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In this paper, we present a bilinear form for an extended (2 + 1)-dimensional generalized breaking
soliton equation, namely, a (3 + 1)-dimensional generalized breaking soliton (GBS) equation, through
using the Hirota direct method. Abundant lump-type solutions, rogue wave type solutions, breather lump
wave solutions and interaction solutions are constructed, based on the Hirota bilinear form. Particularly,
we generate a type of new interaction solutions in terms of a new combination of quadratic function,

trigonometric function and exponential function, namely, a kind of periodic lump-stripe solitons, which
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is a sort of mixed type solutions of periodic lump-type solitons and stripe solitons. We show that the
periodic lump-type solitons will be swallowed by the stripe solitons after they collide. Finally, dynamics
characteristics and evolution behaviors are exhibited for the obtained solution waves through particular
plots with proper choices of different values for the parameters.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Researchers usually explore important physical phenomena
such as wave physical structures and dynamical behaviors through
analytic solutions of nonlinear PDEs. The Hirota bilinear method
has been widely and successfully used to solve nonlinear PDEs
and obtain their lump solutions [1-8], multiple soliton solutions
[9-12], multi-lump solutions [13-15], interaction solutions [6,7,
16-19], rogue wave solutions [20], and so on. And other construct-
ing methods [21-25]. Recently, several persons work out a few of
new solutions for the following (2 + 1)-dimensional generalized
breaking soliton equation [26,27]
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Ut + ClUyxx + Blxxy + YUly + AUty + Suyv =0,
Uy = Vy.

(1)

Eq. (1) is initially proposed to describe the interaction of Rie-
mann wave propagation along the y-axis and wave propagation
along the x-axis, where u =u(x, y,z,t) and v=v(x, y, z, t) repre-
sent the physical quantities to two wave propagation directions,
respectively, and «, B, ¥, A and § are the relevant parameters
[26]. Ma and Li get the mixed soliton and rogue wave solutions
of Eq. (1) with the aid of bilinear form [26]. Soliton solutions, ho-
moclinic breather waves and rogue waves of Eq. (1) are obtained
by using the Hirota bilinear method [27]. Multi-soliton solutions;
and periodic type solutions and cross-kink wave solutions of the
reduced Eq. (1) are obtained with the help of the Hirota bilinear
method [28,29].

In this work, we will introduce a (3 + 1)-dimensional GBS equa-
tion based on Eq. (1), which can describe interaction phenomena
along with three space directions in nonlinear media:

Wt + QUxxx + Plxxy + Y Ully + AUty + Suyv =0,
a)xqu+uy+uz, uyzvx’

(2)
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where w = w(x, y,z,t) is a real function of x, y, z and t. Simi-
larly, Eq. (2) expands the space dimension of Eq. (1) into three, i.e.
adding the wave propagation along the z-axis. We have acquired
new lump-type solutions, rogue wave type solutions, breather
lump wave solutions and periodic lump-stripe interaction phenom-
ena for the (3 + 1)-dimensional GBS equation (2), by utilizing the
Hirota bilinear method. We also show the corresponding dynamic
and evolution behaviors for those solutions by plotting with suit-
able special parameters. These results have not been calculated by
others before. Hence, we obtained abundant of new solutions by
comparison with the references [26-29].

The rest of the paper is organized as follows. In section 2, we
present a bilinear form and lump-type solutions for Eq. (2). In
section 3, we get rogue wave type solutions. In section 4 and sec-
tion 5, we construct breather lump wave solutions and periodic
lump-stripe solitons for Eq. (2), respectively. Finally, we give some
discussions and concluding remarks in section 6.

2. Bilinear form and lump-type solutions

In this paper, we select the following parameters:
A=86=38, Yy =06q, (3)
and then Eq. (2) can be written as
Ox ™ (ttxe + Uye + ze) + Qe + Biley + 6Ly

+ 3Buuy + 3Buxdy 'uy =0. (4)

2.1. Bilinear form

To obtain a bilinear form of Eq. (4), we consider the following
second-order logarithmic derivative transformation

u =Yy =2(n f)x, V=1//y=2(lnf)xya (5)
where ¢ = uy =2(In f)x, f, ¥ and w are real functions of x, y,
z and t. Substituting u = ¥, into (4), one can obtain the following
equation:
Yxt + Yyt + Yzt + APxxxx + Bxxny

+ 60 Yxxx + 3B(Wxry)x =0, (6)

substituting ¢ = iy into Eq. (6), and integrate once with respect
to x, namely

Mt + Myt + Mzt + O fhxxxx + BMxxxy
+ 30’/'Lxx2 + 3B Uxxxy =0, (7)

by setting ;« =21n f, then, we see that Eq. (2) is reduced into the
following bilinear equation

o f faxxx — 40t fx frxx +3afxx2 +l3ffxxxy - ﬂfxxxfy - 3ﬂfxfxxy
+3B faxfuy + ffxe — fxfe + ffye = fyfe + ffae — f2ft =0, (8)

and Eq. (2) can be written in terms of P-polynomial [28]

th+Pyt+Pzt+aP4x+,3P3x,y=0- 9)
Under the above constraints, Eq. (9) has the Hirota bilinear form
(Dth+DyDt+Dth+aD§+ﬂD§Dy)f.f=o, (10)

where D#, D3Dy, DyD¢, DyD; and D,D; are all bilinear operators
[30], meet by

DyD;DYDY(f - g)

(o aNra  anNtra Y
T \ax ax ay oy’ 9z 37

(22 Mf(x,y,z, ng(x.y.z.t)
at ot

X'=x,y'=y,z/=z,t'=t.
2.2. Lump-type solutions

To obtain lump-type solutions of Eq. (2), let f be a quadratic
function solution as follows [1-7]

f=a’+8%+2g.

Li=aix+bjy+ciz+dit+h;,i=1,2, (11)
where go > 0, and aj, b, ¢;, d;, hj(i =1, 2) are real constants to be
calculated. Substituting (11) into bilinear Eq. (10), we reach a set of
algebraic equations, and then we can derive a;, b;, ¢j, d;i, hj(i=1,2)
with the aid of Maple software, which can be classified into the
following cases.

Case 1.

2 2
aa axb aa
ai=a;(i=1,2),by =— 17+ Aazby + s

)

Bay
,6a12 — ﬂazbz — O[a]2 — OlClz2
Cl=— ,
Bai
di=di(i=1,2),hi=hi(i=1,2),by = b3,
C2=—a3—by,g80=g0, =B, a=q. (12)
Case 2.

a1 =0,c1=0,b; =0,
di=di(i=1,2),ap = —by —c3,bp =b>,
abrtc)

c2=C2,hi=hi(i=1,2),80= 80, 8= by =a. (13)
Case 3.
a1 =0,b1 =—cy,c1=c1,
di=dii=1,2),0,= -2,
o
br=bo.co= L2 =12,
g =go.B=pa=c. (14)

Egs. (12)~(14) generate three types of quadratic function so-
lutions f;(i = 1,2,3), defined by (11), to the bilinear Eq. (10);
and further the resulting quadratic function solutions present three
types of lump-type solutions u;(i =1,2,3) to Eq. (2), under the
transformation u = 2(In f)x; and three types of lump-type so-
lutions vi(i =1,2,3) to Eq. (2), under the transformation v =
2(In f)xy. Such as in Case 1, we have

2 2
aar” + Baxby + aa
f= (a1><— y

Bai
2 _ 2 2 2
_ Bar” — Bazby — aar” — aay z+d1t+h1>
Ba
+(@x +bay — (a2 + b2)z + dot + h2)? + go, (15)

and

4(—201%01% — 4020182 — 202° 5 + a1 f + 4z f)
up = 72 . (16)
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Fig. 1. The 3-D plots (top) and contour plots (bottom) of u; via Eq. (16) at three coordinates: (I) the x_y_u-coordinate by z= —x, t =0;
=0.2, d] =1, h1 =1, az =0.2, bz =0.2, dz =0.2, h2 =1, go:l, o=2, ﬁ=2.

y =0; (Ill) the t_y_u-coordinate by z=—y, x=0; with a;

V1=

(2Bar’by¢12 — 2Ba1azbr¢i?

Ba f2
+2Ba1a2b282% — 2Ba2°b2¢18
—20a1°81% — 20ar%a281 5 — 200102212

— 20423010 +aar f + aaraz? f), (17)

where a1 8 # 0, and the functions ¢ and ¢ are given as follows:

aa12 + Bazby + OlClz2
H=mx— y

Ba
2 _ Barby — 01 — a2
_ o= paby —oa —aw”
Bay
o =axX+ by — (az + by)z + dot + hy. (18)

For lump-type solutions f must be positive, u and v were lo-
calized in all directions in the space, so we select go > 0. We find
that at any given time t, the lump-type solutions u;(i=1,2,3) —
0 and v;(i =1,2,3) — 0, if the corresponding sum of squares
0%+ 50? - oo,

Fig. 1 and Fig. 2 show the 3-D plots and contour plots, which
exhibit dynamics properties by choosing appropriate values of
these parameters in Eq. (16) and Eq. (17).

3. Rogue wave type solutions

In this section, we will generate rogue wave type solutions to
Eq. (2). According to Eq. (10), we search for new type rogue waves
of the (3 + 1)-dimensional GBS equation by taking the form [31]
f=0%+kie? +koe™® + go,
Zi=aix+bjy+ciz+dit+h;,i=1,2, (19)

where go > 0, and aj, b;, ¢j,d;, hj(i=1,2) and k;(i =1, 2) are real
constants to be calculated. Substituting (19) into bilinear Eq. (10),

(111)

we reach a set of algebraic equations, and then we can derive
aj, bi, ci,di, hij(i = 1,2) and kij(i = 1,2) with the aid of Maple,
which can be classified into the following cases.

a1 =0,b1 =by,c1 =—b1,dy
,3b1(123 +diay +dqca

=di,hi=h1, a2 =ay,

by =— 1 ,C2=C2,dy =0,hy =hy,
1
go=280.k1=k1,B=8,k =k,
biay3 +d d
=ﬁ(ﬁ 1a2° +dyaz + 162), (20)
d1a2

where dqa; # 0. Through the transformation Eq. (5), we get the
following solutions to Eq. (2)

7ﬁb1023+d102+d162
f=(Mb1y —biz+dit+ h1)2 + k1e(azx dq y+caz+hz)
(agx P19 Hd1ap +d1cy

+kye (axx 4 y+caz+h3) + g, (21)
and
uy = f2 (2k1k2 — k122 —ky?e 22 4 kq fe? + kafe %),

(22)

vVi=—= —=2 (2kikabraz®B — ki2braz? e

dq f
— ka?b1az> e %2 + kibyaz®B fe? + kobray® B fe™
+ 2k1kodiay + 2k1kadicy — k1 d1a2e

— kp?dyaze ™22 — ky2dycpe™ %2

+ kydiaz fe® + kidica fe®? + kadias fe 2
+kadica fe%2 4 2kyd1b121€52 — 2kad1br121e7%2),  (23)

where

k] d162€
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Fig. 2. The 3-D plots (top) and contour plots (bottom) of v¢ via Eq. (17) at three coordinates: (I) the x_y_v-coordinate by z= —x, t = 0; (II) the x_t_v-coordinate by z = —x,
y =0; (lll) the t_y_v-coordinate by z=—y, x=0; with a; =0.2,dy =1, h1 =1,a2,=0.2,b,=0.2,d, =02, h =1, go=1, =2, B =2.

t&1=b1y —biz+dit + hy, ap =dz, k1 =k1, 8 =B, c2=—a2 — bz, dy =d3, g0 = o,
biay? +dyay +dic Bba
Q:azx—ﬂlz +d12+ ]2y+czz+h2. (24) kz:kz,a:—g},
1

In addition, we can also obtain the following seven sets of so- far= O&LE =di(i=1,2),b1=0,c1 =002 =03,
lutions for the parameters aj, b, ¢i, d;, hj(i=1,2) and k;j(i =1, 2): by = —72, ki =k,

= -— M ': _a a
(a1 =a1,bi=bi(i=1,2), CZ:_L ) 2 hi=hi(i=1,2),
€1 =—a1 —by,hj=h;(i=1,2),a2=0,c2 = —by, p

_h,2 p_ _ _
di=di(i=1,2), go = go, k1 =ki, go=h"p=p.ka=kp a =ar},

: by (Baz® +d3)
b —0 b —=bhi(i— __A _
ﬂ=ﬁ,kz=kz,a=—i—ll}, {a1 =0,bi=bi(i=1,2),¢c1 = 0 ,d1 =0,
. arby hi=hi(i=1,2),a2 =ay,
{ai:ai(1:1,2),b1 =—— ﬁ023b2+(¥(124+(12d2+b2d2
@2 ki =0,cp=— p ,
ai(az + by) . )
c1=—7a2 ,di=di(i=1,2),by=b>, dy=d>, g0 =g0,B=B.ka=ks,a =},
(.'2:—(12—bz,hi=hi(l‘=‘l,2)7g0=g0,k]=k17 {a]=07b1=_d](02+b2+(;2),
Bb2 paz’

/3=/37’<2=’<2’05=—E}’ _di@+br+c2)

1 ,ay =dz,d; =d;i(i=1,2),by =by,

{a1=0,di =di(i=1,2),b; =0,c1 =0,a5 = —by — c3, Baz?
b2_b2 k] _kl hizhi(i=1,2),C2=C2,g0=g0,k1 =0,,3=,B,
ety 1o 3by + aydy + badz + Cad
a(by +c3) , _ _ _ Bax’by +axd; + bady 2d2
p=—— = hi=hii=12) ke=ka.c o )
go=280.ka=ky,a =}, These sets of solutions for the parameters generate seven types

3 of solutions f;(i = 2,3,...,8), defined by (19), to the bilinear
_M, Eq. (10); and further the resulting seven types of rogue wave type

dy solutions u;j(i=2,3,...,8) and v;(i=2,3,...,8) to Eq. (2), under
di=0,hij=h;i(i=1,2), the transformation Eq. (5).

{a1=0,bi=bi(i=1,2),c1 =
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The 3-D dynamic graphs of the rogue wave and corresponding
density plots are successfully depicted in Fig. 3 and Fig. 4.

Here, a type of X-like rogue wave, which is a mixed solution of
a lump wave and two solitary waves, is for the first time found for
the (3 + 1)-dimensional GBS equation in Fig. 3 and Fig. 4. At the
same time, the energy and the amplitude of the X-like rogue wave
achieve the maximum values in the plotted region.

4. Breather lump wave solutions
To search for breather lump wave solutions for Eq. (2), suppose

f=e"P1% 4 kqcos (p2g2) + k2eP'™ + go, (25)

where ¢ = ajx + bjy + ciz +dit + h;,i = 1,2, and go > 0. Here
aj, bi,cj,di, hij(i=1,2), pi(i=1,2) and k;j(i =1, 2) are real con-
stants to be calculated. Substituting (25) into bilinear Eq. (10),
we reach a set of algebraic equations, and then we can derive
aj, bi, cj,di, hij(i=1,2), pi(i=1,2) and k;(i =1, 2), which can be
classified into the following cases.

Case 1.

{a1=a1,b1 =b1,c1=—a1 —by,d1 =dy, a2 =ay,

b
C2=_az(a1+ ]),d2=d2,
ai

b1a2
bzzw,gozgo,/ﬁ=k1,ﬂ=,3,k2=k2,191zp1,

Bb1
o =———,p2=p2}.

aq
Case 2.

{a1 =a1,by =bq,¢c1 =—ay — by,dy =dq,a2 =0,
_bz(/‘30131312 +dy)

c)= ,
2 &
by =by,d=0,80=280.k1 =ki,8=8,kx =k,

b1
pP1=p1,0=——,p2=p2}.

a
Case 3.

b 3p,2 —d
{01=O,b1=b1,C1=M,d1=0,
dy

02=az,b2=—a—az,d2=0,

B
U P

B
B=B.ka=kz,p1 =p1,0 =, p2 =pa}.
Case 4.
b1(Baz*ps? —d
{a1:0,b1:b1,C1:M,d1:0,
d

a; =d;, C2 = —az — by,

by =by,dy =d3, go = go. k1 =k1, B =B.ka =k2,

b,
P1 =P1,0l=—ﬂ—,p2=p2}-
az

Case 5.

3byp1? +arda + byd
{alza]!blzb],C]z_ﬂaz 2P1 +a] 2“{‘ 1 2’
dy
di=0,a =0,by =b>,

Cy=—by,dy =d3, g0 =80, k1 =k1, B =B.ka =ko,

b
P1=P1,0l=——ﬂ 1,p2=p2}~
a

Case 6.
arby aj(az +by)
oy =a1,bj=—,ci=————
az az
by =by,cy =—a; — by,

dy =d2, g0 = go, k1 =k1,B=pB.kx =k,

,d1=0,a, =0,

b
pr=pra=-L2 p—p).
a
Case 7.

{a1 =0,b1 =b1,c1 =—b1,d1 =dy, a2 =ay,
Bb1az>pa? —diaz — dib;
G = s

dq
by =b3,d2 =0, go = go. k1 =k1,B=B, k2 =k,

b
pr=pra=—t"2 p, = py).

a;
Case 8.

, 5 5 ,

b 3p12 +d

di—dy.cp— — 2(Bay 51 + 1)’
1

ap =0,by =by,d2 =0,80=0,k1 =k1,8=8.ka=ka,
p1=p1.a =0, p2=p2}
Case 9.

2012by 12 dy —ad
{a1=a1,b1=—@,c1=—al('g a1°bap1° + Bdy — o 2)’

B dp
d1=0,a=0,by =b>,
cp=—by,dry=dp,80=0,ki =ki,8=58,k=ko,

P1=Dp1,¢ =0, p2 = Ppa}.

Case 10.
aa a1(B — o)
fei=a,bi=——F,c1=—————F,d1 =d1, a2 =0y,
B B
by = —@,dz =dy, o= _M7

B B
80=0,ki =k1,B=8,ky=kz, p1 =p1,ax =a, p2 = p2}.

Case 1 to Case 10 generate ten types of solutions fi(i =
1,2...10), defined by (25), to the bilinear Eq. (10); and further
the resulting fj(i=1,2...10) present ten types of breather lump
wave solutions uj(i=1,2...10) to Eq. (2), under the transforma-
tion u = 2(In f)x; and ten types of breather lump wave solutions
vi(i=1,2...10) to Eq. (2), under the transformation v = 2(In f)y,.
Such as in Case 1, we have

f= e~ P1(@x+bry—(a1+b1)z+dit+h1)

bia a(a;+b
+kq cos (pz(azx + %y - %z +dyt + h2)>
1 1
+kzepl(01X+b1y—(al+b1)Z+d1f+h1) + g0, (26)
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M (1) (I11)

Fig. 3. The 3-D plots (top) and density plots (bottom) of u; via Eq. (22) at three coordinates: (I) the x_y_u-coordinate by z= —x, t = 0; (II) the x_t_u-coordinate by z = —x,
y =0; (Ill) the t_y_u-coordinate by z=y, x=0; with by =1,d1 =2, h1=1,a2=1,c2=0.1, h =1, go=1, k1 =4, =1, kr =4.

0
x

(IT) (I11)

Fig. 4. The 3-D plots (top) and density plots (bottom) of v via Eq. (23) at three coordinates: (I) the x_y_v-coordinate by z= —x, t = 0; (II) the x_t_v-coordinate by z = —x,
y =0; (Ill) the t_y_v-coordinate by z=y, x=0; with b1 =1,d1 =2, h1 =1, a2 =1, =01, h =1, go =1, k1 =4, B=1, kr =4.
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1

[—y=0—y=1—y=0—y=5] l

x=0——x=4——2x=10 x=14]

Fig. 5. The 3-D plots and profile plots of uy via Eq. (27) at t =0 and z= —x with a; =0.2, by =0.5, d;

=4,h1:1,a2:8,d2=1,h2=1,p1=1,p2=1,k1=0.2,k2=

go =1, B =2. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

and

2
U = F(thzzazszOS(Pz;“z)z — ko?py%a 2e?Pré

+ 2k1kzp1p2aiazeP ! sin(p2g2)
— k1a2° p2? f cos(p22) + kapiar? feP14l
— 2k1p1p2aiaze P41 sin(paga)
+pi’ar® fe P

—k1?p2%ax® 4 2kapi*ar?),
2bq

arf?
— k2% p12a1?eP1é1 4 2k1kop1 p2a1aze? 4 sin(pat2)
— k122 p2* f cos(pat2) + kapr®ar® fePré

— 2kip1p2aqaze P14 sin(paga)

+ pila? fe o
—ki%p22az? + 2kap12ar?),

— plzalze_zpltl
(27)

vi= (k12p2az® fcos(p22)?

— p]2a1ze_2p1{1
(28)

where a; # 0, and the functions ¢; and ¢, are given as follows:

&1 =ax+b1y — (a1 +b1)z+dit +hq,
blazy (@ +by)

z+dyt + hy.
a a

fa=ax+ (29)
The 3-D dynamic graphs, corresponding profile plots of the
breather lump wave solutions (27) and (28), are successfully de-

picted in Fig. 5 and Fig. 6.
5. Periodic lump-stripe soliton

In this section, we first propose a type of new interaction solu-
tion in terms of a new combination of quadratic function, trigono-
metric function and exponential function, namely, periodic lump-
stripe soliton. Then, we will investigate the interaction between a
periodic lump-type soliton and a stripe soliton for Eq. (2), by tak-
ing the function f in Eq. (10) in the following form
f=61%+cos(s2) + % + go,
Ci=aix+bjy+ciz+dit+h;,i=1,2,3, (30)

where go > 0, and a;, b, ¢j,d;j, hj(i = 1,2,3) are real constants
to be calculated. Substituting (30) into bilinear Eq. (10), we
also reach a set of algebraic equations, and then we can derive

a;, bi, ¢, di, hi(i =1, 2, 3), which can be classified into the follow-
ing cases.

Case 1.
b b b
ap = 1% Jbi=bi(i=1,2),c1 = M,
b2 b,
di=di(i=1,2,3),hij=hi(i=1,2,3),
b
as :az,C2:—a2—b2,a3:a3,b3:2_03’
az
b b
C3:_w,g0_g B =8, a——ﬂa—; (31)

where bya; # 0. Through the transformation Eq. (5), we get the
following solutions to Eq. (2)

bia bi(az+b
f= 12x+b1y— 1(az +by)
b, by
+ cos (azx + bay — (a2 + by)z + dat + hy)

(a3x+ byaz y— as (u2+b2)

2
z+d1t+h1>

z+d3t+h3>

+e + Zo, (32)

and

(a22b2?% f cos(¢2) — az®ha? fe® — ax?by’cos(5)?

-2
by? f2
+ a32by2e?% — 2aya3by%e® sin(zy)

— 4a;°b1b2¢1 sin(g2)
—2a2%b1* f +a2%by?),

+ 4a2a3b1b2{1e§3

+ 4(1221912;“12 (33)

Vi = ———(a°h2* f cos(¢2)

axb f
_ a32b22fe§3
+ a3%by2%e%8 — 2a3a3b,%e% sin(sy)

— 4a,°b1by¢1 sin(Z2)
2a2%b1* f +a3°by?),

— ay%by%cos(5)?

+ 4a2a3b1b2§1e§3

+4ay’bi% 5% — (34)

where the functions ¢1, ¢2 and ¢3 are given as follows:
biay _ bi(az +b2)
= by - ——==
&1= b2 X+ by
o =axx+byy — (a2 + by)z+ dat + ho,
baas v as(az + bz)
az

z+dit + hy,

{3 =a3x+ z+dst + hs. (35)
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[—r=0—y=-1—y=2— -3 I

x=0——x=4——2x=10 x=14]

Fig. 6. The 3-D plots and profile plots of vq via Eq. (28) at t =0 and z= —x with a; =0.2, b1 =0.5,d1 =4, h1 =1,a,=8,d, =1, h, =1, p1 =1, p2=1,k1 =0.2, k; =0.2,

go=1p=2.
Case 2.

b b b
gy =208 _p = D1(@ )
b3 b3
di=di(i=1,2,3),a,=0,b, =0, =4,

b
a=-P o mi=hii=1,23),
as

as :ag,b3 :b3,C3 = —as —bg,go :go}.

Case 3.

{a1=0,b; =bi(i=1,2),c1 = —by,dy =dy,

hi =hi(i=1,2,3),a; =az, B = B, 8o = o,
pb2 _ Bbiap® —diay —diby

=——, d, =0,
ar 2 d] 2
d
03=0,b3=—C3763=C3,d3=—1—C3}~
b1
Case 4.
b —a)b
@="" b =b o= P G mdi=1.2.3),
—a o
aa
h1:0,a2:a2,b2:_—ﬂz,,8:ﬂ,
O(ZOl,g():go,CzZw,hizm(izz,@,
aas (B —a)as
a3=0a3,b3=—,c3=——77—}.
—B -B
Case 5.
34+d3)b
{01=O,b1=b1aclzw,d1=0,
—ds
h1=0,az=az,b2=01—ag’ﬁ:ﬂ’
a=uo, g = 8o,
_ 3d
62=M,dz=a2 2 hy=hy,
y “a33
a3=a3,b3=%, 3=M,d3=d3,h3=h3}~

-8 —B

Case 6.

b b b
=]—a3,b1=b1,cl =M’d] —di,
b3 _b3

b b
h1=0,(12 =(12,b2=‘12—3!/3=167a=ﬁ7
as —as

{1

az(as + bz)

p=—"
—as

hy =hy, b3 =b3, h3 =h3, c3 = —a3 — b3, d3 =0, go = Zo}.

,dy =d3,a3 =as,

Case 7.
oay (B —a)aq
fay=a1,b1=—,c1 = ——F——,d1 =0,
—B B
az=az,bz=“—";,ﬂ=ﬁ,hi=hi(i=1,z,3>,
2a52h3 — Bd d
Cz=('8 a°bs — Bds +« 3)027d2=0’
—Bds

a3 =0,c3 =—b3,b3=b3, 0 =, d3 =d3, go = go}.

Case 8.

{a1=0,b1 =b1,c1 =—b1,d1 =dy,h1 =hq,
bid
a2=0,b2=—:1 2 =4,
1
o= B(Bb1as® + bids + diaz +dic3) c
- d1(13 ’
dy =dz,hy =hy,a3 =as,
bias3 +d d
b3:_l3 10" +dias +dies
dy
d3 =ds, h3 =hs, go = go}.

bid;
dy ’

2=

Case 2 to Case 8 generate seven types of solutions fi(i =
2,3...8), defined by (30), to the bilinear Eq. (10); and further
the resulting present seven types of periodic lump-stripe solitons
uj(i=2,3...8) and v;(i=2,3...8) to Eq. (2), under the transfor-
mation Eq. (5).

The 3-D dynamic graphs of the periodic lump-stripe soliton v,
and corresponding density plots are successfully depicted in Fig. 7.
We can see the mutual reaction of the lump-type waves, cosine
function waves and the exponential function waves. In addition,
Fig. 8 and Fig. 9 show 3-D and density evolution behaviors of uq,
by setting z = —x and picking different values for t, where we



LT. Gai et al. / Physics Letters A 384 (2020) 126178 9

0
x

@) (1) (111

Fig. 7. The 3-D plots and density plots of vq via Eq. (34) at three coordinates: (I) the x_y_v-coordinate by z= —x, t = 0; (II) the x_t_v-coordinate by z= —x, y = 0; (IlI) the
t_y_v-coordinate by z=—y, x=0; with by =—1,d1 =1, h1 =1,a2=0.1, b =0.1,d, =0, h, =1,a3 =0.5,d3 =0, h3 = -2, go =4, B =2.

Fig. 8. The 3-D evolution plots of uy via Eq. (33) at t = —40, t = —10, t =10, t =20, t =40 and t =90 with z=—x, by =—-1,dy =1, hy =1, a =0.1, b =0.1, d, =0,
hy=1,a3=0.5,d3 =0, h3=-2, gg =4, f=2.
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Fig. 9. The density evolution plots of u; via Eq. (33) at t = —40, t = —10, t =10, t =20, t =40 and t = 90 with z= —x, by

hy=1,a3=0.5,d3=0, h3=-2, go =4, f=2.

change the coordinate of the periodic lump-type soliton to make
it collide with stripe soliton.

The periodic lump-type soliton and a stripe soliton begin ap-
pearing at t = —40 in Fig. 8 and Fig. 9. The amplitude of the stripe
soliton starts to increase as the periodic lump-type soliton ap-
proaches the stripe soliton. The periodic lump-type soliton begins
colliding with the stripe soliton when t = 10. Finally, the peri-
odic lump-type soliton completely decays and is swallowed by the
stripe soliton when t =90 in Fig. 8 and Fig. 9, where the energy
and the amplitude of the periodic lump-stripe soliton have the
maximum values. We see that periodic lump-stripe soliton is com-
pletely non-elastic, u(x, y,z,t) and v(x, y, z,t) are mixed solitary
waves of quadratic function, trigonometric function and exponen-
tial function, and they decays both exponentially and algebraically.
This interaction phenomena is similar to the fusion and fission for
soliton solutions.

6. Summary and discussions

In this paper, we obtained a bilinear form for Eq. (2), through
using a Hirota direct method. Then, abundant new lump-type so-
lutions, rogue wave type solutions, breather lump wave solutions
and periodic lump-stripe solitons were constructed, by utilizing
the Hirota bilinear form. It is expected that those new solutions
would be helpful in better understanding the (3 + 1)-dimensional
GBS equation. We presented lump-type solitons and their dynamic
characteristics in Fig. 1 and Fig. 2. The 3-D dynamics characteris-
tics and density plots of the rogue wave, breather lump waves and

t

x
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30

40

t =90

—], d] = ], h1 = ], az =0.1, bz =0fl, dz =0,

periodic lump-stripe solitons were depicted in Figs. 3 and 4; and
Figs. 5 and 6; and Fig. 7; respectively. In addition, we also investi-
gated another type of X-like rogue wave, by taking the function f
in Eq. (10) in the following form

f =% 48"+ cosh(¢s) + go,
Li=aix+bijy+ciz+dit+h;, (i=1,2,3). (36)

For an example, for a group of parameters:

b3(ai2 + ax?) — azbya
Gi=ai(i=1,2.3), by = 20T D7)~ @bas
ajas

_a1%(@3 +b3) + a2°b3 — azbas

3

aias
di=di,hi=hi(i=1,2,3),by =by,co =—a; — by,
d
dy = —a]—l, b3 = bs,
az
_ Baz’a3’bs — Bazbraz® + ardi(as + b3)
- a1d1 ’
b
d3 :0,g0:g0,,8:/3,0t:—ﬁa—33,

where aydyazas # 0. Then, we can present rogue wave type solu-
tions for Eq. (2), under the transformation Eq. (5). The graphs of
corresponding u and v are given in Fig. 10.
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Fig. 10. Plots of the second type of rogue wave solutions u (top) and v (bottom) at t =0 with z=x, a; =0.2,d; =0.2, hy =1,a, =0.2, b =—-0.5, h, =1,a3 =1, b3 =0.5,

h3=2,g =1, p=-05.

The 3-D and density evolution behaviors of the periodic lump-
stripe solitons were depicted in Fig. 8 and Fig. 9. We changed the
coordinate of the periodic lump-type soliton to make it collide
with the stripe soliton, through setting t = —40, t = —10, t = 10,
t =20, t =40 and t = 90. Moreover, we observed that the periodic
lump-type soliton is swallowed by the stripe soliton. It should be
particularly interesting to note that, by taking p =3, p =5 and
p =7, the bilinear Eq. (10) can take one of the following general-
ized bilinear forms:

(D3xD3,¢ + D3,y D3 + D3 ;D3¢ + D3,

+BD3,D3y)f - f=0, (37)
(DsxDs,¢ + D5, yDs ¢ + D5 ;D5 +aDa

+BD3,Dsy)f - f=0, (38)
(D7xD7.t 4+ D7,yD7¢ + D7.,D7, + aD‘{x
+8D3 D7) f - f =0, (39)

whose lump-type solutions, rogue wave type solutions, breather
lump wave solutions and periodic lump-stripe solitons can be sim-
ilarly generated. Our future study will focus on implementing the
Hirota bilinear method to present exact solutions of higher order
bilinear equations and extending the Hirota bilinear method to a
larger research field.

Declaration of competing interest
The authors declare that they have no known competing finan-

cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgements

The authors would like to thank the editors and reviewers for
their suggestions and comments.

Funding. The authors are supported by the National Natural Sci-
ence Foundation of China (Grants No. 61572095, 61877007).

References

[1] W.X. Ma, Lump solutions to the Kadomtsev-Petviashvili equation, Phys. Lett. A
379 (2015) 1975-1978.

[2] S. Manukure, Y. Zhou, W.X. Ma, Lump solutions to a (2 + 1)-dimensional ex-
tended KP equation, Comput. Math. Appl. 75 (2018) 2414-2419.

[3] B. Ren, W.X. Ma, ]J. Yu, Characteristics and interactions of solitary and lump
waves of a (2 + 1)-dimensional coupled nonlinear partial differential equation,
Nonlinear Dyn. 96 (2019) 717-727.

[4] W.X. Ma, Y. Zhou, Lump solutions to nonlinear partial differential equations via
Hirota bilinear forms, J. Differ. Equ. 264 (2018) 2633-2659.

[5] J.Y. Yang, W.X. Ma, Abundant lump-type solutions of the Jimbo-Miwa equation
in (3 4+ 1)-dimensions, Comput. Math. Appl. 73 (2017) 220-225.

[6] W.X. Ma, Abundant lumps and their interaction solutions of (3 +
1)-dimensional linear PDEs, ]. Geom. Phys. 133 (2018) 10-16.

[7] W.X. Ma, Lump and interaction solutions of linear PDEs in (3 4 1)-dimensions,
East Asian J. Appl. Math. 9 (2019) 185-194.

[8] M. Wang, B. Tian, Y. Sun, HM. Yin, Z. Zhang, Mixed lump-stripe, bright rogue
wave-stripe, dark rogue wavestripe and dark rogue wave solutions of a gen-
eralized Kadomtsev-Petviashvili equation in fluid mechanics, Chin. ]J. Phys. 60
(2019) 440-449.

[9] X.G. Geng, Y.L. Ma, N-soliton solution and its Wronskian form of a (3 +
1)-dimensional nonlinear evolution equation, Phys. Lett. A 369 (2007) 285-289.

[10] A. Majid Wazwaz, Multiple soliton solutions for the Bogoyavlenskii’s general-
ized breaking soliton equations and its extension form, Appl. Math. Comput.
217 (2010) 4282-4288.

[11] Y. Zhou, S. Manukure, W.X. Ma, Lump and lump-soliton solutions to the Hirota—
Satsuma-Ito equation, Commun. Nonlinear Sci. Numer. Simul. 68 (2019) 56-62.

[12] C.H. He, Y.N. Tang, W.X. Ma, J.L. Ma, Interaction phenomena between a lump
and other multi-solitons for the (2 + 1)-dimensional BLMP and Ito equations,
Nonlinear Dyn. 95 (2019) 29-42.


http://refhub.elsevier.com/S0375-9601(19)31112-0/bib31s1
http://refhub.elsevier.com/S0375-9601(19)31112-0/bib31s1
http://refhub.elsevier.com/S0375-9601(19)31112-0/bib32s1
http://refhub.elsevier.com/S0375-9601(19)31112-0/bib32s1
http://refhub.elsevier.com/S0375-9601(19)31112-0/bib33s1
http://refhub.elsevier.com/S0375-9601(19)31112-0/bib33s1
http://refhub.elsevier.com/S0375-9601(19)31112-0/bib33s1
http://refhub.elsevier.com/S0375-9601(19)31112-0/bib34s1
http://refhub.elsevier.com/S0375-9601(19)31112-0/bib34s1
http://refhub.elsevier.com/S0375-9601(19)31112-0/bib35s1
http://refhub.elsevier.com/S0375-9601(19)31112-0/bib35s1
http://refhub.elsevier.com/S0375-9601(19)31112-0/bib36s1
http://refhub.elsevier.com/S0375-9601(19)31112-0/bib36s1
http://refhub.elsevier.com/S0375-9601(19)31112-0/bib37s1
http://refhub.elsevier.com/S0375-9601(19)31112-0/bib37s1
http://refhub.elsevier.com/S0375-9601(19)31112-0/bib38s1
http://refhub.elsevier.com/S0375-9601(19)31112-0/bib38s1
http://refhub.elsevier.com/S0375-9601(19)31112-0/bib38s1
http://refhub.elsevier.com/S0375-9601(19)31112-0/bib38s1
http://refhub.elsevier.com/S0375-9601(19)31112-0/bib39s1
http://refhub.elsevier.com/S0375-9601(19)31112-0/bib39s1
http://refhub.elsevier.com/S0375-9601(19)31112-0/bib3130s1
http://refhub.elsevier.com/S0375-9601(19)31112-0/bib3130s1
http://refhub.elsevier.com/S0375-9601(19)31112-0/bib3130s1
http://refhub.elsevier.com/S0375-9601(19)31112-0/bib3131s1
http://refhub.elsevier.com/S0375-9601(19)31112-0/bib3131s1
http://refhub.elsevier.com/S0375-9601(19)31112-0/bib3132s1
http://refhub.elsevier.com/S0375-9601(19)31112-0/bib3132s1
http://refhub.elsevier.com/S0375-9601(19)31112-0/bib3132s1

12 L.T. Gai et al. / Physics Letters A 384 (2020) 126178

[13] Y. Zhang, Y.P. Liu, X\Y. Tang, M-lump and interactive solutions to a (3 +
1)-dimensional nonlinear system, Nonlinear Dyn. 93 (2018) 2533-2541.

[14] Y. Zhang, Y.P. Liu, X.Y. Tang, M-lump solutions to a (3 + 1)-dimensional nonlin-
ear evolution equation, Comput. Math. Appl. 76 (2018) 592-601.

[15] Z.L. Zhao, L.C. He, Multiple lump solutions of the (3 + 1)-dimensional potential
Yu-Toda-Sasa-Fukuyama equation, Appl. Math. Lett. 95 (2019) 114-121.

[16] B. Ren, W.X. Ma, Rational solutions and their interaction solutions of the (2 +
1)-dimensional modified dispersive water wave equation, Comput. Math. Appl.
77 (2019) 2086-2095.

[17] JJ. Xie, X. Yang, Rogue waves, breather waves and solitary waves for a (3 +
1)-dimensional nonlinear evolution equation, Appl. Math. Lett. 97 (2019) 6-13.

[18] Y.Q. Liu, X.Y. Wen, Novel interaction phenomena of localized waves in the gen-
eralized (3+ 1)-dimensional KP equation, Comput. Math. Appl. 78 (2019) 1-19.

[19] Y.Q. Yuan, B. Tian, L. Liu, X.Y. Wu, Y. Sun, Solitons for the (2 + 1)-dimensional
Konopelchenko-Dubrovsky equations, J. Math. Anal. Appl. 460 (2018) 476-486.

[20] Z. Du, B. Tian, H.P. Chai, Y. Sun, XH. Zhao, Rogue waves for the coupled
variable-coefficient fourth-order nonlinear Schrodinger equations in an inho-
mogeneous optical fiber, Chaos Solitons Fractals 109 (2018) 90-98.

[21] X.Y. Gao, Mathematical view with observational/experimental consideration on
certain (2 + 1)-dimensional waves in the cosmic/laboratory dusty plasmas,
Appl. Math. Lett. 91 (2019) 165-172.

[22] X.H. Zhao, B. Tian, X.Y. Xie, X.Y. Wu, Y. Sun, YJ. Guo, Solitons, Backlund trans-
formation and Lax pair for a (2 + 1)-dimensional Davey-Stewartson system
on surface waves of finite depth, Waves Random Complex Media 28 (2018)
356-366.

[23] S.S. Chen, B. Tian, L. Liu, Y.Q. Yuan, C.R. Zhang, Conservation laws, binary Dar-
boux transformations and solitons for a higher-order nonlinear Schrodinger
system, Chaos Solitons Fractals 118 (2019) 337-346.

[24] X.Y. Gao, Looking at a nonlinear inhomogeneous optical fiber through the gen-
eralized higher-order variable-coefficient Hirota equation, Appl. Math. Lett. 73
(2017) 143-149.

[25] Z. Wang, Y.p. Qin, L. Zou, Quasi-periodic solutions and asymptotic properties
for the nonlocal Boussinesq equation, Chin. Phys. B 26 (2017) 050504.

[26] Y.L. Ma, B.Q. Li, Interactions between soliton and rogue wave for a (2 +
1)-dimensional generalized breaking soliton system: hidden rogue wave and
hidden soliton, Comput. Math. Appl. 78 (2019) 827-839.

[27] XW. Yan, S.F. Tian, MJ. Dong, L. Zhou, T.T. Zhang, Characteristics of soli-
tary wave, homoclinic breather wave and rogue wave solutions in a (2 +
1)-dimensional generalized breaking soliton equation, Comput. Math. Appl. 76
(2018) 179-186.

[28] M.S. Osman, On multi-soliton solutions for the (2 + 1)-dimensional breaking
soliton equation with variable coefficients in a graded-index waveguide, Com-
put. Math. Appl. 75 (2018) 1-6.

[29] O.A. Ilhan, J. Manafian, Periodic type and periodic cross-kink wave solutions
to the (2 4+ 1)-dimensional breaking soliton equation arising in fluid dynamics,
Mod. Phys. Lett. B 33 (2019) 1950277.

[30] H.Q. Sun, A.H. Chen, Lump and lump-kink solutions of the (3 + 1)-dimensional
Jimbo-Miwa and two extended Jimbo-Miwa equations, Appl. Math. Lett. 68
(2017) 55-61.

[31] J.g. Liu, XJ. Yang, M.H. Cheng, Y.Y. Feng, Y.D. Wang, Abound rogue wave type
solutions to the extended (3 + 1)-dimensional Jimbo-Miwa equation, Comput.
Math. Appl. 78 (2019) 1947-1959.


http://refhub.elsevier.com/S0375-9601(19)31112-0/bib3133s1
http://refhub.elsevier.com/S0375-9601(19)31112-0/bib3133s1
http://refhub.elsevier.com/S0375-9601(19)31112-0/bib3134s1
http://refhub.elsevier.com/S0375-9601(19)31112-0/bib3134s1
http://refhub.elsevier.com/S0375-9601(19)31112-0/bib3135s1
http://refhub.elsevier.com/S0375-9601(19)31112-0/bib3135s1
http://refhub.elsevier.com/S0375-9601(19)31112-0/bib3136s1
http://refhub.elsevier.com/S0375-9601(19)31112-0/bib3136s1
http://refhub.elsevier.com/S0375-9601(19)31112-0/bib3136s1
http://refhub.elsevier.com/S0375-9601(19)31112-0/bib3137s1
http://refhub.elsevier.com/S0375-9601(19)31112-0/bib3137s1
http://refhub.elsevier.com/S0375-9601(19)31112-0/bib3138s1
http://refhub.elsevier.com/S0375-9601(19)31112-0/bib3138s1
http://refhub.elsevier.com/S0375-9601(19)31112-0/bib3139s1
http://refhub.elsevier.com/S0375-9601(19)31112-0/bib3139s1
http://refhub.elsevier.com/S0375-9601(19)31112-0/bib3230s1
http://refhub.elsevier.com/S0375-9601(19)31112-0/bib3230s1
http://refhub.elsevier.com/S0375-9601(19)31112-0/bib3230s1
http://refhub.elsevier.com/S0375-9601(19)31112-0/bib3231s1
http://refhub.elsevier.com/S0375-9601(19)31112-0/bib3231s1
http://refhub.elsevier.com/S0375-9601(19)31112-0/bib3231s1
http://refhub.elsevier.com/S0375-9601(19)31112-0/bib3232s1
http://refhub.elsevier.com/S0375-9601(19)31112-0/bib3232s1
http://refhub.elsevier.com/S0375-9601(19)31112-0/bib3232s1
http://refhub.elsevier.com/S0375-9601(19)31112-0/bib3232s1
http://refhub.elsevier.com/S0375-9601(19)31112-0/bib3233s1
http://refhub.elsevier.com/S0375-9601(19)31112-0/bib3233s1
http://refhub.elsevier.com/S0375-9601(19)31112-0/bib3233s1
http://refhub.elsevier.com/S0375-9601(19)31112-0/bib3234s1
http://refhub.elsevier.com/S0375-9601(19)31112-0/bib3234s1
http://refhub.elsevier.com/S0375-9601(19)31112-0/bib3234s1
http://refhub.elsevier.com/S0375-9601(19)31112-0/bib3235s1
http://refhub.elsevier.com/S0375-9601(19)31112-0/bib3235s1
http://refhub.elsevier.com/S0375-9601(19)31112-0/bib3236s1
http://refhub.elsevier.com/S0375-9601(19)31112-0/bib3236s1
http://refhub.elsevier.com/S0375-9601(19)31112-0/bib3236s1
http://refhub.elsevier.com/S0375-9601(19)31112-0/bib3237s1
http://refhub.elsevier.com/S0375-9601(19)31112-0/bib3237s1
http://refhub.elsevier.com/S0375-9601(19)31112-0/bib3237s1
http://refhub.elsevier.com/S0375-9601(19)31112-0/bib3237s1
http://refhub.elsevier.com/S0375-9601(19)31112-0/bib3238s1
http://refhub.elsevier.com/S0375-9601(19)31112-0/bib3238s1
http://refhub.elsevier.com/S0375-9601(19)31112-0/bib3238s1
http://refhub.elsevier.com/S0375-9601(19)31112-0/bib3239s1
http://refhub.elsevier.com/S0375-9601(19)31112-0/bib3239s1
http://refhub.elsevier.com/S0375-9601(19)31112-0/bib3239s1
http://refhub.elsevier.com/S0375-9601(19)31112-0/bib3330s1
http://refhub.elsevier.com/S0375-9601(19)31112-0/bib3330s1
http://refhub.elsevier.com/S0375-9601(19)31112-0/bib3330s1
http://refhub.elsevier.com/S0375-9601(19)31112-0/bib3331s1
http://refhub.elsevier.com/S0375-9601(19)31112-0/bib3331s1
http://refhub.elsevier.com/S0375-9601(19)31112-0/bib3331s1

	Lump-type solutions, rogue wave type solutions and periodic lump-stripe interaction phenomena to a (3+1)-dimensional generalized breaking soliton equation
	1 Introduction
	2 Bilinear form and lump-type solutions
	2.1 Bilinear form
	2.2 Lump-type solutions

	3 Rogue wave type solutions
	4 Breather lump wave solutions
	5 Periodic lump-stripe soliton
	6 Summary and discussions
	Acknowledgements
	References


