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Abstract
In this study, we investigate the Biswas–Arshed (BA) model, applicable in various fields 
such as fluid mechanics, laser science, and nonlinear optics. We employ the direct alge-
braic procedure, the modified rational sine–cosine process, and the 

(

1

G′

)

 approach to obtain 
soliton dynamics of the mentioned model. Chaotic behavior and sensitivity analysis of the 
BA model are also investigated using a planar dynamic system. As a result, periodic, quasi-
periodic, and chaotic patterns are obtained from the suggested nonlinear model. We also 
obtain various soliton solutions from this model with novel properties. From the proposed 
equation, we can obtain periodic waves with bright solitons, bright-dark solitons, dark 
solitons, breather waves with singularities, double periodic waves, periodic waves with 
singularities, bright solitons with singularities, multiple bright dark breather waves with 
singularities, and multiple bright breather waves with singularities. Certain features of the 
outcomes are exhibited in 2D, 3D, and density views. The work presented is innovative as 
it offers valuable insights into the  governing model’s intricate behaviors and diverse 
waveforms through extensive analysis. This study also contributes to understanding real-
world problems by incorporating waveform properties, bifurcation analysis, chaotic 
dynamics, and sensitivity tests.

Keywords  Direct algebraic procedure · Modified rational sine–cosine process · 
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1  Introduction

Solitons (Ullah 2023; Ullah et al. 2024a) are optical fields that remain unchanged during 
transmission because of a delicate balance between linear and nonlinear impacts in the 
system (Ullah et  al. 2024b; Ganie et  al. 2024). Solitons are essential to modern 
communication technologies, optical computing, and optical switching. The usage of 
optical solitons is increasing, mainly with the latest technological advancements. Hence, 
discussing the optical soliton of a nonlinear partial differential equation became an intimate 
context. Tappert and Hasegawa first introduced the concept of optical soliton both in 
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normal and anomalous dispersions in 1973 (Hasegawa and Tappert 1973). Different types 
of models emerge in nonlinear science, for example, the Heisenberg ferromagnetic spin 
chain model (Salahshour et  al. 2021; Kumar and Niwas 2023a), the 
Boiti–Leon–Manna–Pempinelli equation (Kumar and Niwas 2023b), the Phi-4 model 
(Roshid et al. 2022), the Klein–Gordon model (Roshid et al. 2023a), the Oskolkov model 
(Roshid et  al. 2023b), the Kudryashov–Sinelshchikov equation (Kumar et  al. 2022), the 
generalized Benjamin–Ono equation (Niwas and Kumar 2023), the Fokas–Lenells model 
(Ullah et  al 2023a), the Zoomeron model (Ullah et  al 2023b), the generalized 
Camassa–Holm Kadomtsev–Petviashvili model (Chen and Guan 2021), the Toda lattice 
equation (Ma and Maruno 2004), the Kundu–Eckhaus equation (Kudryashov 2020), the 
Biswas–Arshed model (Aouadi et  al. 2019; Mawa et  al. 2023; Ullah et  al. 2022), the 
Korteweg–de Vries equation (Zhou et al 2001), the Davey–Stewartson equation (Ma 2004), 
The Bogoyavlenskii equation model (Uddin et al. 2023), etc. Biswas and Arshed developed 
an eminent model called the Biswas–Arshed model in 2018 (Biswas and Arshed 2018). 
This model is applied to the signal transmission through an optical fiber. In this model, 
there are two types of nonlinear forms. They are power law and Kerr law. The impressive 
phenomena of this nonlinear problem are the lack of self-phase modulation and a small 
amount of group velocity dispersion. Another observable phenomenon in this model is the 
balance of low-group velocity dispersion. Numerous credible and efficient processes have 
been implemented to elicit the soliton outcome of the BA equation. Sabi’u and his 
coauthors obtained new exact soliton solutions for studying soliton properties in optical 
fibers (Sabi’u et al. 2019). Ekici and others found the model’s singular, dark, and bright 
soliton outcomes using the extended trial function algorithm (Ekici and Sonmezoglu 
2019). Rehman and his colleagues discovered soliton solutions of the suggested equation 
by mapping technique (Rehman et  al. 2019a). The prime object of this document is to 
unravel the Kerr law nonlinearity of the BA equation by the direct algebraic technique 
(Taghizadeh et al. 2012), the modified rational sine–cosine process (Marwan 2022; Akter 
et al. 2024), and the 

(

1

G′

)

 approach (Yokus and Durur 2020). Furthermore, this model’s 
chaotic behavior and sensitivity analysis are also investigated using the planar dynamic 
system. To our consciousness, the Kerr law nonlinearity of the BA equation by our 
suggested methods has not been published previously.

The arrangement of this paper is expressed in the subsequent form. Section 2 represents 
the governing model and its ordinary differential structure. The use of the direct algebraic 
technique is contained in Sect. 3. Section 4 presents the modified rational sine–cosine tech-
nique and its utilization. Utilization of the 

(

1

G′

)

 scheme is discussed in Sect. 5. Section 6 
covers the graphical analysis of the outcomes. The chaotic nature of the governing model is 
described in Sect. 7. Section 8 contains the sensitivity analysis of the suggested nonlinear 
problem. The result’s novelty is presented in Sect. 9. Some concluding notes are provided 
in Sect. 10.

2 � Governing model and its ordinary differential form

Let the Biswas–Arshed model be assumed in the following manner (Biswas and Arshed 
2018; Sabi’u et al. 2019; Ekici and Sonmezoglu 2019; Rehman et al. 2019a)

(1)i�t + m1�xx + m2�xt + i
(

n1�xxx + n2�xxt

)

= i
[

s
(

|�|
2
)

� + q
(

|�|2
)

x
� + v|�|2�x

]

,
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where � means the wave function. x and t correspond to the distance and temporal coordi-
nates, sequentially. The first expression of the above equation implies the temporal evolu-
tion of solitons whereas m1 premises the coefficient of group velocity dispersion (GVD), 
m2 premises spatio-temporal dispersion (STD). Moreover, n1 and n2 indicate the third-order 
dispersion (3OD) and third-order STD, sequentially. The non-linear effect stalk from the 
coefficients s , q , and v , whereas p gives the self-steepening effect with nonlinear dispersion 
q and v.

Here we will get the ordinary differential equation of the BA model. To obtain it, we 
assume a transformation form as follows

where U = magnitude of soliton, c = speed of soliton, � = phase component, a = soliton 
frequency, b = number of wave, e = phase constant.

From equations Eq. (1) and Eq. (2), one can reach

3 � Application of direct algebraic technique

The initial solution of equation Eq. (3) is assumed as (Taghizadeh et al. 2012)

where lk , (k = 0,1, 2,………N) are free constants and γ gratifies the subsequent auxiliary 
ordinary differential form

From Eq. (5), we obtain the following solutions:

We can notice the integer N = 1 by taking the homogeneous balance between U3 and U′′ 
in Eq. (3). For N = 1 Eq. (4) becomes

(2)�(x, t) = U(�)ei� , � = x − ct, � = −ax + bt + e,

(3)

(

m1 − m2c + 3n1a − 2n2ac − n2b
)

U�� − (m1a
2 − m2ab + n1a

3 − n2a
2b + b)U − a(s + v)U3 = 0.

(4)U(�) =

N
∑

k=0

lkγ(�),

(5)γ�(�) = γ2(�) +M.

(6)γ(𝜆) =

⎧

⎪

⎨

⎪

⎩

−
√

−Mtanh
�
√

−M𝜆

�

, M < 0,

−
√

−Mcoth
�
√

−M𝜆

�

, M < 0,

(7)γ(𝜆) =

⎧

⎪

⎨

⎪

⎩

√

Mtan
�
√

−M𝜆

�

, M > 0,

−
√

Mcot
�
√

−M𝜆

�

, M > 0,

(8)γ(�) = −
1

�
,M = 0.
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Now combining Eq. (9) and Eq. (5) and put into Eq. (3), we get the solution as,

Using Eq. (2), and Eqs. (6)-(10), we get,
�1(x, t) = −l1

√

−Mtanh

�
√

−M�

�

ei�,

�2(x, t) = −l1

√

−Mcoth

�
√

−M�

�

ei�,

�3(x, t) = l1

√

−Mtan

�
√

−M�

�

ei�,

�4(x, t) = −l1

√

−Mcot

�
√

−M�

�

ei�,

�5(x, t) = −
1

�
l1e

i�,
where � = x − ct, � = −ax + bt + e , M = −

a3n1−a
2bn2+a

2m1−abm2+b

2(2can2+cm2−3an1+bn2−m1)
 and 

l1 = ±

√

−2(2can2+cm2−3an1+bn2−m1)
a(s+v)

.

4 � Application of modified rational sine–cosine technique

The trial solution of Eq. (3) is (Marwan 2022; Akter et al. 2024)

Then combining Eq. (11) and Eq. (3) and let each coefficient of 1, sin(�) , cos(�) to zero. 
Then we obtain the solution sets as:

(9)U(�) = l0 + l1γ(�).

(10)

M = −
a3n1 − a2bn2 + a2m1 − abm2 + b

2
(

2can2 + cm2 − 3an1 + bn2 − m1

) , l0 = 0,

l1 = ±

√

−2
(

2can2 + cm2 − 3an1 + bn2 − m1

)

a(s + v)
.

(11)U(�) =
1 + � sin (�)

� + γ cos (�)
.

(12)

⎧

⎪

⎨

⎪

⎩

� = ±1, � = 0, a = a, γ = ±
�

as+av

a3n1−a
2bn2+a

2m1−abm2+b
,

c = −
2a3n1−2a

2bn2+2a
2m1−2abm2−3an1+bn2+2b−m1

2an2+m2

,

(13)

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

� = ±γ

�

a3n1 − a2bn2 + a2m1 − abm2 + b

as + av
, a = a, γ = γ,

c = −
2a3n1 − 2a2bn2 + 2a2m1 − 2abm2 − 3an1 + bn2 + 2b − m1

2an2 + m2

,

� = ±

�

γ2a3n1 − γ2a2bn2 + γ2a2m1 − γ2abm2 + γ2b − as − av

a3n1 − a2bn2 + a2m1 − abm2 + b
.
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Combining Eq. (2), Eq. (11), Eq. (12) we get the solution as:

where γ = ±
√

as+av

a3n1−a
2bn2+a

2m1−abm2+b
 and c = −

2a3n1−2a
2bn2+2a

2m1−2abm2−3an1+bn2+2b−m1

2an2+m2

 with 
arbitrary constant a.

Combining Eq. (2), Eq. (11), Eq. (13) we get the solution sets:

where � = ±γ

√

a3n1−a
2bn2+a

2m1−abm2+b

as+av
 , � = ±

√

γ2a3n1−γ
2a2bn2+γ

2a2m1−γ
2abm2+γ

2b−as−av

a3n1−a
2bn2+a

2m1−abm2+b
 , and 

c = −
2a3n1−2a

2bn2+2a
2m1−2abm2−3an1+bn2+2b−m1

2an2+m2

 with arbitrary constants a andγ.

5 � Application of 
(

1

G′

)

 expansion technique

The initial solution of Eq. (3) is (Yokus and Durur 2020)

where � and � are arbitrary components.
From Eq. (14) we get the following context:

where A is a physical constant. We can be noticed integer N = 1 by taking the homogeneous 
balance between U3 and U′′ . For N = 1 , Eq. (13) becomes

Now combining Eq. (15), and Eq. (16) and put into Eq. (3) we get the following solution 
set as

(14)�6(x, t) =
1 ± sin (x − ct)

γ cos (x − ct)
ei(−ax+bt+e),

(15)�7(x, t) =
1 + � sin (x − ct)

� + γ cos (x − ct)
ei(−ax+bt+e),

(16)U(�) =

N
∑

k=0

lk

(

1

G�(�)

)k

,

(17)G��(�) + �G�(�) + � = 0,

(18)
1

G�(�)
=

1

−
�

�
+ Acosh(��) − Asinh(��)

,

(19)U(�) = l0 + l1

(

1

G�(�)

)

.

(20)

c =
1

a2
(

a2n2 + aa2m2 − 1
)(

2an2 + m2

)

(

2a3�2n1n2 − 2a3sn2l
2

0
− 2a3vn2l

2

0
− a�2sn2l

2

0

−a�2vn2l
2

0
+ 3�2a2m2n1 − 2a2vm2l

2

0
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0

+ 2avl2
0
− �2m1

)

, a = a, � = �, � = �, l0 = l0,

b =
a
(

a2n1 + sl2
0
+ vl2

0
+ am1

)

a2n2 + am2 − 1
, l1 =

2l0�

�
.
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Now utilizing Eq. (16), Eq. (18), and Eq. (19) and put into Eq. (2) we get the solution 
as,

�8(x, t) =

(

l0 +
l1

−
�

�
+Acosh((x−ct)�)−Asinh((x−ct)�)

)

ei(−ax+bt+e),

where l1 =
2l0�

�
 , b =

a(a2n1+sl20+vl
2

0
+am1)

a2n2+am2−1
 , 

c =
1

a2
(

a2n2 + aa2m2 − 1
)(

2an2 + m2

)

(

2a3�2n1n2 − 2a3sn2l
2

0
− 2a3vn2l

2

0
− a�2sn2l

2

0

− a�2vn2l
2

0
+ 3�2a2m2n1 − 2a2vm2l

2

0
+ a�2m1m2

−3a�2n1 + 2a�2n1 + 2asl2
0
+ 2avl2

0
− �2m1

)

 with 

arbitrary constantsa,�,� , andl0.

6 � Figure analysis

The graphical representation of the outcome �7 is depicted in Fig. 1a–f. Figure shows 
that Re(�7) and Im(�7) exhibit a periodic wave with bright-dark soliton, when the |

|

�7
|

|

 
exhibits periodic wave with bright soliton.

The outcomes �1 and �3 exhibit the same wave pattern, which is shown in Fig. 2a–f 
for �3 . Figure displays that Re(�3) and Im(�3) exhibit a double periodic wave, while the 
|

|

�3
|

|

 exhibits a dark soliton.

(a) (b) (c)

(d) (e) (f)

Fig. 1   Outlook of �
7
 for = v = a = b = c = e = � = m

1
= m

2
= n

1
= n

2
= 1 , (a, b, c) 3D with density plot; 

(d, e, f) 2D plot
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(a) (b) (c)

(d) (e) (f)

Fig. 2   Outlook of �
3
 for a = m

1
= −3, b = v = c = e = 1, s = 2,m

2
= 3, n

1
= 4, n

2
= 5, (a, b, c) 3D with 

density plot; (d, e, f) 2D plot

(a) (b) (c)

(d) (e) (f)

Fig. 3   Outlook of �
5
 for b = n

1
= m

1
= 0, v = c = e = 1, s = a = 2,m

2
= 3, n

2
= 5 (a, b, c) 3D with density 

plot; (d, e, f) 2D plot
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The outcome �5 is shown in Fig. 3a–f. Figure displays that Re(�5) and Im(�5) exhibit 
a breather wave with singularity, while the |

|

�5
|

|

 exhibits a bright soliton with singularity.
The outcomes �2 , �4 , and �8 exhibit the same wave pattern, which is shown in Fig. 4a–f for 

�2 . One can observe that Re(�2) and Im(�2) exhibit a periodic wave with singularity, where 
|

|

�2
|

|

 exhibits a bright soliton with singularity.
The outcome �6 is shown in Fig.  5a–f. Figure displays that Re(�6) and Im(�6) exhibit 

multiple dark-bright breather waves with singularity, while |
|

�6
|

|

 exhibits multiple bright 
breather waves with singularity.

We see that our acquired results contain bright, dark, and bright-dark soliton solutions. 
It is noted that bright solitons are widely used for long-distance signal transmission without 
distortion in optical fiber communication networks due to their stable and robust nature. So, it 
applies to high-speed communication systems (Hasegawa 2022). On the other hand, there are 
many applications of dark soliton, including all-optical switching, soliton-based logic gates, 
and fundamental studies of nonlinear dynamics (Kivshar and Davies 1998).

7 � Chaotic nature

In this section, perturbed terms are used to examine the chaotic nature (Ullah et al. 2024c) of 
the next dynamical system. Two-dimensional and three-dimensional phase portraits are pre-
sented in this investigation. The following dynamical system can be derived from Eq. (3) by 
setting dU

d�
= H:

(a) (b) (c)

(d) (e) (f)

Fig. 4   Outlook of �
2
 for a = m

1
= −3, b = v = c = e = 1, s = 2,m

2
= 3, n

1
= 4, n

2
= 9, (a, b, c) 3D with 

density plot; (d, e, f) 2D plot
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where p1 =
m1a

2−m2ab+n1a
3−n2a

2b+b

m1−m2c+3n1a−2n2ac−n2b
 and p2 =

a(s+v)

m1−m2c+3n1a−2n2ac−n2b
.

Now, equation Eq. (21) includes the additional term Acos(Bt) , while A and B are the 
amplitude and frequency, respectively. Therefore, Eq. (21) will be converted to the fol-
lowing new dynamical system:

Our goal is to determine how perturbation frequency and intensity influence 
Eq. (22).

Figures  6, 7, and 8 show periodic, quasiperiodic, and chaotic nature for 
different frequencies and strengths when the key parameters are constant 
( b = −3,m2 = −1,m1 = n1 = n2 = a = s = 1, v = 1.125, c = 7.5 ). Figure  6 indicates 
the status of Eq.  (22) for A = 0 with initial value U(0) = 1 and H(0) = 0.1 . The 
trajectory’s status is displayed based on the intensity and frequency of disturbances. 
In Fig. 6, a time series and phase portraits are shown to illustrate the periodic behavior 
of Eq.  (22). With a small variation in strength and frequency ( A and B become 0.2 
and 0.3 , respectively), Fig.  7 shows a dynamic system changing from a periodic to 
a quasi-periodic nature with initial value U(0) = 1 and H(0) = 0.1 . In Fig.  8, as the 
intensity and frequency rise ( A and B convert to 2.9 and 3.9 , respectively), the system 

(21)
dU

d�
= H,

dH

d�
= −p1U − p2U

3,

(22)
dU

d�
= H,

dH

d�
= −p1U − p2U

3 + Acos(Bt),

(a) (b) (c)

(d) (e) (f)

Fig. 5   Outlook of �
6
 for = s = v = a = b = c = e = m

1
= m

2
= n

1
= n

2
= 1 , (a, b, c) 3D with density plot; 

(d, e, f) 2D plot
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experiences turbulent perturbations, shifting into a state of chaos for the initial value 
U(0) = 0.3 and H(0) = 0.01.  

(a) 3D phase diagram (b) 2D phase diagram (c) Time series diagram

Fig. 6   Periodic nature of system Eq. (22) for A = 0 , B = 0 and (A(0),B(0)) = (1, 0.1)

(a) 3D phase diagram (b) 2D phase diagram (c) Time series diagram

Fig. 7   Quasi-periodic nature of system Eq. (22) for A = 0.3 , B = 0.2 and (A(0),B(0)) = (1, 0.1)

(a) 3D phase diagram (b) 2D phase diagram (c) Time series diagram

Fig. 8   Chaotic nature of system Eq. (22) for A = 1.5 , B = 6 and (A(0),B(0)) = (0.3, 0.01)
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8 � Sensitivity analysis

This section investigated the sensitivity analysis (Ullah et al. 2024c) of the perturbed 
system Eq.  (22), examining the effects of initial conditions using constant parameter 
values ( b = −3,m2 = −1,m1 = n1 = n2 = a = s = 1, v = 1.125, c = 7.5 ). Based on 
Fig.  9, we can see a red curve that signifies a time series diagram with an initial 
value of (A(0),B(0)) = (0.1, 0.01) and a blue curve representing an initial value of 
(A(0),B(0)) = (0.1, 0.02) . From Fig.  9a, we see that the initial value of the perturbed 
system determines two overlapped periodic waves of the result and the dynamic system 
is not sensitive ( A = 0 , B = 0 ). The two-time series diagram of Fig. 9b demonstrates 
low sensitivity is indicated to the initial state when perturbation strength and frequency 
are small ( A = 1.2 , B = 3.4 ). Furthermore, Fig. 9c displays significant changes between 
time series diagrams when perturbation strength and frequency rise ( A = 1.5 , B = 6 ), 
indicating that the time series diagram is more sensitive to variations in initial values 
when perturbation strength and frequency increase.

9 � Comparative analysis and novelty of results

From this part, we find the novelty and effectiveness of our proposed model. We 
have analyzed several papers, which were recently published based on this model. 
Different types of methods have been employed to solve the BA model. The extended 
trial function method is applied to find the dark, singular, and bright solitons (Ekici 
and Sonmezoglu 2019). The mapping method is adopted to acquire the optical soliton 
outcomes of the mentioned model (Rehman et al. 2019a). The modified mapping and 
undetermined coefficient methods are utilized to find the singular, singular periodic, 
dark, bright, and dark-singular mixed solitons (Rehman et  al. 2019b). The modified 
simple equation architecture is implemented to find the optical dark, bright, and 
singular solitons, singular periodic solutions (Yildirim 2019). We have periodic 
waves with bright solitons, bright-dark solitons, dark solitons, double periodic waves, 
periodic waves with singularity, breather waves with singularity, bright solitons with 

(a) , (b) , (c) , 

Fig. 9   Sensitivity diagram of system Eq.  (22) for (A(0),B(0)) = (0.1, 0.01) (red curve) and 
(A(0),B(0)) = (0.1, 0.02) (blue curve)
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singularity, multiple dark-bright breather waves with singularity, and multiple bright 
breather waves with singularity of the Biswas–Arshed model by applying distinct 
analytical methods. These solutions are more effective and advanced than before. In 
Table 1, we also compare some of our outcomes with those in (Rehman et al. 2019a). 
Furthermore, chaos and sensitivity analyses of this model are also investigated using 
the planar dynamic system, which other studies have not stated.

10 � Conclusion

In this study, the direct algebraic procedure, the modified rational sine–cosine process, and the 
(

1

G′

)

-approach has been effectively used to find out the soliton outcomes of the BA equation. 
Chaotic behavior and sensitivity of this model are also investigated using the planar dynamic 
system. Consequently, periodic, quasi-periodic, and chaotic patterns are obtained from the 
suggested nonlinear model. Periodic waves with bright solitons, bright-dark solitons, dark 
solitons, double periodic waves, breather waves with singularity, periodic waves with 
singularity, bright solitons with singularity, multiple bright dark breather waves with 
singularity, and multiple bright breather waves with singularity can also be acquired from the 
proposed model. Certain features of the acquired outcomes have been exhibited in 2D, 3D, 
and density views. It is evident from the results that the integration methods employed are 
powerful, concise, and efficient. Additionally, they suggest that they can be applied to higher-
order nonlinear models emerging in modern science and engineering.
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Table 1   Comparison of the obtained solutions and existing article (Rehman et al. 2019a)

If P = ±

√

−
2(m1−m2c+3n1a−2n2ac−n2b)

a(s+v)
 , Q = x − ct , 

q(x, t) = �(x, t) , � = x − ct , and � = −ax + bt + e , 
then

If P = −l1

√

−M, Q =
√

−M(x − ct), �1(x, t) = �(x, t)

,� = −ax + bt + e , M = −
a3n1−a

2bn2+a
2m1−abm2+b

2(2can2+cm2−3an1+bn2−m1)
 and 

l1 = ±

√

−2(2can2+cm2−3an1+bn2−m1)
a(s+v)  , then

Rehman et al. solution (17) will be 
�(x, t) = Ptanh(Q)ei�

For M < 0 , our solution �1(x, t) will be 
�(x, t) = Ptanh(Q)ei�,

Rehman et al. solution (28) will be 
�(x, t) = Pcoth(Q)ei�

For M < 0 , our solution �2(x, t) will be 
�(x, t) = Ptanh(Q)ei�,

Rehman et al. solution (34) will be 
�(x, t) = Ptan(Q)ei�

For M > 0 , our solution �3(x, t) will be 
�(x, t) = Ptan(Q)ei�,

Rehman et al. solution (24) will be 
�(x, t) = Pcot(G)ei�

For M > 0 , then our solution �4(x, t) will be 
�(x, t) = Pcot(Q)ei�
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