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Abstract In this paper, themultivariate trilinear oper-
ators in the (3 + 1)-dimensional space are applied
to a (3 + 1)-dimensional GBK equation. The result-
ing trilinear form is used to study its wave dynam-
ics. Particularly, we generate a type of new interac-
tion solutions between breather lump-type solitons and
other multi-kink solitons, thereby formulating a kind
of breather lump–kink solitons. By setting time con-
stants, we change the coordinates of kink solitons to
make them collide with the breather lump-type soli-
ton, during which breather lump-type soliton is swal-
lowed eventually by those kink solitons. The evolu-
tion behaviours of the breather lump–kink solitons are
depicted by plotting 3-D and density graphs from the
perspective of wave characteristics.
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1 Introduction

A new direct method for constructing multi-soliton
solutions to integrable nonlinear evolution equations
is introduced by Hirota in 1971, namely the Hirota
bilinear method [1]. The idea is to make a transfor-
mation into new variables, so that in these new vari-
ables multi-soliton solutions appear in a particularly
simple form. Researchers usually use the Hirota bilin-
ear method to solve nonlinear PDEs and obtain their
lump solutions [2–13], multi-soliton solutions [14–
17], multi-lump solutions [18–20], interaction solu-
tions [7,8,11,21–24] and others [25–33]. For example,
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the following (2+1)-dimensional Boiti–Leon–Manna–
Pempinelli (BLMP) equation

uyt + uxxxy − 3uxxuy − 3uxuxy = 0, (1)

under the transformation u = 2(ln f )x , turns into the
Hirota bilinear form(
Dt Dy + DyD

3
x

)
f · f = 0, (2)

where Dx , Dy and Dt are Hirota’s bilinear operators,
and some lump solutions, soliton solutions and interac-
tion solutions are generated, with the aid of the Hirota
bilinear method [17].

Up to now, there are few studies on using trilinear
forms to solve nonlinear PDEs. The nonlinear terms in
trilinear equations havegreat influenceon computation.
Hence, it brings us a new research topic—the trilinear
method for constructing analytic solutions to nonlin-
ear PDEs. Recently, we find that some new analytic
solutions of nonlinear PDEs can be obtained through
trilinear differential equations. Some interesting exam-
ples and general properties of trilinear equations have
been studied in [34].

In this work, we would like to construct lump-type
solutions and breather lump–kink interaction solutions
for a (3+1)-dimensional nonlinear equation, by utiliz-
ing the trilinear method. The rest of the paper is orga-
nized as follows. In Sect. 2, we present a trilinear equa-
tion and construct its lump-type solutions. InSect. 3,we
compute breather lump–kink soliton solutions. Finally,
we give some discussions and concluding remarks in
Sect. 4.

2 Trilinear form and lump-type solution

In this section, we present a trilinear form and its corre-
sponding (3+1)-dimensional nonlinear equation, with
the aid of trilinear differential operators. And then, we
get a set of lump-type solutions for the resulting (3+1)-
dimensional nonlinear equation.

2.1 Trilinear form

Consider the trilinear operators in (3+ 1)-dimensional
space defined by the following rule [34]
(
DK

p̄1,x · DL
p̄2,y · DM

p̄3,z · DN
p̄4,t

)
f · g · h

=
(
αp1∂x + αp′

1
∂x ′ + αp′′

1
∂x ′′

)K

·
(
αp2∂y + αp′

2
∂y′ + αp′′

2
∂y′′

)L

·
(
αp3∂z + αp′

3
∂z′ + αp′′

3
∂z′′

)M

·
(
αp4∂t + αp′

4
∂t ′ + αp′′

4
∂t ′′

)N

× f (x, y, z, t)g
(
x ′, y′, z′, t ′

)

h
(
x ′′, y′′, z′′, t ′′

) |x=x ′=x ′′,y=y′=y′′,z=z′=z′′,t=t ′=t ′′ ,

(3)

where p̄i = 〈pi , p′
i , p

′′
i 〉 (1 ≤ i ≤ 4), K , L , M and N

are arbitrary nonnegative integers. And the powers of
αm
s (s ≥ 1) are signs, defined by:

s = 2k(k ∈ N) : +,−,+,−, · · · ,

s = 1 : +,+,+,+, · · · ,

s = 3 : +,−,+,+,−,+, · · · ,

s = 5 : +,−,+,−,+,+,−,+,−,+, · · · ,

s = 7 : +,−,+,−,+,−,+,+,−,+,−,+,−,+, · · · ,

for m = 0, 1, 2, . . ., and then, by setting p̄i =
〈pi , p′

i , p
′′
i 〉 = 〈1, 2, 3〉, we have

Dx f · g · h = fx gh − f gxh − f ghx ,

D2
x f · g · h = fxx gh − 2 fx gxh − 2 fx ghx

+ f gxxh + 2 f gxhx + f ghxx ,

Dx Dy f · g · h = fxygh − fx gyh − fx ghy − fygxh

+ f gxyh + f gxhy − fyghx

+ f gyhx + f ghxy, (4)

and others. Let f = g = h, we also get the following
cases:

D2
x f · f · f = 3 fxx f

2 − 2 fx
2 f,

Dx Dy f · f · f = 3 fxy f
2 − 2 fx fy f,

D3
x Dy f · f · f = fxxxy f

2 − 2 fxxx fy f − 6 fxxy fx f

− 6 fxx fx fy − 6 fxy fx
2

+ 18 fxy fxx f,

D4
x f · f · f = fxxxx f

2 − 8 fxxx fx f − 12 fxx fx
2

+18 fxx
2 f, (5)

where f = f (x, y, z, t) is an unknown function. Con-
sider a P-polynomial in (3+1)-dimensional reads [35]

P(x, y, z, t) = δx4 + γ x3y + αx3z + xt + yt − zz,

(6)

123



Lump-type solution and breather lump–kink interaction 2717

and the corresponding trilinear equation is
(
δD4

x + γ D3
x Dy + αD3

x Dz + Dx Dt

+DyDt − D2
z

)
f · f · f = 0, (7)

namely,

δ
(
fxxxx f

2 − 8 fxxx fx f − 12 fxx fx
2

+ 18 fxx
2 f

) + γ
(
fxxxy f

2 − 2 fxxx fy f − 6 fxxy fx f

− 6 fxx fx fy − 6 fxy fx
2 + 18 fxx fxy f

) + α
(
fxxxz f

2

− 2 fxxx fz f − 6 fxxz fx f − 6 fxx fx fz

− 6 fxz fx
2 + 18 fxx fxz f

) + 3 fxt f
2

− 2 fx ft f + 3 fyt f
2 − 2 fy ft f − 3 fzz f

2 + 2 fz
2 f = 0,

(8)

under the transformation u = 2(ln f )x , Eq. (8) is
mapped into a (3 + 1)-dimensional form

δuxxxx + 6δuxuxx + γ uxxxy + αuxxxz

+3γ (uxuxy + uxxuy) + 3α(uxuxz + uxxuz)

+uxt + uyt − uzz = 0, (9)

and the corresponding generalized form of Eq. (9) is

δuxxxx + λuxuxx + γ uxxxy

+αuxxxz + μ(uxuxy + uxxuy)

+β(uxuxz + uxxuz) + η1uxt

+ η2uyt − η3uzz = 0. (10)

By setting α = η2 = η3 = 0, λ = 6δ, μ = 3γ and
η1 = 1 in Eq. (10), one can be written as

δ(uxxxx + 6uxuxx )

+γ (uxxxy + 3uxuxy + 3uxxuy) + uxt = 0, (11)

which is the (2 + 1)-dimensional Bogoyavlensky–
Konopelchenko equation [36]. Thus, Eq. (10) is an
extension of Eq. (11), namely, a (3 + 1)-dimensional
generalized Bogoyavlensky–Konopelchenko (GBK)
equation, which can describe interaction of Riemann
wave along with three space directions in nonlinear
media.

2.2 Lump-type solution

By taking the parameters δ = γ = α = η1 = η2 =
η3 = 1, λ = 6, μ = β = 3, Eq. (10) has the following
form:

uxxxx + 6uxuxx + uxxxy + uxxxz

+3(uxuxy + uxxuy) + 3(uxuxz

+ uxxuz) + uxt + uyt − uzz = 0, (12)

whose corresponding trilinear equation is
(
D4
x + D3

x Dy + D3
x Dz

+Dx Dt + DyDt − D2
z

)
f · f · f = 0, (13)

i.e.

fxxxx f
2 − 8 fxxx fx f − 12 fxx fx

2 + 18 fxx
2 f

+ fxxxy f
2 − 2 fxxx fy f − 6 fxxy fx f

− 6 fxx fx fy − 6 fxy fx
2 + 18 fxx fxy f + fxxxz f

2

− 2 fxxx fz f − 6 fxxz fx f − 6 fxx fx fz

− 6 fxz fx
2 + 18 fxx fxz f + 3 fxt f

2 − 2 fx ft f

+ 3 fyt f
2 − 2 fy ft f − 3 fzz f

2 + 2 fz
2 f = 0. (14)

Take the function f in Eq. (14) as the following form
[2–13]

f = ζ1
2 + ζ2

2 + g0,

ζi = ai x + bi y + ci z + di t + hi , i = 1, 2, (15)

where g0 > 0, and ai , bi , ci , di , hi (i = 1, 2) are real
constants to be calculated. Substituting (15) into trilin-
ear Eq. (14), we reach a set of algebraic equations, and
then, we can derive ai , bi , ci , di , hi (i = 1, 2) with the
aid of Maple. This way, we can obtain the following
solutions of coefficients:

ai = ai (i = 1, 2), b1 = d1 − a1,

c1 = −d1, di = di (i = 1, 2),

b2 = d2 − a2, c2 = −d2, hi = hi (i = 1, 2), g0 = g0,

(16)

and under the transformation u = 2(ln f )x , we can get
the following lump-type solutions to Eq. (12):

u = 4(a1ζ1 + a2ζ2)

f
, (17)

and

f = (a1x + (d1 − a1)y − d1z + d1t + h1)
2

+ (a2x + (d2 − a2)y − d2z + d2t + h2)
2 + g0,

(18)

where the functions ζ1 and ζ2 are given as follows:

ζ1 = a1x + (d1 − a1)y − d1z + d1t + h1,

ζ2 = a2x + (d2 − a2)y − d2z + d2t + h2. (19)
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Fig. 1 3-Dplots (top) and density plots (bottom) ofu viaEq. (17)
at three coordinates: a the x−y−u-coordinate by z = −x, t = 0;
b the x−t−u-coordinate by z = −x, y = 0; and c the t−y−u-

coordinate by z = y, x = 0; with a1 = −2, d1 = 2, h1 =
0, a2 = 2, d2 = 2, h2 = 0, g0 = 1

By setting g0 > 0, the solution f is positive, and
u is localized in all directions in the space. Thus, the
lump-type solution u → 0 at any given time t , if the
corresponding sum of squares ζ1

2 + ζ2
2 → ∞. Fig-

ure 1 shows the 3-D and density plots of u, by choosing
appropriate values of these parameters in Eq. (17).

3 Breather lump–kink solitons

In this section, we first propose a type of new interac-
tion solutions in terms of a new combination of cosine
function, hyperbolic cosine function and exponential
functions, namely, breather lump–kink soliton. Then,
we will investigate the interaction between the breather
lump-type soliton and multi-kink solitons for Eq. (12),
by taking the function f in Eq. (14) in the following
form

f = k1 cos(ζ1) + k2 cosh(ζ2) +
N∑
j=3

k j e
ζ j + g0, (20)

where ζi = ai x +bi y+ ci z+di t +hi (i = 1, 2 . . . N ),
and ki (i = 1, 2, . . . N ), N ≥ 3 are real constants.

Procedure 3.1 (Acquisition of interaction solutions)
Substituting Eq. (20) into Eq. (14), we reach the coef-
ficients of different polynomials and set the coeffi-
cients of these terms to zero, and we get a set of
algebraic equations in the parameters. And then, we
can derive ai , bi , ci , di , hi (i = 1, 2 . . . N ) and ki (i =
1, 2, . . . N ). Finally, substituting the identified val-
ues of ai , bi , ci , di , hi (i = 1, 2 . . . N ) and ki (i =
1, 2, . . . N ) into Eq. (20), and through the transforma-
tion u = 2(ln f )x , we finally obtain abundant interac-
tion solutions of Eq. (12).

3.1 Breather lump-type soliton and a kink soliton

To search for interaction solutions between the breather
lump-type soliton and a kink soliton of Eq. (12), we
suppose N = 3 and Eq. (20) has the following form

f = k1 cos(ζ1) + k2 cosh(ζ2) + k3e
ζ3 + g0, (21)

where ζi = ai x +bi y+ ci z+di t +hi (i = 1, 2, 3) and
g0 > 0. Here ai , bi , ci , di , hi (i = 1, 2, 3) and ki (i =
1, 2, 3) are real constants to be calculated. According
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Fig. 2 The 3-D evolution plots of u via Eq. (23) at h3 = −30, h3 = −20, h3 = −10, h3 = 0, h3 = 10 and h3 = 20

to Procedure 3.1, we can obtain the following solutions
of coefficients:

ai = ai (i = 1, 2, 3), b1 = d1 − a1, c1 = −d1,

b2 = d2 − a2, c2 = −d2, b3 = d3 − a3,

c3 = −d3, di = di (i = 1, 2, 3), hi = hi (i = 1, 2, 3),

g0 = g0, ki = ki (i = 1, 2, 3), (22)

and under the transformation u = 2(ln f )x , we can get
the following breather lump–kink soliton to Eq. (12):

u = −2(k1a1 sin(ζ1) − k2a2 sinh(ζ2) − k3a3eζ3)

f
,

(23)

and

f = k1 cos(a1x + (d1 − a1)y − d1z + d1t + h1)

+ k2 cosh(a2x + (d2 − a2)y − d2z + d2t + h2)

+ k3e
(a3x+(d3−a3)y−d3z+d3t+h3) + g0, (24)

where the functions ζ1, ζ2and ζ3 are given as follows:

ζ1 = a1x + (d1 − a1)y − d1z + d1t + h1,

ζ2 = a2x + (d2 − a2)y − d2z + d2t + h2,

ζ3 = a3x + (d3 − a3)y − d3z + d3t + h3. (25)

Figures 2 and 3 show 3-D and corresponding density
evolution behaviours of u, by setting t = 0, z = −x ,
a1 = 0.4, d1 = 0.4, h1 = 0, a2 = −0.4, d2 = 0.2,
h2 = 0, a3 = −2, d3 = 1, g0 = 1 and ki = 1(i =
1, 2, 3); and picking different values for h3 from−30 to
20, where we change the coordinate of the kink soliton
to make it collide with the breather lump-type soliton.
We can see the mutual reaction of breather lump-type
wave and kink solitary wave.

The breather lump-type soliton and a kink soli-
ton begin appearing at h3 = −30. The kink soliton
begins colliding with the breather lump-type soliton at
h3 = −20. Finally, the breather lump-type soliton is
swallowed by the kink soliton at h3 = 20 in Figs. 2 and
3.
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Fig. 3 The density evolution plots of u via Eq. (23) at h3 = −30, h3 = −20, h3 = −10, h3 = 0, h3 = 10 and h3 = 20

3.2 Breather lump-type soliton and two kink solitons

By choosing N = 4, Eq. (20) has the following form

f = k1 cos(ζ1) + k2 cosh(ζ2) +
4∑
j=3

k j e
ζ j + g0, (26)

where ζi = ai x + bi y + ci z + di t + hi (i = 1, 2 . . . 4)
and g0 > 0. Here, ai , bi , ci , di , hi (i = 1, 2 . . . 4) and
ki (i = 1, 2 . . . 4) are real constants to be calculated.
According to Procedure 3.1, we can obtain the follow-
ing solutions of coefficients:

ai = ai (i = 1, 2 . . . 4), b1 = d1 − a1, c1 = −d1,

d1 = d1, b2 = −4a2
3 − a2, c2 = 4a2

3,

d2 = −4a2
3, b3 = d3 − a3, c3 = −d3,

d3 = d3, hi = hi (i = 1, 2 . . . 4),

b4 = b4, c4 = c4, d4 = d4,

g0 = g0, ki = ki (i = 1, 2 . . . 4), (27)

and under the transformation u = 2(ln f )x , we can get
the following breather lump–kink soliton to Eq. (12):

u = −2(k1a1 sin(ζ1) − k2a2 sinh(ζ2) − k3a3eζ3 − k4a4eζ4 )

f
,

(28)

and

f = k1 cos(a1x + (d1 − a1)y − d1z + d1t + h1)

+ k2 cosh
(
a2x −

(
4a2

3 + a2
)
y

+ 4a2
3z − 4a2

3t + h2
)

+ k3e
(a3x+(d3−a3)y−d3z+d3t+h3)

+ k4e
(a4x+b4y+c4z+d4t+h4) + g0, (29)
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Fig. 4 3-D evolution plots of u via Eq. (28) at h3 = −60, h4 = −30, h3 = −40, h4 = −20, h3 = −20, h4 = −10, h3 = 0, h4 = 0,
h3 = 20, h4 = 10 and h3 = 40, h4 = 20

where the functions ζi (i = 1, 2 . . . 4) are given as fol-
lows:

ζ1 = a1x + (d1 − a1)y − d1z + d1t + h1,

ζ2 = a2x −
(
4a2

3 + a2
)
y + 4a2

3z − 4a2
3t + h2,

ζ3 = a3x + (d3 − a3)y − d3z + d3t + h3,

ζ4 = a4x + b4y + c4z + d4t + h4. (30)

Figures 4 and 5 show 3-D and corresponding density
evolution behaviours of u, by setting t = 0, z = −x ,
a1 = 0.2, d1 = 0.6, h1 = 0, a2 = −0.2, h2 = 0,
a3 = −2, d3 = 1, a4 = −2, b4 = 0.6, c4 = −0.8,
d4 = 1, g0 = 1 and ki (i = 1, 2 . . . 4) = 1 and picking
different values for h3 from −60 to 40; and h4 from
−30 to 20, where we change the coordinates of the two
kink solitons to make them collide with the breather
lump-type soliton.

We can see that the breather lump-type soliton is
surrounded by two kink solitons at h3 = −60, h4 =
−30 in Figs. 4 and 5. Then, the breather lump-type

soliton is swallowed eventually by the kink solitons
when h3 = 40, h4 = 20.

3.3 Breather lump-type soliton and three kink solitons

By choosing N = 5, Eq. (20) has the following form

f = k1 cos(ζ1) + k2 cosh(ζ2) +
5∑
j=3

k j e
ζ j + g0, (31)

where ζi = ai x + bi y + ci z + di t + hi (i = 1, 2 . . . 5)
and g0 > 0. Here, ai , bi , ci , di , hi (i = 1, 2 . . . 5) and
ki (i = 1, 2 . . . 5) are real constants to be calculated.
According to Procedure 3.1, we can obtain the follow-
ing solutions of coefficients:

ai = ai (i = 1, 2 . . . 5), b1 = d1 − a1, c1 = −d1,

d1 = d1, b2 = −4a2
3 − a2, c2 = 4a2

3,

d2 = −4a2
3, b3 = d3 − a3, c3 = −d3, d3 = d3,
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Fig. 5 Density evolution plots of u via Eq. (28) at h3 = −60, h4 = −30, h3 = −40, h4 = −20, h3 = −20, h4 = −10, h3 = 0, h4 = 0,
h3 = 20, h4 = 10 and h3 = 40, h4 = 20

hi = hi (i = 1, 2 . . . 5), b4 = b4,

c4 = c4, d4 = d4, b5 = d5 − a5, c5 = −d5,

d5 = d5, g0 = g0, ki = ki (i = 1, 2 . . . 5), (32)

and under the transformation u = 2(ln f )x , we can get
the following breather lump–kink soliton to Eq. (12):

u = − 2(k1a1 sin(ζ1) + k2a2 sinh(ζ2) − k3a3eζ3 − k4a4eζ4 − k5a5eζ5 )

f
,

(33)

and

f = k1 cos(a1x + (d1 − a1)y − d1z + d1t + h1)

+ k2 cosh
(
a2x −

(
4a2

3 + a2
)
y

+ 4a2
3z − 4a2

3t + h2
)

+ k3e
(a3x+(d3−a3)y−d3z+d3t+h3)

+ k4e
(a4x+b4y+c4z+d4t+h4)

+ k5e
(a5x+(d5−a5)y−d5z+d5t+h5) + g0, (34)

where the functions ζi (i = 1, 2 . . . 5) are given as fol-
lows:

ζ1 = a1x + (d1 − a1)y − d1z + d1t + h1,

ζ2 = a2x −
(
4a2

3 + a2
)
y + 4a2

3z − 4a2
3t + h2,

ζ3 = a3x + (d3 − a3)y − d3z + d3t + h3,

ζ4 = a4x + b4y + c4z + d4t + h4,

ζ5 = a5x + (d5 − a5)y − d5z + d5t + h5. (35)

Figures 6 and 7 show 3-D and corresponding density
evolution behaviours of u, by setting t = 0, z = −x ,
a1 = 0.2, d1 = 0.4, h1 = 0, a2 = −0.2, h2 = 0,
a3 = −2, d3 = 1, a4 = −2, b4 = 0.6, c4 = −0.8,
d4 = 1, a5 = 0.4, d5 = −0.4, h5 = −10, g0 = 1
and ki (i = 1, 2 . . . 5) = 1 and picking different values
for h3 from −60 to 40; and h4 from −30 to 20, where
we change the coordinates of the two kink solitons to
make them collide with the breather lump-type soliton,
and the third one does not move.
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Fig. 6 3-D evolution plots of u via Eq. (33) at h3 = −60, h4 = −30, h3 = −40, h4 = −20, h3 = −20, h4 = −10, h3 = 0, h4 = 0,
h3 = 20, h4 = 10 and h3 = 40, h4 = 20

The breather lump-type soliton is surrounded by
three kink solitons at h3 = −60, h4 = −30 in Figs. 6
and 7. Finally, the breather lump-type soliton com-
pletely decays and is swallowed by the kink solitons
when h3 = 40, h4 = 20.

3.4 Breather lump-type soliton and four kink solitons

By choosing N = 6, Eq. (20) has the following form

f = k1 cos(ζ1) + k2 cosh(ζ2) +
6∑
j=3

k j e
ζ j + g0, (36)

where ζi = ai x + bi y + ci z + di t + hi (i = 1, 2 . . . 6)
and g0 > 0. Here ai , bi , ci , di , hi (i = 1, 2 . . . 6) and

ki (i = 1, 2 . . . 6) are real constants to be calculated.
According to Procedure 3.1, we can obtain the follow-
ing solutions of coefficients:

ai = ai (i = 1, 2, 4, 5, 6), b1 = d1 − a1,

c1 = −d1, d1 = d1, b2 = −4a2
3 − a2,

c2 = 4a2
3, d2 = −4a2

3, a3 = −a5,

b3 = a5 − d5, c3 = d5, d3 = −d5,

hi = hi (i = 1, 2 . . . 6), b4 = b4,

c4 = c4, d4 = d4, b5 = d5 − a5, c5 = −d5,

d5 = d5, b6 = d6 − a6, c6 = −d6, d6 = d6, g0 = g0,

ki = ki (i = 1, 2 . . . 6), (37)

and under the transformation u = 2(ln f )x , we can get
the following breather lump–kink soliton to Eq. (12):

u = −2(k1a1 sin(ζ1) + k2a2 sinh(ζ2) + k3a5eζ3 − k4a4eζ4 − k5a5eζ5 − k6a6eζ6)

f
, (38)
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Fig. 7 Density evolution plots of u via Eq. (33) at h3 = −60, h4 = −30, h3 = −40, h4 = −20, h3 = −20, h4 = −10, h3 = 0, h4 = 0,
h3 = 20, h4 = 10 and h3 = 40, h4 = 20

and

f = k1 cos(a1x + (d1 − a1)y − d1z + d1t + h1)

+ k2 cosh
(
a2x −

(
4a2

3 + a2
)
y

+ 4a2
3z − 4a2

3t + h2
)

+ k3e
(−a5x+(a5−d5)y+d5z−d5t+h3)

+ k4e
(a4x+b4y+c4z+d4t+h4)

+ k5e
(a5x+(d5−a5)y−d5z+d5t+h5),

+ k6e
(a6x+(d6−a6)y−d6z+d6t+h6) + g0, (39)

where the functions ζi (i = 1, 2 . . . 6) are given as fol-
lows:

ζ1 = a1x + (d1 − a1)y − d1z + d1t + h1,

ζ2 = a2x −
(
4a2

3 + a2
)
y + 4a2

3z − 4a2
3t + h2,

ζ3 = −a5x + (a5 − d5)y + d5z − d5t + h3,

ζ4 = a4x + b4y + c4z + d4t + h4,

ζ5 = a5x + (d5 − a5)y − d5z + d5t + h5,

ζ6 = a6x + (d6 − a6)y − d6z + d6t + h6. (40)

Figures 8 and 9 show 3-D and corresponding density
evolution behaviours of u, by setting t = 0, z = −x ,
a1 = 0.2, d1 = 0.4, h1 = 0, a2 = −0.2, h2 = 0,
a4 = −2, b4 = 0.6, c4 = −0.8, d4 = 1, h4 = −20,
a5 = −1, d5 = 0.4, h5 = −10, a6 = −0.4, d6 = 0.8,
h6 = −20, g0 = 1 and ki (i = 1, 2 . . . 6) = 1; and
picking different values for h3 from −30 to 20, where
we change the coordinate of one kink soliton to make it
collides with the breather lump-type soliton, and three
others do not move.

We can see that the breather lump-type soliton is
swallowedby thekink solitonswhenh3 = 20, inFigs. 8
and 9.

123



Lump-type solution and breather lump–kink interaction 2725

Fig. 8 3-D evolution plots of u via Eq. (38) at h3 = − 30, h3 = − 20, h3 = − 10, h3 = 0, h3 = 10 and h3 = 20

Thus, we find that the breather lump–kink soli-
tons are completely non-elastic, u(x, y, z, t) is mixed
solitary waves of cosine function, hyperbolic cosine
function and exponential functions, and the breather
lump-type soliton begins decaying as the kink solitons
approach it. This interaction phenomena is similar to
the fusion and fission for soliton solutions.

4 Summary and discussions

In this study, we obtained a trilinear form for a (3+1)-
dimensional GBK equation, based on the multivariate
trilinear operators in (3 + 1) dimensions. Then, we
successfully constructed a group of lump-type solu-
tions and four types of breather lump–kink solitons, by
utilizing the resulting trilinear form. Abundant inter-
action phenomena of the breather lump–kink solitons
were depicted by plotting evolution graphs from the
perspective of dynamics. It is expected that those new

interesting solutions would be helpful in better under-
standing the (3 + 1)-dimensional GBK equation.

We presented 3-D and density graphs at three coor-
dinates of the lump-type soliton in Fig. 1. The 3-D
and density evolution behaviours of the breather lump–
kink solitons were depicted in Figs. 2, 3, 4, 5, 6, 7, 8
and 9. We changed the coordinates of the kink soli-
tons to make them collided with the breather lump-
type soliton. We saw that finally, the breather lump-
type soliton was swallowed by those kink solitons. It
should be particularly interesting to note that, by taking
p̄i = 〈pi , p′

i , p
′′
i 〉 = 〈1, 2, 2〉, the trilinear operators

D3
x Dy f · f · f and D4

x f · f · f can take the following
forms:

D3
x Dy f · f · f = 3 fxxxy f

2 − 2 fxxx fy f − 6 fxxy fx f

−6 fxx fx fy − 6 fxy fx
2 + 18 fxy fxx f,

D4
x f · f · f = 3 fxxxx f

2 − 8 fxxx fx f

−12 fxx fx
2 + 18 fxx

2 f, (41)
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Fig. 9 Density evolution plots of u via Eq. (38) at h3 = −30, h3 = −20, h3 = −10, h3 = 0, h3 = 10 and h3 = 20

and thus, we can obtain another type of nonlinear equa-
tions from Eq. (13), for which the lump-type solutions
and breather lump–kink solitons can be similarly gen-
erated.
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