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ABSTRACT

This article mainly studies the Hirota condition analysis and a series of multi-wave solutions of a nonlocal (2 4 1)-dimensional modified
Kadomtsev-Petviashvili equation. The Hirota bilinear form is given under integrability conditions, which provide a prerequisite for obtaining
N-soliton solutions. Moreover, by performing specific constraints on the Hirota condition of N-solitons, some novel and interesting multi-
wave solutions with fully elastic structures can be further generated. Particularly, based on a type of new test function with a multi-layer
network structure, one class of meshy-periodic lump wave solution is obtained using the bilinear neural network method. The three-

dimensional dynamics of all results obtained are conducive to revealing nonlinear interaction phenomena of shallow-water waves.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0288755

I. INTRODUCTION

Up to now, the soliton solutions of integrable nonlinear evolution
equations have always been a focus of research in nonlinear science.
Solitons have significant applications in natural phenomena such as
matter-wave.' ' However, among many integrable nonlinear mathe-
matical and physical equations, those with N-soliton solutions are
extremely rare. The most representative equations with N-soliton solu-
tions mainly include the well-known KdV equation,” ” as well as the
classical nonlinear Schrodinger equation,'”"” the Kadomtsev—
Petviashvili equation,“"“ the sine-Gordon equation,lS the (24 1)-
dimensional Sawada-Kotera equation,'” the integrable combined
fractional higher-order mKdV equation,‘)“ and so on.”' %

Integrable nonlinear evolution equations can be used to describe
some novel nonlinear phenomena when considering the shape and
collision effects of fluids.””*" Describing the interaction of shallow-
water waves in the ocean, a nonlocal integrable system in (2+ 1)-
dimensions with fifth-order linear dispersion and third power
nonlinear disturbance factors will be considered in this paper. Namely,
anonlocal (2 + 1)-dimensional mKP equation as follows

Up + OUyyy + 0 UU, + ﬁusx + ﬁl(uxuxx + uuxxx) + [))Zuzux

+y[uyydx:0, (1)

where a, a5, fi, 1, f,, and 7 are non-zero constants. Easy to see that
Eq. (1) has multiple nonlinear factors and is a new shallow-water wave
model like the KP equation, in a nonlocal environment with multi-
parameters. If f = f§; = /, = 0 and Eq. (1) takes a first-order partial
derivative of x, it can degenerate into

(ut + Uy + O(luux)x + Ty = 0, (2)

as we can see that Eq. (2) is the standard (2+ 1)-dimensional
Kadomtsev-Petviashvili equation.zmg When o, = 6a, the classic
Eq. (2) is Lax integrable. In particular, Lou uses P-T-C symmetry
reduction to give a new integrable form of Eq. (2) with Lax pair, called
the ABKP system.”’ The partial-rogue ripple solutions based on
Wronskian determinant of a nonlocal ABKP system are obtained by
Cao et al.”' Ma provided a proof that the (3 + 1)-dimensional bilinear
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KP equation, a generalization of Eq. ( 1n (3 4 1)-dimensions, does
not satisfy the Hirota 3-soliton condltlon

There are many studies on Eq. (2), and we will not list them one
by one here. An issue of great theoretical and applied value is that, we
can further explore the N-soliton solutions and novel shallow-water
wave interaction characteristics of Eq. (1) under certain specific condi-
tions, based on the integrability of Eq. (2). To our knowledge, the cur-
rent research on Eq. (1) is relatively rare, and the applications of many
exact analytical methods to Eq. (1) still requires further study. Such as
the Darboux transformation method,"”'® the trilinear method,”” the
Hirota bilinear method,'””"*****° and Painlevé analysis method””**
for Eq. (1) have not been given.

In this work, we will construct abundant new exact traveling
wave solutions which are used to describe the interaction phenomena
of shallow-water waves based on the integrable form of Eq. (1), includ-
ing N-soliton solutions, multi-breather wave solutions, multi-lump
wave solutions, mixed-type multi-wave solutions, and a new type of
meshy-periodic lump wave solutions. The dynamics of all the multi-
wave solutions presented and evolution phenomena of some nonlinear
elastic collisions will be well demonstrated through 3D and 2D graphs.
These new solutions will fully demonstrate that Eq. (1) can be used to
reveal or describe nonlinear wave propagation phenomena. It is worth
mentioning that applying neural network technology to construct
exact solutions of integrable nonlinear equations has become a popular
research topic in recent years, and this article will also utilize this new
idea.”” "

The organizational structure of this paper is as follows. In Sec. I,
we will provide the bilinear form of Eq. (1) using the Hirota method
based on the Bell polynomial theory of integrable equations. Section
IIT presents a standard form of N-soliton solutions, based on the
Hirota bilinear form of Eq. (1). In Sec. IV, the multi-breather waves of
Eq. (1) will be presented using the Hirota condition of N-solitons. We
also give the multi-lump waves and hybrid waves in Secs. V and VI,
respectively. Section VII provides a new class of meshy-periodic lump
waves through a test function with multi-layer neural network struc-
ture in BNNM. In Sec. V1II, we make some conclusions.

Il. HIROTA BILINEAR FORM

According to the integrability condition of Eq. (2), we know that
Eq. (1) cannot guarantee complete integrability under any conditions.
However, when the coefficients satisfy a specific conservation relation-
ship, Eq. (1) is integrable. Similarly, when the parameters satisfy
o; = 6o and f§, = 3f5; = 450, Eq. (1) corresponds to a nonlocal inte-
grable form as follows

Us + Ol xxx + 6OCMMX + ﬁuSX + ISﬁ(uxuxx + uuxxx)

+ 45[3u2ux + “/Juyydx =0, 3)

where o, 5, and y are arbitrary non-zero real constants. In order to
obtain a bilinear form for Eq. (1), let’s start with the following second-
order logarithmic transformation, that is,

u= éx = Wy = 2(111 ¢)xx’ (b >0, (4)

where ¢ = &(x,y,t), p = p(x,y,t), and ¢ = ¢(x, y,t) are functions
of variables x, y, and t. By taking u = &,, the nonlocal Eq. (3) can be
written as

pubs.aip.org/aip/pof

Cat + Ay + 608, Cor + Plr + lsﬂ(éméxxx + éxéxxxx)
+ 45ﬁ£iéxx + V&yy =0, (5)

then, further substituting £ = i, into Eq. (5) and integrating the vari-
able x once, which reads

J(Mxxt + sy + 6O(nu'xx:uxxx + ﬁ:u7x + lsﬁ(luxxx#xxxx + :uxx:u5x)
+ 45 B M + Ty )dx = 0, ©)
by setting the integral constant of Eq. (6) to zero, we have

+ 15 B e + 1510 + 71, = 0.
@)

Finally, let 4 = 2In ¢ can transform Eq. (7) into the new form, as

follows:
0 P¢\’ o
s (30) (50) +(5e) +00(52)

Mt + Oy + 30‘:“;20( + ﬁ:u’6x

o'
e [ ’ (6_)
o) (3) 90(5) () - w(52)
ﬁ<8x5 ax) TP o J\a2) ~ 1P\ 5
i)~ (50) (o) o (50) +(5) |-
+¢(8t8x o )\ax) T\ 52 |~ (ay) -0
®)
where ¢ = ¢(x,y,t) > 0. Eliminating the denominator, Eq. (8) can
be simplified into a bilinear form to Eq. (1), namely,
Bpr(d)) £ a(¢¢xxxx - 4¢x¢xxx + 3¢)2cx)
+ ﬁ(d)¢6x - 6¢x¢5x + 15¢xx¢xxxx - 10¢;2cxx)
+ (bd)xt - d)x(/)t + yd)d)yy - yd); =0. (9)
Remark 2.1 Based on the Bell polynomial theory of integrable bilinear

equations,’” Eq. (9) corresponds to a Hirota bilinear (HB) form as
below

HBuip () 2 (2D} + DS + DD, +7D}) - ¢ =0, (10)

19,33-36

where Dy, D, and D, are Hirota derivatives, defined by

o a\79 oaN'[o o\
: l//(k,y, hi)'}c:xj/:y‘}:t‘

lll. HIROTA CONDITION OF N-SOLITONS

In this section, the Hirota method'””' ** is used to analyze the
standard condition of N-soliton solutions of Eq. (1). In order to pro-
vide general form of the N-solitons for Eq. (1), we will introduce the
following standardized theorem.

Theorem 1. Based on HB,xp Eq. (10) via y = —10p, the nonlocal
Eq. (1) with integrability condition has the following standard form of
N-solitons

N_28 ((bN) N:172737"'7 (11)
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where ¢ satisfies the Hirota condition, as follows:
N N
dn=1+3, o1 €xp Z pipi0i + Zpifi )
1<i<j i=1
&= 0w — 3}y + (985] —ad})t+ &,
(5B(07+0i0+07) +) (3= 5)°
(58(07 =010 +7) +) (3:+ )"

egij =

1<i<j<NeN"

(12)

Proof. Before proving standard condition (12) it is necessary to first
explain that Eq. (11) can be expressed as a solution to Eq. (1). This can
actually be attributed to the direct relationship between Eq. (1) and
bilinear forms (9) or (10) under the integrability conditions oy = 6a
and 5, = 3, = 450, as follows

Ppr(u) =

{2Bm;§(¢)] 2HB;§P(¢)} 7 (13)

therefore, when ¢ is a solution to Egs. (9) or (10) Eq. (11) must be a
solution to Eq. (1).

Now, we expand the function ¢ in Eq. (10) into a power series of
0, which becomes

N

pLy=1+> oWk, NeN, (14)
k=1

substituting Eq. (14) into Eq. (10) with y = —10f and collect the coef-
ficients of ¢ to the same power, that is,

o(0") 2(a0§§ + S + 0,0, — 10138;)4)(‘) =0, (15)
0(0?) 2(a0} + P05 + 0.0, — 100}) "
= —(aD! 4 BD® + D,D; — 10/3D§)¢(1> W, (16)
0(@*) 2(x0} + PO + 9.0, — 10p0;) %)
= —2(aD} + BDS + D,D, — 108D}) ") - ¢,
(17)

To obtain (/)(k) (k=1,2,...,N), we assume that (l)<1> in Eq. (15) has a
general solution of the following form:

n
oV =" G =t o+t + &7, i=1.2,...,n, (18)
i=1

where 0;, w;, v;, and 650) are undetermined arbitrary constants. Then,
we substitute Eq. (18) into Eq. (15) for calculation, and a set of param-
eter solutions can be obtained, that is,

Si=0, w=-8, v=985-au5, V=Y (9

(i) If n = 1, Eq. (18) is written as

oM =eh, & =0 — Oy + (98] — o))t + &0, (20)

pubs.aip.org/aip/pof

substitute Eq. (20) into Eq. (16) yields 2(adf + BOS + 0,0,
71_0/38;)¢(2) =0, so we make ¢ =0 and thereby promoting
¢V =0(j = 3,4,...,N). By selecting ¢ = 1, Eq. (14) is truncated into
the following form

dr=1+e" & =da =Gy + (9p5 —ad)t+&”. @)

which satisfies the standard condition (12) According to the relation-
ship between u and ¢ in Eq. (13), we obtain a 1-soliton of Eq. (1),
namely,

_ 2077 (¢ — ) _

(22)
&

up =2In (¢1)xx
(i) If n = 2, then Eq. (18) becomes

(b(l) — eél + eﬁfz’

& =0k — 8y + (98 — ad)t + &, (23)

& = bx = Sy + (9883 —ad))t + &,
by substituting Eq. (23) into Eq. (16) and organizing it, we can obtain

(20 + POS + 90, — 10p0})
=30105(01 — 82)°(5B(0] + 0102 + &3) + o)e T, (24)

by solving Eq. (24), we can easily obtain a specific solution for ¢?), as
follows:

(5B(62 + 610, + 62) + ) (8 — 8,)’

(5B(8% — 6,10, + 03) + 2) (8, + 8,)°
(25)

¢(2) — e51+§2+9127 e912 —

Next, we substitute Egs. (23) and (25) together into Eq. (17) for expan-
sion. After organizing the substituted Eq. (17), it can be concluded that
there are only the following two results on the right side of the equal
sign, namely

— (2D} + BD§ + DDy — 10BD; )¢ - e o0
= [=8)" + B(=02)° + (=02 (a3 — 953) — 108(63)?]
28, +&+01 07

X €

— (aD} + BD§ + DDy — 10D )e™ - = Fo 00

= [=80)" + B(=00)° + (=01 (26 — 95%) — 108(53)?]
% efl+252+012 =0, (26)

thus, we also make ¢(3> =0 and thereby promote qﬁ(j) =0(j=4,
5,...,N). By selecting ¢ = 1, Eq. (14) will be truncated into a new
form, that is,

¢, =1+ €€ 4 el 4 fitatle
o _ (5B(01+ 810, + ) + ) (01 — 82)” 27)

(5B(8% — 6,0, + 02) + ) (S, + 8,)°

which also satisfies the standard condition (12) Then, a 2-soliton for
Eq. (1) can be presented below
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2 9E 1of
(61 +52) e2§1+2§2+2612

uy =2In(¢,),, = j)—g ( -0’

_ 20252(51 + 52)eg,+2;2+9u _ 29251(51 + 52)625,+éz+012

+ $,0(0) + 0,) et _2ebit8 5,5, — 21952

— 2002 + ¢, ((Sfei1 + 5§eiz>>. (28)

(i) If n = 3, Eq. (18) has the following third form:

PV = eh e e,
& = d1x — 3y + (9885 — ad)t + &7,
& = 00— By + (955 — a3t + &,
& = b3 — Oy + (9685 — a0t + &,

(29)

substituting Eq. (29) into Eq. (16) and calculating it, we still get a spe-
cific solution for ¢® in the same way, that is,

d)(z) — e51+‘52+012 + e§1+53+()13 + eiz*fﬁ{)zs’

(5B(57 + 6:6; + 5jz) +0)(0; — 3;)° (30)

05 —
(5B(S} — 610+ 67) + @) (6 + &)

then, we substitute Eqs. (29) and (30) together into Eq. (17), which is
simplified into the form as below
(20 + POS + D0, — 10p0}) %)
3
—(aD} + BDS + DDy — 10BD;) > e &5t
i=LiZj<k

_((:1,23 + 52,13 + C3,12)eél+52+537 (31)

where (i (i,j,k = 1, 2, 3) satisfies one standard form, namely

Ci,J |:0( 5 — 5 — 5k) —+ ﬁ((ﬁ’ _ 5 _ 5k)6
+ (3i — 6 — 3L (93] — 067) + (9B} — d7)
~ (90 — 20}) ~ 106(3) + 3}~ 8} ] e, <k ()

by combining Egs. (31) and (32) for calculation, a specific solution for
¢ ) is obtained as follows

¢(3) — ef1+~fz+53+912+513+923
o (5B(3] +6:0+ 8)) + 2)(3i — §))° . (33)

eli = > > 5, 1<i<j<3
(5p(9; —5,-5,-+5j) + ) (0; + )

Now, we substitute Egs. (29), (30), and (33) together into the equation
via o(g*), which can makes (2} + p0S + 0.0, — 10892 = 0.
Therefore, we still make ¢® =0 and thereby promoting
¢V =0(j=5,6,...,
into one form, that is,

¢3 =1+ efl 4 eiz 4 ef3 + e51+iz+01z + e§1+f3+013

+ efz+€'3+923 + e§1+§z+53+912+913+9237 (34)

N). By setting ¢ = 1, Eq. (14) can be truncated

which still satisfies the standard condition (12) Then, a 3-soliton of Eq.
(1) can be presented below

pubs.aip.org/aip/pof

u3 = 2In(¢3),, = Omit. (35)

After our verification, the multi-soliton solutions of Eq. (1) for
n=4,5,6... could be constructed in a similar way. Thus, when
n = N, we can obtain the N-solitons with the standard condition (12)
of nonlocal Eq. (1). O

Remark 3.1 By setting parameter valuesof oo = f =1, 6; = 0.2,
610) =1 and y = —x, Figs. 1(a) and 1(d) show the dynamics of
1-soliton u; via Eq. (22).

Remark 3 2 By settmg parameter values of o = ff = 1, 6; = 0.4,
0, = —0.8, 51 52 =0 and y = —x, Figs. 1(b) and 1(e) show the
dynamics of 2-soliton u, via Eq. (28).

Remark 3.3 By setting parameter values of a = ff=1,0=1,
01 = 0.6, 6, = —0.8, 53—045 =0(G=1,2,3) and y = —x,
Figs. 1(c) and 1(f) show the dynamlcs of 3-soliton u3 via Eq. (35).

When a nonlinear system meets the condition of integrability, the
soliton solutions it obtains (like the KAV equation” ) will be highly
stable. Therefore, after multi-solitons collide, each maintains its origi-
nal amplitude, energy and propagation direction. It is easy to see from
(b), (), (e), and (f) in Fig. 1 that when multi-solitons collide, they each
maintain strong stability. Under the influence of nonlinear effects,
multi-solitons only experience a phase shift at the collision point, and
the amplitude near that point decreases. The nonlinear characteristics
of solitons have significant application value in shallow-water wave
analysis and elastic systems, which can be applied in fields such as tsu-
nami wave propagation prediction, ship fluid design, and offshore plat-
form safety analysis.

IV. MULTI-BREATHER WAVES

When we impose some special constraints on the standard condi-
tion (12) the N-soliton solutions determined by expansion Eq. (11) can
derive some peculiar and interesting multi-wave solutions. In this sec-
tion, we will construct the multi-breather wave solutions of Eq. (1).
Now, we need to impose the following constraints on condition (12)
that is,

m=12,...,
(36)

Oam—1 = 5;"1 épm + igm, ég?r)z—l = 5(2?21 =0,

then Eq. (12) with the Hirota condition is rewritten as a new form by
substituting Eq. (36) back into it, reads

¢2m =1+ Z exp Z’D p]91] +ZP )

0;=0,1 1<i<j

Camr = & B Re(Eppr) +Imu (&) = Ry + L,

Ry = pmx +Pm(3‘ﬁn —Pf,,)}/
P [(9Bp3, — 2)py, +3(

Iy = qux + qu(d;, — 3p7,)y
+qm[(9Bq, + o), — 3o + 30Bq%, — 156p%,)py ],

(37)

— 30Bp2, + 154242 |1,

and

5pq;, + )4,
5Bp3, — o)pi,

) A O (15,317%»1 -

JijReli = (15502 — >0, Vme&N*. (38)
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FIG. 1. The elastic collision phenomena among multi-solitons: 3D (top) and density (bottom) plots of u;(i = 1,2, 3). (a) and (d) 1-soliton via (22); (b) and (e) 2-soliton via (28);

and (c) and (f) 3-soliton via (35)

It should be noted that if ¢,,, > 0 is made in condition (35) Z; >
must be established. If all the above conditions are met, the multr—
breather solutions can be generated based on Eq. (11), as follows

u‘Zj\}gI‘ =2In (¢2m)xx7 M =m. (39)

Case (i). When M = m = 1, the first-order breather u is pre-
sented via Eq. (39), which corresponds to the following condmon

$y =1+ e e + ettt (40)

where &;(i = 1,2) and Ay, are given in Egs. (37) and (38). The wave

dynamics of u‘ ‘ with condition (40) will be shown by Remark 4.1.
Case (11). When M = m = 2, the second-order breather uf‘ is

presented via Eq. (39), which corresponds to a condition as below

4
b= 1EY S At S i
i=1

1<i<j<4 1<i<j<k<4

SitGHE

4
+ II 4 eu , (41)

1<1<]<4

where &;(i =1,2,3,4) and A;(1 <i<j<4) satisfy the Eqs. (37)

and (38). The wave dynamics of uf‘

Remark 4.2.

with condition (41) are shown by

Case (iii). When M = m = 3, the third-order breather u|6 lis pre-

sented via Eq. (39), which corresponds to the third condition, that is,

¢6_1+Zec,+ Z )] es(+SJ+ Z i zk/L]k St it

1<1<]<6 1<i<j<k<6
+ II 4 e 2 + Y ghwdgdu - TS
1<i<j<6 1<i<j<k<I<6
+ E D ik Ak Pt P - €T (42)

1<i<j<k<l<m<6

where &;(i =1,2,...,6) and 4;(1 <i <j < 6) also satisty the Eqs.
(37) and (38). And the wave dynamics of 1463 with condition (42) are
shown by Remark 4.3.

Remark 4 1 By setting parameter values of f =1, o = —1,
p1=-1,q =% and t =0 for u) !l The 3D and density graphics of
first-order breather wave solution are shown in Figs. 2(a) and 2(d).

Remark 4.2 By setting parameter values of f =1, o = —1,
p=—lLq=%p=1¢g=3%andt=0for uLz‘ The 3D and den-
sity graphics of second-order breather wave solution are shown in
Figs. 2(b) and 2(e).

Remark 4.3 By setting parameter values of p=1 a=-1,
p=—-lg=%ip=Lgp=%p=—%4qs=%andt=0for um.
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FIG. 2. The 3D (top) and density (bottom) plots of multi-breathers for Eq. (1) generated by the multi-solitons determined by Theorem 1 through conditions (36)-(39). (a) and (d)
1-breather via 2-soliton; (b) and (e) 2-breather via 4-soliton; and (c) and (f) 3-breather via 6-soliton.

The 3D and density graphics of the third-order breather wave solution
are shown in Figs. 2(c) and 2(f).

From Fig. 2, it can be observed that there is one breather wave
appearing in (a) and (d), two breathers appearing simultaneously in
(b) and (e), and three breathers appearing simultaneously in (c) and
(f). As we can see, elastic collisions occurred between multi-
breathers, and amplitude collapse also occurred near the collision
point. This phenomenon is still caused by the influence of nonlinear
factors in Eq. (1), but throughout the collision process, like soliton
solutions, energy is conserved. The results show that Eq. (1) can give
rise to new solutions under specific conditions. In line with this idea,
we will continue to give the following new classes of exact traveling
wave solutions.

V. MULTI-LUMP WAVES

In this section, we continue to generate another class of interest-
ing multi-wave solutions based on the Hirota condition (12) of
N-solitons. In order to obtain the multi-lump wave solutions of Eq.
(1), we need to impose additional constraints on condition (12) as
follows:

£2m71 = ézm éRe-(élmfl) + Im’(éZm—l)i = Rm + Imi7
Ry = pm(x + (3q5, — p3,)y

+[(9Bp2, — w)p?, + 3(a — 30Bp?, + 1582 ) ]t),  (44)
Ly = qum(x + (g5, — 3p3,)y

+[(9B2, + x)q2, — 3(o+ 30Bq2, — 158p2 )p%]t),

now, we make the coefficients p,, — 0 and gq,, — 0 before the right
side parentheses of R,, and I, in Eq. (44). And then we can obtain

R 2m 2m 2m
¢2m :Héz'i'ZH/szék"_ Z ;”ij"'ikh
i=1 i<j k#ij i<jp k<] N

o1 =& 2 Ry + I i,
Ry =x+ (3, —ph)y

+[(9BpE, — @)pk, + (o — 30Bp2, + 152 )% 1,
Ly =x+ (g% —3pL)y

+[(9B42, + 2)qp, — 3(o + 30BqZ, — 156p%,)p2, )1,

(45)

where /;£ (15, =5Pay +2)6 () Based on Eq. (11), the multi-lump

_ 5t A . 0 _ £(0) _ . _ (15842, —5Pp;, —)p},
Oam—1 = O3 =P + m, Gy = g = im, m=1,2, ..., wave solutions of Eq. (1) can be presented as follows
(43)
o R
and ul =210 (¢y)yy M =m. (46)
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TABLE . All cases of “jj, hg, kI" for Ajj/ng g in Eq. (49).

12,34,56 13,24,56 14,23,56 15,23,46 16,23,45
12,35,46 13,25,46 14,25,36 15,24,36 16,24,35
12,36,45 13,26,45 14,26,35 15,26,34 16,25,34

Case (i). When M = m = 1, the first-order lump wave u‘zl‘ is

obtained via Eq. (46), which corresponds to the following condition:

by =&+, (47)

where ;(i = 1, 2) satisfy the condition (44) The wave dynamics of u‘zll
with condition (47) will be shown by Remark 5.1.

Case (ii). When M = m = 2, the second-order lump wave ufl
presented via Eq. (46), which corresponds to a condition as follows:

is

434 = 88688+ M3l + A8l + Aubaés + Ay
+ 7046185 + 73481 8o A Aaadsa F Jazlag + Aiadas, (48)

where £;(i=1,2,3,4) also satisfy the condition (44) The wave
dynamics of u‘ ) w1th condition (48) are shown by Remark 5.2.

Case (111) When M = m = 3, the third-order lump wave u‘;l is
presented via Eq. (46), which corresponds to the third condition,
namely

-10 -5 0 5 10
y

(d)

ARTICLE pubs.aip.org/aip/pof

6 6
do=1]c+>_ H Mg+ Y Dingdu, (49)
=1 i<j k#ij i<jh<g.k<l

where &;(i = 1,2, ..., 6) satisfy the condition (44) The wave dynamics
of u|63‘ with condition (49) are shown clearly by Remark 5.3. In addi-
tion, all sequence numbers of “ij, hg, kI” in AjjAng A satisfy Table I.

Remark 5. 1 By setting the parameter values of f =1, o = —1,
p1=—1,q1=3%and t =0 for uz‘ via Eq. (47). The 3D and density
graphics of the first-order lump wave are shown in Figs. 3(a) and 3(d).

Remark 5.2 By setting the parameter values of f =1, o = —1,
p=-lLq=%3p=1q= 5,andt*0foruL‘ via Eq. (48). The
3D and density graphics of the second-order lump wave are shown in
Figs. 3(b) and 3(e).

Remark 5.3 By setting the parameter values of f =1, o = —1

_ _ El
pr=-Lq= 5>P2—1CZ2 5,P3 5,q3—1andt—0foru6
via Eq. (49). The 3D and density graphics of the third-order lump
wave are shown in Figs. 3(c) and 3(f).

By observing Fig. 3, we find that when the long-wave limit is
taken for multi-solitons, the energy can be highly concentrated.
Thereby forming spatially localized solitary waves, which can be used
to analyze the generation mechanism and dynamic properties of those
rogue waves in the ocean. This characteristic stems from the dynamic
balance between nonlinear effects and dispersion in integrable

equations.

4
2

3]
uf

FIG. 3. Through the long-wave limit for condition (12) to present multi-lump solutions for Eq. (1). (a) and (d) first-order lump wave; (b) and (e) second-order lump wave; and (c)

and (f) third-order lump wave.
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FIG. 4. The interaction phenomena between 1-breather wave and multi-solitons. (a) and (d) 1-breather and 1-soliton; (b) and (e) 1-breather and 2-soliton; and (c) and

(f) 1-breather and 3-soliton.

VI. HYBRID WAVES

In the above two sections, two types of multi-wave solutions are
provided by applying two special constraints to Eq. (12). In this sec-
tion, we further impose novel constraints on the Hirota condition (12)
to derive the following two types of hybrid multi-wave interaction
solutions.

A. Breather-soliton waves

To obtain the first type of hybrid wave solutions between M-
breathers and K-solitons of Eq. (1), we need to impose the following
constraints on the Hirota condition (12) namely,

* . 0 «(0
527”*1 = 52m éPm +iqm, 5(2n3—1 = anz =0, m=12,.., (50)

N 0 (0
OamtK = Oam+K, éﬁWLK = gg,,)HK, K=1,2,...,

where 95,1k and fg?r)l 1k still satisfy Eq. (12), and do not need to be
changed. Then Eq. (12) is rewritten in the following form:

2m+K 2m+K

Gomix =1+ Zpi:OAl exp Z pip;0; + Z pici |+
1<i<j i=1 1)
Eam-1 = & ERe(Eyor) +Im.(Epn1)i = Ry + L,

Emik = Smix (Unchanged), K=1,2,...,

and

Ry = pumX + pum(34;, — P3,)y

+ P [(9Bp2, — w)p2, + 3(x — 30Bp2, + 15B4% )2, ),
Im = qmX + Qm(ﬁ - 3pfn)y

+ 4 (9B, + 0) 2, — 3(x 4 30Bq2, — 158p2,)p2 ] £,

(52)

where )»,'jéeov is given in Eq. (38). Substituting Eqs. (51) and (52)
back into Eq. (11), the hybrid breather-soliton solutions of Eq. (1) can
be presented as follows:

“%1@ =2In (¢2m+K)xx> M =m. (53)
Figures 4 and 5 reveal the interaction phenomena between multi-
breathers and multi-solitons. It is not difficult to see that elastic colli-
sions occur between mixed-type multiple waves. At the collision point
with the solitons, there is a significant amplitude collapse phenomenon
of the breather wave, accompanied by a slight phase shift, but the
direction of wave propagation remains unchanged. This indicates that
the breather waves excited by the integrable equation under specific
conditions are still elastic with solitons. The new hybrid breather-
soliton waves retain the property of energy conservation of the original
equation. These interaction phenomena help to reveal the evolutionary
behavior after collisions between different types of shallow-water
waves in the ocean.
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FIG. 5. The interaction phenomena between 2-breather wave and multi-solitons. (a)—(c) 2-breather and 1-soliton; and (d)—(f) 2-breather and 2-soliton.

Remark 6.1.1 When M = m = 1 and K = 1, the 1-breather and

1-soliton mixed-type wave u‘;*l‘ is obtained via Eq. (53). By setting

parameter values of f=1, a=—1, py=—1, g1 =3% 03 =3,

5(30) =0, and t = 0, the 3D and density plots of u‘;_l‘ are shown in

Figs. 4(a) and 4(d).
Remark 6.1.2 When M = m = 1 and K = 2, the 1-breather and

2-soliton mixed-type wave ul s presented via Eq. (53). By setting
parameter values of f=1, a =—1, py=—1, q1 = %, 03 = —%,
l1-2|

04 = %, égo) = éﬁo) =0, and t = 0, the 3D and density plots of u,
are shown in Figs. 4(b) and 4(e).

Remark 6.1.3 When M = m = 1 and K = 3, the 1-breather and
3-soliton mixed-type wave u‘;*ﬂ is presented via Eq. (53). By setting
parameter values of f = 1, a = —1,p; = =1,y =3, 03 = 2,04 = §,

ds =3 éfm(i =3,4,5) =0, and t = 0, the 3D and density plots of

5
u‘;*ﬂ are shown in Figs. 4(c) and 4(f).

Remark 6.1.4 When M = m = 2 and K = 1, the 2-breather and
1-soliton mixed-type wave ul s presented via Eq. (53). By setting
parameter values of f = 1,00 = —1,p; = —1,q; = %, pp=1q =3
ds =1, é(sm = 0 and ¢t = 0, the 3D and 2D plots of u\52—1| are shown in
Figs. 5(a)-5(c).

Remark 6.1.5 When M = m = 2 and K = 2, the 2-breather and
2-soliton mixed-type wave ul s presented via Eq. (53). By setting
parameter valuesof f = 1, = —1,p; = —1,q, = %, p=1q = %,
05 = fg, O = %, ééo) = ééo) =0, and t = 0, the 3D and 2D plots of

u‘szﬂ‘ are shown in Figs. 5(d)-5(f).

B. Lump-soliton waves

When the long-wave limit of the N-solitons of an integrable equa-
tion is taken, the energy of every two adjacent solitons will be concen-
trated within a certain local range in space, thus forming lump waves
or rogue waves. """ In order to obtain another type of hybrid wave
solutions between M-lumps and K-solitons of Eq. (1), we also need to
impose some constraints on condition (12) as follows:

Somt = S 2P+ iy Eo_ 1 =0 —im, m=1,2,...,
52m+K = 62m+K7 6(2?214.1( = é;?y)H.Kv K= 1727 ceey
(54)

where 0y, and 5(2(2 1k also satisfy Eq. (12) and are not to be
changed. Then Eq. (12) can be rewritten as a new form based on
Eq. (45), that is,

N 2m 2m m
Pomik = gfi + Z H),,-jfk + E A

M=m

i<j k#ij i<j,....k<l
2m+K 2m+K
+ Z €xp Zpipjeij+ Z pigi | (55)
p;i=0,1 1<i<j i=2m+1

Eom1 = G BRe(Eopy) +IM.(Erpp1)i = Ry + 1,
Emek = Smax (Unchanged), K=1,2,...,

and
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FIG. 6. The evolution phenomena of elastic collision between 1-lump and 1-soliton. (a) and (d) t = —; (b) and (e) t = 0; and (c) and (f) t = {.

Ry =x+ (343, — )y
+[(9Bp2, — a)p?, + 3(ox — 30BpZ, + 15842 ) %) ¢,

Ly =x+(q), —3p%)y
+[(9842, + )2, — 3(a + 30pqZ, — 15pp%, P2, )1,
where /; L el gtill satisfies Eq. (38). Substituting Egs. (55) and (56)

back into Eq. (11), the hybrid lump-soliton solutions of Eq. (1) are pre-
sented, namely

(56)

”‘2%1? =2In(dspik)yes M=m. (57)
Figures 6-8 show the entire process of the interaction between
multi-lumps and multi-solitons. We can easily see that as the lump
wave approaches the stripe solitons and collides, the stripe solitons
will collapse, and the lump wave will completely pass through the
other side of the solitons. From (b) and (e) in Fig. 7, it can be seen
that there was a brief energy exchange at the collision point. These
phenomena indicate that the lump waves excited by the integrable
equation under Hirota N-solitons condition are still elastic with soli-
tons. The new hybrid lump-soliton waves conform to the dynamic
balance between linear dispersion and nonlinear disturbance in
Eq. (1).
Remark 6.2.1 When M = m =1 and K = 1, the 1-lump and

1-soliton mixed-type wave u‘;*l‘ is presented via Eq. (57). By setting

parameter values of f=1, a=—1, p =—1, q :%, 53 = g,

égo) = 2, and t from —i to é, the 3D and 2D evolution plots of u‘;*”

are shown in Fig. 6.

Remark 6.2.2 When M = m = 1 and K = 2, the 1-lump and 2-
soliton mixed-type wave uLH‘ is obtained via Eq. (57). By setting
parameter values of f = 1, = —1,p; = —1,q1 =%, 03 = 04 = 1,
ﬁgo) =3 iff» =7 and ¢ from —{ to 4, the 3D and 2D evolution plots

[1-2|

of u, ' are shown in Fig. 7.

Remark 6.2.3 When M = m =2 and K = 1, the 2-lump and
1-soliton mixed-type wave u|5271‘ is presented via Eq. (57). By setting

parameter valuesof B =1, 0= —1,p, =1, q = %, pp=-lLg= %,

05 =1, 6(50) =1, and ¢ from — é to é, the 3D and 2D evolution plots of
[2-1] -

uz ' are shown in Fig. 8.

VIl. MESHY-PERIODIC LUMP WAVES

In this section, the BNNM" is used to construct a novel class of
multi-periodic lump waves for Eq. (1), known as meshy-periodic lump
wave solutions. Based on Eq. (13), we assume that the function ¢ in
Bumkp (¢p) Eq. (9) has a multi-layer network structure (see Fig. 9). The
output layer in Fig. 9 covers two hidden layers. When the two neurons
in the first hidden layer are set to g, = sin(¢;) and g, = cos(¢,), and
the three neurons in the second hidden layer are set to g3 = — (130,

+ 0230, + 5(23)), 04 = (01401 + 02402 + €§4))2, and o5 = (01501
+ 92507 + égs))z’ we have
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FIG. 7. The evolution phenomena of elastic collision between 1-lump and 2-soliton. (a) and (d) t =

¢ =1+sin(&) +cos(&) — &+ fi + f?

& =dysin(é) + dpic08(8) + &), j=3,45  (59)
&i = 0xiX + Oyiy + Opit + éf), i=1,2,
where o ;((k = x,7,,1,2), (1 = 1,2,3,4,5),k #£1), &(i =1,2),

and 53’ ) (j =3,4,5) are undetermined real constants. Substituting
expression (58) into Eq. (9) to obtain a polynomial consisting of ¢ and
its partial derivatives. By setting the sum of the same power coefficients
of ¢ and O¢ to zero, a system of nonlinear algebraic equations can be
obtained. Solving this nonlinear algebraic system, we get

0‘_20130;(27 p=p 7=0, 51,3:51,37

0150
04 = — 1’; 2’5, 015 = 015,
2.4
023 = 25274%4) + 252,56? +1, 024=024, 025=7025, (59)
5t71 = 03 6!1 - 64ﬂ5x23
5)(,1 = 07 5x,2 = 5}(,27 5}/,1‘ = 5}',1'(1 = 172)5
égi) :é(li>(i:172)7 g) :ig)(i:37475)7

substituting Eq. (59) back into Eq. (58) and using the direct relation
(13) a meshy-periodic lump wave solution is presented below

10 1
08
5
06
x 0 04 x
02
-5 -
0
-10 0.2 -
-10 5 0 5 10 :
y

(©)]

—%(b)and ()t = 0;and (c)and (f) t = 1

4
N ?(ZCOS (62)45‘215 Jr4(5111(51)51,552,5

—0,4(&" = €1))03 5 008 (&) — (4015024055 — &) sin(éy)
+2c08(&))70] 503 5 + 205 5 + (29 — 207 5)05
+8 (—2524>2+4é<;‘>f4—Zéi+¢)>cos(éz)2

— (sin(&;)01,5025 — 02, 4(5 54))(45;5“‘@ cos(&,)

+48,5024055(EY — &) sin(&)) + 2 cos (&1)701 5035
— (205 = )55+ 83, (28" +487 & 285+ )37,
(60)

Figure 10 shows the wave dynamics of the meshy-periodic lump
wave solution (60) with some 3D and 2D plots. It is not difficult to see
from the figures that we obtain a new kind of exact traveling wave
solution for Eq. (1), through a test function ¢ with multi-layer network
structure. This result can be used to describe shallow-water waves with
a network structure that often occur near the coastline. In addition, the
neural network structure utilizing test functions has potential applica-
tion value in revealing turbulence phenomena.

Remark 7.1 By assigning the values of f =1, ;3 = —0.01,
5115 = 1, 6274 = 1, 5275 = 002, 5x,2 = 02, 5%1 = *05, 5},‘2 = 005,

6§i)(i =1,2)= 59)(;' =3,4,5) =1, and ¢t = 0 for dynamic plots of
meshy-periodic lump wave solution (60).
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FIG. 8. The evolution phenomena of elastic collision between 2-lump and 1-soliton. (a) and (d t = — %; (b) and (e) t = 0; and (c) and (f) t = %
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FIG. 9. The multi-layer neural network structure of the tensor function ¢ in BNNM.

VIIl. CONCLUSIONS

In this article, we obtained rich multi-wave solutions of the
shallow-water wave Eq. (1) and studied various nonlinear elastic collision
phenomena. Through a second-order logarithmic derivative transforma-
tion, the bilinear form of Eq. (1) under the coefficient condition of inte-
grability was given. Based on HBxp(¢p) Eq. (10), the Hirota standard
condition of N-soliton solutions for Eq. (1) was presented. The soliton
dynamics of N-soliton solutions were clearly shown (see Fig. 1). The geo-
metric and dynamic characteristics of solitons were completely revealed.

In particular, we obtained multi-breather waves (see Fig. 2),
multi-lump waves (see Fig. 3), and several types of hybrid multi-wave

solutions (see Figs. 4-8) by applying specific constraints to the

coefficient conditions of N-solitons. The 3D and 2D graphs of these
results shown that the nonlinear waves with elastic structures, and the
amplitude decreases at the site of collision. The interaction phenomena
of these nonlinear multi-waves can well describe the fusion and fission
behavior of solitons. It is worth mentioning that, based on the mixed-
type breather-soliton waves given in Sec. VI A, we can still take the
long-wave limit for multi-solitons in Eqs. (50)-(52), that is,

Ot = 05 2P + iqm, 55(271 = 65?3: =0,

Oami1 = 5zm+2 éPm + iqm, 6(2(2“ = fg?r)wrz =im,

e . D)
Soma1 = &, =Re (&) +Im(Eyy1)i = Ry + L,
Somer = €;m+2 éR&(émﬂ) +Im. (&1 )i = Ry 4 L,
and
+ P (9BpE, — o)pE, + (o — 30BpE, + 1582, ) g3 ) ¢,
Ly = qux + qn(q, — 3p3,)y
+ 4 (9B, + )2, — 3(x + 30Bq2, — 158p2,)p3 ] ¢, ()

Ry =x+ (3¢ —p2)y

+[(9Bp7, — o0)p7, + 3(o — 30Bp2, + 1552, )2, ) £
Iy =x+(q, —3p2)y

+[(9Ba%, + @), — 3(o+ 30Bq%, — 15Bp2)p2 ] t.
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FIG. 10. Profiles of meshy-periodic lump wave solution (60). (a) 3D plot; (b) Density plot; (c) Contour plot; (d) x-curves; (e) y-curves; and (f) gradu at
(X’y) € [_171] X [_171]

6 (e) ()

FIG. 11. Profiles of breather-lump wave solutions uf"'” (top) and uf"'” (bottom). (a) and (d) 3D plots; (b) and (e) density plots; (c) y-curves; and (f) x-curves.
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By utilizing the two new conditions provided by Egs. (61) and (62)
and further combining them with Eq. (53), we can obtain a new class
of hybrid multi-wave solutions, namely breather-lump waves. The two
cases of m =1 and m = 2 are shown in Fig. 11, with the values of
u=-1B=1p :—%, Ch:%,Pz:l, qzzg, and t:—é for
(a)-(c); and the values of a = —1, f =1, py =4, q1 = =4, p» = —1,
42 =% p3 = 1,43 = — 15, and t = 3 for (d)-(f). The above four types
of derived wave solutions well reveal the interaction phenomena of
shallow-water waves after they collide with each other. It also reflects
that Eq. (1) can generate both local and nonlocal waves.

In addition, we obtained a type of meshy-periodic lump waves of
Eq. (1) via a new objective function based on a neural network model
with multi-layer structure. The plots of this solution showed a class of
multi-periodic lump waves (see Fig. 10). Furthermore, it will be very
interesting to construct various exact traveling wave solutions of Eq.
(1), by using more test functions.'”***' In particular, the integrability
condition oy = 6o and f, =3, =458 of Eq. (1) is crucial for
obtaining bilinear form, N-soliton solutions and several other derived
wave solutions. The Painlevé analysis’*® for Eq. (1) is another key
focus of our work, which will not be emphasized in this article. In our
future work, we will also focus on the Darboux transformation' ™' for
Eq. (1).
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