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ARTICLE INFO ABSTRACT

Key,""."‘rds’. ) Zufiria’s higher-order Boussinesq type equations are studied by transforming them into
Zufiria tS higher-order Boussinesq type solvable ordinary differential equations. Various families of their travelling wave solutions
equations are generated, which include periodic wave, solitary wave, periodic-like wave, soliton-
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Jacobi elliptic function periodic wave coefficients in mathematical physics and mechanics.

Weierstrass elliptic function periodic © 2008 Elsevier Ltd. All rights reserved.

Rational solutions

1. Introduction

It is well-known that nonlinear evolution equations (NEEs) play an important role in describing many significant
dynamical behaviors in mechanics, physics, optics, biology, chemistry etc., and the investigation of the exact solutions
to NEEs can undoubtedly help us further analyze and understand their various dynamical properties. For constructing
exact travelling wave solutions, many powerful and efficient methods have been established and developed based on the
traditional solving methods [1-8], such as the homogeneous balance method [9], tanh-function expansion [10-12], Jacobi
elliptic function expansion [13-16], method of bifurcation [17], F-expansion method [18-22], ADM method [23], auxiliary
ordinary differential equation method [24-26], variable separation approach [27], Wronskian and Casorati techniques [28]
etc. Fan et al. [29] found a series of travelling wave solutions for some nonlinear evolution equations by applying a direct
approach with computerized symbolic computations. Yan et al. [30-33] improved this algebraic method such that it can
be used to seek more types of solutions. More recently, Yomba [34] proposed an extended Fan'’s sub-equation method and
obtained many general solutions of some nonlinear wave equations.

Although new solutions to the general elliptic equation were given (see [34]) through the connection between the general
elliptic equation and the other existing sub-equations like the Riccati equation, the first kind elliptic equation, the auxiliary
ordinary differential equation, the generalized Riccati equation etc., the solutions of the elliptic equation which Yomba built
can not include all the corresponding ones in [29]. In other words, Yomba'’s work is complementary to Fan’s. Therefore, more
diverse solutions can be constructed by synthesizing the solutions of the elliptic equation in [29,34].

In this paper, we consider seeking more new explicit and exact travelling wave solutions to the following Zufiria’s higher-
order Boussinesq type equations:

1 2
he + (hu)y + guxxx + Euxxxxx =0, Ur 4 hy 4 utly + iy = 0, (1)
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where « is a constant, and u(x, t) and h(x, t) represent the depth-averaged horizontal velocity and the elevation of the free
surface, respectively. Eqs. (1) were firstly proposed in [35] by setting « = 0. By using numerical methods, some periodic
wave solutions of Egs. (1) were obtained in order to confirm that non-symmetric periodic waves can appear via spontaneous
symmetry-breaking bifurcations from the symmetric waves [35]. Some solitary and periodic waves of Eqs. (1) witha = 0
were already presented by applying a simple ansatze and an auxiliary equation, and it was shown that Eqgs. (1) had a nice
property which led to a global energy type argument for linear stability of the solitary waves when o = 0 (see [36]).

This paper is organized as follows: In the next section, many new families of explicit and exact solutions to Zufiria’s
higher-order Boussinesq type Equation (1) with « = 0 are successfully constructed via a further improved Fan’s sub-
equation method, and some types of solutions are also obtained in the limiting cases. In Section 3, various examples of
travelling wave solutions to Eqs. (1) with « = 1 are presented. The case with « # 0 and o # 1 are shortly discussed in
Section 4. Finally, in Section 5, some conclusions are given.

2. New diverse wave solutions to Eqs. (1) witha = 0

Let us firstly consider travelling wave solutions to Eqgs. (1) with « = 0. Making the following travelling wave
transformation
ux,t) =u(@),  hx,t) =h(), §=x+Ait, (2)

where the wave velocity A is a constant to be determined. Substituting (2) into Eqs. (1) and integrating them once read
1 2
Au+h+§u =1, (3a)

1, 2
Ah+hu+§u +Eu =1, (3b)

where [; and [, are integration constants. Substituting (3a) into (3b)) yields

2 1 1
Eu(‘” + gu” + (A +u (ll —AU— 5u2> —L=0. (4)

Compared with the ansatze (7) in [35], a more general formal solution to Egs. (1) is introduced as follows

2 2
ux, ) =Y ad/ + Y ¢7Ib +¢' (o7 + ], 5)

j=0 j=1

where ag, a1, a;, by, b,, c1, C2, dy, and d, are undetermined constants, and ¢ = ¢(¢) satisfies

do 4 1/2
¢ =—=c|> uo'| . (6)
d¢ par

where ¢ = +1,and A, (k = 0, 1, 2, 3, 4) are constants to be determined later. With the aid of Maple, substituting (5) into
Eq. (4) along with (6) and setting the coefficients of ¢*1 (3" _, Ai¢i)w2/2 (w; =0,%+1,42,...;wy; =0, 1) to zero yield a
system of nonlinear algebraic equations with respect to ao, a;, az, by, by, ¢1, €2, dy, da, A, Ag, A1, A2, A3 and A4. Then, explicit
and exact wave solutions can be constructed through our ansatze (5) via the associated solutions of Eq. (6).

In the process of constructing exact solutions to NEEs, Eq. (6) is often viewed as a key auxiliary equation, and the types
of its solutions determine the solutions for the original NEEs indirectly. In order to seek more new solutions to Egs. (1), we
here combine the solutions to Eq. (6) which were listed in [29,34]. Our computation results show that this combination is
an efficient way to obtain more diverse families of explicit exact solutions.

The solutions of the corresponding algebraic system of equations are listed below:

Case 1

2
)\1=)\3=a]=b1=b2=C]=C2=0, a0=:i:{(1+8)\2)—)», a2=ﬂ:4ﬁk4,
6v/2 1 4 163222 (16 )i V2
45

1
Lh=—)—-2F Zare+ —, L = —aho(1 —84y) £ — Ay —1 -
1 h 75 :FS 20+12 ) 1520( 2) 32 108

In this case, Ag, A, and A4 are arbitrary constants, then ¢ is one of the 16 ¢>l’V (1=1,2,...,16).
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Case 2

2 1
)\.0=)\.4=az=b2=C1=C2=0, a0=:i:§ ()\2+2>:F}\., al=i\/§)\.3, b1=ﬂ:\/§)\1,

6 2 (1 V2 3
Lh==abi+Z(=4+2)F3@+M|—+Za |,
1 511+5(3+ >:F(o+ )<10+50>

2 2 ag | 2 1 6
L, = §a1b1 |::|:{ —4(ag + )\)i| + EO |:3 F 3\6 ()\ + 5(10) + 2(1(2):| + gkao(k + ag)

Al

where A1, A, and A3 are arbitrary constants.

Case 3

1
)»0:)»4202217226']:@:0, ag = —A, Cl]::t\/i)g, b]::t«/i)q, )»2:—5,

3 2
ll = 5a1b1 (1 + ) + — - 5)\.2 lz = i[( a1b1 + )

where Aq and A3 are arbitrary constants.
Case 4

2 1
M=ai=a=by=ci=0c =0, aozi{<)n2+2>:|:)», b]:ﬂ:ﬁ)q,

2 3V2 9 (1 2
11 = — 7()\. + ag + bl)\,:;) + a() <an + }\) + g}\,z,

2 V2 3V2 1 1
L = A tat bi2s) £ ?bl[b1)‘«4 (a0l F —— [ao (K + 5%) + 5)»2:|

6 2 3 3
+§}»ao()»+ao)+g()\ + ap),

where A1, Ao, A3 and A4 are arbitrary constants.
Case 5

2 1
)\,4=az=b1=b2=C1=Cz=O, ao=:|:{<)\.z+2>:|:)\., a1=:|:«/i)»3,

2 32 9 (1 2
h=—F =Z(M+ay+ Ma Zag [ —ap + A 222,
1 :|:10(+o+11)+50<20+ >+5
2 V2 3v2 1
L = 15()»+ao+al)»1):|:501[01)»0—)\1()&4—00)]4:5|: <)w+ ao) + 2)»21|

6 2 5
+§)»ao()»+ao)+g(}» + ag),

where A, A1, Ap and A5 are arbitrary constants.

Case 6
1 1.
)»1201:(12:b]:b2:C2212:0, ag = —A, C1::E4 20y, )»2:—5, )\3::EZI,
9 2 A2
L= %0 1 Ao + -5
where Aq and A4 are arbltrary constants.

Case 7
ag=aG=b=by=c=L=0, a=-% ¢ ==%4/20, A =rs(A}+21)/(1613)
= (315 + 214)/(8%4),
I} = [A3(27 4 109g) + 425(600% — 1728A4h0 + 11)]/(48013),

where Ag, A3 and A4 are arbitrary constants.
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(1) If ho = %, Ay = 21p, Ay = 2rq + p*, A3 = 2pq, k4 = ¢°, then ¢ is one of the 24¢} (1= 1,2, ..., 24).
(2) ]f}\g =0, then )\.1 = 0, )\.2 = <

Case 8
V2
M=A=b=b,=c=0, a= o (1+22) =4, o= 213, G = £2+/204,
= £2/2A4,
1 1 1 V2
h=—=A24+ 224+ —, L=2—"(1421)81%+5—101,).
! 2ttty 2= Ey (1T 222)@h; + 2)
In this case, A,, A3 and A4 are arbitrary constants, then ¢ is one of the 10 ¢ (I = 1,2, ..., 10).
Case 9
M=bi=by=c=0, ao=+vV2(14+20)/6—1, a;==%v243, ay =422,
1= £2+/2Xy4,

I =3c2ho/10 — A2/2 4+ 22/5 4+ 1/12, I = Tv/2{18X0[c?(1 + 4h,) — 6a%] + 422(3 — 4,) — 5}/540,

where Ag, A3, A3 and A4 are arbitrary constants. If A3 = 0, then ¢ is one of the 16 ¢>,’V (l=1,2,...,16).
Case 10

M=rs=a=b=by=0c=0, ap=2vV2(1+2X)/6FA,  a=+2v2hs, 3 = £2/2}s,

3 2 2
h = —[3a0(a +22) F V201 + ag)] + SO+20)+

2
V2 2 17 3v2
h=4+—"c2+(a+M1=|@+r)*+-|F ———@+r; ,
’) 50 CM (o+)5|:(0+)+3i|:F 10(o+)
where A1, A, and A4 are arbitrary constants.
Case 11
2
)\12)\2:)\,4202=b1=C1=C2=0, a()::i:%— s 01::‘:\/5)\3, b2=:l:4\/§)xo,
1 1 27 2
l] -_— — 7)\42, lz = ——azbz i,
12 2 20 108
where Ag and A3 are arbitrary constants.
Case 12
4
M=A3=a = b] =c=c =0, ag = ﬂ:i)»z + £ A, a = :|:4\/§)\,4, b2 = ﬂ:4\/§)n0,
1 1, 6 16, f 5
l] — — =A 4+ azbz + )\.2, 12 = i7[64)\2(16)\.2 — 3) +5— 7202b2(1 + 16)x2)],
12 2 540
where Ag, A, and A4 are arbitrary constants. In this case, ¢ is one of the 16 ¢{V (I1=1,2,...,16).
Case 13

)\] = )\.3 =a = b] =C =00 = 0, ap = —)\‘, a; = :l:4\/§)\‘4, bz = :|:4\/£)\.0, }\2 = ——,

2 1 3
Lh=—— 224+ —aby(5F1 b =4v2([—ab
1 52 +1022(:F) 2 ( Hby + )

where Ag and A4 are arbitrary constants and ¢ is one of the 16 ¢,’V (1=1,2,3,7,10, 12, 13).
Using the results above, we can obtain the following 7 families of travelling wave solutions through careful calculations.
Family 1: Periodic wave solutions
U = F7V2/6 — & & 4v2cs3¢,
16 1 6+/2 1

M =A;=0, =X+ At, Lh=—)—-2F Zar+ —,
1 3 ¢ + 1 54275 F 5 20‘*’12

4 16+/213 2
l az)\.o(l — 8)\2) + f ( 3 }\.2 — 1) + i;

15 108
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Uy = Zt\/i()\,2+l/2)/3:|:)\,:|:\/i)\,2 SeCZ(w/ —)\,24'/2), A =0, Ay < 0, A3 750,
Uiy = £V200 + 1/2)/3 F A £ 2V20 /[£sin(/—0a0) — 1], A #0, Ay <0,  A3=0,

M =Xis4 =0, §:X+)»f, 11

2
12 = *alb1

5 :i:ﬁ — 4(agp +k):|

3
Al 2 342
Z N g, i) I

Ug = —A % [v2cos2(v/2¢ /4)]/2,
1
M=r=hL=0 lA=——,
1 3=1D 0 640
Family 2: Solitary wave solutions
Uz = F5v/2/2 — A £ 4v/2 coth? ¢,

AM=Xi3=0, ;ZX—}—)\I, 11

4 16+/222 2
l (12)\.0(1—8)\,2):& [ (3)\.2— ):l:f

Uy = :tﬁ(kz +1/2)/3 F A F /2, sech?(V/A2¢ /2),

6 2 (1 V2
= ga]bl + 5 <§ +k2> F 3(ap +2) ( + ao)

[2 F3v2 <x + fa0> + 2a01| + —Ado(A + ag)

A _1 A 0 =x+ At l —7]5A2
= £ > E) = £ = .
2 l 4 ¢ 1 30

16 1 6+/2 1

— M- A F "k + —,

5 QT g et
108

)\]=0, )\2>0, )\3#0,

Uzs = +v2(hy + 1/2)/3 F A £ 2320, /[£sinh(2y/220) — 1], A1 #0, A, >0, A3 =0,

)\0:)»4:0, ;ZX-F)\I, 11

2

6 2 (1 V2 3
=-—aby+=(=+21*)F3 Ml —=+Za),
5011+5<3+ >:F (a0 + )(10+500>

V2 ag 2 1 6
b = Caiby |:i3 —4(ao+ 1) | + EO [3 F3v2 (x + an) + 2a5} + 240 + o)

+% E¢A(3I +2x>}

Family 3: Periodic-like solutions

Uus; = +£5¢/2/6 — A &+ +/2(sec ¢ + tan¢)?,

)\.]Z)\._?,:O, §=X+)\t,

4 16+/213 2
b= ool - 8iy) % f <312—>i‘[.

Usy = :I:«/i(] + 2)\2)/6 ol W 2«5)\2 [SECZ(\/ —)\zg) + A2 ‘
A =i =A3=0, Ay <0, Aga >0,

108’

_)¥2

_)\‘2

|

 =x+At,

3 A 2
= 5 [3a0(@ +23) F V20, + ag)] + SO+20+ 4,

V2

2 1
b=+——c23+(a+ 1) [5 |:(a0+A)2 + 3] F ]—O(ao+k)

20

8./A4 cOS? (

342 ]2_

) 4f—«/§sm(

)i

2
Us3 = —A & 4y/2h4 cOs ™2 ({{)

1
A=A =hL=0, )»22—5,

32A4—32A4cosz(f;)+4 Dha sm(f;)i]q:cosz(fg) ’

9 2 Az
*C1 0 +

1
=+, =x4Art, I
4 E=x+ ) 2

)

e715
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: r cos(\/4qr — p%¢) },

Uz = —h £ 8v2q|

’

pcos(y/4qr — p?¢) + /4qr — p2[sin(y/4qr — p?¢) £ 1]
L, =0, ro =12, Ay = 21p, Ay = 2rq + p?, X3 = 2pq, ra = %, ¢ =x+At,
_ 22(27 + 10944) + 4A2(601% — 1728A4h0 + 11)

48012 '

ly

Family 4: Soliton-like solutions

Uy = FV/2/2 — A £ v/2(tanh ¢ £ sech ¢)?,

16 1 6+/2 1

M =A3=0, =x4+rt, L=—=1—--F "ar+—,

1 3 {=x+ 1 522:!:5(120+]2

4 16+/222 (16 V2

I, = —aho(1—8Xy) % 2 Za -1+ ==

2= 7502kl 2 45 (3 2 ) 108

V2h4|sinh(¢ /2)]
Ugy = — ———— M <0,
cosh“(¢/2)
2A h(¢/2
ey — — L V2 ‘4|c§s €2l
sinh“(¢/2)
A A A l 0 A ! + At l 602 + 11
= = = =0V, = -, =X s = ",

0 1 3=Dh 2= e 1 120
e i3ﬁ 4/2(d — 2b)csch?¢ N 24/2(c? + 4b? — 4bd)csch?c

“o 2 besch?c +ccothe +d ~ (besch?c + ¢ coth ¢ + d)2

h? '
+2,/2(c? + 462 — 4bd) ( ¢ ) :
bcsch“¢ 4+ ccoth¢ +d
4(d — 2b) c? + 4b? — 4bd
=i =0, A=4 IA3=—" dy=-——1—\ =X+,
a a
16 1 1 312

h=—— 22+ —, h=+—;

R L A 20

V2 a b*ac
= £ 2(142d%) — L F2v2
tas 6 (1+20% + a { ¢ + cosh(a¢) — sinh(a¢) + b%[c + cosh(a¢) — sinh(a¢)]?
+ |([c + cosh(ag) — sinh(ag)]™")| } ,
e = :I:ﬁ(l o) —aE ZﬁaZ(cosh(ag) —|—.sinh(a§)) 4 ZﬁaZ[COSh(ag) +.sinh(a§-)]2
6 [c 4+ cosh(a¢) — sinh(a¢)] [c + cosh(a¢) — sinh(a¢)]?

+22 ‘ {alcosh(az) + sinh(ag)][c + cosh(ag) — sinh(ag)]™ }" ,

1 1 1
A=A =0, Ay=a’, A3=2ab, rq=Db? =X+ At 11:§a4—7k2+

2 12
V2
L, = :I:%(l + 2a*)(8a* + 5 — 10d°);

Uy = —A+24/2 ‘cosh(ifzig /2) F sinh(£+/2i¢ /2)‘ [cosh(++/2i¢ /2) + 1 F sinh(£+/2i7 /2)]72,

A A I 0 A 1 A :l:l' l 2 » + At
= =hL=Y =% =x—1, ===, =X 5
0 1 2 2 5 3 P 1 15 > ¢

rsinh(y/p? — 4qr¢) '
{ VP? — 4qr[cosh(y/p? — 4qr¢) = 1] — psinh(y/p? — 4qr¢) }
L=0, ho=r% A =2p, Ay=2rq+p>, A3=2pq, Irs=q*,  {=x+Art,
I = 22(27 + 10944) + 4A2(601% — 1728X4h0 + 11)_
48017

Ugg = —h £ 8v2q|

’
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Family 5: Jacobi elliptic function periodic solutions

us; = £/2(8m* — 7)/6 — A & 4v/2m?sn’¢,

us; = £/2(16m*> — 7)/6 — A F 4v2mPen’¢,

Uus3 = £v/2(17 — 8m?)/6 — A F 4+/2dn’,

Usy = £v/2(8m* — 7)/6 — A & 42mPcd?C,

Uss = £+/2(17 — 8m?) /6 — A + 4/2(1 — m?)sc?¢,
Usg = F2(8m® +7)/6 — A & 4v/2ns¢,

Us7 = £/2(16m* — 7) /6 — A + 4v/2(1 — m*)nc?¢,
Uss = FV/2(8m? + 7)/6 — A £ 4v2dc?¢,

Usg = £+/2(17 — 8m?) /6 — A & 4v/2(m? — 1)nd?¢,
Usio = £+/2(16m% — 7) /6 — A F 42m>*(1 — m?)sd?¢,
Usi = £v/2(16m? — 7)/6 — A + 44/2ds?¢C,

Usiy = +4/2(17 — 8m?) /6 — A + 4+/2¢5°¢C,

16 1 6+/2 1
A =A3=0, =X+ At, Lh=—x—-AF —Zarg+ —,
1 3 ¢ + 1 M5 F 5 G2h0 + 12
4 164222 [ 16 V2
L, = —ayho(1—81y) + 2= —1)+ —=;
2= 1502kl 2) 45 < 372 ) 108
63+/2
Usis = —A & 44/2ds%¢ F %ds’zg,
M =Ai3=0 A 63 A ! ha =1 + At = 2 1AZ+3 by(5F 1)
= =V, = ——, = ——, =1, =X . = — — — —da .
1 3 0 776 2 3 4 ¢ 1= 1575 10%2%2 F
1 1
b==+v2(—ab+-);
2 (15 2by + 2)
42 2A4m? 1 1 N m?>(m? — 1) -0
Us1g = — cn | =/ —— s = <0,
>14 1—2m? Nom—1° 07 16a,(1 — 2m2)? 4
PP N Py L S A 1—m <0
Usis = — nl-=,/—— , = <0,
o1 m2 — 2 2V 2 —m2 07 1624(2 — m2)2 4
1 6012 — 17281410 + 11
M=is=hL=0 A=, =x+At, ;= )
1 3=1 2= ¢ + 1 120
Family 6: Combined non-degenerative Jacobi elliptic function-like solutions
Ug = £v2(5 — 8m?) /6 — A £ /2(ns¢ + cst)?,
Ugy = +v2(5 +4m?) /6 — A £+ /2(1 — m?)(nc¢ + scg)?,
Ugs = £v/2(4m? — 7)/6 — A & /2(ns¢ + ds¢)?,
Ugs = £v/2(Am* — 7)/6 — A & v 2m?(sn¢ £ icnt)?,
16 1 642 1
M =Xi3=0, =x+Art, L=—1—-22F "o+ —,
1 3 ¢ + 1 =M T F 5 G2%0 + o
4 164222 (16 V2
L = —aho(1—8Xy) £ 2= 1)+ ==
2 = 7502kl 2 45 ( 372 > 108
1
Ugs = £v/2(m? — 1)/6 — A £ ~/2(ns¢ + ds¢) [ii(nsg + ds;)] + V2 |(ns¢ £ ds¢)']
AM=hi3=0, A m’ A m’ —2 h = 1 + At
= =0V, = —, = R = —, =X R
1 3 0 1 2 ) 4= ¢
| 3c2hg A2 N VER | FV/2 {18A0[c2 (1 + 4%;) — 6a2] + 443 (3 — 4h,) — 5}
1= - = - ) 2 = 5

10 2 5 12 540 ’
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M=A3=0, A m’ A m’ —2 ha = + At
= =0, = —, = s = -, = X s
1 3 0 ) 2 > “=7 ¢

1 1 16
I = T —Az + a2b2 + )@,

NG

I i%[mxg(lsxz —3) 4+ 5 — 72a3b,(1 + 161,)].

Family 7: Weierstrass elliptic function solutions

Uy = £V2/6 F 2+ V2030138 /2, . ),

4Aq 4ho
)\2=)\4=0, )\3>0, f2=—7, f3=—7, §=X+)\,t,
A3 A3

A 3\/5()\4— na) + o (Sag+ ) + 222
=—F — a a —ao | =a -7,
1 + 10 0 11 5| 5% 5

V2 32 1 1
L = —(A +ao+a1h) £ alaiko — (0 + a0)] F —— [ao (A + 5a0> + Ekz]
6
+ 5 2a0(A + do) + g()\-'*‘ + a});
Uz = £v2/6 F A+ vV2hp ' (VA3C/2,F,0),
"we

)\0:)\2:)\.420, )\.3>0, fzz—T, §:X+)»t,
3

2 32 9 /1 2
h=—=F—==(+a+br Zag | —ag+ 1)+ =22,
1 :Flo(+0+13)+50(20+ >+5

2 V2 3v2 1 1
b = —(+ao+birs) £ —bi[bihs — As(A + a0)] F — |ao [ A + =ap | + =A?

15 5 5 2 2

6 2 5 3
+§)»ao()»+ao)+g(k + ag);

u73=ig :F)\:l:ﬁ)gp(fg ):l:ﬁ)qgo (\/»4 )

)\0=)\2=)\,4=0, )\.3>0, f2=—T, C=X+)\.t,
3
6 2 /1 V2 3
i = —aihi+ = | = + A2 3ag+A) | — + Zag ),
1 511+5<3+ ):F(o-i- )<10+50)

2 ap | 2 1 6
12 = fa1b1 |::t{ — 4((10 + )\,)i| + EO |:3 F 3\/5 ()\, + 500) + 2(1(2):| + g)\.ao()\, + ao)

+2E¢A<3I+zx>}

Urg = £V2/6 — A £ V203038 /2, o, f3) £ 4V 2009 2 (VA58 /2, 5. F5),

4)0
)\12)\2:)\,420, )\,3>0, f2=O, f3:—T, §=X+)\.t,
3
1 1 27 2
h=——=-A L= a’b, V2
12 2 20 108"

Remark 1. Only the expressions of u are listed and the ones of h are omitted for the limit of length. m (0 < m < 1) is the
modulus of the Jacobi elliptic function. The more detailed notations for the Jacobi and Weierstrass elliptic functions can be
found in [37-40].

Remark 2. It is easy to see that the solitary wave solutions and the Jacobi elliptic function periodic solutions are recovered,
and uy; and us; are correspond to (12) and (13) in [36] under proper transformation. Figs. 1-5 depict some typical graphs of
the solutions above, which exhibit some singularities of the solutions.
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Fig. 1. Solitary wave solution u3 : A, = 0.001, A = 1 (left) and periodic-like solution u3; : A = 1 (right).
u at t=0.5
6
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Fig. 2. Periodic-like solution us; with A, = —0.01, = 1.

-1.6

Fig. 3. ug with A = 1.

Remark 3. due to the limit of length, we only show some examples of the solutions in Family 3 and Family 4. In fact, more
exact solutions can be obtained by applying the relevant results in [34]. Obviously, the solutions obtained by our further
improved Fan’s sub-equation method are more diverse than those in [36] and a lot of new and different solutions of Egs. (1)

are first reported here.

3. Travelling wave solutions to Eqs. (1) with o« = 1

By using the travelling wave transformation shown in Section 2, the resulting ordinary differential equations from Eqgs. (1)
read as (here we set integral constants to be zero so as to simplify our computation)

1
ku+h+7u2+u”’:0,

Ah+ hu + u”—i— u(4):0
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uatt=3

200 45— —40
400 600 —60

(8)

10 8 6 -4 2710 2 4 6 8 10
Fig. 4. An example of the soliton-like solution uyy with A = 1and 14 = —0.02.
u att=0.8
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475 i
— (Y PV Y Vg eyt
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Fig. 5. usg with A = 1and m = 0.00001.
The substitution of (7a) into (7b) yields
2 1 1
(4) " 2 my _
—1u —u Atu)|—Au—=-u"—u")=0.
LU A +uw ( 3 )
The solutions of the corresponding system of algebraic equations are shown below:
Case 1
59 2+/1770 2+/1770 8
=0 =bi=by=ci=c=d, =0, Ay = —, A=F—, ag=+——", dy = —.
1 2 1 2 1 2 2 2 120 + 225 0 225 1 15
Case 2
59 —225 2+/1770
a&=bi=by=ci=c=d, =0, Ay = —, g = ——, A=F———,
2 1 2 1 2 2 2 30 4 16 + 225
24/1770 ) 4
Qo = L———, a =1, dy = —.
225 15
Case 3
59 24/1770 2+/1770 4
G=;=b=bh=c=c=d =0, Ay = —, A=F—r—, ap = , 1=—.
30 225 225 15
Case4
59 225a% 2+/1770 2+/1770
G=b=bh=c=0=d =0, Ay = —, 4= , =t——", G =F————,
30 16 225 225
4 — 4
T
Case 5
/1770b4 59 2+/1770
G==bh=c=0=d=0, A= , Ay = —, = ,
4 30 225
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2+/1770 4
a0::i: s dlz—f.
225 15
Case 6
59 24/1770 2+/1770 4
ap=a=bi=by=ci=c=d, =0, Ay = —, A=ft—-—, Qg =F——, di=——.
1 2 1 2 1 2 2 2 30 225 0= F 225 1 15

Using the similar technique shown in Section 2, many travelling wave solutions to the generalized Zufiria’s higher-order
Boussinesq equation can be obtained. Here we just give some intriguing ones, shown as follows:

24/1770 V1770
2 | 1+ tanh o).
225 60

up, =
59 24/1770 59
M=A=i3=0, Itr=-—, Asi<0, A=F—" OF Mg=A=A=0, A= —,
0 1 3 2 120 4 < + 225 0 1 4 2 30
2+/1770
A=F——, A3
225

is an arbitrary constant;

uy ==+ 2 1770 25\/1770 h( ;77 ):I:vl77t ( ;70;),

225
59 225 2+/1770
Ao =A1 =3 =0, =2, M=- A= 7
0 1 3 4 16" + 225
2«/ 1770 177
U3 =t+——— ¢,
225 15
59 24/1770
Ao =A1 =24 =0, Ay = —, A 0, A=F——;
0 1 4 2= 35 3 F ¥
4 (/1770
2/1770 | 2VT770 | sech ( 120 ¢>
Uy = [ ——
225 225 4 tanh? («/11275 é’)
59 24/1770
Ao =A1 =A3 =0, A= —, A=F——, A4 is an arbitrary constant;
0 1 3 2 120 + 225 4 y
2./1770 N sech2 ( 1770 C) A/ 1770 N 2./1770 . sech4( 1770 ;)
Us = +
225 225 tanh («/177 ;) 225 4tanh? <«/177 §>
59 225a? 24/1770
Ao =A1 =A3=0, Ay = —, Ay = LY A== ;
30 16 225
ZW a; sech? (”177 ;)
Ug = —I—
225 30:|: 1 /1770 |a1|tanh(‘“77 ;)
2 59 59 )\.3 sech2 (ﬂg) 3481 a% sech4 ( 1770 C)
— | =+ = + 7
225 |30 30 41 /1770 |ay | tamh (Y50¢ ) =25 O [+1v/1770 11| tanh (L2 ) — 3 |
59 2250’ 24/1770
Ag=X21 =0, Ay = —, Ay = L A=ft———;
30 16 225
2
by — 2512 + /1770b, ( £/T70¢ - 151770, ) L us (e@ + 15Y1770), )
iz 1770 . 236 15 236
Uu; = ,
’ 225 e S 5 13/
A2 /1770 59 24/1770
AM=x=0, A=, A== bi, A=, A=F—;
41, 4 30 225
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Fig.6. us : a; = A3 = 1 (left) and ug (right).

2+/1770 236\/ [ismh(ﬁ§>—1]+%[:&51nh(ﬁ§) ]2

Ug = =+

225 225 +sinh («/17704) 1 ’
15
59 24/1770
A =A3=Xxg4 =0, A 0, Ay = —, A=t——-—.
0 3 4 1% 2= 35 225

Some graphs of the above solutions are depicted in Fig. 6, which show the distribution of some singularities of the solutions.

4. New explicit wave solutions to Eqgs. (1) with ¢ # 0 and o # 1

In this case, many intriguing travelling wave solutions can be constructed by using our method. We just give two of these
solutions due to the limit of length.

Case 1
128
7502 — 16 400 — 53
Gg=a=b=b=c=c=d, =0, Ay = ————, A=Fr—m—m7Hx—
1 2 1 2 1 2 2 2 12002 + 1502
,/400[2 8
dop s d1 = —.
152 15«
Case 2
P I £ I U 400> — 53
a; = - =C =0 = - - = ), = _—,
2 1 2 1 2 2 2 3002 4 16 + 1502
4002 —
do , d —
1502 "7 15a°
32
2\/ 100 — 5, 7502 — 16 V/30(7502 — 16)¢
i tanh [ +Y——— >,
1502 15a2 30 60
32
== a0, a2 X6 o, 10 7 g <0
= = = s = > . = , < 7
o= 2 12002 T 52 4
32
2,/10012 %, 2 1507 — 16) sech [ £ Y0752 = 16),
Uy — (7502 — 16) sec
15a2 150{2 15 30«
2 +/30(75a2% — 16
+ J750% — 16 tanh [ £ Y2075 = 16) )
22502 30«
7502 — 16 2,/100? — 3¢ 225 ,
)\.0=)\.1=)\,3=0, )\.2=W>0, )\.=:FT, )\4=]—6aa1<0.
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5. Conclusions

Motivated by seeking more solutions to Zufiria’s higher-order Boussinesq type equations, we extended the algebraic
method on the basis of [29-34]. The main improvement of our method is to synthesize the corresponding solutions (see [29,
34]) for the first-order ordinary differential equation (6) depending on different values of A; (i = 0, 1, 2, 3, 4). New
various families of explicit solutions are successfully obtained, including periodic wave, solitary wave, periodic-like, soliton-
like, Jacobi elliptic function periodic, combined non-degenerative Jacobi elliptic function-like, Weierstrass elliptic function
periodic etc. The properties of some solutions to Eqs. (1) are also shown by Figs. 1-6. These diverse new explicit and exact
solutions will be helpful to the further research of the physical and mechanical meaning and laws of motion of the nature
and realistic models, and the investigation of these diverse solutions will be quite important for the understanding and
discussion of corresponding dynamical behaviors.

Moreover, the existence of smooth and non-smooth wave solutions and the dynamical properties of Zufiria’s higher-
order Boussinesq type equations could be studied by using the theory of bifurcations of dynamical systems. In addition,
it deserves more investigation whether there exist other types of exact solutions to the generalized Zufiria’s higher-order
Boussinesq equations. We plan to analyze and discuss these situations in a future publication.
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