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Abstract: The main work of this paper is to construct
the Wronskian solution and investigate the integrability
characteristics of the (2 + 1)-dimensional Konopelchenko—
Dubrovsky equation. Firstly, the Wronskian technique is
used to acquire a sufficient condition of the Wronskian solu-
tion. According to the Wronskian form, the soliton solution
is obtained by selecting the elements in the determinant
that satisfy the linear partial differential systems. Secondly,
the bilinear Bécklund transformation and Bell-polynomial-
typed Backlund transformation are derived directly via
the Hirota bilinear method and the Bell polynomial the-
ory, respectively. Finally, Painlevé analysis proves that this
equation possesses the Painlevé property, and a Painlevé-
typed Backlund transformation is constructed to solve a
family of exact solutions by selecting appropriate seed
solution. It shows that the Wronskian technique, Backlund
transformation, Bell polynomial and Painlevé analysis are
applicable to obtain the exact solutions of the nonlinear evo-
lution equations, e.g., soliton solution, single-wave solution
and two-wave solution.
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1 Introduction

Nonlinear evolution equations (NLEES) are important for
describing many nonlinear physical phenomena [1]-[5].
Investigating the exact solutions and integrability of NLEEs
plays an essential role in understanding the mechanisms of
nonlinear waves [6]-[8]. The Hirota bhilinear method is a
useful and direct method to construct the N-soliton solution
and bilinear Backlund transformation (BT) to NLEEs [9].
Based on the Hirota bilinear form, more and more kinds of
exact solutions to NLEEs have been found, such as soliton
solution [10]-[12], lump solution [13]—[15], M-lump solution
[16], interaction solution [1], [17] and rouge wave solution
[11], [15], [18]. The Wronskian technique is also a useful
method to solve the exact solution of NLEEs [19]-[21], and
Wronskian formulas are employed to establish N-soliton
solution in terms of Wronskian-type determinan [21], [51],
[52]. Moreover, the soliton solution [43], positive solution
[44], [45], negative solution [46], rational solution [47] and
complexion solution [48] can also be obtained by selecting
the coefficient matrix corresponding to the eigenvalues.

In the study of the integrability of NLEEs, many system-
atic methods have been used, such as BT [35]-[38], Bell poly-
nomial [35], [37], [52], and Painlevé analysis [10], [28], [52]. BT
is a powerful method for discovering scattering problems
and generating new solutions from the known ones. Bell
polynomial method, firstly proposed by Lembert and Gilson,
has a close connection with the Hirota bilinear method [50],
and it can be used to construct Bell-polynomial-typed BT,
Lax pair and conservation law for NLEEs possessing bilinear
forms. In 1983, Weiss ], Tabor M and Carnevale G explored
the Painlevé analysis to solve the NLEEs [49]. By determin-
ing whether an equation has the Painlevé property, one
can initially determine whether the equation is integrable
and has an exact solution, and then certain conditions are
created for solving the equation.

Describing the nonlinear wave motion, a well-known
model is the (2 + 1)-dimensional Kadomtsev—Petviashvili
(KP) equation written as [22], [23]

(u, + 6uu, + u,,, ), £ u,, =0. @
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The equation can be applied to simulate water waves
of long wavelengths with weak nonlinear restoring forces
and dispersion. It is also used to simulate waves in ferro-
magnetic media. The coefficient +1 indicates weak surface
tension and strong surface tension, respectively. This means
that the two KP equations have different physical structures
and properties for +1. Several analytical and numerical
methods were used to solve the KP equation.

A generalized (2 4+ 1)-dimensional equation was firstly
proposed by Konopelchenko and Dubrovsky in 1984 [42] as

Up — Uyy — 3V, + %azuzux + 3au,v — 6buu, = 0,
()
u, = v,
where u = u(x, y, t) and v = v(x, y, t) are analytic functions,
and a and b are arbitrary constants. In previous research,
the tanh-sech method, the Hirota bilinear method, the
extended F-expansion method, the cosh-sinh method, the
modified extended direct algebraic method and the expo-
nential functions method were used to derive kinks, soli-
tons, traveling wave solution and periodic solution in Refs.
[24]-[29]. The lump solution was presented by transforming
Eq. (2) into an ordinary differential equation or bilinear
form [39], [40]. In addition, BT, Wronskian solution as well as
Painlevé analysis were all obtained [27], [28]. Furthermore,
there were some other exact solutions in Refs. [29]-[34].
When a = 0, Eq. (2) enjoys the following form

Uy — Uy — 3V, — 6buu, =0, )

u

= Ve

Through the dependent variable transformation u =
%(ln .o EQ. (3) can be changed into the bilinear form

(DD, — D} =3D%)f - f =0, @
where the binary operator D is defined by [9]
'}
DEDYD{If(x, y, 1) - g(x, y, )]
=0y — 0)%(0y —0Y @y — 90 f(x,y,0¢
x oy, t,)lx’:x,y’=y,t/:t' ©)

For convenience, we refer to Eq. (3) as the (2 + D-
dimensional Konopelchenko—Dubrovsky (KD) equation in
the following section.
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In this paper, the main focus is to study Eq. (3). For
Eq. (3), the lump solution was obtained by the positive
quadratic function method in Ref. [13]. The linear super-
position principle was applied to obtain resonant multiple
wave solutions in real field and complex field in Ref. [41].
Besides, solitary waves and interaction phenomena have
been proposed based on the Hirota bilinear form in Refs.
[13], [41]. However, the Wronskian solution and the inte-
grability of Eq. (3) have not been studied. We will derive
the Wronskian solution, Backlund transformation, Painlevé
analysis and some exact solutions of Eq. (3). The rest of
this paper is structured as follows. Firstly, in Section 2,
we apply the Wronskian method to obtain the Wronskian
solution and derive the soliton solution based on the Wron-
skian form. Moreover, we take one-, two- and three-soliton
solutions as examples. Secondly, in Section 3, bilinear BT
and Bell-polynomial-typed BT to Eq. (3) are constructed.
Then in Section 4, we use Painlevé analysis to check its
integrability. Finally, we will present some conclusions in
Section 5.

2 N-soliton solution in Wronskian
form

2.1 Wronskian solution

In this subsection, we will construct a Wronskian solution
to Eq. (3). We use the following form

¢;0) ¢§l) ¢;N —1)
d)g)) ¢;1) ¢;N -1)
fv =W(hy, by, -, y) =
(0) (V) (N-1)
N N N
- =) ®

where ¢ = 241 i=1,2,...,Nm=12 ... N.

Assume that ¢; satisfies the following relations
¢i,y = (;bi,XX’ ¢i,t = 4¢i,xxx- 7

Based on the assumption and determinant properties,
we obtain the differential equations for fy
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fux =N =2.5].
oo = |N/—\2,N+1| + jN/—\a,N—LN(,
Fror = |17—\2,N+ 2’ +2’N/—\3,N— 1,N+1|
+|N=4,N-2N-1N|,
frooon = [N =2 N +3| +3|N =3,N - 1,N +2|
+3[N=4,N-2,N-1N+1]
+|N-5N-3N-2N-1N|
fuy = |N/—\2,N+1| - )N/—\?,,N—LN(, o
frgy = |N=2.N+3| +2[N =3,N.N +1|
- |N/—\4,N—2,N—1,N+1(
- |17—\3,N—1,N+2(

B

+ |N/—\5,N—3,N—2,N—1,N

fre= 4|N/—\2,N+2| —4|AT—\3,N—1,N+1|
+4(N/—\4,N—2,N—1,N|,
fruxe = 4|N/—\2,N+ 3| - 4|N/—\3,N,N+ 1|

+4N=5,N-3,N-2N-1N|
Substituting the derivatives of f into Eq. (4), we have

(fut = foo = 3F)f = —12|N/—\3, N,N + 1|(1v/—\1|

- fxfl + 4f;<xxj;< - 3fX2X + Sf;

[ AN LN [T Y

—12|N/—\2,N+1H1\T—\3,N—1,N|,
and further deduce that

(DD, = DD, =303 f - f

- —1z(|17—\1||N/—\3,N,N+ 1-IN-2,N
X|N=3,N—1,N+1]+|N—2,N +1
><||N/—\3,N—1,N|>

=_61\T—\3 0 N-2 N-1 N N+1‘

0 N-3 N-2 N-1 N N+1

=0. (10)
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Using the Laplace expansion of the determinant, we can
prove that fy is the solution of Eq. (3).

2.2 N-soliton solution

From the calculation, we know thatif ¢; i =1 ... N) satis-
fies Eq. (7), the solution of Eq. (3) can be acquired. We can
easily find that ¢; = e + ' satisfies Eq. (7) with & = lix +
By +48t+&” and n; = kx + K2y + 43t + 0, where 1,
k;, 5;0’ and nio) are arbitrary constants. Therefore, we can
get the N-soliton solution of Eq. (3) as

w=ZIn Wiy, b+ byl an
When N = 1, the solution of Eq. (4) is written as
f=f=W@) =g =¢é"+emh (12)

Substituting it into the independent variable transfor-
mation, we have

_ 20k - 1)?en*é

b (éh+em? )

2
u= B(ln fl)xx

which is the one-soliton solution of Eq. (3).
When N = 2, the solution of Eq. (4) is given as

& d)l,x
¢2 d’z,x

— (kz _ kl)e'?1+'12 (1 + ll{z_iklefz—ﬂz + lljz;lleﬁi—'h

2 1 2 1

fZ = W(¢19 ¢2) =

+ lZ - ll e§1+§2_’11_'72>’ (14)

ky =k

which generates the two-soliton solution of Eq. (3) via u =

20 fy) -
Taking N = 3, we obtain

& d)l,x
= W(¢17¢2’ ¢3) =| ¢ ¢2,x ¢2,xx
4)3 d)S,x ¢3,xx

= _(kl - kz)(kl - k3)(k2 — k3)e’l1+'72+'ls

(k= By = k) ey, _ (k= bk = b)
(ky — keg)(ky — k) (ky — ky)(ky — k)

%—M%—mﬁﬂ]
(ky — )k — ko)

— (I = L), = LA, — Lesrtatés

(ky = LG =) s, _ Ky = L) — L)

G =L~ 1) G =L, — 1)
(ky — L)(ks — lz)e,k_é]
G-Le- |

d)l,xx

x|+

X 52~ 4

x|+

xeh~% 4 (15)
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(a)

Figure 1: The soliton solution of Eq. (3) with b = 1. (a) One-soliton solution: /, = 1.5, k, = —%, E9 = 5 = 0; (b) two-soliton solution: /; =
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3

—_5,221;

k==1k, =19 =5 = &7 = 59 = 0; () three-soliton solution: /; = =1.3,1, = 0.9, /; = 0.7, k; = 2, k, = 1.8, k; = —13,

2
0] 0, 0] 0, 0] 0,
R )

which solves the three-soliton solution of Eq. (3) via u =

2
E(ln )

As an example, we choose the appropriate parameters
to draw one-, two- and three-soliton solutions in Figure 1.

3 Bilinear BT and
Bell-polynomial-typed BT

Bell polynomial has a close association with the Hirota
bilinear method. The Bell-polynomial-typed BT can be trans-
formed into the bilinear BT through the correlation between
the binary Bell polynomials and Hirota bilinear operators.
In this section, we will construct the Bilinear BT and Bell-
polynomial-typed BT.

3.1 Bilinear BT

In this section, we will construct a bilinear BT for Eq. (3).

First of all, supposing g = g(x, y,t) is another solution to

Eq. (4) and introduce the following essential function
P =((D,D, - DD, — 3D%)f - f1g*

— (DD, — D;D, — sui)g -glff=0. (16)

By using the exchange formulas, symbolic computation
on Eq. (16) leads to

JP=DDf & fg-D,[0f ) fg—30if - 9)

-(Dyg - f)] —3D,(D,f-8) - f&—3D,(D}f - 8)- fg

=D,[(D, - D}+3D,Dy,— Nf - g1 fg
+3D,[(D:+Dy)f-gl- (D, f - &
—-3D,[(D%+D,)f- gl fg

=0, an
where A is an arbitrary constant.
Therefore, the bilinear BT of Eq. (3) is as follows
D,—D*+3D,D,— A)f-g=0,
( t X x~y )f g (18)

(D} +D,)f-g=0.

Let us choose a seed solution g =1 to Eq. (4), then we
have the following partial differential equation

f;t_f;(xx+3fxy+’1=07
fat fy=0.

(19)

We think about the exponential wave solution of
Eq. (19)

f=1+e% +e% + a,eh*:, (20)

where 0; = mx + ny + it + w; (i = 1, 2). With the help of
symbolic computation and the selection of 4 = 0, the rela-
tionship among parameters can be obtained

{my=my,my,=0,n, =—mi,n,=0,1, =4m?, 1, =0,
Wy = Wy, Wy = Wy, Gy = Ay, J. ()]
Thus, we can acquire a class of solitary wave solutions

of Eq. (3) as

_ 2 meh(+ape™)  mie 1+ aye™y

b1+ el +ane®™: (14 e + apefit) |’

(22)
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_4 _2 0

Figure 2: The single-wave solution of Eq. (3).

Figure 3: The two-wave solution of Eq. (3).

where 6, = m;x —m2y +4mit+ w;. By selecting t =0,
m; =2, w; =1L w, = -1, a, =1, the single-wave solution is
plotted in Figure 2.

In addition, the parameters are also interrelated in the
following ways

— — — 2 — 2 — 2
{m; =m;,my =my,n; = —mf,ny = —mj, I, = 4my,

L, =4m2, wy = w;, w, = wy, a5, =0}, (23)
therefore a family of resonant two-wave solutions can be
obtained

2 [m2et + mie. _ (mye®t + mye®)?

u=— . 24
bl 1+ e +e% (1+ e + ef2)? @)

where §; = mx — m’y + 4m’t + w; (i = 1,2). Figure 3 shows
the three-dimensional plot of the two-wave solution in
Eq. (24) by selectingt =0,m; =1, my, =2, w; = % wy, = —1,
andb =1

3.2 Bell-polynomial-typed BT

Firstly, let us introduce Bell polynomials briefly. With the
assumption f is a C* function and

.0k

XxJ

(25)

f =9..
T Xq5eees T Xy Xq

wherer;(i =1 ... k) are arbitrary integers.
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Then, we define the multi-dimensional Bell polynomial
Ynlxl,...,nkxk(f) = Yn1 ..... ny (frlxl,...,rkxk) = e_fa)r(lll T a)r(l:efa
(26)

where n;,i=1... k are arbitrary integers and r;,i=
1...k

For example, when f = f(x,y, t) the Bell polynomials
are as follows

Yx(f) = fx’ YZx(f) = f;(z + fxx’
YBx(f) zf;(g+3ﬁ(f2x+f3x>' o

Yoy (P = foy+ fify.

@7
Finally, the multi-dimensional binary Bell polynomials
are defined as follows

ynlx],..,,nkxk(v9 w)

=Y, )
frlxl,...,rkxk
T X TR Xi? ifry+r,+---+r.isodd, 29)
FXse e X ifry+r,+---+riseven,
Where V = V(Xl,XZ, 7Xk) and W = W(Xl’XZ’ ’Xk) are

C*® functions.
WhenV = V(x,y,t)and W = W(x, y, t), the binary Bell
polynomials are

VAV, W)=V, DV, W) = Wiy + V2,

Vo (V, W) = Vo + 3V, Wy, + V2,
Vo, (VW) =W, , + V,W,, ...

(29)

Letting V =1In g and W = InFG in Eq. (28), we have

F
Yns s (V=10 5. W = In FG)
= (FG)™'Dy' - - - D'F - G, (30)

where Zf:o"i > 1, so that we can transformed the Bell-
polynomial-typed BT into the bilinear BT.

Letting V = 0 and ¢ = W in Eq. (30), we can get the P-
polynomials

P o @ = Yy mex, (05 @) @D
For example, some P-polynomials are
Po(@ =G Pu@ = i + 3G, Pry(@ =Gy -
(32)

where q = q(x, y, 0.
When F=G and q =2InF, there is a connection
between the P-polynomials and Hirota bilinear operators

P .,nkxk(q=21n F)=F_ZD;:1...D;[:F~E

nyXy,. .

(33)
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Letting u = cq,, and v = cq,, in Eq. (3), we can get

Ot = s, = 360y — 6Dy = 0. (34)
Integral once with respect to x, Eq. (34) becomes
€y — Cqay — 3¢q,yy — 3¢*b, = 0. (35)
Letting ¢ = % we can have
E(@) = G — ax — 30y — 30,
= Pei(@) — Py(q) — 3P, (@) = 0. (36)

In the case of ¢ = 21Inf, the variable transformation is
u= %(ln e 50 Eq. (36) is equal to Eq. (4). By supposing
q’ =2Ing is another solution to Eq. (36), and introducing
V= % =InfandW = % =1n fg, the two-filed condi-
tion can be obtained

EQ)—E@=(q — Q=G — Pax —3q" — sy

=30 — Polq' + P
== 2VXt - GVZy - 2V4X - 12V2XW2X

=0. 37

Using the binary Bell polynomials, the above formula
can be expressed as follows

E(q) — E(q)

T8 = 0 (VY. W) = Yy (V. W)

+3Y,,(V, W) = 1) =30, (Y, (V, W)
+ Y, (V, W) = 3vy (Vo (V, W)
+ Y, (V, W) + 30,0, (Vo (V, W)

+X,(V,W)) =0, (38)

where A is an arbitrary constant.
Therefore, the Bell-polynomial-typed BT of Eq. (3) is

YV, W) = Y, (V, W) + 3V, ,(V, W) — A =0, 39)

Vo (V, W) + Y, (V, W) =0,

which indicates the bilinear BT.

4 Painlevé analysis

In this section, we will discuss whether Eq. (3) passes the
Painlevé test employing the Weiss-Tabor-Carnevale method.
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Suppose a singular manifold ¢(x, y, t) = 0 and assume that

w= Y ulx,y, 0y, 0/,
= (40)

V= Z v;(6y, 0K, y, ty+e,
j=0

where @ and f are negative integers, u j(x, y,10),v,(x,y,t)and
¢, y, t) are analytic functions.
To balance the dominant terms, we assume

u~ uyd%,

(41)
v~ vy dP.

Substituting expressions (41) into Eq. (3) to balance the
nonlinear term with the highest derivative term, we obtain

a=p=-2,
2
iy == &5 42
2
Vo = _E(ﬁxd)y'
Next, we directly substitute
U~ —%dﬁdfz +
43)

2 _ i
v~ _Ed)xd)yd) 2+vj¢] 27

into Eq. (3) to get the coefficients of the lowest orders s
and ¢/~ as
F = (- 6)(j — 9 + Du,¢b?,
F,=(—2Wp, —v;p,).

Equation (44) can be written in the following matrix
form

F W
()=o)

—(j =6 — D + D} 0 u;
(-2, ~(=2¢, J\v; )’

(45)

(44)

and the resonance is defined by the following formula

det(Q() = (j — 2 — D — 6)(j + D} (46)

Therefore, resonance occurs in j = —1,2,4, 6, and the
resonance at j = —1is usually related to the arbitrariness of
the function ¢(x, y, t), which describes singular hypersur-
faces [35].
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Figure 4: The exact solution: (a) t = —30; (b) t = 0; () t =30 witha, = —1,0;, = 1,0, =

Finally, putting the truncated expansions

6
u= Z u;(x, y, 0, y, ty=2,
=0
’6 @7
v =) 06y, 00Ky, 07,
j=0

into Eq. (3), and we find the compatibility conditions at
Jj=2,4 and 6 are fully met. These facts prove that Eq. (3)
is Painlevé-integrable. Moreover, we find that u;, u, and u,
satisfy the following conditions

U= S 48)
302 — By + Bbuy? — 4L, + Ay =0, (49)

3¢)2(¢yy - 6bu3¢i - ¢)2(¢xt + ¢x¢xx¢t - 3¢xx¢§; + 3¢)3(X
- 4¢x¢xx¢xxx + ¢)2(¢xxxx =0. (50)

In addition, by setting u; = 0 (i = 3, 4, ...), it is possible
to get the Painlevé-typed BT as

U=+ +u, = %(m D+ 1y, (51

where u and u, satisfy Eq. (3), while u; and u, meet Eqgs. (48)
and (49).

Set a seed solution u, = 0 and assum that

¢ =1 + ea1x+azy+a3t+a4’ (52)

where a; (i=1,2,3,4) are arbitrary constants. Solving

Eq. (49) gives rise to the relationship among a; (i =1,2,3,4)

2
a

{alz le,azzaz,agza3,a4=a4}. (53)
3
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Lb=1
2

A family of exact solutions of Eq. (3) is obtained from
the above formula

4 4,2
_ 18ajéf 18a;e%

= - , 54
u bai(1+¢€%)  bai(l+ € 54)

where ¢ = 36[15,( + a,y + ast + a,, which are shown in
Figure 4. Obéerving the images we can see that as ¢
varies the wave moves along the x-axis from the positive
direction to the negative direction. The exact solution
described by the above expression shows a traveling
wave in (x,y)-plane. Additionally, we note that the
traveling wave remains constant on the characteristic line
%x +a,y +ast+a, =y, where y is an arbitrary real
constant. The propagating speed of traveling wave in x-axis
isgiven by V, = ;% and the propagating speed in y-axis is
given by V, Z—z 'lz“herefore, the traveling wave is affected
bya; (i=2,3,4).

5 Conclusions

In this paper, we have investigated the (2 + 1)-dimensional
Konopelchenko—Dubrovsky equation. The main work of
this paper was to obtain the Wronskian solution, Backlund
transformation, the integrability and thus construct some
exact solutions. First of all, the Wronskian solution to
Eq. (3) has been constructed, and a sufficient condition
for the Wronskian solution was given by Eq. (7). Selecting
the appropriate type of elements in the determinant, we
obtained the N-soliton solution. The three-dimensional plots
of one-, two- and three-soliton solutions and the correspond-
ing density plots have been given. It has been proved that
the Wronskian technique is a powerful tool to solve the
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Hirota bilinear equation, and many exact solutions can be
acquired.

Besides, we have discussed the integrability aspects
of Eq. (3). Bilinear BT and Bell-polynomial-typed BT
are derived. Selecting the appropriate seed solution, we
obtained single-wave and two-wave solutions. It has been
found that Eq. (3) passes the Painlevé test. Moreover, tak-
ing the appropriate truncation, we got the Painlevé-typed
BT. Furthermore, one particular solution has been obtained
through choosing the appropriate seed solution.
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