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ABSTRACT

This article mainly studies the Hirota condition analysis and a series of multi-wave solutions of a nonlocal (2þ 1)-dimensional modified
Kadomtsev–Petviashvili equation. The Hirota bilinear form is given under integrability conditions, which provide a prerequisite for obtaining
N-soliton solutions. Moreover, by performing specific constraints on the Hirota condition of N-solitons, some novel and interesting multi-
wave solutions with fully elastic structures can be further generated. Particularly, based on a type of new test function with a multi-layer
network structure, one class of meshy-periodic lump wave solution is obtained using the bilinear neural network method. The three-
dimensional dynamics of all results obtained are conducive to revealing nonlinear interaction phenomena of shallow-water waves.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0288755

I. INTRODUCTION

Up to now, the soliton solutions of integrable nonlinear evolution
equations have always been a focus of research in nonlinear science.
Solitons have significant applications in natural phenomena such as
matter-wave.1–4 However, among many integrable nonlinear mathe-
matical and physical equations, those with N-soliton solutions are
extremely rare. The most representative equations with N-soliton solu-
tions mainly include the well-known KdV equation,5–9 as well as the
classical nonlinear Schr€odinger equation,10–15 the Kadomtsev–
Petviashvili equation,16,17 the sine-Gordon equation,18 the (2þ 1)-
dimensional Sawada–Kotera equation,19 the integrable combined
fractional higher-order mKdV equation,20 and so on.21–24

Integrable nonlinear evolution equations can be used to describe
some novel nonlinear phenomena when considering the shape and
collision effects of fluids.25–27 Describing the interaction of shallow-
water waves in the ocean, a nonlocal integrable system in (2þ 1)-
dimensions with fifth-order linear dispersion and third power
nonlinear disturbance factors will be considered in this paper. Namely,
a nonlocal (2þ 1)-dimensional mKP equation as follows

ut þ auxxx þ a1uux þ bu5x þ b1ðuxuxx þ uuxxxÞ þ b2u
2ux

þ c
ð
uyydx ¼ 0; (1)

where a, a1, b, b1, b2, and c are non-zero constants. Easy to see that
Eq. (1) has multiple nonlinear factors and is a new shallow-water wave
model like the KP equation, in a nonlocal environment with multi-
parameters. If b ¼ b1 ¼ b2 ¼ 0 and Eq. (1) takes a first-order partial
derivative of x, it can degenerate into

ðut þ auxxx þ a1uuxÞx þ cuyy ¼ 0; (2)

as we can see that Eq. (2) is the standard (2þ 1)-dimensional
Kadomtsev–Petviashvili equation.28,29 When a1 ¼ 6a, the classic
Eq. (2) is Lax integrable. In particular, Lou uses P̂-T̂ -Ĉ symmetry
reduction to give a new integrable form of Eq. (2) with Lax pair, called
the ABKP system.30 The partial-rogue ripple solutions based on
Wronskian determinant of a nonlocal ABKP system are obtained by
Cao et al.31 Ma provided a proof that the (3þ 1)-dimensional bilinear
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KP equation, a generalization of Eq. (2) in (3þ 1)-dimensions, does
not satisfy the Hirota 3-soliton condition.32

There are many studies on Eq. (2), and we will not list them one
by one here. An issue of great theoretical and applied value is that, we
can further explore the N-soliton solutions and novel shallow-water
wave interaction characteristics of Eq. (1) under certain specific condi-
tions, based on the integrability of Eq. (2). To our knowledge, the cur-
rent research on Eq. (1) is relatively rare, and the applications of many
exact analytical methods to Eq. (1) still requires further study. Such as
the Darboux transformation method,15,16 the trilinear method,22 the
Hirota bilinear method,19,21,23,33–36 and Painlev�e analysis method37,38

for Eq. (1) have not been given.
In this work, we will construct abundant new exact traveling

wave solutions which are used to describe the interaction phenomena
of shallow-water waves based on the integrable form of Eq. (1), includ-
ing N-soliton solutions, multi-breather wave solutions, multi-lump
wave solutions, mixed-type multi-wave solutions, and a new type of
meshy-periodic lump wave solutions. The dynamics of all the multi-
wave solutions presented and evolution phenomena of some nonlinear
elastic collisions will be well demonstrated through 3D and 2D graphs.
These new solutions will fully demonstrate that Eq. (1) can be used to
reveal or describe nonlinear wave propagation phenomena. It is worth
mentioning that applying neural network technology to construct
exact solutions of integrable nonlinear equations has become a popular
research topic in recent years, and this article will also utilize this new
idea.39–41

The organizational structure of this paper is as follows. In Sec. II,
we will provide the bilinear form of Eq. (1) using the Hirota method
based on the Bell polynomial theory of integrable equations. Section
III presents a standard form of N-soliton solutions, based on the
Hirota bilinear form of Eq. (1). In Sec. IV, the multi-breather waves of
Eq. (1) will be presented using the Hirota condition of N-solitons. We
also give the multi-lump waves and hybrid waves in Secs. V and VI,
respectively. Section VII provides a new class of meshy-periodic lump
waves through a test function with multi-layer neural network struc-
ture in BNNM. In Sec. VIII, we make some conclusions.

II. HIROTA BILINEAR FORM

According to the integrability condition of Eq. (2), we know that
Eq. (1) cannot guarantee complete integrability under any conditions.
However, when the coefficients satisfy a specific conservation relation-
ship, Eq. (1) is integrable. Similarly, when the parameters satisfy
a1 ¼ 6a and b2 ¼ 3b1 ¼ 45b, Eq. (1) corresponds to a nonlocal inte-
grable form as follows

ut þ auxxx þ 6auux þ bu5x þ 15bðuxuxx þ uuxxxÞ
þ 45bu2ux þ c

ð
uyydx ¼ 0; (3)

where a, b, and c are arbitrary non-zero real constants. In order to
obtain a bilinear form for Eq. (1), let’s start with the following second-
order logarithmic transformation, that is,

u ¼ nx ¼ lxx ¼ 2ðln/Þxx; / > 0; (4)

where n ¼ nðx; y; tÞ, l ¼ lðx; y; tÞ, and / ¼ /ðx; y; tÞ are functions
of variables x, y, and t. By taking u ¼ nx , the nonlocal Eq. (3) can be
written as

nxt þ anxxxx þ 6anxnxx þ bn6x þ 15bðnxxnxxx þ nxnxxxxÞ
þ 45bn2xnxx þ cnyy ¼ 0; (5)

then, further substituting n ¼ lx into Eq. (5) and integrating the vari-
able x once, which readsð

ðlxxt þ al5x þ 6alxxlxxx þ bl7x þ 15bðlxxxlxxxx þ lxxl5xÞ
þ 45bl2xxlxxx þ clxyyÞdx ¼ 0; (6)

by setting the integral constant of Eq. (6) to zero, we have

lxt þ alxxxx þ 3al2xx þ bl6x þ 15blxxlxxxx þ 15bl3xx þ clyy ¼ 0:

(7)

Finally, let l ¼ 2 ln/ can transform Eq. (7) into the new form, as
follows:

2

/2 a/
@4/
@x4

� �
� 4a

@/
@x

� �
@3/
@x3

� �
þ 3a

@2/
@x2

� �2

þ b/
@6/
@x6

� �"

� 6b
@5/
@x5

� �
@/
@x

� �
þ 15b

@4/
@x4

� �
@2/
@x2

� �
� 10b

@3/
@x3

� �2

þ/
@2/
@t@x

� �
� @/

@t

� �
@/
@x

� �
þ g/

@2/
@y2

 !
� g

@/
@y

� �2
#
¼ 0;

(8)

where / ¼ /ðx; y; tÞ > 0. Eliminating the denominator, Eq. (8) can
be simplified into a bilinear form to Eq. (1), namely,

BmKPð/Þ¢að//xxxx � 4/x/xxx þ 3/2
xxÞ

þ bð//6x � 6/x/5x þ 15/xx/xxxx � 10/2
xxxÞ

þ //xt � /x/t þ c//yy � c/2
y ¼ 0: (9)

Remark 2.1 Based on the Bell polynomial theory of integrable bilinear
equations,42 Eq. (9) corresponds to a Hirota bilinear (HB) form as
below

HBmKPð/Þ¢ðaD4
x þ bD6

x þ DxDt þ cD2
yÞ/ � / ¼ 0; (10)

where Dt , Dx , and Dy are Hirota derivatives, defined by
19,33–36

DK
x D

P
yD

L
t ð/ � wÞ ¼ @

@x
� @

@~x

� �K
@

@y
� @

@~y

� �P @

@t
� @

@~t

� �L

/ðx; y; tÞ

� wð~x;~y;~tÞj~x¼x;~y¼y;~t¼t:

III. HIROTA CONDITION OF N-SOLITONS

In this section, the Hirota method19,21–23 is used to analyze the
standard condition of N-soliton solutions of Eq. (1). In order to pro-
vide general form of the N-solitons for Eq. (1), we will introduce the
following standardized theorem.

Theorem 1. Based onHBmKP Eq. (10) via c ¼ �10b, the nonlocal
Eq. (1) with integrability condition has the following standard form of
N-solitons

uN ¼ 2
@2

@x2
ln ð/NÞ; N ¼ 1; 2; 3;…; (11)
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where /N satisfies the Hirota condition, as follows:

/N ¼ 1þPqi¼0;1 exp
XN
1�i<j

qiqjhij þ
XN
i¼1

qini

0
@

1
A;

ni ¼ dix� d3i yþ 9bd5i � ad3i
� �

tþ n 0ð Þ
i ;

ehij ¼
5b d2i þ didj þ d2j
� �

þ a
� �

di� dj
� �2

5b d2i � didj þ d2j
� �

þ a
� �

diþ dj
� �2 ; 1� i< j�N 2N�:

8>>>>>>>>>>><
>>>>>>>>>>>:

(12)

Proof. Before proving standard condition (12) it is necessary to first
explain that Eq. (11) can be expressed as a solution to Eq. (1). This can
actually be attributed to the direct relationship between Eq. (1) and
bilinear forms (9) or (10) under the integrability conditions a1 ¼ 6a
and b2 ¼ 3b1 ¼ 45b, as follows

PmKP uð Þ � 2BmKP /ð Þ
/2

" #
xx

¼ 2HBmKP /ð Þ
/2

" #
xx

; (13)

therefore, when / is a solution to Eqs. (9) or (10) Eq. (11) must be a
solution to Eq. (1).

Now, we expand the function / in Eq. (10) into a power series of
., which becomes

/¢/N ¼ 1þ
XN
k¼1

/ kð Þ.k; N 2 N�; (14)

substituting Eq. (14) into Eq. (10) with c ¼ �10b and collect the coef-
ficients of .k to the same power, that is,

o .1
� �

2 a@4
x þ b@6

x þ @x@t � 10b@2
y

� �
/ 1ð Þ ¼ 0; (15)

oð.2Þ 2ða@4
x þ b@6

x þ @x@t � 10b@2
y Þ/ð2Þ

¼ �ðaD4
x þ bD6

x þ DxDt � 10bD2
yÞ/ð1Þ � /ð1Þ; (16)

oð.3Þ 2ða@4
x þ b@6

x þ @x@t � 10b@2
y Þ/ð3Þ

¼ �2ðaD4
x þ bD6

x þ DxDt � 10bD2
yÞ/ð1Þ � /ð2Þ;

� � � (17)

To obtain /ðkÞðk ¼ 1; 2;…;NÞ, we assume that /ð1Þ in Eq. (15) has a
general solution of the following form:

/ð1Þ ¼
Xn
i¼1

eni ; ni ¼ dix þ xiy þ �it þ nð0Þi ; i ¼ 1; 2;…; n; (18)

where di, xi, �i, and nð0Þi are undetermined arbitrary constants. Then,
we substitute Eq. (18) into Eq. (15) for calculation, and a set of param-
eter solutions can be obtained, that is,

di ¼ di; xi ¼ �d3i ; �i ¼ 9bd5i � ad3i ; nð0Þi ¼ nð0Þi : (19)

(i) If n ¼ 1, Eq. (18) is written as

/ð1Þ ¼ en1 ; n1 ¼ d1x � d31y þ ð9bd51 � ad31Þt þ nð0Þ1 ; (20)

substitute Eq. (20) into Eq. (16) yields 2ða@4
x þ b@6

x þ @x@t
�10b@2

y Þ/ð2Þ ¼ 0, so we make /ð2Þ ¼ 0 and thereby promoting
/ðjÞ ¼ 0ðj ¼ 3; 4;…;NÞ. By selecting . ¼ 1, Eq. (14) is truncated into
the following form

/1 ¼ 1þ en1 ; n1 ¼ d1x � d31y þ ð9bd51 � ad31Þt þ nð0Þ1 ; (21)

which satisfies the standard condition (12) According to the relation-
ship between u and / in Eq. (13), we obtain a 1-soliton of Eq. (1),
namely,

u1 ¼ 2 ln ð/1Þxx ¼
2d21e

n1 /1 � en1
� �
/2
1

: (22)

(ii) If n ¼ 2, then Eq. (18) becomes

/ð1Þ ¼ en1 þ en2 ;

n1 ¼ d1x � d31y þ ð9bd51 � ad31Þt þ nð0Þ1 ;

n2 ¼ d2x � d32y þ ð9bd52 � ad32Þt þ nð0Þ2 ;

8>><
>>: (23)

by substituting Eq. (23) into Eq. (16) and organizing it, we can obtain

ða@4
x þ b@6

x þ @x@t � 10b@2
y Þ/ð2Þ

¼ 3d1d2ðd1 � d2Þ2ð5bðd21 þ d1d2 þ d22Þ þ aÞen1þn2 ; (24)

by solving Eq. (24), we can easily obtain a specific solution for /ð2Þ, as
follows:

/ð2Þ ¼ en1þn2þh12 ; eh12 ¼ ð5bðd21 þ d1d2 þ d22Þ þ aÞðd1 � d2Þ2
ð5bðd21 � d1d2 þ d22Þ þ aÞðd1 þ d2Þ2

:

(25)

Next, we substitute Eqs. (23) and (25) together into Eq. (17) for expan-
sion. After organizing the substituted Eq. (17), it can be concluded that
there are only the following two results on the right side of the equal
sign, namely

� ðaD4
x þ bD6

x þ DxDt � 10bD2
yÞen1 � en1þn2þh12

¼ að�d2Þ4 þ bð�d2Þ6 þ ð�d2Þðad32 � 9bd52Þ � 10bðd32Þ2
h i
� e2n1þn2þh12 ¼ 0;

� ðaD4
x þ bD6

x þ DxDt � 10bD2
yÞen2 � en1þn2þh12

¼ að�d1Þ4 þ bð�d1Þ6 þ ð�d1Þðad31 � 9bd51Þ � 10bðd31Þ2
h i
� en1þ2n2þh12 ¼ 0; (26)

thus, we also make /ð3Þ ¼ 0 and thereby promote /ðjÞ ¼ 0ðj ¼ 4;
5;…;NÞ. By selecting . ¼ 1, Eq. (14) will be truncated into a new
form, that is,

/2 ¼ 1þ en1 þ en2 þ en1þn2þh12 ;

eh12 ¼ ð5bðd21 þ d1d2 þ d22Þ þ aÞðd1 � d2Þ2
ð5bðd21 � d1d2 þ d22Þ þ aÞðd1 þ d2Þ2

;
(27)

which also satisfies the standard condition (12) Then, a 2-soliton for
Eq. (1) can be presented below
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u2 ¼ 2 ln ð/2Þxx ¼
2.

/2
2

�
� .3 d1 þ d2ð Þ2e2n1þ2n2þ2h12

� 2.2d2 d1 þ d2ð Þen1þ2n2þh12 � 2.2d1 d1 þ d2ð Þe2n1þn2þh12

þ /2. d1 þ d2ð Þ2en1þn2þh12 � 2en1þn2.d1d2 � e2n1.d21

� e2n2.d22 þ /2 d21e
n1 þ d22e

n2
� ��

: (28)

(iii) If n ¼ 3, Eq. (18) has the following third form:

/ð1Þ ¼ en1 þ en2 þ en3 ;

n1 ¼ d1x � d31y þ ð9bd51 � ad31Þt þ nð0Þ1 ;

n2 ¼ d2x � d32y þ ð9bd52 � ad32Þt þ nð0Þ2 ;

n3 ¼ d3x � d33y þ ð9bd53 � ad33Þt þ nð0Þ3 ;

8>>>>><
>>>>>:

(29)

substituting Eq. (29) into Eq. (16) and calculating it, we still get a spe-
cific solution for /ð2Þ in the same way, that is,

/ð2Þ ¼ en1þn2þh12 þ en1þn3þh13 þ en2þn3þh23 ;

ehij ¼ ð5bðd2i þ didj þ d2j Þ þ aÞðdi � djÞ2
ð5bðd2i � didj þ d2j Þ þ aÞðdi þ djÞ2

;
(30)

then, we substitute Eqs. (29) and (30) together into Eq. (17), which is
simplified into the form as below

ða@4
x þ b@6

x þ @x@t � 10b@2
y Þ/ð3Þ

¼ �ðaD4
x þ bD6

x þ DxDt � 10bD2
yÞ

X3
i¼1;i 6¼j<k

eni � enjþnkþhjk

¼ �ðf1;23 þ f2;13 þ f3;12Þen1þn2þn3 ; (31)

where fi;jk ði; j; k ¼ 1; 2; 3Þ satisfies one standard form, namely

fi;jk ¼
h
aðdi � dj � dkÞ4 þ bðdi � dj � dkÞ6

þ ðdi � dj � dkÞðð9bd5j � ad3j Þ þ ð9bd5k � ad3kÞ
� ð9bd5i � ad3i ÞÞ � 10bðd3j þ d3k � d3i Þ2

i
ehjk ; j < k; (32)

by combining Eqs. (31) and (32) for calculation, a specific solution for
/ð3Þ is obtained as follows

/ð3Þ ¼ en1þn2þn3þh12þh13þh23 ;

ehij ¼ ð5bðd2i þ didj þ d2j Þ þ aÞðdi � djÞ2
ð5bðd2i � didj þ d2j Þ þ aÞðdi þ djÞ2

; 1 � i < j � 3:
(33)

Now, we substitute Eqs. (29), (30), and (33) together into the equation
via oð.4Þ, which can makes ða@4

x þ b@6
x þ @x@t � 10b@2

y Þ/ð4Þ ¼ 0.

Therefore, we still make /ð4Þ ¼ 0 and thereby promoting

/ðjÞ ¼ 0ðj ¼ 5; 6;…;NÞ. By setting . ¼ 1, Eq. (14) can be truncated
into one form, that is,

/3 ¼ 1þ en1 þ en2 þ en3 þ en1þn2þh12 þ en1þn3þh13

þ en2þn3þh23 þ en1þn2þn3þh12þh13þh23 ; (34)

which still satisfies the standard condition (12) Then, a 3-soliton of Eq.
(1) can be presented below

u3 ¼ 2 ln ð/3Þxx ¼ Omit: (35)

After our verification, the multi-soliton solutions of Eq. (1) for
n ¼ 4; 5; 6… could be constructed in a similar way. Thus, when
n ¼ N , we can obtain the N-solitons with the standard condition (12)
of nonlocal Eq. (1). (

Remark 3.1 By setting parameter values of a ¼ b ¼ 1, d1 ¼ 0:2,
nð0Þ1 ¼ 1 and y ¼ �x, Figs. 1(a) and 1(d) show the dynamics of
1-soliton u1 via Eq. (22).

Remark 3.2 By setting parameter values of a ¼ b ¼ 1, d1 ¼ 0:4,
d2 ¼ �0:8, nð0Þ1 ¼ nð0Þ2 ¼ 0 and y ¼ �x, Figs. 1(b) and 1(e) show the
dynamics of 2-soliton u2 via Eq. (28).

Remark 3.3 By setting parameter values of a ¼ b ¼ 1, . ¼ 1,
d1 ¼ 0:6, d2 ¼ �0:8, d3 ¼ 0:4, nð0Þj ¼ 0ðj ¼ 1; 2; 3Þ and y ¼ �x,
Figs. 1(c) and 1(f) show the dynamics of 3-soliton u3 via Eq. (35).

When a nonlinear systemmeets the condition of integrability, the
soliton solutions it obtains (like the KdV equation5–9) will be highly
stable. Therefore, after multi-solitons collide, each maintains its origi-
nal amplitude, energy and propagation direction. It is easy to see from
(b), (c), (e), and (f) in Fig. 1 that when multi-solitons collide, they each
maintain strong stability. Under the influence of nonlinear effects,
multi-solitons only experience a phase shift at the collision point, and
the amplitude near that point decreases. The nonlinear characteristics
of solitons have significant application value in shallow-water wave
analysis and elastic systems, which can be applied in fields such as tsu-
nami wave propagation prediction, ship fluid design, and offshore plat-
form safety analysis.

IV. MULTI-BREATHERWAVES

When we impose some special constraints on the standard condi-
tion (12) the N-soliton solutions determined by expansion Eq. (11) can
derive some peculiar and interesting multi-wave solutions. In this sec-
tion, we will construct the multi-breather wave solutions of Eq. (1).
Now, we need to impose the following constraints on condition (12)
that is,

d2m�1 ¼ d�2m¢pm þ iqm; nð0Þ2m�1 ¼ nð0Þ2m ¼ 0; m ¼ 1; 2;…;

(36)

then Eq. (12) with the Hirota condition is rewritten as a new form by
substituting Eq. (36) back into it, reads

/2m ¼ 1þ
X
qi¼0;1

exp
X2m
1�i<j

qiqjhij þ
X2m
i¼1

qini

0
@

1
A;

n2m�1 ¼ n�2m¢Re:ðn2m�1Þ þ Im:ðn2m�1Þi ¼ Rm þ Imi;

Rm ¼ pmx þ pmð3q2m � p2mÞy
þpm ð9bp2m � aÞp2m þ 3ða� 30bp2m þ 15bq2mÞq2m

� 	
t;

Im ¼ qmx þ qmðq2m � 3p2mÞy
þqm ð9bq2m þ aÞq2m � 3ðaþ 30bq2m � 15bp2mÞp2m

� 	
t;

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

(37)

and

kij¢ehij ¼ ð15bp2m � 5bq2m þ aÞq2m
ð15bq2m � 5bp2m � aÞp2m

> 0; 8m 2 N�: (38)
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It should be noted that if /2m > 0 is made in condition (35) kij > 0
must be established. If all the above conditions are met, the multi-
breather solutions can be generated based on Eq. (11), as follows

ujMj
2m ¼ 2 ln ð/2mÞxx; M ¼ m: (39)

Case (i). When M ¼ m ¼ 1, the first-order breather uj1j2 is pre-
sented via Eq. (39), which corresponds to the following condition

/2 ¼ 1þ en1 þ en2 þ k12e
n1þn2 ; (40)

where niði ¼ 1; 2Þ and k12 are given in Eqs. (37) and (38). The wave
dynamics of uj1j2 with condition (40) will be shown by Remark 4.1.

Case (ii). When M ¼ m ¼ 2, the second-order breather uj2j4 is
presented via Eq. (39), which corresponds to a condition as below

/4 ¼ 1þ
X4
i¼1

eni þ
X

1�i<j�4

kij � eniþnj þ
X

1�i<j<k�4

kijkikkjk � eniþnjþnk

þ
Y

1�i<j�4

kij � e
ð
P4
i¼1

niÞ
; (41)

where niði ¼ 1; 2; 3; 4Þ and kijð1 � i < j � 4Þ satisfy the Eqs. (37)

and (38). The wave dynamics of uj2j4 with condition (41) are shown by
Remark 4.2.

Case (iii). WhenM ¼ m ¼ 3, the third-order breather uj3j6 is pre-
sented via Eq. (39), which corresponds to the third condition, that is,

/6 ¼ 1þ
X6
i¼1

eni þ
X

1�i<j�6

kij � eniþnj þ
X

1�i<j<k�6

kijkikkjk � eniþnjþnk

þ
Y

1�i<j�6

kij � e
�P6

i¼1

ni
�
þ

X
1�i<j<k<l�6

kijkikkjkkkl � eniþnjþnkþnl

þ
X

1�i<j<k<l<m�6

kijkikkjkkklklm � eniþnjþnkþnlþnm ; (42)

where niði ¼ 1; 2;…; 6Þ and kijð1 � i < j � 6Þ also satisfy the Eqs.
(37) and (38). And the wave dynamics of uj3j6 with condition (42) are
shown by Remark 4.3.

Remark 4.1 By setting parameter values of b ¼ 1, a ¼ �1,
p1 ¼ �1, q1 ¼ 4

5, and t ¼ 0 for uj1j2 . The 3D and density graphics of
first-order breather wave solution are shown in Figs. 2(a) and 2(d).

Remark 4.2 By setting parameter values of b ¼ 1, a ¼ �1,
p1 ¼ �1, q1 ¼ 4

5, p2 ¼ 1, q2 ¼ 3
5, and t ¼ 0 for uj2j4 . The 3D and den-

sity graphics of second-order breather wave solution are shown in
Figs. 2(b) and 2(e).

Remark 4.3 By setting parameter values of b ¼ 1, a ¼ �1,
p1 ¼ �1, q1 ¼ 4

5, p2 ¼ 1, q2 ¼ 7
10, p3 ¼ � 4

5, q3 ¼ 1
2, and t ¼ 0 for uj3j6 .

FIG. 1. The elastic collision phenomena among multi-solitons: 3D (top) and density (bottom) plots of uiði ¼ 1; 2; 3Þ. (a) and (d) 1-soliton via (22); (b) and (e) 2-soliton via (28);
and (c) and (f) 3-soliton via (35)
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The 3D and density graphics of the third-order breather wave solution
are shown in Figs. 2(c) and 2(f).

From Fig. 2, it can be observed that there is one breather wave
appearing in (a) and (d), two breathers appearing simultaneously in
(b) and (e), and three breathers appearing simultaneously in (c) and
(f). As we can see, elastic collisions occurred between multi-
breathers, and amplitude collapse also occurred near the collision
point. This phenomenon is still caused by the influence of nonlinear
factors in Eq. (1), but throughout the collision process, like soliton
solutions, energy is conserved. The results show that Eq. (1) can give
rise to new solutions under specific conditions. In line with this idea,
we will continue to give the following new classes of exact traveling
wave solutions.

V. MULTI-LUMPWAVES

In this section, we continue to generate another class of interest-
ing multi-wave solutions based on the Hirota condition (12) of
N-solitons. In order to obtain the multi-lump wave solutions of Eq.
(1), we need to impose additional constraints on condition (12) as
follows:

d2m�1 ¼ d�2m¢pm þ iqm; nð0Þ2m�1 ¼ nð0Þ2m ¼ ip; m ¼ 1; 2;…;

(43)

and

n2m�1 ¼ n�2m¢Re:ðn2m�1Þ þ Im:ðn2m�1Þi ¼ Rm þ Imi;

Rm ¼ pmðx þ ð3q2m � p2mÞy
þ ð9bp2m � aÞp2m þ 3ða� 30bp2m þ 15bq2mÞq2m
� 	

tÞ;
Im ¼ qmðx þ ðq2m � 3p2mÞy

þ ð9bq2m þ aÞq2m � 3ðaþ 30bq2m � 15bp2mÞp2m
� 	

tÞ;

8>>>>>>><
>>>>>>>:

(44)

now, we make the coefficients pm ! 0 and qm ! 0 before the right
side parentheses of Rm and Im in Eq. (44). And then we can obtain

/̂2m ¼
Y2m
i¼1

ni þ
X
i<j

Y2m
k 6¼i;j

kijnk þ
X2m

i<j;…;k<l

kij � � � kkl|fflfflfflfflffl{zfflfflfflfflffl}
M¼m

;

n2m�1 ¼ n�2m ffi R̂m þ Îmi;

R̂m ¼ x þ ð3q2m � p2mÞy
þ ð9bp2m � aÞp2m þ 3ða� 30bp2m þ 15bq2mÞq2m
� 	

t;

Î m ¼ x þ ðq2m � 3p2mÞy
þ ð9bq2m þ aÞq2m � 3ðaþ 30bq2m � 15bp2mÞp2m
� 	

t;

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

(45)

where kij¢
ð15bp2m�5bq2mþaÞq2m
ð15bq2m�5bp2m�aÞp2m > 0. Based on Eq. (11), the multi-lump

wave solutions of Eq. (1) can be presented as follows

ujMj
2m ¼ 2 ln ð/̂2mÞxx; M ¼ m: (46)

FIG. 2. The 3D (top) and density (bottom) plots of multi-breathers for Eq. (1) generated by the multi-solitons determined by Theorem 1 through conditions (36)–(39). (a) and (d)
1-breather via 2-soliton; (b) and (e) 2-breather via 4-soliton; and (c) and (f) 3-breather via 6-soliton.
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Case (i). When M ¼ m ¼ 1, the first-order lump wave uj1j2 is
obtained via Eq. (46), which corresponds to the following condition:

/̂2 ¼ n1n2 þ k12; (47)

where niði ¼ 1; 2Þ satisfy the condition (44) The wave dynamics of uj1j2
with condition (47) will be shown by Remark 5.1.

Case (ii). When M ¼ m ¼ 2, the second-order lump wave uj2j4 is
presented via Eq. (46), which corresponds to a condition as follows:

/̂4 ¼ n1n2n3n4 þ k12n3n4 þ k13n2n4 þ k14n2n3 þ k23n1n4
þ k24n1n3 þ k34n1n2 þ k12k34 þ k13k24 þ k14k23; (48)

where niði ¼ 1; 2; 3; 4Þ also satisfy the condition (44) The wave
dynamics of uj2j4 with condition (48) are shown by Remark 5.2.

Case (iii). When M ¼ m ¼ 3, the third-order lump wave uj3j6 is
presented via Eq. (46), which corresponds to the third condition,
namely

/̂6 ¼
Y6
i¼1

ni þ
X
i<j

Y6
k 6¼i;j

kijnk þ
X6

i<j;h<g;k<l

kijkhgkkl; (49)

where niði ¼ 1; 2;…; 6Þ satisfy the condition (44) The wave dynamics
of uj3j6 with condition (49) are shown clearly by Remark 5.3. In addi-
tion, all sequence numbers of “ij, hg, kl” in kijkhgkkl satisfy Table I.

Remark 5.1 By setting the parameter values of b ¼ 1, a ¼ �1,
p1 ¼ �1, q1 ¼ 4

5, and t ¼ 0 for uj1j2 via Eq. (47). The 3D and density
graphics of the first-order lump wave are shown in Figs. 3(a) and 3(d).

Remark 5.2 By setting the parameter values of b ¼ 1, a ¼ �1,
p1 ¼ �1, q1 ¼ 4

5, p2 ¼ 1, q2 ¼ 3
5, and t ¼ 0 for uj2j4 via Eq. (48). The

3D and density graphics of the second-order lump wave are shown in
Figs. 3(b) and 3(e).

Remark 5.3 By setting the parameter values of b ¼ 1, a ¼ �1,
p1 ¼ �1, q1 ¼ 4

5, p2 ¼ 1, q2 ¼ 3
5, p3 ¼ � 6

5, q3 ¼ 1, and t ¼ 0 for uj3j6
via Eq. (49). The 3D and density graphics of the third-order lump
wave are shown in Figs. 3(c) and 3(f).

By observing Fig. 3, we find that when the long-wave limit is
taken for multi-solitons, the energy can be highly concentrated.
Thereby forming spatially localized solitary waves, which can be used
to analyze the generation mechanism and dynamic properties of those
rogue waves in the ocean. This characteristic stems from the dynamic
balance between nonlinear effects and dispersion in integrable
equations.

TABLE I. All cases of “ij, hg, kl” for kijkhgkkl in Eq. (49).

12,34,56 13,24,56 14,23,56 15,23,46 16,23,45
12,35,46 13,25,46 14,25,36 15,24,36 16,24,35
12,36,45 13,26,45 14,26,35 15,26,34 16,25,34

FIG. 3. Through the long-wave limit for condition (12) to present multi-lump solutions for Eq. (1). (a) and (d) first-order lump wave; (b) and (e) second-order lump wave; and (c)
and (f) third-order lump wave.
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VI. HYBRID WAVES

In the above two sections, two types of multi-wave solutions are
provided by applying two special constraints to Eq. (12). In this sec-
tion, we further impose novel constraints on the Hirota condition (12)
to derive the following two types of hybrid multi-wave interaction
solutions.

A. Breather-soliton waves

To obtain the first type of hybrid wave solutions between M-
breathers and K-solitons of Eq. (1), we need to impose the following
constraints on the Hirota condition (12) namely,

d2m�1 ¼ d�2m¢pmþ iqm; n
ð0Þ
2m�1 ¼ nð0Þ2m ¼ 0; m¼ 1;2;…;

d2mþK ¼ d2mþK ; n
ð0Þ
2mþK ¼ nð0Þ2mþK ; K ¼ 1;2;…;

8<
: (50)

where d2mþK and nð0Þ2mþK still satisfy Eq. (12), and do not need to be
changed. Then Eq. (12) is rewritten in the following form:

/2mþK ¼ 1þPqi¼0;1 exp
X2mþK

1�i<j

qiqjhij þ
X2mþK

i¼1

qini

0
@

1
A;

n2m�1 ¼ n�2m¢Re:ðn2m�1Þ þ Im:ðn2m�1Þi ¼ Rm þ Imi;

n2mþK ¼ n2mþK Unchangedð Þ; K ¼ 1; 2;…;

8>>>>>><
>>>>>>:

(51)

and

Rm ¼ pmx þ pmð3q2m � p2mÞy
þ pm ð9bp2m � aÞp2m þ 3ða� 30bp2m þ 15bq2mÞq2m

� 	
t;

Im ¼ qmx þ qmðq2m � 3p2mÞy
þ qm ð9bq2m þ aÞq2m � 3ðaþ 30bq2m � 15bp2mÞp2m

� 	
t;

8>>>>><
>>>>>:

(52)

where kij¢ehij is given in Eq. (38). Substituting Eqs. (51) and (52)
back into Eq. (11), the hybrid breather-soliton solutions of Eq. (1) can
be presented as follows:

ujM�Kj
2mþK ¼ 2 ln ð/2mþKÞxx; M ¼ m: (53)

Figures 4 and 5 reveal the interaction phenomena between multi-
breathers and multi-solitons. It is not difficult to see that elastic colli-
sions occur between mixed-type multiple waves. At the collision point
with the solitons, there is a significant amplitude collapse phenomenon
of the breather wave, accompanied by a slight phase shift, but the
direction of wave propagation remains unchanged. This indicates that
the breather waves excited by the integrable equation under specific
conditions are still elastic with solitons. The new hybrid breather-
soliton waves retain the property of energy conservation of the original
equation. These interaction phenomena help to reveal the evolutionary
behavior after collisions between different types of shallow-water
waves in the ocean.

FIG. 4. The interaction phenomena between 1-breather wave and multi-solitons. (a) and (d) 1-breather and 1-soliton; (b) and (e) 1-breather and 2-soliton; and (c) and
(f) 1-breather and 3-soliton.
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Remark 6.1.1WhenM ¼ m ¼ 1 and K ¼ 1, the 1-breather and

1-soliton mixed-type wave uj1�1j
3 is obtained via Eq. (53). By setting

parameter values of b ¼ 1, a ¼ �1, p1 ¼ �1, q1 ¼ 4
5, d3 ¼ 3

2,

nð0Þ3 ¼ 0, and t ¼ 0, the 3D and density plots of uj1�1j
3 are shown in

Figs. 4(a) and 4(d).
Remark 6.1.2WhenM ¼ m ¼ 1 and K ¼ 2, the 1-breather and

2-soliton mixed-type wave uj1�2j
4 is presented via Eq. (53). By setting

parameter values of b ¼ 1, a ¼ �1, p1 ¼ �1, q1 ¼ 4
5, d3 ¼ � 7

5,

d4 ¼ 3
2, n

ð0Þ
3 ¼ nð0Þ4 ¼ 0, and t ¼ 0, the 3D and density plots of uj1�2j

4

are shown in Figs. 4(b) and 4(e).
Remark 6.1.3WhenM ¼ m ¼ 1 and K ¼ 3, the 1-breather and

3-soliton mixed-type wave uj1�3j
5 is presented via Eq. (53). By setting

parameter values of b ¼ 1, a ¼ �1, p1 ¼ �1, q1 ¼ 4
5, d3 ¼ 2, d4 ¼ 6

5,

d5 ¼ 3
2, n

ð0Þ
i ði ¼ 3; 4; 5Þ ¼ 0, and t ¼ 0, the 3D and density plots of

uj1�3j
5 are shown in Figs. 4(c) and 4(f).

Remark 6.1.4WhenM ¼ m ¼ 2 and K ¼ 1, the 2-breather and

1-soliton mixed-type wave uj2�1j
5 is presented via Eq. (53). By setting

parameter values of b ¼ 1, a ¼ �1, p1 ¼ �1, q1 ¼ 4
5, p2 ¼ 1, q2 ¼ 3

4,

d5 ¼ 3
2, n

ð0Þ
5 ¼ 0 and t ¼ 0, the 3D and 2D plots of uj2�1j

5 are shown in
Figs. 5(a)–5(c).

Remark 6.1.5WhenM ¼ m ¼ 2 and K ¼ 2, the 2-breather and

2-soliton mixed-type wave uj2�2j
6 is presented via Eq. (53). By setting

parameter values of b ¼ 1, a ¼ �1, p1 ¼ �1, q1 ¼ 4
5, p2 ¼ 1, q2 ¼ 3

4,

d5 ¼ � 7
5, d6 ¼ 3

2, n
ð0Þ
5 ¼ nð0Þ6 ¼ 0, and t ¼ 0, the 3D and 2D plots of

uj2�2j
6 are shown in Figs. 5(d)–5(f).

B. Lump-soliton waves

When the long-wave limit of the N-solitons of an integrable equa-
tion is taken, the energy of every two adjacent solitons will be concen-
trated within a certain local range in space, thus forming lump waves
or rogue waves.15,37,38 In order to obtain another type of hybrid wave
solutions between M-lumps and K-solitons of Eq. (1), we also need to
impose some constraints on condition (12) as follows:

d2m�1 ¼ d�2m¢pm þ iqm; n
ð0Þ
2m�1 ¼ nð0Þ2m ¼ ip; m ¼ 1; 2;…;

d2mþK ¼ d2mþK ; n
ð0Þ
2mþK ¼ nð0Þ2mþK ; K ¼ 1; 2;…;

8<
:

(54)

where d2mþK and nð0Þ2mþK also satisfy Eq. (12) and are not to be
changed. Then Eq. (12) can be rewritten as a new form based on
Eq. (45), that is,

/̂2mþK ¼
Y2m
i¼1

ni þ
X
i<j

Y2m
k 6¼i;j

kijnk þ
X2m

i<j;…;k<l

kij � � � kkl|fflfflfflfflffl{zfflfflfflfflffl}
M¼m

þ
X
qi¼0;1

exp
X2mþK

1�i<j

qiqjhij þ
X2mþK

i¼2mþ1

qini

0
@

1
A;

n2m�1 ¼ n�2m¢Re:ðn2m�1Þ þ Im:ðn2m�1Þi ¼ R̂m þ Î mi;

n2mþK ¼ n2mþK Unchangedð Þ; K ¼ 1; 2;…;

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

(55)

and

FIG. 5. The interaction phenomena between 2-breather wave and multi-solitons. (a)–(c) 2-breather and 1-soliton; and (d)–(f) 2-breather and 2-soliton.
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R̂m ¼ x þ ð3q2m � p2mÞy
þ ð9bp2m � aÞp2m þ 3ða� 30bp2m þ 15bq2mÞq2m
� 	

t;

Î m ¼ x þ ðq2m � 3p2mÞy
þ ð9bq2m þ aÞq2m � 3ðaþ 30bq2m � 15bp2mÞp2m
� 	

t;

8>>>><
>>>>:

(56)

where kij¢ehij still satisfies Eq. (38). Substituting Eqs. (55) and (56)
back into Eq. (11), the hybrid lump-soliton solutions of Eq. (1) are pre-
sented, namely

ujM�Kj
2mþK ¼ 2 ln ð/̂2mþKÞxx; M ¼ m: (57)

Figures 6–8 show the entire process of the interaction between
multi-lumps and multi-solitons. We can easily see that as the lump
wave approaches the stripe solitons and collides, the stripe solitons
will collapse, and the lump wave will completely pass through the
other side of the solitons. From (b) and (e) in Fig. 7, it can be seen
that there was a brief energy exchange at the collision point. These
phenomena indicate that the lump waves excited by the integrable
equation under Hirota N-solitons condition are still elastic with soli-
tons. The new hybrid lump-soliton waves conform to the dynamic
balance between linear dispersion and nonlinear disturbance in
Eq. (1).

Remark 6.2.1 When M ¼ m ¼ 1 and K ¼ 1, the 1-lump and

1-soliton mixed-type wave uj1�1j
3 is presented via Eq. (57). By setting

parameter values of b ¼ 1, a ¼ �1, p1 ¼ �1, q1 ¼ 9
10, d3 ¼ 6

5,

nð0Þ3 ¼ 2, and t from � 1
4 to

1
8, the 3D and 2D evolution plots of uj1�1j

3

are shown in Fig. 6.
Remark 6.2.2 WhenM ¼ m ¼ 1 and K ¼ 2, the 1-lump and 2-

soliton mixed-type wave uj1�2j
4 is obtained via Eq. (57). By setting

parameter values of b ¼ 1, a ¼ �1, p1 ¼ �1, q1 ¼ 4
5, d3 ¼ 6

5, d4 ¼ 1,

nð0Þ3 ¼ 3
2, n

ð0Þ
4 ¼ 7

5, and t from � 1
5 to

1
5, the 3D and 2D evolution plots

of uj1�2j
4 are shown in Fig. 7.
Remark 6.2.3 When M ¼ m ¼ 2 and K ¼ 1, the 2-lump and

1-soliton mixed-type wave uj2�1j
5 is presented via Eq. (57). By setting

parameter values of b ¼ 1, a ¼ �1, p1 ¼ 1, q1 ¼ 4
5, p2 ¼ �1, q2 ¼ 3

5,

d5 ¼ 1, nð0Þ5 ¼ 1, and t from� 1
5 to

1
8, the 3D and 2D evolution plots of

uj2�1j
5 are shown in Fig. 8.

VII. MESHY-PERIODIC LUMP WAVES

In this section, the BNNM40 is used to construct a novel class of
multi-periodic lump waves for Eq. (1), known as meshy-periodic lump
wave solutions. Based on Eq. (13), we assume that the function / in
BmKPð/Þ Eq. (9) has a multi-layer network structure (see Fig. 9). The
output layer in Fig. 9 covers two hidden layers. When the two neurons
in the first hidden layer are set to r1 ¼ sinðn1Þ and r2 ¼ cosðn2Þ, and
the three neurons in the second hidden layer are set to r3 ¼ �ðd1;3r1
þ d2;3r2 þ nð3Þ2 Þ, r4 ¼ ðd1;4r1 þ d2;4r2 þ nð4Þ2 Þ2, and r5 ¼ ðd1;5r1
þ d2;5r2 þ nð5Þ2 Þ2, we have

FIG. 6. The evolution phenomena of elastic collision between 1-lump and 1-soliton. (a) and (d) t ¼ � 1
4; (b) and (e) t ¼ 0; and (c) and (f) t ¼ 1

8.
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/ ¼ 1þ sinðn1Þ þ cosðn2Þ � n3 þ n24 þ n25;

nj ¼ d1;j sinðn1Þ þ d2;j cosðn2Þ þ nðjÞ2 ; j ¼ 3; 4; 5;

ni ¼ dx;ix þ dy;iy þ dt;it þ nðiÞ1 ; i ¼ 1; 2;

8>><
>>: (58)

where dk̂ ;̂l ðhk̂ ¼ x; y; t; 1; 2i; ĥl ¼ 1; 2; 3; 4; 5i; k̂ 6¼ l̂Þ, nðiÞ1 ði ¼ 1; 2Þ,
and nðjÞ2 ðj ¼ 3; 4; 5Þ are undetermined real constants. Substituting
expression (58) into Eq. (9) to obtain a polynomial consisting of / and
its partial derivatives. By setting the sum of the same power coefficients
of / and @/ to zero, a system of nonlinear algebraic equations can be
obtained. Solving this nonlinear algebraic system, we get

a ¼ 20bd2x;2; b ¼ b; c ¼ 0; d1;3 ¼ d1;3;

d1;4 ¼ � d1;5d2;5
d2;4

; d1;5 ¼ d1;5;

d2;3 ¼ 2d2;4n
ð4Þ
2 þ 2d2;5n

ð5Þ
2 þ 1; d2;4 ¼ d2;4; d2;5 ¼ d2;5;

dt;1 ¼ 0; dt;1 ¼ 64bd5x;2;

dx;1 ¼ 0; dx;2 ¼ dx;2; dy;i ¼ dy;iði ¼ 1; 2Þ;
nðiÞ1 ¼ nðiÞ1 ði ¼ 1; 2Þ; nðjÞ2 ¼ nðjÞ2 ðj ¼ 3; 4; 5Þ;

(59)

substituting Eq. (59) back into Eq. (58) and using the direct relation
(13) a meshy-periodic lump wave solution is presented below

u¼ 4

/2 ð2cos ðn2Þ4d42;5 þ 4ðsinðn1Þd1;5d2;5

� d2;4ðnð4Þ2 � n4ÞÞd22;5 cos ðn2Þ3 �ð4d1;5d2;4d2;5ðnð4Þ2 � n4Þ sinðn1Þ
þ 2cos ðn1Þ2d21;5d22;5þ 2d42;5þð2/� 2d21;5Þd22;5
þ d22;4ð�2nð4Þ2

2þ 4nð4Þ2 n4� 2n24 þ/ÞÞcos ðn2Þ2

�ðsinðn1Þd1;5d2;5 � d2;4ðnð4Þ2 � n4ÞÞð4d22;5þ/Þcosðn2Þ
þ 4d1;5d2;4d2;5ðnð4Þ2 � n4Þ sinðn1Þþ 2cos ðn1Þ2d21;5d22;5
�ð2d21;5�/Þd22;5 þ d22;4ð�2nð4Þ2

2þ 4nð4Þ2 n4� 2n24 þ/ÞÞd2x;2:
(60)

Figure 10 shows the wave dynamics of the meshy-periodic lump
wave solution (60) with some 3D and 2D plots. It is not difficult to see
from the figures that we obtain a new kind of exact traveling wave
solution for Eq. (1), through a test function / with multi-layer network
structure. This result can be used to describe shallow-water waves with
a network structure that often occur near the coastline. In addition, the
neural network structure utilizing test functions has potential applica-
tion value in revealing turbulence phenomena.

Remark 7.1 By assigning the values of b ¼ 1, d1;3 ¼ �0:01,
d1;5 ¼ 1, d2;4 ¼ 1, d2;5 ¼ 0:02, dx;2 ¼ 0:2, dy;1 ¼ �0:5, dy;2 ¼ 0:05,

nðiÞ1 ði ¼ 1; 2Þ ¼ nðjÞ2 ðj ¼ 3; 4; 5Þ ¼ 1, and t ¼ 0 for dynamic plots of
meshy-periodic lump wave solution (60).

FIG. 7. The evolution phenomena of elastic collision between 1-lump and 2-soliton. (a) and (d) t ¼ � 1
5; (b) and (e) t ¼ 0; and (c) and (f) t ¼ 1

5.
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VIII. CONCLUSIONS

In this article, we obtained rich multi-wave solutions of the
shallow-water wave Eq. (1) and studied various nonlinear elastic collision
phenomena. Through a second-order logarithmic derivative transforma-
tion, the bilinear form of Eq. (1) under the coefficient condition of inte-
grability was given. Based on HBmKPð/Þ Eq. (10), the Hirota standard
condition of N-soliton solutions for Eq. (1) was presented. The soliton
dynamics ofN-soliton solutions were clearly shown (see Fig. 1). The geo-
metric and dynamic characteristics of solitons were completely revealed.

In particular, we obtained multi-breather waves (see Fig. 2),
multi-lump waves (see Fig. 3), and several types of hybrid multi-wave
solutions (see Figs. 4–8) by applying specific constraints to the

coefficient conditions of N-solitons. The 3D and 2D graphs of these
results shown that the nonlinear waves with elastic structures, and the
amplitude decreases at the site of collision. The interaction phenomena
of these nonlinear multi-waves can well describe the fusion and fission
behavior of solitons. It is worth mentioning that, based on the mixed-
type breather-soliton waves given in Sec. VIA, we can still take the
long-wave limit for multi-solitons in Eqs. (50)–(52), that is,

d2m�1 ¼ d�2m¢pm þ iqm; n
ð0Þ
2m�1 ¼ nð0Þ2m ¼ 0;

d2mþ1 ¼ d�2mþ2¢pm þ iqm; n
ð0Þ
2mþ1 ¼ nð0Þ2mþ2 ¼ ip;

n2m�1 ¼ n�2m¢Re:ðn2m�1Þ þ Im:ðn2m�1Þi ¼ Rm þ Imi;

n2mþ1 ¼ n�2mþ2¢Re:ðn2mþ1Þ þ Im:ðn2mþ1Þi ¼ R̂m þ Î mi;

8>>>><
>>>>:

(61)

and

Rm ¼ pmx þ pmð3q2m � p2mÞy
þ pm ð9bp2m � aÞp2m þ 3ða� 30bp2m þ 15bq2mÞq2m

� 	
t;

Im ¼ qmx þ qmðq2m � 3p2mÞy
þ qm ð9bq2m þ aÞq2m � 3ðaþ 30bq2m � 15bp2mÞp2m

� 	
t;

R̂m ¼ x þ ð3q2m � p2mÞy
þ ð9bp2m � aÞp2m þ 3ða� 30bp2m þ 15bq2mÞq2m
� 	

t;

Î m ¼ x þ ðq2m � 3p2mÞy
þ ð9bq2m þ aÞq2m � 3ðaþ 30bq2m � 15bp2mÞp2m
� 	

t:

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

(62)

FIG. 8. The evolution phenomena of elastic collision between 2-lump and 1-soliton. (a) and (d t ¼ � 1
5; (b) and (e) t ¼ 0; and (c) and (f) t ¼ 1

8.

FIG. 9. The multi-layer neural network structure of the tensor function / in BNNM.
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FIG. 10. Profiles of meshy-periodic lump wave solution (60). (a) 3D plot; (b) Density plot; (c) Contour plot; (d) x-curves; (e) y-curves; and (f) gradu at
ðx; yÞ 2 ½�1; 1	 � ½�1; 1	.

FIG. 11. Profiles of breather-lump wave solutions uj1j�j1j
4 (top) and uj2j�j1j

6 (bottom). (a) and (d) 3D plots; (b) and (e) density plots; (c) y-curves; and (f) x-curves.
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By utilizing the two new conditions provided by Eqs. (61) and (62)
and further combining them with Eq. (53), we can obtain a new class
of hybrid multi-wave solutions, namely breather-lump waves. The two
cases of m ¼ 1 and m ¼ 2 are shown in Fig. 11, with the values of
a ¼ �1, b ¼ 1, p1 ¼ � 3

5, q1 ¼ 4
5, p2 ¼ 1, q2 ¼ 3

5, and t ¼ � 1
5 for

(a)–(c); and the values of a ¼ �1, b ¼ 1, p1 ¼ 4
5, q1 ¼ � 2

5, p2 ¼ �1,
q2 ¼ 4

5, p3 ¼ 1, q3 ¼ � 7
10, and t ¼ 3

10 for (d)–(f). The above four types
of derived wave solutions well reveal the interaction phenomena of
shallow-water waves after they collide with each other. It also reflects
that Eq. (1) can generate both local and nonlocal waves.

In addition, we obtained a type of meshy-periodic lump waves of
Eq. (1) via a new objective function based on a neural network model
with multi-layer structure. The plots of this solution showed a class of
multi-periodic lump waves (see Fig. 10). Furthermore, it will be very
interesting to construct various exact traveling wave solutions of Eq.
(1), by using more test functions.19,34–41 In particular, the integrability
condition a1 ¼ 6a and b2 ¼ 3b1 ¼ 45b of Eq. (1) is crucial for
obtaining bilinear form, N-soliton solutions and several other derived
wave solutions. The Painlev�e analysis37,38 for Eq. (1) is another key
focus of our work, which will not be emphasized in this article. In our
future work, we will also focus on the Darboux transformation15,16 for
Eq. (1).
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