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a b s t r a c t

Zufiria’s higher-order Boussinesq type equations are studied by transforming them into
solvable ordinary differential equations. Various families of their travelling wave solutions
are generated, which include periodic wave, solitary wave, periodic-like wave, soliton-
like wave, Jacobi elliptic function periodic wave, combined non-degenerative Jacobi
elliptic function-like wave, Weierstrass elliptic function periodic and rational solutions.
The presented approach can be also applied to nonlinear wave equations with variable
coefficients in mathematical physics and mechanics.
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1. Introduction

It is well-known that nonlinear evolution equations (NEEs) play an important role in describing many significant
dynamical behaviors in mechanics, physics, optics, biology, chemistry etc., and the investigation of the exact solutions
to NEEs can undoubtedly help us further analyze and understand their various dynamical properties. For constructing
exact travelling wave solutions, many powerful and efficient methods have been established and developed based on the
traditional solving methods [1–8], such as the homogeneous balance method [9], tanh-function expansion [10–12], Jacobi
elliptic function expansion [13–16], method of bifurcation [17], F-expansion method [18–22], ADM method [23], auxiliary
ordinary differential equation method [24–26], variable separation approach [27], Wronskian and Casorati techniques [28]
etc. Fan et al. [29] found a series of travelling wave solutions for some nonlinear evolution equations by applying a direct
approach with computerized symbolic computations. Yan et al. [30–33] improved this algebraic method such that it can
be used to seek more types of solutions. More recently, Yomba [34] proposed an extended Fan’s sub-equation method and
obtained many general solutions of some nonlinear wave equations.
Although new solutions to the general elliptic equationwere given (see [34]) through the connection between the general

elliptic equation and the other existing sub-equations like the Riccati equation, the first kind elliptic equation, the auxiliary
ordinary differential equation, the generalized Riccati equation etc., the solutions of the elliptic equation which Yomba built
can not include all the corresponding ones in [29]. In other words, Yomba’s work is complementary to Fan’s. Therefore, more
diverse solutions can be constructed by synthesizing the solutions of the elliptic equation in [29,34].
In this paper, we consider seekingmore new explicit and exact travellingwave solutions to the following Zufiria’s higher-

order Boussinesq type equations:

ht + (hu)x +
1
3
uxxx +

2
15
uxxxxx = 0, ut + hx + uux + αuxxxx = 0, (1)
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where α is a constant, and u(x, t) and h(x, t) represent the depth-averaged horizontal velocity and the elevation of the free
surface, respectively. Eqs. (1) were firstly proposed in [35] by setting α = 0. By using numerical methods, some periodic
wave solutions of Eqs. (1) were obtained in order to confirm that non-symmetric periodic waves can appear via spontaneous
symmetry-breaking bifurcations from the symmetric waves [35]. Some solitary and periodic waves of Eqs. (1) with α = 0
were already presented by applying a simple ansatze and an auxiliary equation, and it was shown that Eqs. (1) had a nice
property which led to a global energy type argument for linear stability of the solitary waves when α = 0 (see [36]).
This paper is organized as follows: In the next section, many new families of explicit and exact solutions to Zufiria’s

higher-order Boussinesq type Equation (1) with α = 0 are successfully constructed via a further improved Fan’s sub-
equation method, and some types of solutions are also obtained in the limiting cases. In Section 3, various examples of
travelling wave solutions to Eqs. (1) with α = 1 are presented. The case with α 6= 0 and α 6= 1 are shortly discussed in
Section 4. Finally, in Section 5, some conclusions are given.

2. New diverse wave solutions to Eqs. (1)with α = 0

Let us firstly consider travelling wave solutions to Eqs. (1) with α = 0. Making the following travelling wave
transformation

u(x, t) = u(ζ ), h(x, t) = h(ζ ), ζ = x+ λt, (2)

where the wave velocity λ is a constant to be determined. Substituting (2) into Eqs. (1) and integrating them once read

λu+ h+
1
2
u2 = l1, (3a)

λh+ hu+
1
3
u′′ +

2
15
u(4) = l2, (3b)

where l1 and l2 are integration constants. Substituting (3a) into (3b)) yields

2
15
u(4) +

1
3
u′′ + (λ+ u)

(
l1 − λu−

1
2
u2
)
− l2 = 0. (4)

Compared with the ansatze (7) in [35], a more general formal solution to Eqs. (1) is introduced as follows

u(x, t) =
2∑
j=0

ajφj +
2∑
j=1

φ−j[bj + φ′(cjφ2j−1 + dj)], (5)

where a0, a1, a2, b1, b2, c1, c2, d1, and d2 are undetermined constants, and φ = φ(ζ ) satisfies

φ′ =
dφ
dζ
= ε

(
4∑
k=0

λkφ
i

)1/2
, (6)

where ε = ±1, and λk (k = 0, 1, 2, 3, 4) are constants to be determined later. With the aid of Maple, substituting (5) into
Eq. (4) along with (6) and setting the coefficients of φw1

(∑s
k=0 λiφ

i
)w2/2 (w1 = 0,±1,±2, . . . ;w2 = 0, 1) to zero yield a

system of nonlinear algebraic equations with respect to a0, a1, a2, b1, b2, c1, c2, d1, d2, λ, λ0, λ1, λ2, λ3 and λ4. Then, explicit
and exact wave solutions can be constructed through our ansatze (5) via the associated solutions of Eq. (6).
In the process of constructing exact solutions to NEEs, Eq. (6) is often viewed as a key auxiliary equation, and the types

of its solutions determine the solutions for the original NEEs indirectly. In order to seek more new solutions to Eqs. (1), we
here combine the solutions to Eq. (6) which were listed in [29,34]. Our computation results show that this combination is
an efficient way to obtain more diverse families of explicit exact solutions.
The solutions of the corresponding algebraic system of equations are listed below:

Case 1

λ1 = λ3 = a1 = b1 = b2 = c1 = c2 = 0, a0 = ±

√
2
6
(1+ 8λ2)− λ, a2 = ±4

√
2λ4,

l1 =
16
5
λ22 −

1
2
λ2 ∓

6
√
2
5
a2λ0 +

1
12
, l2 =

4
15
a2λ0(1− 8λ2)±

16
√
2λ22
45

(
16
3
λ2 − 1

)
±

√
2

108
.

In this case, λ0, λ2 and λ4 are arbitrary constants, then φ is one of the 16 φIVl (l = 1, 2, . . . , 16).
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Case 2

λ0 = λ4 = a2 = b2 = c1 = c2 = 0, a0 = ±

√
2
3

(
λ2 +

1
2

)
∓ λ, a1 = ±

√
2λ3, b1 = ±

√
2λ1,

l1 =
6
5
a1b1 +

2
5

(
1
3
+ λ2

)
∓ 3(a0 + λ)

(√
2
10
+
3
5
a0

)
,

l2 =
2
5
a1b1

[
±

√
2
3
− 4(a0 + λ)

]
+
a0
5

[
2
3
∓ 3
√
2
(
λ+

1
2
a0

)
+ 2a20

]
+
6
5
λa0(λ+ a0)

+
λ

5

[
2
3
∓ λ

(
3
√
2
2
+ 2λ

)]
,

where λ1, λ2 and λ3 are arbitrary constants.
Case 3

λ0 = λ4 = a2 = b2 = c1 = c2 = 0, a0 = −λ, a1 = ±
√
2λ3, b1 = ±

√
2λ1, λ2 = −

1
2
,

l1 =
3
2
a1b1

(
1±

1
5

)
+
2
15
−
1
2
λ2, l2 = ±

√
2
(
1
15
a1b1 +

1
2

)
,

where λ1 and λ3 are arbitrary constants.
Case 4

λ0 = a1 = a2 = b2 = c1 = c2 = 0, a0 = ±

√
2
3

(
λ2 +

1
2

)
∓ λ, b1 = ±

√
2λ1,

l1 =
2
15
∓
3
√
2

10
(λ+ a0 + b1λ3)+

9
5
a0

(
1
2
a0 + λ

)
+
2
5
λ2,

l2 =
2
15
(λ+ a0 + b1λ3)±

√
2
5
b1[b1λ4 − λ3(λ+ a0)] ∓

3
√
2
5

[
a0

(
λ+

1
2
a0

)
+
1
2
λ2
]

+
6
5
λa0(λ+ a0)+

2
5
(λ3 + a30),

where λ1, λ2, λ3 and λ4 are arbitrary constants.
Case 5

λ4 = a2 = b1 = b2 = c1 = c2 = 0, a0 = ±

√
2
3

(
λ2 +

1
2

)
∓ λ, a1 = ±

√
2λ3,

l1 =
2
15
∓
3
√
2

10
(λ+ a0 + λ1a1)+

9
5
a0

(
1
2
a0 + λ

)
+
2
5
λ2,

l2 =
2
15
(λ+ a0 + a1λ1)±

√
2
5
a1[a1λ0 − λ1(λ+ a0)] ∓

3
√
2
5

[
a0

(
λ+

1
2
a0

)
+
1
2
λ2
]

+
6
5
λa0(λ+ a0)+

2
5
(λ3 + a30),

where λ0, λ1, λ2 and λ3 are arbitrary constants.
Case 6

λ1 = a1 = a2 = b1 = b2 = c2 = l2 = 0, a0 = −λ, c1 = ±4
√
2λ4, λ2 = −

1
2
, λ3 = ±

1
4
i,

l1 =
9
20
c21λ0 +

2
15
−
λ2

2
,

where λ0 and λ4 are arbitrary constants.
Case 7

a1 = a2 = b1 = b2 = c2 = l2 = 0, a0 = −λ, c1 = ±4
√
2λ4, λ1 = λ3(λ

2
3 + 2λ4)/(16λ

2
4),

λ2 = (3λ23 + 2λ4)/(8λ4),

l1 = [λ23(27+ 109λ4)+ 4λ
2
4(60λ

2
− 1728λ4λ0 + 11)]/(480λ24),

where λ0, λ3 and λ4 are arbitrary constants.
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(1) If λ0 = r2, λ1 = 2rp, λ2 = 2rq+ p2, λ3 = 2pq, λ4 = q2, then φ is one of the 24φIl (l = 1, 2, . . . , 24).
(2) If λ3 = 0, then λ1 = 0, λ2 = 1

4 .

Case 8

λ0 = λ1 = b1 = b2 = c2 = 0, a0 = ±

√
2
6
(1+ 2λ2)− λ, a1 = ±

√
2λ3, a2 = ±2

√
2λ4,

c1 = ±2
√
2λ4,

l1 = −
1
2
λ2 +

1
5
λ22 +

1
12
, l2 = ±

√
2

540
(1+ 2λ2)(8λ22 + 5− 10λ2).

In this case, λ2, λ3 and λ4 are arbitrary constants, then φ is one of the 10 φIIIl (l = 1, 2, . . . , 10).
Case 9

λ1 = b1 = b2 = c2 = 0, a0 = ±
√
2(1+ 2λ2)/6− λ, a1 = ±

√
2λ3, a2 = ±2

√
2λ4,

c1 = ±2
√
2λ4,

l1 = 3c21λ0/10− λ
2/2+ λ22/5+ 1/12, l2 = ∓

√
2{18λ0[c21 (1+ 4λ2)− 6a

2
1] + 4λ

2
2(3− 4λ2)− 5}/540,

where λ0, λ2, λ3 and λ4 are arbitrary constants. If λ3 = 0, then φ is one of the 16 φIVl (l = 1, 2, . . . , 16).
Case 10

λ0 = λ3 = a1 = b1 = b2 = c2 = 0, a0 = ±
√
2(1+ 2λ2)/6∓ λ, a2 = ±2

√
2λ4, c1 = ±2

√
2λ4,

l1 =
3
10
[3a0(a0 + 2λ)∓

√
2(λ+ a0)] +

λ

5
(9+ 2λ)+

2
15
,

l2 = ±

√
2
20
c21λ

2
1 + (a0 + λ)

{
2
5

[
(a0 + λ)2 +

1
3

]
∓
3
√
2

10
(a0 + λ)

}2
,

where λ1, λ2 and λ4 are arbitrary constants.
Case 11

λ1 = λ2 = λ4 = a2 = b1 = c1 = c2 = 0, a0 = ±

√
2
6
− λ, a1 = ±

√
2λ3, b2 = ±4

√
2λ0,

l1 =
1
12
−
1
2
λ2, l2 = −

27
20
a21b2 ±

√
2

108
,

where λ0 and λ3 are arbitrary constants.
Case 12

λ1 = λ3 = a1 = b1 = c1 = c2 = 0, a0 = ±
4
√
2
3
λ2 ±

√
2
6
− λ, a2 = ±4

√
2λ4, b2 = ±4

√
2λ0,

l1 =
1
12
−
1
2
λ2 +

6
5
a2b2 +

16
5
λ22, l2 = ±

√
2

540
[64λ22(16λ2 − 3)+ 5− 72a2b2(1+ 16λ2)],

where λ0, λ2 and λ4 are arbitrary constants. In this case, φ is one of the 16 φIVl (l = 1, 2, . . . , 16).
Case 13

λ1 = λ3 = a1 = b1 = c1 = c2 = 0, a0 = −λ, a2 = ±4
√
2λ4, b2 = ±4

√
2λ0, λ2 = −

1
8
,

l1 =
2
15
−
1
2
λ2 +

3
10
a2b2(5∓ 1), l2 = ±

√
2
(
1
15
a2b2 +

1
2

)
,

where λ0 and λ4 are arbitrary constants and φ is one of the 16 φIVl (l = 1, 2, 3, 7, 10, 12, 13).
Using the results above, we can obtain the following 7 families of travelling wave solutions through careful calculations.

Family 1: Periodic wave solutions

u11 = ∓7
√
2/6− λ± 4

√
2csc2ζ ,

λ1 = λ3 = 0, ζ = x+ λt, l1 =
16
5
λ22 −

1
2
λ2 ∓

6
√
2
5
a2λ0 +

1
12
,

l2 =
4
15
a2λ0(1− 8λ2)±

16
√
2λ22
45

(
16
3
λ2 − 1

)
±

√
2

108
;
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u12 = ±
√
2(λ2 + 1/2)/3∓ λ∓

√
2λ2 sec2(

√
−λ2ζ/2), λ1 = 0, λ2 < 0, λ3 6= 0,

u13 = ±
√
2(λ2 + 1/2)/3∓ λ± 2

√
2λ2/[± sin(

√
−λ2ζ )− 1], λ1 6= 0, λ2 < 0, λ3 = 0,

λ0 = λ4 = 0, ζ = x+ λt, l1 =
6
5
a1b1 +

2
5

(
1
3
+ λ2

)
∓ 3(a0 + λ)

(√
2
10
+
3
5
a0

)
,

l2 =
2
5
a1b1

[
±

√
2
3
− 4(a0 + λ)

]
+
a0
5

[
2
3
∓ 3
√
2
(
λ+

1
2
a0

)
+ 2a20

]
+
6
5
λa0(λ+ a0)

+
λ

5

[
2
3
∓ λ

(
3
√
2
2
+ 2λ

)]
;

u14 = −λ± [
√
2 cos−2(

√
2ζ/4)]/2,

λ1 = λ3 = l2 = 0, λ0 =
1
64λ4

, λ2 =
1
4
, λ4 > 0, ζ = x+ λt, l1 =

15λ2 − 4
30

.

Family 2: Solitary wave solutions

u21 = ∓5
√
2/2− λ± 4

√
2 coth2 ζ ,

λ1 = λ3 = 0, ζ = x+ λt, l1 =
16
5
λ22 −

1
2
λ2 ∓

6
√
2
5
a2λ0 +

1
12
,

l2 =
4
15
a2λ0(1− 8λ2)±

16
√
2λ22
45

(
16
3
λ2 − 1

)
±

√
2

108
;

u22 = ±
√
2(λ2 + 1/2)/3∓ λ∓

√
2λ2 sech2(

√
λ2ζ/2), λ1 = 0, λ2 > 0, λ3 6= 0,

u23 = ±
√
2(λ2 + 1/2)/3∓ λ± 2

√
2λ2/[± sinh(2

√
λ2ζ )− 1], λ1 6= 0, λ2 > 0, λ3 = 0,

λ0 = λ4 = 0, ζ = x+ λt, l1 =
6
5
a1b1 +

2
5

(
1
3
+ λ2

)
∓ 3(a0 + λ)

(√
2
10
+
3
5
a0

)
,

l2 =
2
5
a1b1

[
±

√
2
3
− 4(a0 + λ)

]
+
a0
5

[
2
3
∓ 3
√
2
(
λ+

1
2
a0

)
+ 2a20

]
+
6
5
λa0(λ+ a0)

+
λ

5

[
2
3
∓ λ

(
3
√
2
2
+ 2λ

)]
.

Family 3: Periodic-like solutions

u31 = ±5
√
2/6− λ±

√
2(sec ζ ± tan ζ )2,

λ1 = λ3 = 0, ζ = x+ λt, l1 =
16
5
λ22 −

1
2
λ2 ∓

6
√
2
5
a2λ0 +

1
12
,

l2 =
4
15
a2λ0(1− 8λ2)±

16
√
2λ22
45

(
16
3
λ2 − 1

)
±

√
2

108
;

u32 = ±
√
2(1+ 2λ2)/6± λ± 2

√
2λ2

[
sec2(

√
−λ2ζ )+ λ2

∣∣∣sec(√−λ2ζ ) tan(√−λ2ζ )∣∣∣] ,
λ0 = λ1 = λ3 = 0, λ2 < 0, λ4 > 0, ζ = x+ λt,

l1 =
3
10
[3a0(a0 + 2λ)∓

√
2(λ+ a0)] +

λ

5
(9+ 2λ)+

2
15
,

l2 = ±

√
2
20
c21λ

2
1 + (a0 + λ)

{
2
5

[
(a0 + λ)2 +

1
3

]
∓
3
√
2

10
(a0 + λ)

}2
;

u33 = −λ± 4
√
2λ4 cos−2

(√
2
4
ζ

) ∣∣∣∣∣∣
8
√
λ4 cos2

(√
2
4 ζ
)
− 4
√
λ4 −
√
2 sin

(√
2
4 ζ
)
± i cos

(√
2
4 ζ
)

32λ4 − 32λ4 cos2
(√

2
4 ζ
)
+ 4
√
2λ4 sin

(√
2
2 ζ
)
± i∓ cos2

(√
2
4 ζ
)
∣∣∣∣∣∣ ,

λ0 = λ1 = l2 = 0, λ2 = −
1
2
, λ3 = ±

1
4
i, ζ = x+ λt, l1 =

9
20
c21λ0 +

2
15
−
λ2

2
;
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u34 = −λ± 8
√
2 |q|

∣∣∣∣∣
{

r cos(
√
4qr − p2ζ )

p cos(
√
4qr − p2ζ )+

√
4qr − p2[sin(

√
4qr − p2ζ )± 1]

}′∣∣∣∣∣ ,
l2 = 0, λ0 = r2, λ1 = 2rp, λ2 = 2rq+ p2, λ3 = 2pq, λ4 = q2, ζ = x+ λt,

l1 =
λ23(27+ 109λ4)+ 4λ

2
4(60λ

2
− 1728λ4λ0 + 11)

480λ24
.

Family 4: Soliton-like solutions

u41 = ∓
√
2/2− λ±

√
2(tanh ζ ± sech ζ )2,

λ1 = λ3 = 0, ζ = x+ λt, l1 =
16
5
λ22 −

1
2
λ2 ∓

6
√
2
5
a2λ0 +

1
12
,

l2 =
4
15
a2λ0(1− 8λ2)±

16
√
2λ22
45

(
16
3
λ2 − 1

)
±

√
2

108
;

u42 = −λ∓

√
2λ4 |sinh(ζ/2)|
cosh2(ζ/2)

, λ4 < 0,

u43 = −λ±

√
2λ4 |cosh(ζ/2)|
sinh2(ζ/2)

, λ4 > 0,

λ0 = λ1 = λ3 = l2 = 0, λ2 =
1
4
, ζ = x+ λt, l1 =

60λ2 + 11
120

;

u44 = ±
3
√
2
2
− λ±

4
√
2(d− 2b)csch2ζ

b csch2ζ + c coth ζ + d
±
2
√
2(c2 + 4b2 − 4bd)csch4ζ

(b csch2ζ + c coth ζ + d)2

± 2
√
2(c2 + 4b2 − 4bd)

∣∣∣∣∣
(

csch2ζ
b csch2ζ + c coth ζ + d

)′∣∣∣∣∣ ,
λ0 = λ1 = 0, λ2 = 4, λ3 =

4(d− 2b)
a

, λ4 =
c2 + 4b2 − 4bd

a2
, ζ = x+ λt,

l1 =
16
5
−
1
2
λ2 +

1
12
, l2 = ±

31
√
2

20
;

u45 = ±

√
2
6
(1+ 2a2)− λ∓ 2

√
2ac

{
a

c + cosh(aζ )− sinh(aζ )
∓

b2ac
b2[c + cosh(aζ )− sinh(aζ )]2

±
∣∣([c + cosh(aζ )− sinh(aζ )]−1)′∣∣ } ,

u46 = ±

√
2
6
(1+ 2a2)− λ∓

2
√
2a2(cosh(aζ )+ sinh(aζ ))
[c + cosh(aζ )− sinh(aζ )]

±
2
√
2a2[cosh(aζ )+ sinh(aζ )]2

[c + cosh(aζ )− sinh(aζ )]2

± 2
√
2
∣∣∣{a[cosh(aζ )+ sinh(aζ )][c + cosh(aζ )− sinh(aζ )]−1}′∣∣∣ ,

λ0 = λ1 = 0, λ2 = a2, λ3 = 2ab, λ4 = b2, ζ = x+ λt, l1 =
1
5
a4 −

1
2
λ2 +

1
12
,

l2 = ±

√
2

540
(1+ 2a2)(8a4 + 5− 10a2);

u47 = −λ± 2
√
2
∣∣∣cosh(±√2iζ/2)∓ sinh(±√2iζ/2)∣∣∣ [cosh(±√2iζ/2)± 1∓ sinh(±√2iζ/2)]−2,

λ0 = λ1 = l2 = 0, λ2 = −
1
2
, λ3 = ±

1
4
i, l1 =

2
15
−
λ2

2
, ζ = x+ λt;

u48 = −λ± 8
√
2 |q|

∣∣∣∣∣
{

r sinh(
√
p2 − 4qrζ )√

p2 − 4qr[cosh(
√
p2 − 4qrζ )± 1] − p sinh(

√
p2 − 4qrζ )

}′∣∣∣∣∣ ,
l2 = 0, λ0 = r2, λ1 = 2rp, λ2 = 2rq+ p2, λ3 = 2pq, λ4 = q2, ζ = x+ λt,

l1 =
λ23(27+ 109λ4)+ 4λ

2
4(60λ

2
− 1728λ4λ0 + 11)

480λ24
.
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Family 5: Jacobi elliptic function periodic solutions

u51 = ±
√
2(8m2 − 7)/6− λ± 4

√
2m2sn2ζ ,

u52 = ±
√
2(16m2 − 7)/6− λ∓ 4

√
2m2cn2ζ ,

u53 = ±
√
2(17− 8m2)/6− λ∓ 4

√
2dn2ζ ,

u54 = ±
√
2(8m2 − 7)/6− λ± 4

√
2m2cd2ζ ,

u55 = ±
√
2(17− 8m2)/6− λ± 4

√
2(1−m2)sc2ζ ,

u56 = ∓
√
2(8m2 + 7)/6− λ± 4

√
2ns2ζ ,

u57 = ±
√
2(16m2 − 7)/6− λ± 4

√
2(1−m2)nc2ζ ,

u58 = ∓
√
2(8m2 + 7)/6− λ± 4

√
2dc2ζ ,

u59 = ±
√
2(17− 8m2)/6− λ± 4

√
2(m2 − 1)nd2ζ ,

u510 = ±
√
2(16m2 − 7)/6− λ∓ 4

√
2m2(1−m2)sd2ζ ,

u511 = ±
√
2(16m2 − 7)/6− λ± 4

√
2ds2ζ ,

u512 = ±
√
2(17− 8m2)/6− λ± 4

√
2cs2ζ ,

λ1 = λ3 = 0, ζ = x+ λt, l1 =
16
5
λ22 −

1
2
λ2 ∓

6
√
2
5
a2λ0 +

1
12
,

l2 =
4
15
a2λ0(1− 8λ2)±

16
√
2λ22
45

(
16
3
λ2 − 1

)
±

√
2

108
;

u513 = −λ± 4
√
2ds2ζ ∓

63
√
2

64
ds−2ζ ,

λ1 = λ3 = 0, λ0 = −
63
256

, λ2 = −
1
8
, λ4 = 1, ζ = x+ λt, l1 =

2
15
−
1
2
λ2 +

3
10
a2b2(5∓ 1),

l2 = ±
√
2
(
1
15
a2b2 +

1
2

)
;

u514 = −λ± 2

√
2λ4m2

1− 2m2

∣∣∣∣∣cn′
(
1
2

√
1

2m2 − 1
ζ

)∣∣∣∣∣ , λ0 =
m2(m2 − 1)
16λ4(1− 2m2)2

, λ4 < 0,

u515 = −λ± 2

√
2λ4
m2 − 2

∣∣∣∣∣dn′
(
1
2

√
1

2−m2
ζ

)∣∣∣∣∣ , λ0 =
1−m2

16λ4(2−m2)2
, λ4 < 0,

λ1 = λ3 = l2 = 0, λ2 =
1
4
, ζ = x+ λt, l1 =

60λ2 − 1728λ4λ0 + 11
120

.

Family 6: Combined non-degenerative Jacobi elliptic function-like solutions

u61 = ±
√
2(5− 8m2)/6− λ±

√
2(nsζ ± csζ )2,

u62 = ±
√
2(5+ 4m2)/6− λ±

√
2(1−m2)(ncζ ± scζ )2,

u63 = ±
√
2(4m2 − 7)/6− λ±

√
2(nsζ ± dsζ )2,

u64 = ±
√
2(4m2 − 7)/6− λ±

√
2m2(snζ ± icnζ )2,

λ1 = λ3 = 0, ζ = x+ λt, l1 =
16
5
λ22 −

1
2
λ2 ∓

6
√
2
5
a2λ0 +

1
12
,

l2 =
4
15
a2λ0(1− 8λ2)±

16
√
2λ22
45

(
16
3
λ2 − 1

)
±

√
2

108
;

u65 = ±
√
2(m2 − 1)/6− λ±

√
2(nsζ ± dsζ )

[
±
1
2
(nsζ ± dsζ )

]
±
√
2
∣∣(nsζ ± dsζ )′∣∣ ,

λ1 = λ3 = 0, λ0 =
m2

4
, λ2 =

m2 − 2
2

, λ4 =
1
4
, ζ = x+ λt,

l1 =
3c21λ0
10
−
λ2

2
+
λ22

5
+
1
12
, l2 =

∓
√
2
{
18λ0[c21 (1+ 4λ2)− 6a

2
1] + 4λ

2
2(3− 4λ2)− 5

}
540

;
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λ1 = λ3 = 0, λ0 =
m2

4
, λ2 =

m2 − 2
2

, λ4 =
1
4
, ζ = x+ λt,

l1 =
1
12
−
1
2
λ2 +

6
5
a2b2 +

16
5
λ22,

l2 = ±

√
2

540
[64λ22(16λ2 − 3)+ 5− 72a2b2(1+ 16λ2)].

Family 7:Weierstrass elliptic function solutions

u71 = ±
√
2/6∓ λ±

√
2λ3℘(

√
λ3ζ/2, f2, f3),

λ2 = λ4 = 0, λ3 > 0, f2 = −
4λ1
λ3
, f3 = −

4λ0
λ3
, ζ = x+ λt,

l1 =
2
15
∓
3
√
2

10
(λ+ a0 + λ1a1)+

9
5
a0

(
1
2
a0 + λ

)
+
2
5
λ2,

l2 =
2
15
(λ+ a0 + a1λ1)±

√
2
5
a1[a1λ0 − λ1(λ+ a0)] ∓

3
√
2
5

[
a0

(
λ+

1
2
a0

)
+
1
2
λ2
]

+
6
5
λa0(λ+ a0)+

2
5
(λ3 + a30);

u72 = ±
√
2/6∓ λ±

√
2λ1℘−1(

√
λ3ζ/2, f2, 0),

λ0 = λ2 = λ4 = 0, λ3 > 0, f2 = −
4λ1
λ3
, ζ = x+ λt,

l1 =
2
15
∓
3
√
2

10
(λ+ a0 + b1λ3)+

9
5
a0

(
1
2
a0 + λ

)
+
2
5
λ2,

l2 =
2
15
(λ+ a0 + b1λ3)±

√
2
5
b1[b1λ4 − λ3(λ+ a0)] ∓

3
√
2
5

[
a0

(
λ+

1
2
a0

)
+
1
2
λ2
]

+
6
5
λa0(λ+ a0)+

2
5
(λ3 + a30);

u73 = ±

√
2
6
∓ λ±

√
2λ3℘

(√
λ3ζ

2
, f2, 0

)
±
√
2λ1℘−1

(√
λ3ζ

2
, f2, 0

)
,

λ0 = λ2 = λ4 = 0, λ3 > 0, f2 = −
4λ1
λ3
, ζ = x+ λt,

l1 =
6
5
a1b1 +

2
5

(
1
3
+ λ2

)
∓ 3(a0 + λ)

(√
2
10
+
3
5
a0

)
,

l2 =
2
5
a1b1

[
±

√
2
3
− 4(a0 + λ)

]
+
a0
5

[
2
3
∓ 3
√
2
(
λ+

1
2
a0

)
+ 2a20

]
+
6
5
λa0(λ+ a0)

+
λ

5

[
2
3
∓ λ

(
3
√
2
2
+ 2λ

)]
;

u74 = ±
√
2/6− λ±

√
2λ3℘(

√
λ3ζ/2, f2, f3)± 4

√
2λ0℘−2(

√
λ3ζ/2, f2, f3),

λ1 = λ2 = λ4 = 0, λ3 > 0, f2 = 0, f3 = −
4λ0
λ3
, ζ = x+ λt,

l1 =
1
12
−
1
2
λ2, l2 = −

27
20
a21b2 ±

√
2

108
.

Remark 1. Only the expressions of u are listed and the ones of h are omitted for the limit of length. m (0 ≤ m ≤ 1) is the
modulus of the Jacobi elliptic function. The more detailed notations for the Jacobi and Weierstrass elliptic functions can be
found in [37–40].

Remark 2. It is easy to see that the solitary wave solutions and the Jacobi elliptic function periodic solutions are recovered,
and u22 and u52 are correspond to (12) and (13) in [36] under proper transformation. Figs. 1–5 depict some typical graphs of
the solutions above, which exhibit some singularities of the solutions.
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Fig. 1. Solitary wave solution u23 : λ2 = 0.001, λ = 1 (left) and periodic-like solution u31 : λ = 1 (right).

Fig. 2. Periodic-like solution u32 with λ2 = −0.01, λ = 1.

Fig. 3. u41 with λ = 1.

Remark 3. due to the limit of length, we only show some examples of the solutions in Family 3 and Family 4. In fact, more
exact solutions can be obtained by applying the relevant results in [34]. Obviously, the solutions obtained by our further
improved Fan’s sub-equation method are more diverse than those in [36] and a lot of new and different solutions of Eqs. (1)
are first reported here.

3. Travelling wave solutions to Eqs. (1)with α = 1

By using the travellingwave transformation shown in Section 2, the resulting ordinary differential equations fromEqs. (1)
read as (here we set integral constants to be zero so as to simplify our computation)

λu+ h+
1
2
u2 + u′′′ = 0, (7a)

λh+ hu+
1
3
u′′ +

2
15
u(4) = 0. (7b)



e720 L. Gao et al. / Nonlinear Analysis 71 (2009) e711–e724

Fig. 4. An example of the soliton-like solution u42 with λ = 1 and λ4 = −0.02.

Fig. 5. u56 with λ = 1 andm = 0.00001.

The substitution of (7a) into (7b) yields

2
15
u(4) +

1
3
u′′ + (λ+ u)

(
−λu−

1
2
u2 − u′′′

)
= 0. (8)

The solutions of the corresponding system of algebraic equations are shown below:
Case 1

a1 = a2 = b1 = b2 = c1 = c2 = d2 = 0, λ2 =
59
120

, λ = ∓
2
√
1770
225

, a0 = ±
2
√
1770
225

, d1 =
8
15
.

Case 2

a2 = b1 = b2 = c1 = c2 = d2 = 0, λ2 =
59
30
, λ4 =

−225
16

, λ = ∓
2
√
1770
225

,

a0 = ±
2
√
1770
225

, a1 = i, d1 =
4
15
.

Case 3

a1 = a2 = b1 = b2 = c1 = c2 = d2 = 0, λ2 =
59
30
, λ = ∓

2
√
1770
225

, a0 = ±
2
√
1770
225

, d1 =
4
15
.

Case 4

a2 = b1 = b2 = c1 = c2 = d2 = 0, λ2 =
59
30
, λ4 =

225a21
16

, λ = ±
2
√
1770
225

, a0 = ∓
2
√
1770
225

,

d1 =
4
15
.

Case 5

a1 = a2 = b2 = c1 = c2 = d2 = 0, λ1 = ±

√
1770b1
4

, λ2 =
59
30
, λ = ∓

2
√
1770
225

,
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a0 = ±
2
√
1770
225

, d1 = −
4
15
.

Case 6

a1 = a2 = b1 = b2 = c1 = c2 = d2 = 0, λ2 =
59
30
, λ = ±

2
√
1770
225

, a0 = ∓
2
√
1770
225

, d1 = −
4
15
.

Using the similar technique shown in Section 2, many travelling wave solutions to the generalized Zufiria’s higher-order
Boussinesq equation can be obtained. Here we just give some intriguing ones, shown as follows:

u1 = ±
2
√
1770
225

[
1± tanh

(√
1770
60

ζ

)]
,

λ0 = λ1 = λ3 = 0, λ2 =
59
120

, λ4 < 0, λ = ∓
2
√
1770
225

; or λ0 = λ1 = λ4 = 0, λ2 =
59
30
,

λ = ∓
2
√
1770
225

, λ3

is an arbitrary constant;

u2 = ±
2
√
1770
225

±
2
225
i
√
1770 sech

(√
1770
30

ζ

)
±
2
225

√
1770 tanh

(√
1770
30

ζ

)
,

λ0 = λ1 = λ3 = 0, λ2 =
59
30
, λ4 = −

225
16
, λ = ∓

2
√
1770
225

;

u3 = ±
2
√
1770
225

±
4
15

√
59
30
tanh

(√
1770
60

ζ

)
,

λ0 = λ1 = λ4 = 0, λ2 =
59
30
, λ3 6= 0, λ = ∓

2
√
1770
225

;

u4 = ±
2
√
1770
225

±
2
√
1770
225

√√√√√1+ sech4
(√

1770
120 ζ

)
4 tanh2

(√
1770
120 ζ

) ,
λ0 = λ1 = λ3 = 0, λ2 =

59
120

, λ = ∓
2
√
1770
225

, λ4 is an arbitrary constant;

u5 = ∓
2
√
1770
225

±

sech2
(√

1770
60 ζ

)√
1770

225 tanh
(√

1770
60 ζ

) ±
2
√
1770
225

√√√√√1+ sech4
(√

1770
60 ζ

)
4 tanh2

(√
1770
60 ζ

) ,
λ0 = λ1 = λ3 = 0, λ2 =

59
30
, λ4 =

225a21
16

, λ = ±
2
√
1770
225

;

u6 = ∓
2
√
1770
225

+
59
30

a1 sech2
(√

1770
60 ζ

)
±
1
4

√
1770 |a1| tanh

(√
1770
60 ζ

)
− λ3

±
2
225

√√√√√√5930 + 5930 λ3 sech2
(√

1770
60 ζ

)
±
1
4

√
1770 |a1| tanh

(√
1770
60 ζ

)
− λ3

+
3481
64

a21 sech
4
(√

1770
60 ζ

)
[
±
1
4

√
1770 |a1| tanh

(√
1770
60 ζ

)
− λ3

]2 ,
λ0 = λ1 = 0, λ2 =

59
30
, λ4 =

225a21
16

, λ = ±
2
√
1770
225

;

u7 = ±
2
√
1770
225

+

b1 − 2
15

√
225
4 b

2
1 ±
√
1770b1

(
e
±
√
1770ζ
30 ∓

15
√
1770
236 b1

)
+
118
15

(
e
±
√
1770ζ
30 ∓

15
√
1770
236 b1

)2
e
±
√
1770ζ
30 ∓

15
√
1770
236 b1

,

λ3 = λ4 = 0, λ0 =
λ21

4λ2
, λ1 = ±

√
1770
4

b1, λ2 =
59
30
, λ = ∓

2
√
1770
225

;
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Fig. 6. u6 : a1 = λ3 = 1 (left) and u8 (right).

u8 = ∓
2
√
1770
225

±
236
225

√
15
59

[
± sinh

(√
1770
15 ζ

)
− 1

]
+

15
118

[
± sinh

(√
1770
15 ζ

)
− 1

]2
± sinh

(√
1770
15 ζ

)
− 1

,

λ0 = λ3 = λ4 = 0, λ1 6= 0, λ2 =
59
30
, λ = ±

2
√
1770
225

.

Some graphs of the above solutions are depicted in Fig. 6, which show the distribution of some singularities of the solutions.

4. New explicit wave solutions to Eqs. (1)with α 6= 0 and α 6= 1

In this case, many intriguing travelling wave solutions can be constructed by using ourmethod.We just give two of these
solutions due to the limit of length.
Case 1

a1 = a2 = b1 = b2 = c1 = c2 = d2 = 0, λ2 =
75α2 − 16
120α2

, λ = ∓

√
40α2 − 128

15

15α2

a0 = ±

√
40α2 − 128

15

15α2
, d1 =

8
15α

.

Case 2

a2 = b1 = b2 = c1 = c2 = d2 = 0, λ2 =
75α2 − 16
30α2

, λ4 =
225α2a21
16

, λ = ∓

√
40α2 − 128

15

15α2
,

a0 = ±

√
40α2 − 128

15

15α2
, d1 =

4
15α

.

u1 = ±
2
√
10α2 − 32

15

15α2
±

4
15α2

√
75α2 − 16
30

tanh

(
±

√
30(75α2 − 16)ζ

60α

)
,

λ0 = λ1 = λ3 = 0, λ2 =
75α2 − 16
120α2

> 0, λ = ∓
2
√
10α2 − 32

15

15α2
, λ4 < 0;

u2 = ±
2
√
10α2 − 32

15

15α2
±

2
15α2

√
2
15
(75α2 − 16) sech

(
±

√
30(75α2 − 16)

30α
ζ

)

±
2

225α2
√
75α2 − 16 tanh

(
±

√
30(75α2 − 16)

30α
ζ

)
,

λ0 = λ1 = λ3 = 0, λ2 =
75α2 − 16
30α2

> 0, λ = ∓
2
√
10α2 − 32

15

15α2
, λ4 =

225
16
α2a21 < 0.
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5. Conclusions

Motivated by seeking more solutions to Zufiria’s higher-order Boussinesq type equations, we extended the algebraic
method on the basis of [29–34]. Themain improvement of ourmethod is to synthesize the corresponding solutions (see [29,
34]) for the first-order ordinary differential equation (6) depending on different values of λi (i = 0, 1, 2, 3, 4). New
various families of explicit solutions are successfully obtained, including periodic wave, solitary wave, periodic-like, soliton-
like, Jacobi elliptic function periodic, combined non-degenerative Jacobi elliptic function-like, Weierstrass elliptic function
periodic etc. The properties of some solutions to Eqs. (1) are also shown by Figs. 1–6. These diverse new explicit and exact
solutions will be helpful to the further research of the physical and mechanical meaning and laws of motion of the nature
and realistic models, and the investigation of these diverse solutions will be quite important for the understanding and
discussion of corresponding dynamical behaviors.
Moreover, the existence of smooth and non-smooth wave solutions and the dynamical properties of Zufiria’s higher-

order Boussinesq type equations could be studied by using the theory of bifurcations of dynamical systems. In addition,
it deserves more investigation whether there exist other types of exact solutions to the generalized Zufiria’s higher-order
Boussinesq equations. We plan to analyze and discuss these situations in a future publication.
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