involved parameters in the poten-
tial functionu are given inFigs. 2, 3, and 4, respectively.

Acknowledgements This work is supported by the Open
Fund of IPOC (BUPT) under Grant No. IPOC2016B008. Y. H.
Yin is supported by the Project of National Innovation and
Entrepreneurship Training Program for College Students under
Grant No. 170170007. W. X. Ma is supported in part by the
National Natural Science Foundation of China under Grant Nos.
11371326 and 11271008, Natural Science Foundation of Shang-
hai under Grant No. 11ZR1414100, Zhejiang Innovation Project
of China under Grant No. T200905, the First-class Discipline of
Universities in Shanghai and the Shanghai University Leading
Academic Discipline Project (No. A13-0101-12-004), and the
Distinguished Professorship at Shanghai University of Electric
Power.

References

1. Zhang, Y., Dong, H., Zhang, X., Yang, H: Rational solutions
and lump solutions to the generalized (3 + 1)-dimensional
shallow water-like equation. Comput. Math. App. 73, 246
(2017)

123



2240 L.-N. Gao et al.

2. Mani Rajan, M.S., Mahalingam, A.: Nonautonomous soli-
tons in modified inhomogeneous Hirota equation: soliton
control and soliton interaction. Nonlinear Dyn. 79, 2469
(2015)

3. Biswas, A., Khalique, C.M.: Stationary solutions for
nonlinear dispersive Schrödinger equation. Nonlinear Dyn.
63, 623 (2011)

4. Ma, W.X., Abdeljabbar, A.: A bilinear Bäcklund transfor-
mation of a (3 + 1)-dimensional generalized KP equation.
Appl. Math. Lett. 25, 1500 (2012)

5. Zhang, Y., Ma, W.X.: Rational solutions to a KdV-like
equation. Appl. Math. Comput. 256, 252 (2015)

6. Zhang, Y.F., Ma, W.X.: A study on rational solutions to a
KP-like equation. Z. Naturforsch. 70a, 263 (2015)

7. Lü, X., Ma, W.X.: Study of lump dynamics based on a
dimensionally reduced Hirota bilinear equation. Nonlinear
Dyn. 85, 1217 (2016)

8. Wang, D.S., Wei, X.: Integrability and exact solutions of
a two-component Korteweg-de Vries system. Appl. Math.
Lett. 51, 60 (2016)

9. Dai, C.Q., Wang, Y.Y., Zhang, X.F.: Spatiotemporal local-
izations in (3 + 1)-dimensional PT-symmetric and strongly
nonlocal nonlinear media. Nonlinear Dyn. 83, 2453 (2016)

10. Dai, C.Q., Wang, Y.Y.: Controllable combined Peregrine
soliton and Kuznetsov–Ma soliton in PT-symmetric non-
linear couplers with gain and loss. Nonlinear Dyn. 80, 715
(2015)

11. Dai, C.Q., Wang, Y.Y., Liu, J.: Spatiotemporal Hermite–
Gaussian solitons of a (3 + 1)-dimensional partially
nonlocal nonlinear Schrödinger equation. Nonlinear Dyn.
84, 1157 (2016)

12. Gao, L.N., Zhao, X.Y., Zi, Y.Y., Yu, J., Lü, X.: Resonant
behavior of multiple wave solutions to a Hirota bilinear
equation. Comput. Math. Appl. 72, 1225 (2016)

13. Ma, W.X., Fan, E.G.: Linear superposition principle apply-
ing to Hirota bilinear equations. Comput. Math. Appl. 61,
950 (2011)

14. Ma, W.X., Zhang, Y., Tang, Y.N., Tu, J.Y.: Hirota bilinear
equations with linear subspaces of solutions. Appl. Math.
Comput. 218, 7174 (2012)

15. Dai, C.Q., Xu, Y.J.: Exact solutions for a Wick-type
stochastic reaction Duffing equation. Appl. Math. Model.
39, 7420 (2015)

16. Dai, C.Q., Fan, Y., Zhou, G.Q., Zheng, J., Cheng, L.: Vector
spatiotemporal localized structures in (3 + 1)-dimensional
strongly nonlocal nonlinear media. Nonlinear Dyn. 86, 999
(2016)

17. Ma, W.X., Qin, Z.Y., Lü, X.: Lump solutions to dimension-
ally reduced p-gKP and p-gBKP equations. Nonlinear Dyn.
84, 923 (2016)

18. Ma, W.X.: Lump solutions to the Kadomtsev–Petviashvili
equation. Phys. Lett. A 379, 1975 (2015)

19. Lü, X., Ma, W.X., Yu, J., Lin, F.H., Khalique, C.M.:
Envelope bright- and dark-soliton solutions for the
Gerdjikov–Ivanov model. Nonlinear Dyn. 82, 1211 (2015)

20. Hirota, R.: TheDirectMethod in Soliton Theory. Cambridge
Univ. Press, Cambridge (2004)

21. Lü, X., Ma, W.X., Yu, J., Khalique, C.M.: Solitary waves
with the Madelung fluid description: a generalized deriva-
tive nonlinear Schrödinger equation. Commun. Nonlinear
Sci. Numer. Simul. 31, 40 (2016)

22. Lü, X., Ma, W.X., Chen, S.T., Khalique, C.M.: A note on
rational solutions to a Hirota–Satsuma-like equation. Appl.
Math. Lett. 58, 13 (2016)

23. Lü, X., Ma, W.X., Zhou, Y., Khalique, C.M.: Rational
solutions to an extended Kadomtsev–Petviashvili-like
equation with symbolic computation. Comput. Math. Appl.
71, 1560 (2016)

24. Lü, X., Lin, F.: Soliton excitations and shape-changing
collisions in alpha helical proteins with interspine coupling
at higher order. Commun. Nonlinear Sci. Numer. Simul.
32, 241 (2016)

123


	Bäcklund transformation, multiple wave solutions and lump solutions to a (3 + 1)-dimensional nonlinear evolution equation
	Abstract
	1 Introduction
	2 Bilinear BT
	2.1 Construction of BT
	2.2 Application of BT
	2.2.1  Exponential function solution to Eq. (7)
	2.2.2 First-order polynomial solution to Eq. (7)


	3 Multiple wave solutions
	3.1 One-wave solution
	3.2 Two-wave solution
	3.3 Three-wave solution

	4 Lump solutions
	4.1 Lump solutions to reduction with y=x
	4.2 Lump solutions to reduction with y=z

	5 Discussions and conclusion
	Acknowledgements
	References




