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In this paper, we present a bilinear form for an extended (2 + 1)-dimensional generalized breaking 
soliton equation, namely, a (3 + 1)-dimensional generalized breaking soliton (GBS) equation, through 
using the Hirota direct method. Abundant lump-type solutions, rogue wave type solutions, breather lump 
wave solutions and interaction solutions are constructed, based on the Hirota bilinear form. Particularly, 
we generate a type of new interaction solutions in terms of a new combination of quadratic function, 
trigonometric function and exponential function, namely, a kind of periodic lump-stripe solitons, which 
is a sort of mixed type solutions of periodic lump-type solitons and stripe solitons. We show that the 
periodic lump-type solitons will be swallowed by the stripe solitons after they collide. Finally, dynamics 
characteristics and evolution behaviors are exhibited for the obtained solution waves through particular 
plots with proper choices of different values for the parameters.

© 2019 Elsevier B.V. All rights reserved.
1. Introduction

Researchers usually explore important physical phenomena 
such as wave physical structures and dynamical behaviors through 
analytic solutions of nonlinear PDEs. The Hirota bilinear method 
has been widely and successfully used to solve nonlinear PDEs 
and obtain their lump solutions [1–8], multiple soliton solutions 
[9–12], multi-lump solutions [13–15], interaction solutions [6,7,
16–19], rogue wave solutions [20], and so on. And other construct-
ing methods [21–25]. Recently, several persons work out a few of 
new solutions for the following (2 + 1)-dimensional generalized 
breaking soliton equation [26,27]
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ut + αuxxx + βuxxy + γ uux + λuu y + δux v = 0,

u y = vx.
(1)

Eq. (1) is initially proposed to describe the interaction of Rie-
mann wave propagation along the y-axis and wave propagation 
along the x-axis, where u = u(x, y, z, t) and v = v(x, y, z, t) repre-
sent the physical quantities to two wave propagation directions, 
respectively, and α, β , γ , λ and δ are the relevant parameters 
[26]. Ma and Li get the mixed soliton and rogue wave solutions 
of Eq. (1) with the aid of bilinear form [26]. Soliton solutions, ho-
moclinic breather waves and rogue waves of Eq. (1) are obtained 
by using the Hirota bilinear method [27]. Multi-soliton solutions; 
and periodic type solutions and cross-kink wave solutions of the 
reduced Eq. (1) are obtained with the help of the Hirota bilinear 
method [28,29].

In this work, we will introduce a (3 +1)-dimensional GBS equa-
tion based on Eq. (1), which can describe interaction phenomena 
along with three space directions in nonlinear media:

ωt + αuxxx + βuxxy + γ uux + λuu y + δux v = 0,

ω = u + u + u , u = v ,
(2)
x x y z y x
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where ω = ω(x, y, z, t) is a real function of x, y, z and t . Simi-
larly, Eq. (2) expands the space dimension of Eq. (1) into three, i.e. 
adding the wave propagation along the z-axis. We have acquired 
new lump-type solutions, rogue wave type solutions, breather 
lump wave solutions and periodic lump-stripe interaction phenom-
ena for the (3 + 1)-dimensional GBS equation (2), by utilizing the 
Hirota bilinear method. We also show the corresponding dynamic 
and evolution behaviors for those solutions by plotting with suit-
able special parameters. These results have not been calculated by 
others before. Hence, we obtained abundant of new solutions by 
comparison with the references [26–29].

The rest of the paper is organized as follows. In section 2, we 
present a bilinear form and lump-type solutions for Eq. (2). In 
section 3, we get rogue wave type solutions. In section 4 and sec-
tion 5, we construct breather lump wave solutions and periodic 
lump-stripe solitons for Eq. (2), respectively. Finally, we give some 
discussions and concluding remarks in section 6.

2. Bilinear form and lump-type solutions

In this paper, we select the following parameters:

λ = δ = 3β, γ = 6α, (3)

and then Eq. (2) can be written as

∂x
−1(uxt + u yt + uzt) + αuxxx + βuxxy + 6αuux

+ 3βuu y + 3βux∂x
−1u y = 0. (4)

2.1. Bilinear form

To obtain a bilinear form of Eq. (4), we consider the following 
second-order logarithmic derivative transformation

u = ψx = 2(ln f )xx, v = ψy = 2(ln f )xy, (5)

where ψ = μx = 2(ln f )x , f , ψ and μ are real functions of x, y, 
z and t . Substituting u = ψx into (4), one can obtain the following 
equation:

ψxt + ψyt + ψzt + αψxxxx + βψxxxy

+ 6αψxψxx + 3β(ψxψy)x = 0, (6)

substituting ψ = μx into Eq. (6), and integrate once with respect 
to x, namely

μxt + μyt + μzt + αμxxxx + βμxxxy

+ 3αμxx
2 + 3βμxxμxy = 0, (7)

by setting μ = 2 ln f , then, we see that Eq. (2) is reduced into the 
following bilinear equation

α f fxxxx − 4α fx fxxx + 3α fxx
2 + β f fxxxy − β fxxx f y − 3β fx fxxy

+3β fxx fxy + f fxt − fx ft + f f yt − f y ft + f f zt − f z ft = 0, (8)

and Eq. (2) can be written in terms of P -polynomial [28]

P xt + P yt + P zt + αP4x + β P3x,y = 0. (9)

Under the above constraints, Eq. (9) has the Hirota bilinear form(
Dx Dt + D y Dt + Dz Dt + αD4

x + βD3
x D y

)
f · f = 0, (10)

where D4
x , D3

x D y, Dx Dt , D y Dt and Dz Dt are all bilinear operators 
[30], meet by
D K
x D L

y D N
z D M

t ( f · g)

=
(

∂

∂x
− ∂

∂x′

)K (
∂

∂ y
− ∂

∂ y′

)L (
∂

∂z
− ∂

∂z′

)N

×
(

∂

∂t
− ∂

∂t′

)M

f (x, y, z, t)g
(
x′, y′, z′, t′)

∣∣∣∣∣
x′=x,y′=y,z′=z,t′=t.

2.2. Lump-type solutions

To obtain lump-type solutions of Eq. (2), let f be a quadratic 
function solution as follows [1–7]

f = ζ1
2 + ζ2

2 + g0,

ζi = aix + bi y + ci z + dit + hi, i = 1,2, (11)

where g0 > 0, and ai, bi, ci, di, hi(i = 1, 2) are real constants to be 
calculated. Substituting (11) into bilinear Eq. (10), we reach a set of 
algebraic equations, and then we can derive ai, bi, ci, di, hi(i = 1, 2)

with the aid of Maple software, which can be classified into the 
following cases.

Case 1.

ai = ai(i = 1,2),b1 = −αa1
2 + βa2b2 + αa2

2

βa1
,

c1 = −βa1
2 − βa2b2 − αa1

2 − αa2
2

βa1
,

di = di(i = 1,2),hi = hi(i = 1,2),b2 = b2,

c2 = −a2 − b2, g0 = g0, β = β,α = α. (12)

Case 2.

a1 = 0, c1 = 0,b1 = 0,

di = di(i = 1,2),a2 = −b2 − c2,b2 = b2,

c2 = c2,hi = hi(i = 1,2), g0 = g0, β = α(b2 + c2)

b2
,α = α. (13)

Case 3.

a1 = 0,b1 = −c1, c1 = c1,

di = di(i = 1,2),a2 = −βb2

α
,

b2 = b2, c2 = (β − α)b2

α
,hi = hi(i = 1,2),

g0 = g0, β = β,α = α. (14)

Eqs. (12)∼(14) generate three types of quadratic function so-
lutions f i(i = 1, 2, 3), defined by (11), to the bilinear Eq. (10); 
and further the resulting quadratic function solutions present three 
types of lump-type solutions ui(i = 1, 2, 3) to Eq. (2), under the 
transformation u = 2(ln f )xx; and three types of lump-type so-
lutions vi(i = 1, 2, 3) to Eq. (2), under the transformation v =
2(ln f )xy . Such as in Case 1, we have

f =
(

a1x − αa1
2 + βa2b2 + αa2

2

βa1
y

−βa1
2 − βa2b2 − αa1

2 − αa2
2

βa1
z + d1t + h1

)2

+ (a2x + b2 y − (a2 + b2)z + d2t + h2)
2 + g0, (15)

and

u1 = 4
(−2a1

2ζ1
2 − 4a1a2ζ1ζ2 − 2a2

2ζ2
2 + a1

2 f + a2
2 f

)
2

, (16)

f
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Fig. 1. The 3-D plots (top) and contour plots (bottom) of u1 via Eq. (16) at three coordinates: (I) the x− y−u-coordinate by z = −x, t = 0; (II) the x−t−u-coordinate by z = −x, 
y = 0; (III) the t− y−u-coordinate by z = −y, x = 0; with a1 = 0.2, d1 = 1, h1 = 1, a2 = 0.2, b2 = 0.2, d2 = 0.2, h2 = 1, g0 = 1, α = 2, β = 2.
v1 = −4

βa1 f 2
(2βa1

2b2ζ1ζ2 − 2βa1a2b2ζ1
2

+ 2βa1a2b2ζ2
2 − 2βa2

2b2ζ1ζ2

− 2αa1
3ζ1

2 − 2αa1
2a2ζ1ζ2 − 2αa1a2

2ζ1
2

− 2αa2
3ζ1ζ2 + αa1

3 f + αa1a2
2 f ), (17)

where a1β �= 0, and the functions ζ1 and ζ2 are given as follows:

ζ1 = a1x − αa1
2 + βa2b2 + αa2

2

βa1
y

− βa1
2 − βa2b2 − αa1

2 − αa2
2

βa1
z + d1t + h1,

ζ2 = a2x + b2 y − (a2 + b2)z + d2t + h2. (18)

For lump-type solutions f must be positive, u and v were lo-
calized in all directions in the space, so we select g0 > 0. We find 
that at any given time t , the lump-type solutions ui(i = 1, 2, 3) →
0 and vi(i = 1, 2, 3) → 0, if the corresponding sum of squares 
ζ1

2 + ζ2
2 → ∞.

Fig. 1 and Fig. 2 show the 3-D plots and contour plots, which 
exhibit dynamics properties by choosing appropriate values of 
these parameters in Eq. (16) and Eq. (17).

3. Rogue wave type solutions

In this section, we will generate rogue wave type solutions to 
Eq. (2). According to Eq. (10), we search for new type rogue waves 
of the (3 + 1)-dimensional GBS equation by taking the form [31]

f = ζ1
2 + k1eζ2 + k2e−ζ2 + g0,

ζi = ai x + bi y + ci z + dit + hi, i = 1,2, (19)

where g0 > 0, and ai, bi, ci, di, hi(i = 1, 2) and ki(i = 1, 2) are real 
constants to be calculated. Substituting (19) into bilinear Eq. (10), 
we reach a set of algebraic equations, and then we can derive 
ai, bi, ci, di, hi(i = 1, 2) and ki(i = 1, 2) with the aid of Maple, 
which can be classified into the following cases.

a1 = 0,b1 = b1, c1 = −b1,d1 = d1,h1 = h1,a2 = a2,

b2 = −βb1a2
3 + d1a2 + d1c2

d1
, c2 = c2,d2 = 0,h2 = h2,

g0 = g0,k1 = k1, β = β,k2 = k2,

α = β(βb1a2
3 + d1a2 + d1c2)

d1a2
, (20)

where d1a2 �= 0. Through the transformation Eq. (5), we get the 
following solutions to Eq. (2)

f = (b1 y − b1z + d1t + h1)
2 + k1e

(a2x− βb1a2
3+d1a2+d1c2

d1
y+c2z+h2)

+k2e
−(a2x− βb1a2

3+d1a2+d1c2
d1

y+c2z+h2) + g0, (21)

and

u1 = 2a2
2

f 2
(2k1k2 − k1

2e2ζ2 − k2
2e−2ζ2 + k1 f eζ2 + k2 f e−ζ2),

(22)

v1 = −2a2

d1 f 2 (2k1k2b1a2
3β − k1

2b1a2
3βe2ζ2

− k2
2b1a2

3βe−2ζ2 + k1b1a2
3β f eζ2 + k2b1a2

3β f e−ζ2

+ 2k1k2d1a2 + 2k1k2d1c2 − k1
2d1a2e2ζ2 − k1

2d1c2e2ζ2

− k2
2d1a2e−2ζ2 − k2

2d1c2e−2ζ2

+ k1d1a2 f eζ2 + k1d1c2 f eζ2 + k2d1a2 f e−ζ2

+ k2d1c2 f e−ζ2 + 2k1d1b1ζ1eζ2 − 2k2d1b1ζ1e−ζ2), (23)

where
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Fig. 2. The 3-D plots (top) and contour plots (bottom) of v1 via Eq. (17) at three coordinates: (I) the x− y−v-coordinate by z = −x, t = 0; (II) the x−t−v-coordinate by z = −x, 
y = 0; (III) the t− y−v-coordinate by z = −y, x = 0; with a1 = 0.2, d1 = 1, h1 = 1, a2 = 0.2, b2 = 0.2, d2 = 0.2, h2 = 1, g0 = 1, α = 2, β = 2.
ζ1 = b1 y − b1z + d1t + h1,

ζ2 = a2x − βb1a2
3 + d1a2 + d1c2

d1
y + c2z + h2. (24)

In addition, we can also obtain the following seven sets of so-
lutions for the parameters ai, bi, ci, di, hi(i = 1, 2) and ki(i = 1, 2):

{a1 = a1,bi = bi(i = 1,2),

c1 = −a1 − b1,hi = hi(i = 1,2),a2 = 0, c2 = −b2,

di = di(i = 1,2), g0 = g0,k1 = k1,

β = β,k2 = k2,α = −βb1

a1
},

{ai = ai(i = 1,2),b1 = −a1b2

a2
,

c1 = −a1(a2 + b2)

a2
,di = di(i = 1,2),b2 = b2,

c2 = −a2 − b2,hi = hi(i = 1,2), g0 = g0,k1 = k1,

β = β,k2 = k2,α = −βb2

a2
},

{a1 = 0,di = di(i = 1,2),b1 = 0, c1 = 0,a2 = −b2 − c2,

b2 = b2,k1 = k1,

β = −α(b2 + c2)

b2
, c2 = c2,hi = hi(i = 1,2),

g0 = g0,k2 = k2,α = α},
{a1 = 0,bi = bi(i = 1,2), c1 = −b1(βa2

3 + d2)

d2
,

d1 = 0,hi = hi (i = 1,2),
a2 = a2,k1 = k1, β = β, c2 = −a2 − b2,d2 = d2, g0 = g0,

k2 = k2,α = −βb2

a2
},

{a1 = 0,di = di(i = 1,2),b1 = 0, c1 = 0,a2 = a2,

b2 = −αa2

β
,k1 = k1,

c2 = − (β − α)a2

β
,hi = hi(i = 1,2),

g0 = h1
2, β = β,k2 = k2,α = α},

{a1 = 0,bi = bi(i = 1,2), c1 = −b1(βa2
3 + d2)

d2
,d1 = 0,

hi = hi(i = 1,2),a2 = a2,

k1 = 0, c2 = −βa2
3b2 + αa2

4 + a2d2 + b2d2

d2
,

d2 = d2, g0 = g0, β = β,k2 = k2,α = α},
{a1 = 0,b1 = −d1(a2 + b2 + c2)

βa2
3

,

c1 = d1(a2 + b2 + c2)

βa2
3

,a2 = a2,di = di(i = 1,2),b2 = b2,

hi = hi(i = 1,2), c2 = c2, g0 = g0,k1 = 0, β = β,

k2 = k2,α = −βa2
3b2 + a2d2 + b2d2 + c2d2

a2
4

}.
These sets of solutions for the parameters generate seven types 

of solutions f i(i = 2, 3, . . . , 8), defined by (19), to the bilinear 
Eq. (10); and further the resulting seven types of rogue wave type 
solutions ui(i = 2, 3, . . . , 8) and vi(i = 2, 3, . . . , 8) to Eq. (2), under 
the transformation Eq. (5).
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The 3-D dynamic graphs of the rogue wave and corresponding 
density plots are successfully depicted in Fig. 3 and Fig. 4.

Here, a type of X-like rogue wave, which is a mixed solution of 
a lump wave and two solitary waves, is for the first time found for 
the (3 + 1)-dimensional GBS equation in Fig. 3 and Fig. 4. At the 
same time, the energy and the amplitude of the X-like rogue wave 
achieve the maximum values in the plotted region.

4. Breather lump wave solutions

To search for breather lump wave solutions for Eq. (2), suppose

f = e−p1ζ1 + k1 cos (p2ζ2) + k2ep1ζ1 + g0, (25)

where ζi = ai x + bi y + ci z + dit + hi, i = 1, 2, and g0 > 0. Here 
ai, bi, ci, di, hi(i = 1, 2), pi(i = 1, 2) and ki(i = 1, 2) are real con-
stants to be calculated. Substituting (25) into bilinear Eq. (10), 
we reach a set of algebraic equations, and then we can derive 
ai, bi, ci, di, hi(i = 1, 2), pi(i = 1, 2) and ki(i = 1, 2), which can be 
classified into the following cases.

Case 1.

{a1 = a1,b1 = b1, c1 = −a1 − b1,d1 = d1,a2 = a2,

c2 = −a2(a1 + b1)

a1
,d2 = d2,

b2 = b1a2

a1
, g0 = g0,k1 = k1, β = β,k2 = k2, p1 = p1,

α = −βb1

a1
, p2 = p2}.

Case 2.

{a1 = a1,b1 = b1, c1 = −a1 − b1,d1 = d1,a2 = 0,

c2 = −b2(βa1
3 p1

2 + d1)

d1
,

b2 = b2,d2 = 0, g0 = g0,k1 = k1, β = β,k2 = k2,

p1 = p1,α = −βb1

a1
, p2 = p2}.

Case 3.

{a1 = 0,b1 = b1, c1 = b1(βa2
3 p2

2 − d2)

d2
,d1 = 0,

a2 = a2,b2 = −αa2

β
,d2 = 0,

c2 = −a2(β − α)

β
, g0 = 0,k1 = k1,

β = β,k2 = k2, p1 = p1,α = α, p2 = p2}.
Case 4.

{a1 = 0,b1 = b1, c1 = b1(βa2
3 p2

2 − d2)

d2
,d1 = 0,

a2 = a2, c2 = −a2 − b2,

b2 = b2,d2 = d2, g0 = g0,k1 = k1, β = β,k2 = k2,

p1 = p1,α = −βb2

a2
, p2 = p2}.
Case 5.

{a1 = a1,b1 = b1, c1 = −βa2
3b2 p1

2 + a1d2 + b1d2

d2
,

d1 = 0,a2 = 0,b2 = b2,

c2 = −b2,d2 = d2, g0 = g0,k1 = k1, β = β,k2 = k2,

p1 = p1,α = −βb1

a1
, p2 = p2}.

Case 6.

{a1 = a1,b1 = a1b2

a2
, c1 = −a1(a2 + b2)

a2
,d1 = 0,a2 = 0,

b2 = b2, c2 = −a2 − b2,

d2 = d2, g0 = g0,k1 = k1, β = β,k2 = k2,

p1 = p1,α = −βb2

a2
, p2 = p2}.

Case 7.

{a1 = 0,b1 = b1, c1 = −b1,d1 = d1,a2 = a2,

c2 = βb1a2
3 p2

2 − d1a2 − d1b2

d1
,

b2 = b2,d2 = 0, g0 = g0,k1 = k1, β = β,k2 = k2,

p1 = p1,α = −βb2

a2
, p2 = p2}.

Case 8.

{a1 = a1,b1 = −αa1

β
, c1 = −a1(β − α)

β
,

d1 = d1, c2 = −b2(βa1
3 p1

2 + d1)

d1
,

a2 = 0,b2 = b2,d2 = 0, g0 = 0,k1 = k1, β = β,k2 = k2,

p1 = p1,α = α, p2 = p2}.
Case 9.

{a1 = a1,b1 = −a1α

β
, c1 = −a1(β

2a1
2b2 p1

2 + βd2 − αd2)

d2β
,

d1 = 0,a2 = 0,b2 = b2,

c2 = −b2,d2 = d2, g0 = 0,k1 = k1, β = β,k2 = k2,

p1 = p1,α = α, p2 = p2}.
Case 10.

{a1 = a1,b1 = −αa1

β
, c1 = −a1(β − α)

β
,d1 = d1,a2 = a2,

b2 = −αa2

β
,d2 = d2, c2 = −a2(β − α)

β
,

g0 = 0,k1 = k1, β = β,k2 = k2, p1 = p1,α = α, p2 = p2}.
Case 1 to Case 10 generate ten types of solutions f i(i =

1, 2 . . . 10), defined by (25), to the bilinear Eq. (10); and further 
the resulting f i(i = 1, 2 . . . 10) present ten types of breather lump 
wave solutions ui(i = 1, 2 . . . 10) to Eq. (2), under the transforma-
tion u = 2(ln f )xx; and ten types of breather lump wave solutions 
vi(i = 1, 2 . . . 10) to Eq. (2), under the transformation v = 2(ln f )xy . 
Such as in Case 1, we have

f = e−p1(a1x+b1 y−(a1+b1)z+d1t+h1)

+k1 cos

(
p2(a2x + b1a2

a1
y − a2(a1 + b1)

a1
z + d2t + h2)

)

+k2ep1(a1x+b1 y−(a1+b1)z+d1t+h1) + g0, (26)
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Fig. 3. The 3-D plots (top) and density plots (bottom) of u1 via Eq. (22) at three coordinates: (I) the x− y−u-coordinate by z = −x, t = 0; (II) the x−t−u-coordinate by z = −x, 
y = 0; (III) the t− y−u-coordinate by z = y, x = 0; with b1 = 1, d1 = 2, h1 = 1, a2 = 1, c2 = 0.1, h2 = 1, g0 = 1, k1 = 4, β = 1, k2 = 4.

Fig. 4. The 3-D plots (top) and density plots (bottom) of v1 via Eq. (23) at three coordinates: (I) the x− y−v-coordinate by z = −x, t = 0; (II) the x−t−v-coordinate by z = −x, 
y = 0; (III) the t− y−v-coordinate by z = y, x = 0; with b1 = 1, d1 = 2, h1 = 1, a2 = 1, c2 = 0.1, h2 = 1, g0 = 1, k1 = 4, β = 1, k2 = 4.
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Fig. 5. The 3-D plots and profile plots of u1 via Eq. (27) at t = 0 and z = −x with a1 = 0.2, b1 = 0.5, d1 = 4, h1 = 1, a2 = 8, d2 = 1, h2 = 1, p1 = 1, p2 = 1, k1 = 0.2, k2 = 0.2, 
g0 = 1, β = 2. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)
and

u1 = 2

f 2
(k1

2 p2
2a2

2 f cos(p2ζ2)
2 − k2

2 p1
2a1

2e2p1ζ1

+ 2k1k2 p1 p2a1a2ep1ζ1 sin(p2ζ2)

− k1a2
2 p2

2 f cos(p2ζ2) + k2 p1
2a1

2 f ep1ζ1

− 2k1 p1 p2a1a2e−p1ζ1 sin(p2ζ2)

+p1
2a1

2 f e−p1ζ1 − p1
2a1

2e−2p1ζ1

− k1
2 p2

2a2
2 + 2k2 p1

2a1
2), (27)

v1 = 2b1

a1 f 2
(k1

2 p2
2a2

2 f cos(p2ζ2)
2

− k2
2 p1

2a1
2e2p1ζ1 + 2k1k2 p1 p2a1a2ep1ζ1 sin(p2ζ2)

− k1a2
2 p2

2 f cos(p2ζ2) + k2 p1
2a1

2 f ep1ζ1

− 2k1 p1 p2a1a2e−p1ζ1 sin(p2ζ2)

+ p1
2a1

2 f e−p1ζ1 − p1
2a1

2e−2p1ζ1

− k1
2 p2

2a2
2 + 2k2 p1

2a1
2), (28)

where a1 �= 0, and the functions ζ1 and ζ2 are given as follows:

ζ1 = a1x + b1 y − (a1 + b1)z + d1t + h1,

ζ2 = a2x + b1a2

a1
y − a2(a1 + b1)

a1
z + d2t + h2. (29)

The 3-D dynamic graphs, corresponding profile plots of the 
breather lump wave solutions (27) and (28), are successfully de-
picted in Fig. 5 and Fig. 6.

5. Periodic lump-stripe soliton

In this section, we first propose a type of new interaction solu-
tion in terms of a new combination of quadratic function, trigono-
metric function and exponential function, namely, periodic lump-
stripe soliton. Then, we will investigate the interaction between a 
periodic lump-type soliton and a stripe soliton for Eq. (2), by tak-
ing the function f in Eq. (10) in the following form

f = ζ1
2 + cos(ζ2) + eζ3 + g0,

ζi = ai x + bi y + ci z + dit + hi, i = 1,2,3, (30)

where g0 > 0, and ai, bi, ci, di, hi(i = 1, 2, 3) are real constants 
to be calculated. Substituting (30) into bilinear Eq. (10), we 
also reach a set of algebraic equations, and then we can derive 
ai, bi, ci, di, hi(i = 1, 2, 3), which can be classified into the follow-
ing cases.

Case 1.

a1 = b1a2

b2
,bi = bi(i = 1,2), c1 = −b1(a2 + b2)

b2
,

di = di(i = 1,2,3),hi = hi(i = 1,2,3),

a2 = a2, c2 = −a2 − b2,a3 = a3,b3 = b2a3

a2
,

c3 = −a3(a2 + b2)

a2
, g0 = g0, β = β,α = −βb2

a2
, (31)

where b2a2 �= 0. Through the transformation Eq. (5), we get the 
following solutions to Eq. (2)

f =
(

b1a2

b2
x + b1 y − b1(a2 + b2)

b2
z + d1t + h1

)2

+ cos (a2x + b2 y − (a2 + b2)z + d2t + h2)

+ e

(
a3x+ b2a3

a2
y− a3(a2+b2)

a2
z+d3t+h3

)
+ g0, (32)

and

u1 = −2

b2
2 f 2

(a2
2b2

2 f cos(ζ2) − a3
2b2

2 f eζ3 − a2
2b2

2cos(ζ2)
2

+ a3
2b2

2e2ζ3 − 2a2a3b2
2eζ3 sin(ζ2)

+ 4a2a3b1b2ζ1eζ3 − 4a2
2b1b2ζ1 sin(ζ2)

+ 4a2
2b1

2ζ1
2 − 2a2

2b1
2 f + a2

2b2
2), (33)

v1 = −2

a2b2 f 2
(a2

2b2
2 f cos(ζ2)

− a3
2b2

2 f eζ3 − a2
2b2

2cos(ζ2)
2

+ a3
2b2

2e2ζ3 − 2a2a3b2
2eζ3 sin(ζ2)

+ 4a2a3b1b2ζ1eζ3 − 4a2
2b1b2ζ1 sin(ζ2)

+ 4a2
2b1

2ζ1
2 − 2a2

2b1
2 f + a2

2b2
2), (34)

where the functions ζ1, ζ2 and ζ3 are given as follows:

ζ1 = b1a2

b2
x + b1 y − b1(a2 + b2)

b2
z + d1t + h1,

ζ2 = a2x + b2 y − (a2 + b2)z + d2t + h2,

ζ3 = a3x + b2a3

a
y − a3(a2 + b2)

a
z + d3t + h3. (35)
2 2
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Fig. 6. The 3-D plots and profile plots of v1 via Eq. (28) at t = 0 and z = −x with a1 = 0.2, b1 = 0.5, d1 = 4, h1 = 1, a2 = 8, d2 = 1, h2 = 1, p1 = 1, p2 = 1, k1 = 0.2, k2 = 0.2, 
g0 = 1, β = 2.
Case 2.

{a1 = b1a3

b3
,b1 = b1, c1 = −b1(a3 + b3)

b3
,

di = di(i = 1,2,3),a2 = 0,b2 = 0, β = β,

α = −βb3

a3
, c2 = 0,hi = hi(i = 1,2,3),

a3 = a3,b3 = b3, c3 = −a3 − b3, g0 = g0}.
Case 3.

{a1 = 0,bi = bi(i = 1,2), c1 = −b1,d1 = d1,

hi = hi(i = 1,2,3),a2 = a2, β = β, g0 = g0,

α = −βb2

a2
, c2 = βb1a2

3 − d1a2 − d1b2

d1
,d2 = 0,

a3 = 0,b3 = −c3, c3 = c3,d3 = −d1c3

b1
}.

Case 4.

{a1 = βb1

−α
,b1 = b1, c1 = (β − α)b1

α
,di = di(i = 1,2,3),

h1 = 0,a2 = a2,b2 = αa2

−β
,β = β,

α = α, g0 = g0, c2 = (β − α)a2

−β
,hi = hi(i = 2,3),

a3 = a3,b3 = αa3

−β
, c3 = (β − α)a3

−β
}.

Case 5.

{a1 = 0,b1 = b1, c1 = (βa3
3 + d3)b1

−d3
,d1 = 0,

h1 = 0,a2 = a2,b2 = αa2

−β
,β = β,

α = α, g0 = g0,

c2 = (β − α)a2

−β
,d2 = a2

3d3

−a3
3
,h2 = h2,

a3 = a3,b3 = αa3

−β
, c3 = (β − α)a3

−β
,d3 = d3,h3 = h3}.
Case 6.

{a1 = b1a3

b3
,b1 = b1, c1 = b1(a3 + b3)

−b3
,d1 = d1,

h1 = 0,a2 = a2,b2 = a2b3

a3
, β = β,α = βb3

−a3
,

c2 = a2(a3 + b3)

−a3
,d2 = d2,a3 = a3,

h2 = h2,b3 = b3,h3 = h3, c3 = −a3 − b3,d3 = 0, g0 = g0}.
Case 7.

{a1 = a1,b1 = αa1

−β
, c1 = (β − α)a1

β
,d1 = 0,

a2 = a2,b2 = αa2

−β
,β = β,hi = hi(i = 1,2,3),

c2 = (β2a2
2b3 − βd3 + αd3)a2

−βd3
,d2 = 0,

a3 = 0, c3 = −b3,b3 = b3,α = α,d3 = d3, g0 = g0}.
Case 8.

{a1 = 0,b1 = b1, c1 = −b1,d1 = d1,h1 = h1,

a2 = 0,b2 = b1d2

d1
, β = β,

α = β(βb1a3
3 + b1d3 + d1a3 + d1c3)

d1a3
, c2 = −b1d2

d1
,

d2 = d2,h2 = h2,a3 = a3,

b3 = −βb1a3
3 + d1a3 + d1c3

d1
, c3 = c3,

d3 = d3,h3 = h3, g0 = g0}.
Case 2 to Case 8 generate seven types of solutions f i(i =

2, 3 . . . 8), defined by (30), to the bilinear Eq. (10); and further 
the resulting present seven types of periodic lump-stripe solitons 
ui(i = 2, 3 . . . 8) and vi(i = 2, 3 . . . 8) to Eq. (2), under the transfor-
mation Eq. (5).

The 3-D dynamic graphs of the periodic lump-stripe soliton v1, 
and corresponding density plots are successfully depicted in Fig. 7. 
We can see the mutual reaction of the lump-type waves, cosine 
function waves and the exponential function waves. In addition, 
Fig. 8 and Fig. 9 show 3-D and density evolution behaviors of u1, 
by setting z = −x and picking different values for t , where we 
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Fig. 7. The 3-D plots and density plots of v1 via Eq. (34) at three coordinates: (I) the x− y−v-coordinate by z = −x, t = 0; (II) the x−t−v-coordinate by z = −x, y = 0; (III) the 
t− y−v-coordinate by z = −y, x = 0; with b1 = −1, d1 = 1, h1 = 1, a2 = 0.1, b2 = 0.1, d2 = 0, h2 = 1, a3 = 0.5, d3 = 0, h3 = −2, g0 = 4, β = 2.

Fig. 8. The 3-D evolution plots of u1 via Eq. (33) at t = −40, t = −10, t = 10, t = 20, t = 40 and t = 90 with z = −x, b1 = −1, d1 = 1, h1 = 1, a2 = 0.1, b2 = 0.1, d2 = 0, 
h2 = 1, a3 = 0.5, d3 = 0, h3 = −2, g0 = 4, β = 2.
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Fig. 9. The density evolution plots of u1 via Eq. (33) at t = −40, t = −10, t = 10, t = 20, t = 40 and t = 90 with z = −x, b1 = −1, d1 = 1, h1 = 1, a2 = 0.1, b2 = 0.1, d2 = 0, 
h2 = 1, a3 = 0.5, d3 = 0, h3 = −2, g0 = 4, β = 2.
change the coordinate of the periodic lump-type soliton to make 
it collide with stripe soliton.

The periodic lump-type soliton and a stripe soliton begin ap-
pearing at t = −40 in Fig. 8 and Fig. 9. The amplitude of the stripe 
soliton starts to increase as the periodic lump-type soliton ap-
proaches the stripe soliton. The periodic lump-type soliton begins 
colliding with the stripe soliton when t = 10. Finally, the peri-
odic lump-type soliton completely decays and is swallowed by the 
stripe soliton when t = 90 in Fig. 8 and Fig. 9, where the energy 
and the amplitude of the periodic lump-stripe soliton have the 
maximum values. We see that periodic lump-stripe soliton is com-
pletely non-elastic, u(x, y, z, t) and v(x, y, z, t) are mixed solitary 
waves of quadratic function, trigonometric function and exponen-
tial function, and they decays both exponentially and algebraically. 
This interaction phenomena is similar to the fusion and fission for 
soliton solutions.

6. Summary and discussions

In this paper, we obtained a bilinear form for Eq. (2), through 
using a Hirota direct method. Then, abundant new lump-type so-
lutions, rogue wave type solutions, breather lump wave solutions 
and periodic lump-stripe solitons were constructed, by utilizing 
the Hirota bilinear form. It is expected that those new solutions 
would be helpful in better understanding the (3 + 1)-dimensional 
GBS equation. We presented lump-type solitons and their dynamic 
characteristics in Fig. 1 and Fig. 2. The 3-D dynamics characteris-
tics and density plots of the rogue wave, breather lump waves and 
periodic lump-stripe solitons were depicted in Figs. 3 and 4; and 
Figs. 5 and 6; and Fig. 7; respectively. In addition, we also investi-
gated another type of X-like rogue wave, by taking the function f
in Eq. (10) in the following form

f = ζ1
2 + ζ2

2 + cosh(ζ3) + g0,

ζi = aix + bi y + ci z + dit + hi, (i = 1,2,3). (36)

For an example, for a group of parameters:

ai = ai(i = 1,2,3),b1 = b3(a1
2 + a2

2) − a2b2a3

a1a3
,

c1 = −a1
2(a3 + b3) + a2

2b3 − a2b2a3

a1a3
,

d1 = d1,hi = hi(i = 1,2,3),b2 = b2, c2 = −a2 − b2,

d2 = −a1d1

a2
,b3 = b3,

c3 = −βa2
2a3

2b3 − βa2b2a3
2 + a1d1(a3 + b3)

a1d1
,

d3 = 0, g0 = g0, β = β,α = −βb3

a3
,

where a1d1a2a3 �= 0. Then, we can present rogue wave type solu-
tions for Eq. (2), under the transformation Eq. (5). The graphs of 
corresponding u and v are given in Fig. 10.
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Fig. 10. Plots of the second type of rogue wave solutions u (top) and v (bottom) at t = 0 with z = x, a1 = 0.2, d1 = 0.2, h1 = 1, a2 = 0.2, b2 = −0.5, h2 = 1, a3 = 1, b3 = 0.5, 
h3 = 2, g0 = 1, β = −0.5.
The 3-D and density evolution behaviors of the periodic lump-
stripe solitons were depicted in Fig. 8 and Fig. 9. We changed the 
coordinate of the periodic lump-type soliton to make it collide 
with the stripe soliton, through setting t = −40, t = −10, t = 10, 
t = 20, t = 40 and t = 90. Moreover, we observed that the periodic 
lump-type soliton is swallowed by the stripe soliton. It should be 
particularly interesting to note that, by taking p = 3, p = 5 and 
p = 7, the bilinear Eq. (10) can take one of the following general-
ized bilinear forms:

(
D3,x D3,t + D3,y D3,t + D3,z D3,t + αD4

3,x

+ βD3
3,x D3,y

)
f · f = 0, (37)(

D5,x D5,t + D5,y D5,t + D5,z D5,t + αD4
5,x

+ βD3
5,x D5,y

)
f · f = 0, (38)(

D7,x D7,t + D7,y D7,t + D7,z D7,t + αD4
7,x

+βD3
7,x D7,y

)
f · f = 0, (39)

whose lump-type solutions, rogue wave type solutions, breather 
lump wave solutions and periodic lump-stripe solitons can be sim-
ilarly generated. Our future study will focus on implementing the 
Hirota bilinear method to present exact solutions of higher order 
bilinear equations and extending the Hirota bilinear method to a 
larger research field.
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