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Abstract This paper aims to present a multilayer neu-
ral network model for a (3 + 1)-dimensional p-gBLMP
equation. The generalized bilinear p-gBLMP equation
is constructed, on the basis of the generalized bilinear
operators. Through selecting different values in each
layer, novel types of tensor functions can be furnished.
We set the hidden neurons to some specific functions in
some cases, and compute four types of new exact net-
work model solutions for the p-gBLMP equation. The
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novelty and advantage of the proposed model are illus-
trated by applying to this model. Some plots of those
presented new solutions are made to exhibit wave char-
acteristics.

Keywords Multilayer neural network model - (3 +
1)-dimensional p-gBLMP equation - Generalized
bilinear form

1 Introduction

It is known that there are plenty of studies on a (2+1)-
dimensional Boiti—-Leon—-Manna—Pempinelli (BLMP)
equation

Uyt + Uxyxy — Styxtty — 3uyuyy =0, (D
Equation (1) is usually used to describe incompress-
ible fluid. A new fractional definition is used through
the modified Khater method to get novel solitary wave
solutions of this equation [1]. Some entirely new com-
plexiton solutions and periodic-soliton solutions are
derived by using an ansitz functions and the bilin-
ear form [2]. Abundant interaction solutions between
a lump and other multi-solitons are studied based on
the Hirota bilinear method [3]. The analytical solu-
tions are constructed through using the transformed
rational function method and the exp(—® (£)) method
[4]. Abundant exact and explicit solutions to Eq. (1)
are constructed [5]. The transformed rational function
method to construct different types of analytical solu-
tions to Eq. (1) is studied [6]. Exact explicit solutions
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of Eq. (1) are obtained by using these auto-Bécklund
transformation [7].

In recent years, scientists and researchers in gen-
eral utilized the Hirota bilinear method for the pur-
pose of solving nonlinear partial differential equations
(NLPDEs) and obtaining the lump solutions [8—11],
multiple soliton solutions [8,12, 13], multi-lump solu-
tions [14,15], interaction solutions [16,17], and others
[18-20]. At the same time, the generalized forms of
bilinear differential operators have also been widely
used, which can transform bilinear equations into a
variety of new forms [21]. The idea is to make a trans-
formation into new variables, so that in those new vari-
ables, multi-soliton solutions or multi-parameter solu-
tions are expressed in a particularly simple form.

In our work, we introduce a (3+1)-dimensional
generalized Boiti—-Leon—Manna—Pempinelli (gBLMP)
equation

Uyxx + Uzt + Myt + Mxxxy - 3Mxxl/ly — SMXMX); = 0,
)

which can depict the evolution of Riemann wave prop-
agation along the x-axis, y-axis and z-axis in incom-
pressible fluid, respectively, where u(x, y, z, ) denote
the physical quantities in three directions of wave prop-
agation, the extra terms u, and u; are added to Eq. (1).
Consider the following first-order logarithmic transfor-
mation:

u :_¢x = _2[1nf(xvyﬂz7t)]xs ¢:21nf(xvysz1t)y

3)
substituting u = —¢, into Eq. (2), one can be written
as

_¢xxx - ¢th - ¢ytx - ¢xxxxy
_3¢xxx¢xy - 3¢xx¢xxy = 07 (4)
then, integrate once with respect to x, namely
Oxx + ‘Pzt + ¢yt + ¢xxxy + 3¢xx¢xy =0, 5

by setting ¢ = 21n f(x, y, z, 1), Eq. (2) is reduced into
the following bilinear equation:

Bepimp(f) i= ffox — i’ + ffa — fofr
+ff_vt - fyft + ffxxxy - fxxxfy - 3fxfxxy + 3fxxfxy =0.
(6)

Bilinear Eq. (6) can be turned into the following form:

BepiMp(f) = (DIDy + DyDy + DDy + DI f - f =0, (7)
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where Dy, Dy, D, and D, are bilinear operators,
defined by [8-13,16,17]

4 . 4 3 3 &
[1057-5s=T1 <@ - g) F©)80") ®)

i=1 i=1

0'=6

where the vectors 0 = (x, y,z,1), 0" = (x', ¥y, 2/, t)
and & = (&1, &, &3, &4) are arbitrary nonnegative inte-
gers. To our knowledge, there are no studies that have
been done to solve the (3+1)-dimensional gBLMP Eq.
(2) based on the bilinear form Eq. (7).

In this paper, we introduce a multilayer neural net-
work model based on the generalized bilinear form of
the (3+1)-dimensional gBLMP Eq. (2) to construct new
types of exact network model solutions. The rest of
the paper is organized as follows. In Sect. 2, a (3+1)-
dimensional p-gBLMP equation and its generalized
bilinear form are proposed. Section 3 provides a mul-
tilayer neural network model, and gives some explana-
tions for the presented tensor formula. In Sect. 4, some
different kinds of exact network model solutions of p-
gBLMP equation are constructed through four types
of tensor functions. Finally, we conclude our work in
Sect. 5.

2 A generalized bilinear equation and its nonlinear
counterpart

In the next moment, motivated from Eq. (7), we discuss
and solve the following generalized bilinear equation

Bp-gBLmp(f) = (D;,xDp,y + DpyDp.s
+Dp:Dp: + D?Lx)f -f =0, ©)

where D), x, D y, D), ; and D, ; are generalized bilin-
ear operators, defined by [21]

M P M
_1_[1 Dl’fif 8=
=

H(iﬂ a)ei f(é)g(g“)‘
\ag oy =t

(10)

where the vectors &€ = (§1,&,...,&y) and ¢ =
(€1, ¢, ..., ¢pm) are M-th variables of the two func-
tions, 8 = (01, 62, ..., 0)) are arbitrary nonnegative
integers, and p is a prime number. And for an integer
M, the M-th power of «, satisfies the rule

apf = (=)™ _if M = r(M) mod p, (11)
with 0 < r(M) < p.
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Fig. 1 Multilayer neural network model: £y is the input layer;
¢ (i =1,2,...,n) are the hidden layers; f is the output layer

Remark 2.1 The generalized bilinear differential oper-
ators (10) are Hirota bilinear operators (8) when p = 2k
(k € N*), namely Doy g, = Dg,.

If p = 3, Eq. (9) reads

Bp-gBLMP(f) = 3fxxfxy + ffty
—fify+ fhe = fife+ [l — fE=0,  (12)
where f = f(x,y,z,t) is a new unknown function.
Through the link f = exp( f (—u/2)dx) as a charac-
teristic transformation in establishing Bell polynomial
theories of integrable equations [22], the B zgLmp Eq.
(12) is mapped into a (3+1)-dimensional p-gBLMP
equation
PpopLmp (1) := 3u)36uy — Ouyityy — Ouxliy Uy
F12uyxtuyxy — Buyxy — 8uyy — 8uy; = 0. (13)
Moreover, the B, ggrmp Eq. (12) and the p-gBLMP
Eq. (13) satisfy an actual relation, which reads
SBp-gBLMP(f)]
f? o
thus, if f is a solution of the B,_¢grmp Eq. (12), then
u = —2(In f), will solves the p-gBLMP Eq. (13).

Pp_gBLMP(4) = |: (14)

3 Multilayer neural network model

In this section, we present a multilayer neural network
model to construct exact analytical solutions of Eq.
(13), by taking the function f in Eq. (12) as a ten-
sor function in a nonlinear neural network model. The
associated neural network model is determined as fol-
lows.

Figure 1 shows the structure of the multilayer neu-
ral network model, where £o = {70 x, T0,y, - - - » T0,mg )}

b =A{t1, 2., Tim ) and £ = {11, T2, ...,
Tm) G = 2,3,...,n). And £, = {t4,1, w2, -,
Ty, m, } Tepresents the n-th layer space of the neural net-
work model. The functions @, ; (i = 2,3,...,n)
(j = 71, Ti2, ..., Tim;) in the hidden layers ¢; (i =
2,3, ..., n) take expressions in the following form:

Ffi—l,l(q)fi—l,l)
Ffi—l,z (q)fi—l.z)

T

Tifl,m,-,l

Z Oy,

Lio1=Ti—-1,1

Oy, j =

FTi—l,mi,l (q)l'i—l,mi,l)
+C s i =2,3,...,n, (15)

where O, j ={Og_,.j, Oq_y5s---s ®fi71,m,-_1 Jl
are the weight coefficients of neurons {7;_j 1,
Ti—1,2+ -5 Ti—1,m;_; ) in the hidden layer £; _; to neu-
rons {71, %2, ..., Tin;} in the hidden layer ¢;. The
input layer £ and the hidden layer £; satisfy &, ; =

70,my .
Zlo=ro,x O, jF oo+ 80, (J=T1,1,T12 - TLmy)s
where F¢, = {x,y,...,mo}. The functions Fy; ;
i=12,....,n)(j =71,Ti2, ..., Tim) are gener-
alized activation functions, which can be defined arbi-
trarily. Ceij i=12,....n)( = Tils Ti2s v ‘E,',m,.)
are thresholds, which will be understood as constants in
the process of calculation. Moreover, the tensor func-
tion f is taken as follows:

n Tim;
F=1+) 3 Fj@)). (16)
i=1j=11

In order to further determine the tensor function Eq.
(16), we need to select the structure of the neural net-
work f = (mg,my, ..., my,, 1),1.e., mo neurons in the
input layer £, m neurons in the hidden layer ¢, m,
neurons in the hidden layer ¢,, and one neuron in the
output layer f.

Remark 3.1 When n = 1, Fig. 1 is called a single hid-
den layer neural network model. Moreover, Eq. (16) can
be used to cover many test functions in most analytical
solution methods, if we give some specific functions of
Fi(@)(=11,1,T1,2, -+ -5 TLmy)-

Remark 3.2 Ifn =1, F j(®;) = ¢;* (j =1,2), 1 +
Yy Oy, j = C (C € R,C > 0), we have
f=0*+a+C,

where £ = Oy jx + Oy jy + O, jz+ Oy jt + O ;
(j=1,2),0,;,0,;0,;,06,;and O (j =1,2)
are real constants, and this is a test function of the lump-
type solution [3,4,8-11,16,17].
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Remark3.3 If n = land j = 1,2,3, F1(®P)) =
cos(&1), F 2(P2) = cosh (), F 3(P3) = exp (£3) and
1+ ZZ)‘):X B¢,,j = C (C € R,C > 0), one can be
written as

f = cos (1) + cosh (¢2) + exp (£3) + C,

where ;/' = G)x,jx + ®y,jy + @Z’jz + ®t,jt + @0’4/
(j = 1,2, 3). This is a new type of test function to con-
struct the breather lump-stripe (kink) interaction solu-
tion [16].

Remark 3.4 If n = 1l and j = 1,2,3, F () =
012, Fa(®2) = cos(f), F3(P3) = exp(3) and
L+ O = C(C € R,C > 0), and then
Eq. (16) becomes

f =%+ cos(&) +exp (53) + C,

where {; = Oy jx + 0, ;y+ O jz+ O jt + O ;
(j = 1,2,3). This case can be used to construct the
periodic lump-stripe (kink) interaction solution [17].

Acquisition of exact network model solutions. In
order to obtain the neural network model solutions of
Eq. (13) with the aid of Maple, we take its main steps
as follows:

Step 1. Firstly, substituting Eq. (16) into Eq. (12),
we determine different polynomial equations of the
involved coefficients.

Step 2. Secondly, solving those equations for the coef-
ficients, we can get multi-parameter solutions.

Step 3. Finally, substituting the resulting coefficients
into Eq. (16) and further Eq. (3), we obtain exact net-
work model solutions of Eq. (13).

4 Exact network model solutions

In this section, we will construct the exact analytical
solutions for Eq. (13) through four types of tensor func-
tions, and give the corresponding dynamic characteris-
tics through some 3D and density plots.

4.1 Bright-dark soliton solutions

If we take £9 = {x,y,z,t}, £1 = {1,2} and ¢, =
{3,4,5},1.e., f = (4,2, 3, 1), which can be intuitively
understood by Fig. 2.

By setting the functions f 1 (®1) = cos(P1), F 2(P3) =
sin(®7), F3(P3) = exp(®@3), F4(Ps) = P4% and
F5(®s) = ®s2, the tensor function f via Eq. (16)
can be written as

@ Springer

Fig. 2 Case of neural network model (4, 2, 3, 1)

f=1+4cos(®) + sin(Py) + exp(P3) + P42 + P52,
@5 = O 5c08(P1) + O3 58in(P2) + L5,

Oy = O 4c05(Py) + O 45in(P2) + &4, (17
@3 = 0} 3c08(P) + O 3sin(P2) + {3,

O =x0,; +y0,; +20,,; +10,; +¢,i=1,2,

where O ;((k = x,y,z,t,1,2),{l = 1,2,...,5),
k #1)and ¢, (m = 1,2,...,5) are the undetermined
constants. In the general solution procedure, we get the
following two sets of solutions of the constant coeffi-
cients.

Case 1.

01, =01,;0=3,5),07,;,=00=3,5),014 =014,
©24=024,0;1=0;1,0;2=0,0,1 =07,

1
0y 2=0,0,]=00y,=-0,,0,]=——",
Oy,
O,2=0;2,0 =¢( = 1,2,...,5). (18)
Case 2.
013=013,01; =00 =4,5),0,3=0,
O =07,;(1=4,5),0;1=0;1,0;2=0,
®x,l = ®x,l,
02,
©,;2=0,0,1=0,0,0=-0.50,]=——",
0,1
©,2=0.2.¢=¢G(=12,...,5). (19)

Substituting Eq. (18) into Eq. (17), we generate a solu-
tion f, to the B,_ggLmp Eq. (12); and then, we obtain a
solution u to the p-gBLMP Eq. (13) through the trans-
formation Eq. (3), which reads

20,1 sin(91)(0 3¢ + 20 5Ps5 + 1)
u =
f

where fand ®;(i = 1,2,...,5) are given as follows:

. (20)
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f =1+ cos(®1) + sin(P2) + exp(P3) + P4* + D52,
2

®x,l
D =0,1x — 7+ O 1t + &1,
O 1
=—0;2y+ 022+ {2,
2
x,1

®
®3 = O 3cos (@x’lx i

%)

2+ Ot + Cl) + &3,

t,1

®y = -0 45in (®z,2y —Oz07 — Cz) + 4,

@2
®s5 = O 5co0s (@x’lx — @x'IZ + Ot + é'l) +gs.

t,1

Figure 3 shows the dynamic characteristics of the
exact network model solution (20), by setting different
values of the parameters witht =0,z = —y, 13 =
—0.1,015=0.1,024=1,0;1 = =2,0, 1 = -2,
O, =1land g = 0G = 1,2,...,5). It is easy to
see that we obtain a type of bright-dark soliton for the
p-gBLMP Egq. (13).

4.2 (4,3, 3, 1) network model solutions

By choosing £g = {x, y, z,t}, ;1 = {1,2,3}and £, =
{4,5,6},ie., f = (4, 3,3, 1), Fig. 1 can be reduced to
Fig. 4.

@1

)

Fig. 4 Case of neural network model (4, 3, 3, 1)

According to the above model (4, 3, 3, 1) and tensor
formula (16), one can be written as

[=14+F (@) + F2(P2) + F3(P3) + [ 4(Pyg) + F 5(Ps5) + [ 6(Pp),
Q6 =0O1,6F 1(P1) + Oz 6F 2(P2) + O3 6F 3(P3) + L6,
D5 =0 5F 1 (@) + Oy 5F2(P2) + O3 5F 3(P3) + ¢5, (22)
Q4 =01 4F 1(P1) + Opaf 2(P2) + O34F 3(P3) + 44,

D =x0y; +y®yy,- +Z®z7,' +l®[7,' +¢,i=1,2,3,

where Oy ;((k = x,y,2,¢,1,2,3),({ =1,2,...,6),
k #1[)and ¢, (m = 1,2,...,6) are the undetermined
constants. In a similar way, we can obtain the following
cases for solutions of the constant coefficients.

@ Springer
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[—v=-4

ry=0

(d)

y=4

— <.

x=0

(e)

x=-1 x=1

Fig. 5 Profiles of u; via (27): a 3D plot, b density plot, ¢ contour plot, d x-curves, e y-curves

Case 1.

01;=01,;0=4,5,0,; =001 =4,5),

03, =03;(0=4,5),016=0,06=026,036=0,

®t2,1®z,3
O11=041,0,2=0,0;3=-——5—,
®x,1
2
©10:3 (23)
®x,l :®x,1a®x,2:0s ®x,3:_7® » Yyl =0,
x,1
0?2,
Oy2=-0,2,0,3=0,0,]=——",
2Ty R

0, =0,;=2,3),=¢i=12,...,06).

s
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Case 2.

01, =01;(0=5,6),07; =00 =4,5),

83, =00 =35,6),014=0,036=03¢,034 =034,

07,02
0;,1=6.1,0=—-—"5—.0;3=0, 24)
®x,l
01,102
®x,l = ®x,1, ®x,2 = _TZ’ ®x,3 =0, ®y,1 =0,
x, 1
2
0,2 20.0y3 = -0, 30, = — !
.2 » Yy.3 z.3: Y71 @tvl s

0, =0;;i=23),=¢(0i=12,...,6).
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y=2——y=3]

(d)

y=-2

x=-2 x=0

(e)

x=2

Fig. 6 Profiles of uy via (28): a 3D plot, b density plot, ¢ contour plot, d x-curves, e y-curves

Next, we choose [ ; (®;)(i = 1,2, ..., 6) as some par-
ticular functions, then the corresponding tensor func-
tions are shown as below:

fi =14 @2 +sin(®y) + cos(P3) + by’

~+ cosh(®s) + sinh(dg), 25)
fr =1+ @2 + sin(P2) + cos(P3) + 4>
+057 + 062, (26)

then, substituting Eq. (23) into Eqgs. (25) and (26),
respectively, we generate two solutions f;(j = 1, 2),
to the Bp_ggLmp Eq. (12). Therefore, we can obtain the
following two solutions u; (j = 1, 2) to p-gBLMP Eq.
(13) through the transformation Eq. (3).

- (2@)3,5®,,1®Z,3 sin(—®3) sinh(®s)

G
+ 40340410, 304 sin(—D3)

— 4@1’5®x,12d>1 sinh(®s) — 8@1,4@))5,12(1)1(1)4
+20,10:35in(-03) —40,701), D)

us <4®3,4®t,1®z,3q>4 sin(—®3)

B ®x,1f2
+ 403 50,10, 3P5 sin(—P3)

— 80140, 17D Py — 80150, 17D D5
420,10, 3sin(—d3) — 4®x,12<b1), (28)

where ®;(i = 1,2, ..., 6) are given as follows:
2

®x,1
Q) =0y 1x — 2+ 011 +{1,

1
Q3 =—0;2y+ 0Oz 22+,

2
0,10 0710:3
Py =— t,1 Z’3x+®z,3z— t,12 z 403
Oy, 1 ®x,1

0?2, 2
Oy = @1’4(®x’1x — 7’Z+®l,1t+§])
t,1

€]
(29)
0,103 07,03
+®3,4COS(7’ TX = O30+ —5— t—{3)+;‘4,
x,1 ®x,1
02 2
1
®s5 = 91,5(®x,1x - @le + 011+ 51)
1,
2
0,10 07160:3
+ ©3 5 cos (7“1 23y 0,37+ 7”12 - 4“3) + 45,
x,1 ®x,1

D = =0 6sin(O; 2y — O; 2z — {2) + L6-

Figure 5 shows the special interaction structures
expressed by (27), which can be summed up as a kind
of rogue wave phenomenon, with the parameters being

@ Springer
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© : Case 2.
o 013=013,014=0,024 =024,
& -/ @ O35 =046=023=0,036= 03,
i (I)alFA((Do) § _ _ _
D BO45=045,0,1=0,0,2=0;2,
o | Or1=0,0,2=0,2,0,1=-06,1, (32)
i ®x 22
Fig. 7 Case of neural network model (4, 2, 2, 2, 1) ©y2=0,0,1=0,,0,,=— o
1,2

fixed byt = =y, = —X, @1,4 = —1, @1,5 = 0.1,
Or6=—4,03;, =110 =4,5),0,1 =1,0,1 = -2,
®,2=1,0;3=1and¢; =00 =1,2,...,6). Fig-
ure 6 shows the dynamic characteristics of the exact net-
work model solution (28), which is a new type of multi-
ple periodic lump wave, by setting values of the param-
eterswitht = y,z = —x,0;4 = —0.01,0; 5 = 0.01,
26 =06,03; =6(=4,5),0;1=2,0,1 =-2,
®,2=2,0,3=—2and§; =0G=1,2,...,6).

4.3 (4,2,2,2, 1) network model solutions

If we select £9 = {x, y, z,t}, £1 = {1, 2}, £, = {3, 4}
and £3 = {5, 6}, 1i.e., f = (4,2,2,2, 1), which can be
intuitively understood by Fig. 7.

By setting the functions f (1) = 2, Fa(dr) =
2%, F3(P3) = cos(®3), Fa(Pg) = cosh(Py),
F5(®5) = ®s and F ¢(Ps) = D¢, then the tensor
function f via Eq. (16) has the following form:

f=1+®;2+d)2 4 cos(®3) + cosh(dy) + Os + D,

®; = O3 cos(P3) + Oy, ; cosh(Pg) +¢;,i =35, 6,

D=0 ;012 +0, ;P22 +¢;,j=3.4, (30)
Dy =x0, 2 +yOy2+20;2+10;2+ (2,

D) =x0O4 1 +YOy 1 +20, 1 +10; 1+,

where O ;((k =x,y,2,1,1,2,3,4),(l=1,2,...,6),
k #1)and ¢, (m = 1,2,...,6) are the undetermined
constants. Substituting Eq. (30) into B_gsLmp Eq. (12)
in the same way, we also can obtain two solutions of
the constant coefficients as follows:
Case 1.
013=0,014=014,024=036=045=0,
B3 =033,035 =035,
Ou6=046,0;1=0,1,0;2=0,0,1=0,1,
0y2=0,0y; =0, (31
®x l2

BOyr=—-—0,,72,0,; = ——=
Y, 2,2» Yz,
®z,1

s ®z,2 = ®z,27

G=¢Gl=1,2,...,6).
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G =¢=1,2,...,06).

Equations (28) and (29) generate two types of tensor
function solutions f;(j = 1,2), defined by (30), to
Bysimp Eq. (12); and further the resulting tensor
functions present two types of network model solu-
tions u;(j = 1,2) to p-gBLMP Eq. (13), under the
transformation Eq. (3). For the first set of parametric
solutions Eq. (31), we have

40,,1P (®1,4®4,6 sinh(®4) + ©1 4 sinh(Py) + 1)
u=—

7 )
(33)
where ®;(i = 1,2, ..., 6) are given as follows:
®x,12
P =0y 1x — 2+ 011+ 41,
O 1 ’
Dy = =02y + 0Oz 22+ 02,
2
3 =023(—O,2y+ 0,22+ 0) +3,
0,12 2
Dy =01 4(0,1x — 2+ Ot +01) + s (34)
®t,l

2
s = 03505 (02,3(— Oz 27 + O 22+ 0) +83) + s,

Ox,1? 2
: O, it
o1 2+ 01t +41)

®g = O ¢ cosh ((~)1,4((~)x,1x -
t

+£4) + Z6-

The 3D dynamic, density, contour, x-curves and y-
curves graphs of the network model solution (33) are
successfully depicted in Fig. 8, by setting the values of
Ori((k=x,y,2,1,1,2,3,4), (Il =1,2,...,6),k #
l)and g (k=1,2,...,6) in Eq. (33) as

t=y,z2=-x,014=-001,0;,3=0.0I,
©35=1,046=1, (35)
©,1=1,0,2=1,0;1==2,5=0=1,2,..., 6).

5 Conclusions

In this study, we obtained a (3+1)-dimensional p-
gBLMP equation through the mapping transformation
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=

<
W

v=1] [ x=-4 x=0 x=4]

(d) (e)

[—»="1 y=0

Fig. 8 Profiles of u via (33): a 3D plot, b density plot, ¢ contour plot, d x-curves, e y-curves

-2.5

v =-02

y=02

(d) (e)

Fig. 9 Profiles of u3 via(37) witht = —y, 2 = x, 014 = —1,015 = 1,026 = 1,03, = 1(i =4,5),0,;1 = 1,0, = —1,
®,20=4,0;3=1and¢§; =0 =1,2,...,6): a3D plot, b density plot, ¢ contour plot, d x-curves, e y-curves

y=04] [
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of a B,_ggLMmp equation, based on the generalized bilin-
ear differential operators. Then, the multilayer neural
network model was given completely and applied to
solve the p-gBLMP equation successfully.

We constructed four types of network model solu-
tions for the p-gBLMP equation, by utilizing three
structures of the multilayer neural network model. For
the first case of (4, 2, 3, 1), we have given a kind of ten-
sor formula and obtained a type of bright-dark soliton
solution (see Fig. 3) of the p-gBLMP equation. In the
(4, 3, 3, 1) network model, two types of tensor formu-
las were proposed, and we presented a kind of rogue
wave solution (see Fig. 5) and a new type of multiple
periodic lump wave solution (see Fig. 6), respectively.
For the third network model (4, 2, 2, 2, 1), we obtained
a type of interaction solution (see Fig. 8) through one
tensor formula. Hope these novel findings can promote
the understanding of the (3+1)-dimensional gBLMP
and p-gBLMP equations.

Therefore, it is feasible and effective to construct
new exact analytical solutions of nonlinear PDEs by
using the multilayer neural network model. It should
be particularly interesting to note that by setting the
hidden neurons in one same network model to some
different functions, many different types of network
model solutions can be obtained. Such as the case of
the neural network model (4, 3, 3, 1) in Fig. 4, a third
network model solution (see Fig. 9) for the p-gBLMP
Eq. (13) can also be given if we choose the following
tensor formula

fi=1+ @12 + &2 + P32 + exp(—Dy)
+ cos(Ps) + exp(Pg), (36)

and then, one can be written as

uz = 4 (@1 10, 12¢167®|,4¢12*®3,4<b32*{4
Op1f3N 77
_@3,4@“@1’3@3e*®1,4¢127®3‘4¢>32*§4
+01 50, 1°®) sin(®s5) — O350, 10 303 5in(Ps)
10,100,303 — ®x,12<1>1>, (37)
where ®;(i = 1,2, ..., 6) are given as follows:

@ Springer

e,
D) =0y 1x — ——2+ 011+,
(“)r,l

Py =—-0;2y+ 022+,

2
0;,10;3 071023
3=—— 0y 1 @, 37 — —— 3,
®x,l z.3 (H)/% . ;
22
Ox,l 2
Dy =01 4(0Ox1x — o 2+ 01t +
1,
02,0 (38)
0;10;3 11923 2
+®3,4(—7x+®z,3z—72 t+{3> + ¢4,
®x,l ®x 1
®x,l 2
C[)S = @1,5 ®x’1x — 7@ : z+ ®t,lt+§l
I,
+0 ( 0193, g 7(_)%1@&3”{ b
D35\ — x 2,32 — ?) >
3,5 ®x,] @2 5

x,1
D6 = 02,6(—0; 2y + O, 22+ £2)* + 6.

Moreover, by taking other different structures of the
neural network f = (mg,my,...,m,, 1), we can
obtain much more types of tensor functions of the
neural network model, for which the corresponding
network model solutions of the (3+1)-dimensional p-
gBLMP equation can be similarly generated.
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