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Abstract: The main work of this paper is to construct

the Wronskian solution and investigate the integrability

characteristics of the (2 + 1)-dimensional Konopelchenko–

Dubrovsky equation. Firstly, the Wronskian technique is

used to acquire a sufficient condition of theWronskian solu-

tion. According to the Wronskian form, the soliton solution

is obtained by selecting the elements in the determinant

that satisfy the linear partial differential systems. Secondly,

the bilinear Bäcklund transformation and Bell-polynomial-

typed Bäcklund transformation are derived directly via

the Hirota bilinear method and the Bell polynomial the-

ory, respectively. Finally, Painlevé analysis proves that this

equation possesses the Painlevé property, and a Painlevé-

typed Bäcklund transformation is constructed to solve a

family of exact solutions by selecting appropriate seed

solution. It shows that the Wronskian technique, Bäcklund

transformation, Bell polynomial and Painlevé analysis are

applicable to obtain the exact solutions of the nonlinear evo-

lution equations, e.g., soliton solution, single-wave solution

and two-wave solution.
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1 Introduction

Nonlinear evolution equations (NLEEs) are important for

describing many nonlinear physical phenomena [1]–[5].

Investigating the exact solutions and integrability of NLEEs

plays an essential role in understanding the mechanisms of

nonlinear waves [6]–[8]. The Hirota bilinear method is a

useful and direct method to construct theN-soliton solution

and bilinear Bäcklund transformation (BT) to NLEEs [9].

Based on the Hirota bilinear form, more and more kinds of

exact solutions to NLEEs have been found, such as soliton

solution [10]–[12], lump solution [13]–[15],M-lump solution

[16], interaction solution [1], [17] and rouge wave solution

[11], [15], [18]. The Wronskian technique is also a useful

method to solve the exact solution of NLEEs [19]–[21], and

Wronskian formulas are employed to establish N-soliton

solution in terms of Wronskian-type determinan [21], [51],

[52]. Moreover, the soliton solution [43], positive solution

[44], [45], negative solution [46], rational solution [47] and

complexion solution [48] can also be obtained by selecting

the coefficient matrix corresponding to the eigenvalues.

In the study of the integrability of NLEEs, many system-

aticmethods have been used, such as BT [35]–[38], Bell poly-

nomial [35], [37], [52], and Painlevé analysis [10], [28], [52]. BT

is a powerful method for discovering scattering problems

and generating new solutions from the known ones. Bell

polynomialmethod, firstly proposed by Lembert andGilson,

has a close connection with the Hirota bilinear method [50],

and it can be used to construct Bell-polynomial-typed BT,

Laxpair and conservation law forNLEEspossessing bilinear

forms. In 1983, Weiss J, Tabor M and Carnevale G explored

the Painlevé analysis to solve the NLEEs [49]. By determin-

ing whether an equation has the Painlevé property, one

can initially determine whether the equation is integrable

and has an exact solution, and then certain conditions are

created for solving the equation.

Describing the nonlinear wave motion, a well-known

model is the (2 + 1)-dimensional Kadomtsev–Petviashvili

(KP) equation written as [22], [23]

(ut + 6uux + uxxx)x ± uyy = 0. (1)
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The equation can be applied to simulate water waves

of long wavelengths with weak nonlinear restoring forces

and dispersion. It is also used to simulate waves in ferro-

magnetic media. The coefficient ±1 indicates weak surface
tension and strong surface tension, respectively. Thismeans

that the two KP equations have different physical structures

and properties for ±1. Several analytical and numerical

methods were used to solve the KP equation.

A generalized (2 + 1)-dimensional equation was firstly

proposed by Konopelchenko and Dubrovsky in 1984 [42] as

⎧⎪⎨⎪⎩
ut − uxxx − 3vy +

3

2
a2u2ux + 3auxv− 6buux = 0,

uy = vx,
(2)

where u = u(x, y, t) and v = v(x, y, t) are analytic functions,

and a and b are arbitrary constants. In previous research,

the tanh-sech method, the Hirota bilinear method, the

extended F-expansion method, the cosh-sinh method, the

modified extended direct algebraic method and the expo-

nential functions method were used to derive kinks, soli-

tons, traveling wave solution and periodic solution in Refs.

[24]–[29]. The lump solutionwas presented by transforming

Eq. (2) into an ordinary differential equation or bilinear

form [39], [40]. In addition, BT,Wronskian solution aswell as

Painlevé analysis were all obtained [27], [28]. Furthermore,

there were some other exact solutions in Refs. [29]–[34].

When a = 0, Eq. (2) enjoys the following form

⎧⎪⎨⎪⎩
ut − uxxx − 3vy − 6buux = 0,

uy = vx.
(3)

Through the dependent variable transformation u =
2

b
(ln f )xx , Eq. (3) can be changed into the bilinear form

(DxDt − D4
x
− 3D2

y
) f ⋅ f = 0, (4)

where the binary operator D is defined by [9]

D𝛼
x
D
𝛽
yD

𝛾

t
[ f (x, y, t) ⋅ g(x, y, t)]

= (𝜕x′ − 𝜕x)
𝛼(𝜕y′ − 𝜕y)

𝛽 (𝜕t′ − 𝜕t)
𝛾 f (x, y, t)g

× (x′, y′, t′)|x′=x,y′=y,t′=t. (5)

For convenience, we refer to Eq. (3) as the (2 + 1)-

dimensional Konopelchenko–Dubrovsky (KD) equation in

the following section.

In this paper, the main focus is to study Eq. (3). For

Eq. (3), the lump solution was obtained by the positive

quadratic function method in Ref. [13]. The linear super-

position principle was applied to obtain resonant multiple

wave solutions in real field and complex field in Ref. [41].

Besides, solitary waves and interaction phenomena have

been proposed based on the Hirota bilinear form in Refs.

[13], [41]. However, the Wronskian solution and the inte-

grability of Eq. (3) have not been studied. We will derive

theWronskian solution, Bäcklund transformation, Painlevé

analysis and some exact solutions of Eq. (3). The rest of

this paper is structured as follows. Firstly, in Section 2,

we apply the Wronskian method to obtain the Wronskian

solution and derive the soliton solution based on the Wron-

skian form. Moreover, we take one-, two- and three-soliton

solutions as examples. Secondly, in Section 3, bilinear BT

and Bell-polynomial-typed BT to Eq. (3) are constructed.

Then in Section 4, we use Painlevé analysis to check its

integrability. Finally, we will present some conclusions in

Section 5.

2 N-soliton solution in Wronskian

form

2.1 Wronskian solution

In this subsection, we will construct a Wronskian solution

to Eq. (3). We use the following form

fN = W(𝜙1, 𝜙2, · · · , 𝜙N ) =

||||||||||||||||

𝜙(0)
1

𝜙(1)
1

· · · 𝜙(N−1)
1

𝜙(0)
2

𝜙(1)
2

· · · 𝜙(N−1)
2

...
...

...

𝜙(0)
N

𝜙(1)
N

· · · 𝜙(N−1)
N

||||||||||||||||
= |||N̂ − 1

|||, (6)

where 𝜙(m)

i
= 𝜕m𝜙i

𝜕xm
i

, i = 1, 2,… ,N ,m = 1, 2 … N .

Assume that 𝜙i satisfies the following relations

𝜙i,y = 𝜙i,xx, 𝜙i,t = 4𝜙i,xxx. (7)

Based on the assumption and determinant properties,

we obtain the differential equations for fN
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fN,x =
|||N̂ − 2,N

|||,
fN,xx =

|||N̂ − 2,N + 1
|||+ |||N̂ − 3,N − 1,N

|||,
fN,xxx =

|||N̂ − 2,N + 2
|||+ 2

|||N̂ − 3,N − 1,N + 1
|||

+ |||N̂ − 4,N − 2,N − 1,N
|||,

fN,xxxx =
|||N̂ − 2,N + 3

|||+ 3
|||N̂ − 3,N − 1,N + 2

|||
+ 3

|||N̂ − 4,N − 2,N − 1,N + 1
|||

+ |||N̂ − 5,N − 3,N − 2,N − 1,N
|||,

fN,y =
|||N̂ − 2,N + 1

|||− |||N̂ − 3,N − 1,N
|||,

fN,yy =
|||N̂ − 2,N + 3

|||+ 2
|||N̂ − 3,N,N + 1

|||
− |||N̂ − 4,N − 2,N − 1,N + 1

|||
− |||N̂ − 3,N − 1,N + 2

|||
+ |||N̂ − 5,N − 3,N − 2,N − 1,N

|||,
fN,t = 4

|||N̂ − 2,N + 2
|||− 4

|||N̂ − 3,N − 1,N + 1
|||

+ 4
|||N̂ − 4,N − 2,N − 1,N

|||,
fN,xt = 4

|||N̂ − 2,N + 3
|||− 4

|||N̂ − 3,N,N + 1
|||

+ 4
|||N̂ − 5,N − 3,N − 2,N − 1,N

|||.

(8)

Substituting the derivatives of fN into Eq. (4), we have

( fxt − fxxxx − 3 fyy) f = −12|||N̂ − 3,N,N + 1
||||||N̂ − 1

|||,
− fx ft + 4 fxxx fx − 3 f 2

xx
+ 3 f 2

y

= 12
|||N̂ − 3,N − 1,N + 1

||||||N̂ − 2,N
|||

− 12
|||N̂ − 2,N + 1

||||||N̂ − 3,N − 1,N
|||,

(9)

and further deduce that

(
DxDt − D4

x
Dy − 3D2

y

)
f ⋅ f

= −12
(|N̂ − 1‖N̂ − 3,N,N + 1|− |N̂ − 2,N

× ‖N̂ − 3,N − 1,N + 1|+ |N̂ − 2,N + 1

× ‖N̂ − 3,N − 1,N|)

= −6
|||||
N̂−3 0 N − 2 N − 1 N N + 1

0 N̂ − 3 N − 2 N − 1 N N + 1

|||||
= 0. (10)

Using the Laplace expansion of the determinant,we can

prove that fN is the solution of Eq. (3).

2.2 N-soliton solution

From the calculation, we know that if 𝜙i (i = 1 … N) satis-

fies Eq. (7), the solution of Eq. (3) can be acquired. We can

easily find that 𝜙i = e𝜉i + e𝜂i satisfies Eq. (7) with 𝜉i = lix +
l2
i
y+ 4l3

i
t + 𝜉(0)

i
and 𝜂i = kix + k2

i
y+ 4k3

i
t + 𝜂(0)

i
, where li,

ki, 𝜉
(0)

i
and 𝜂(0)

i
are arbitrary constants. Therefore, we can

get the N-soliton solution of Eq. (3) as

u = 2

b
ln [W(𝜙1, 𝜙2, · · · , 𝜙N )]xx. (11)

When N = 1, the solution of Eq. (4) is written as

f = f1 = W(𝜙i) = 𝜙i = e𝜉1 + e𝜂1 . (12)

Substituting it into the independent variable transfor-

mation, we have

u = 2

b
(ln f1)xx =

2

b

(k1 − l1)
2e𝜂1+𝜉1

(e𝜉1 + e𝜂1 )2
, (13)

which is the one-soliton solution of Eq. (3).

When N = 2, the solution of Eq. (4) is given as

f2 = W
(
𝜙1, 𝜙2

)
=

|||||
𝜙1 𝜙1,x

𝜙2 𝜙2,x

|||||
= (k2 − k1)e

𝜂1+𝜂2
(
1+ l2 − k1

k2 − k1
e𝜉2−𝜂2 + k2 − l1

k2 − k1
e𝜉1−𝜂1

+ l2 − l1
k2 − k1

e𝜉1+𝜉2−𝜂1−𝜂2
)
, (14)

which generates the two-soliton solution of Eq. (3) via u =
2

b
(ln f2)xx .

Taking N = 3, we obtain

f3 = W
(
𝜙1, 𝜙2, 𝜙3

)
=

|||||||
𝜙1 𝜙1,x 𝜙1,xx

𝜙2 𝜙2,x 𝜙2,xx

𝜙3 𝜙3,x 𝜙3,xx

|||||||
= −(k1 − k2)(k1 − k3)(k2 − k3)e

𝜂1+𝜂2+𝜂3

×
[
1+ (k1 − l3)(k2 − l3)

(k1 − k3)(k2 − k3)
e𝜉3−𝜂3 − (k1 − l2)(k3 − l2)

(k1 − k2)(k2 − k3)

× e𝜉2−𝜂2 + (k2 − l1)(k3 − l1)

(k1 − k2)(k1 − k3)
e𝜉1−𝜂1

]

− (l1 − l2)(l1 − l3)(l2 − l3)e
𝜉1+𝜉2+𝜉3

×
[
1+ (k1 − l2)(k1 − l3)

(l1 − l2)(l1 − l3)
e𝜂1−𝜉1 − (k2 − l1)(k2 − l3)

(l1 − l2)(l2 − l3)

× e𝜂2−𝜉2 + (k3 − l1)(k3 − l2)

(l1 − l3)(l2 − l3)
e𝜂3−𝜉3

]
, (15)



890 — D. Gao et al.: Wronskian solution, Bäcklund transformation and Painlevé analysis

Figure 1: The soliton solution of Eq. (3) with b = 1. (a) One-soliton solution: l1 = 1.5, k1 = − 2

3
, 𝜉(0)

1
= 𝜂(0)

1
= 0; (b) two-soliton solution: l1 = − 3

2
, l2 = 1,

k1 = −1, k2 = 1, 𝜉(0)
1

= 𝜂(0)
1

= 𝜉(0)
2

= 𝜂(0)
2

= 0; (c) three-soliton solution: l1 = −1.3, l2 = 0.9, l3 = 0.7, k1 = 2, k2 = 1.8, k3 = −1.3,
𝜉(0)
1

= 𝜂(0)
1

= 𝜉(0)
2

= 𝜂(0)
2

= 𝜉(0)
3

= 𝜂(0)
3

= 0.

which solves the three-soliton solution of Eq. (3) via u =
2

b
(ln f3)xx .

As an example, we choose the appropriate parameters

to draw one-, two- and three-soliton solutions in Figure 1.

3 Bilinear BT and

Bell-polynomial-typed BT

Bell polynomial has a close association with the Hirota

bilinearmethod. The Bell-polynomial-typed BT can be trans-

formed into the bilinear BT through the correlation between

the binary Bell polynomials and Hirota bilinear operators.

In this section, we will construct the Bilinear BT and Bell-

polynomial-typed BT.

3.1 Bilinear BT

In this section, we will construct a bilinear BT for Eq. (3).

First of all, supposing g = g(x, y, t) is another solution to

Eq. (4) and introduce the following essential function

P = [(DxDt − D4
x
Dy − 3D2

y
) f ⋅ f ]g2

− [(DxDt − D4
x
Dy − 3D2

y
)g ⋅ g] f 2 = 0. (16)

By using the exchange formulas, symbolic computation

on Eq. (16) leads to

1

2
P = Dx(Dt f ⋅ g) ⋅ f g − Dx

[
(D3

x
f ⋅ g) ⋅ f g − 3(D2

x
f ⋅ g)

⋅ (Dxg ⋅ f )
]
− 3Dy(Dy f ⋅ g) ⋅ f g − 3Dy(D

2
x
f ⋅ g) ⋅ f g

+ 3Dx(DxDy f ⋅ g) ⋅ f g + 3Dx(Dy f ⋅ g) ⋅ (Dx f ⋅ g)

= Dx[(Dt − D3
x
+ 3DxDy − 𝜆) f ⋅ g] ⋅ f g

+ 3Dx[(D
2
x
+ Dy) f ⋅ g] ⋅ (Dx f ⋅ g)

− 3Dy[(D
2
x
+ Dy) f ⋅ g] ⋅ f g

= 0, (17)

where 𝜆 is an arbitrary constant.

Therefore, the bilinear BT of Eq. (3) is as follows

⎧⎪⎨⎪⎩
(Dt − D3

x
+ 3DxDy − 𝜆) f ⋅ g = 0,

(D2
x
+ Dy) f ⋅ g = 0.

(18)

Let us choose a seed solution g = 1 to Eq. (4), then we

have the following partial differential equation

⎧⎪⎨⎪⎩
ft − fxxx + 3 fxy + 𝜆 = 0,

fxx + fy = 0.
(19)

We think about the exponential wave solution of

Eq. (19)

f = 1+ e𝜃1 + e𝜃2 + a12e
𝜃1+𝜃2 , (20)

where 𝜃i = mix + niy+ lit + wi (i = 1, 2). With the help of

symbolic computation and the selection of 𝜆 = 0, the rela-

tionship among parameters can be obtained

{
m1 = m1,m2 = 0, n1 = −m2

1
, n2 = 0, l1 = 4m2

1
, l2 = 0,

w1 = w1,w2 = w2, a12 = a12
}
. (21)

Thus, we can acquire a class of solitary wave solutions

of Eq. (3) as

u = 2

b

[
m2

1
e𝜃1 (1+ a12e

w2 )

1+ e𝜃1 + a12e
𝜃1+w2

− m2
1
e2𝜃1 (1+ a12e

w2 )2

(1+ e𝜃1 + a12e
𝜃1+w2 )2

]
, (22)
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Figure 2: The single-wave solution of Eq. (3).

Figure 3: The two-wave solution of Eq. (3).

where 𝜃1 = m1x −m2
1
y+ 4m3

1
t + w1. By selecting t = 0,

m1 = 2,w1 = 1,w2 = −1, a12 = 1, the single-wave solution is

plotted in Figure 2.

In addition, the parameters are also interrelated in the

following ways

{
m1 = m1,m2 = m2, n1 = −m2

1
, n2 = −m2

2
, l1 = 4m2

1
,

l2 = 4m2
2
,w1 = w1,w2 = w2, a12 = 0

}
, (23)

therefore a family of resonant two-wave solutions can be

obtained

u = 2

b

[
m2

1
e𝜃1 +m2

2
e𝜃2

1+ e𝜃1 + e𝜃2
− (m1e

𝜃1 +m2e
𝜃2 )2

(1+ e𝜃1 + e𝜃2 )2

]
, (24)

where 𝜃i = mix −m2
i
y+ 4m3

i
t + wi (i = 1, 2). Figure 3 shows

the three-dimensional plot of the two-wave solution in

Eq. (24) by selecting t = 0,m1 = 1,m2 = 2, w1 = 2

3
, w2 = −1,

and b = 1.

3.2 Bell-polynomial-typed BT

Firstly, let us introduce Bell polynomials briefly. With the

assumption f is a C∞ function and

fr1x1,…,rkxk
= 𝜕

r1
x1
· · · 𝜕rkxk f , (25)

where ri(i = 1 … k) are arbitrary integers.

Then, we define the multi-dimensional Bell polynomial

Yn1x1,…,nkxk
( f ) ≡ Yn1,…,nk

(
fr1x1,…,rkxk

)
= e− f 𝜕

n1
x1
· · · 𝜕nkxk e

f ,

(26)

where ni, i = 1 … k are arbitrary integers and ri, i =
1 … k.

For example, when f = f (x, y, t) the Bell polynomials

are as follows

Yx( f ) = fx, Y2x( f ) = f 2
x
+ fxx, Yx,y( f ) = fx,y + fx fy,

Y3x( f ) = f 3
x
+ 3 fx f2x + f3x, · · ·

(27)

Finally, the multi-dimensional binary Bell polynomials

are defined as follows

n1x1,…,nkxk
(V ,W)

≡ Yn1,…,nk
( f )

||| fr1x1 ,…,rkxk

=
⎧⎪⎨⎪⎩
Vr1x1,…,rkxk

, if r1 + r2 + · · · + rk is odd,

Wr1x1,…,rkxk
, if r1 + r2 + · · · + rk is even,

(28)

where V = V(x1, x2,… , xk) and W = W(x1, x2,… , xk) are

C∞ functions.

When V = V(x, y, t) andW = W(x, y, t), the binary Bell

polynomials are

x(V ,W) = Vx, 2x(V ,W) = W2x + V2
x
,

3x(V ,W) = V3x + 3VxW2x + V3
x
,

x,y(V ,W) = Wx,y + VxWy,…
(29)

Letting V = ln
F

G
andW = lnFG in Eq. (28), we have

n1x1,…,nkxk

(
V = ln

F

G
,W = ln FG

)

= (FG)−1D
n1
x1
· · ·Dnk

xk
F ⋅ G, (30)

where
∑k

i=0ni ≥ 1, so that we can transformed the Bell-

polynomial-typed BT into the bilinear BT.

Letting V = 0 and q = W in Eq. (30), we can get the  -

polynomials

n1x1,··· ,nkxk (q) = n1x1,··· ,nkxk (0, q). (31)

For example, some P-polynomials are

2x(q) = q2x, 4x(q) = q4x + 3q2
2x
, x,t(q) = qx,t, · · ·

(32)

where q = q(x, y, t).

When F = G and q = 2lnF, there is a connection

between the  -polynomials and Hirota bilinear operators

n1x1,…,nkxk
(q = 2 ln F) = F−2D

n1
x1
…D

nk
xk
F ⋅ F. (33)
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Letting u = cqxx and v = cqxy in Eq. (3), we can get

cqxxt − cq5x − 3cqxyy − 6c2bqxxqxxx = 0. (34)

Integral once with respect to x, Eq. (34) becomes

cqxt − cq4x − 3cqyy − 3c2bq2
xx
= 0. (35)

Letting c = 1

b
, we can have

E(q) = qxt − q4x − 3q2y − 3q2
xx

= x,t(q)− 4x(q)− 32y(q) = 0. (36)

In the case of q = 2 ln f , the variable transformation is

u = 2

b
(ln f )xx , so Eq. (36) is equal to Eq. (4). By supposing

q′ = 2lng is another solution to Eq. (36), and introducing

V = q′−q
2

= ln
g

f
andW = q′+q

2
= ln f g, the two-filed condi-

tion can be obtained

E(q′)− E(q) = (q′ − q)xt − (q′ − q)4x − 3(q′ − q)2y

− 3(q′ − q)2x(q
′ + q)2x

= 2Vxt − 6V2y − 2V4x − 12V2xW2x

= 0. (37)

Using the binary Bell polynomials, the above formula

can be expressed as follows

E(q′)− E(q)

2
= 𝜕x

(
t(V ,W)− 3x(V ,W)

+ 3x,y(V ,W)− 𝜆
)
− 3𝜕y

(
2x(V ,W)

+ y(V ,W)
)
− 3v2x

(
2x(V ,W)

+ y(V ,W)
)
+ 3vx𝜕x

(
2x(V ,W)

+ y(V ,W)
)
= 0, (38)

where 𝜆 is an arbitrary constant.

Therefore, the Bell-polynomial-typed BT of Eq. (3) is

⎧⎪⎨⎪⎩
t(V ,W)− 3x(V ,W)+ 3x,y(V ,W)− 𝜆 = 0,

2x(V ,W)+ y(V ,W) = 0,
(39)

which indicates the bilinear BT.

4 Painlevé analysis

In this section, we will discuss whether Eq. (3) passes the

Painlevé test employing theWeiss-Tabor-Carnevalemethod.

Suppose a singular manifold 𝜙(x, y, t) = 0 and assume that

u =
∞∑
j=0

uj(x, y, t)𝜙(x, y, t)
j+𝛼,

v =
∞∑
j=0

v j(x, y, t)𝜙(x, y, t)
j+𝛽 ,

(40)

where𝛼 and 𝛽 are negative integers, uj(x, y, t), vj(x, y, t) and

𝜙(x, y, t) are analytic functions.

To balance the dominant terms, we assume

u ∼ u0𝜙
𝛼,

v ∼ v0𝜙
𝛽 .

(41)

Substituting expressions (41) into Eq. (3) to balance the

nonlinear term with the highest derivative term, we obtain

𝛼 = 𝛽 = −2,

u0 = − 2

b
𝜙2
x
,

v0 = − 2

b
𝜙x𝜙y.

(42)

Next, we directly substitute

u ∼ − 2

b
𝜙2
x
𝜙−2 + uj𝜙

j−2,

v ∼ − 2

b
𝜙x𝜙y𝜙

−2 + v j𝜙
j−2,

(43)

into Eq. (3) to get the coefficients of the lowest orders 𝜙 j−5

and 𝜙 j−2 as

F1 = ( j − 6)( j − 4)( j + 1)uj𝜙
3
x
,

F2 = ( j − 2)(uj𝜙y − v j𝜙x).
(44)

Equation (44) can be written in the following matrix

form(
F1

F2

)
= Q( j)

(
uj

v j

)

=
(
−( j − 6)( j − 4)( j + 1)𝜙3

x
0

( j − 2)𝜙y −( j − 2)𝜙x

)(
uj

v j

)
,

(45)

and the resonance is defined by the following formula

det(Q( j)) = ( j − 2)( j − 4)( j − 6)( j + 1)𝜙4
x
. (46)

Therefore, resonance occurs in j = −1, 2, 4, 6, and the

resonance at j = −1 is usually related to the arbitrariness of
the function 𝜙(x, y, t), which describes singular hypersur-

faces [35].
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Figure 4: The exact solution: (a) t = −30; (b) t = 0; (c) t = 30 with a2 = −1, a3 = 1, a4 = 1

2
, b = 1.

Finally, putting the truncated expansions

u =
6∑
j=0

uj(x, y, t)𝜙(x, y, t)
j−2,

v =
6∑
j=0

v j(x, y, t)𝜙(x, y, t)
j−2,

(47)

into Eq. (3), and we find the compatibility conditions at

j = 2, 4 and 6 are fully met. These facts prove that Eq. (3)

is Painlevé-integrable. Moreover, we find that u1, u2 and u3
satisfy the following conditions

u1 =
2

b
𝜙xx, (48)

3𝜙2
y
− 𝜙x𝜙t + 6bu2𝜙

2
x
− 4𝜙2

xx
+ 4𝜙x𝜙xxx = 0, (49)

3𝜙2
x
𝜙yy − 6bu3𝜙

4
x
− 𝜙2

x
𝜙xt + 𝜙x𝜙xx𝜙t − 3𝜙xx𝜙

2
y
+ 3𝜙3

xx

− 4𝜙x𝜙xx𝜙xxx + 𝜙2
x
𝜙xxxx = 0. (50)

In addition, by setting ui = 0 (i = 3, 4,…), it is possible

to get the Painlevé-typed BT as

u = u0𝜙
−2 + u1𝜙

−1 + u2 =
2

b
(ln 𝜙)xx + u2, (51)

where u and u2 satisfy Eq. (3), while u1 and u2 meet Eqs. (48)

and (49).

Set a seed solution u2 = 0 and assum that

𝜙 = 1+ ea1x+a2 y+a3t+a4 , (52)

where ai (i = 1, 2, 3, 4) are arbitrary constants. Solving

Eq. (49) gives rise to the relationship among ai (i = 1, 2, 3, 4)

{
a1 =

3a2
2

a3
, a2 = a2, a3 = a3, a4 = a4

}
. (53)

A family of exact solutions of Eq. (3) is obtained from

the above formula

u = 18a4
2
e𝜉

ba2
3
(1+ e𝜉)

− 18a4
2
e2𝜉

ba2
3
(1+ e𝜉)2

, (54)

where 𝜉 = 3a2
2

a3
x + a2y+ a3t + a4, which are shown in

Figure 4. Observing the images we can see that as t

varies the wave moves along the x-axis from the positive

direction to the negative direction. The exact solution

described by the above expression shows a traveling

wave in (x, y)-plane. Additionally, we note that the

traveling wave remains constant on the characteristic line
3a2

2

a3
x + a2y+ a3t + a4 = 𝛾 , where 𝛾 is an arbitrary real

constant. The propagating speed of traveling wave in x-axis

is given by Vx =
a2
3

3a2
2

, and the propagating speed in y-axis is

given by Vy = a3
a2
. Therefore, the traveling wave is affected

by ai (i = 2, 3, 4).

5 Conclusions

In this paper, we have investigated the (2 + 1)-dimensional

Konopelchenko–Dubrovsky equation. The main work of

this paper was to obtain the Wronskian solution, Bäcklund

transformation, the integrability and thus construct some

exact solutions. First of all, the Wronskian solution to

Eq. (3) has been constructed, and a sufficient condition

for the Wronskian solution was given by Eq. (7). Selecting

the appropriate type of elements in the determinant, we

obtained theN-soliton solution. The three-dimensional plots

of one-, two- and three-soliton solutions and the correspond-

ing density plots have been given. It has been proved that

the Wronskian technique is a powerful tool to solve the
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Hirota bilinear equation, and many exact solutions can be

acquired.

Besides, we have discussed the integrability aspects

of Eq. (3). Bilinear BT and Bell-polynomial-typed BT

are derived. Selecting the appropriate seed solution, we

obtained single-wave and two-wave solutions. It has been

found that Eq. (3) passes the Painlevé test. Moreover, tak-

ing the appropriate truncation, we got the Painlevé-typed

BT. Furthermore, one particular solution has been obtained

through choosing the appropriate seed solution.
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