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 A B S T R A C T

The generalized coupled dispersionless equations describe the dynamics of a current-fed 
string in an external magnetic field. This study introduces a novel methodology leveraging 
the Darboux transformation to derive analytical solutions for these complex equations. The 
approach explores symmetry-preserving and non-preserving solutions, further refined using the 
Levenberg–Marquardt algorithm within a neural network framework. The network underwent 
thorough validation using relative 𝐿2 errors during training and testing on clean and noisy data. 
During this validation, thorough tabular and graphical representations validated our analytical 
results, proving their reliability. We carefully analyzed the solution behaviors using various visu-
alization techniques, such as contours, three-dimensional plots, and corresponding error graphs. 
This study comprehensively analyzes the system’s dynamics by integrating analytical methods 
with artificial neural networks, bridging theoretical predictions with empirical validations. The 
findings offer new insights into wave behavior, stability, and nonlinear interactions within the 
system, contributing significantly to mathematical physics.

. Introduction

Coupled dispersionless equations represent a system of nonlinear partial differential equations characterized by nonlinear 
nteractions. These systems have garnered attention for their significance in various physical and engineering contexts, particularly 
n areas where wave dynamics play a crucial role. The generalized coupled dispersionless (CD) system describes the dynamics of 
 current-fed string in a specific external magnetic field, underscoring its relevance in practical applications [1]. These systems 
re suitable for modeling situations with limited dispersion effects, enabling researchers to focus on key non-linear interactions. 
tudying these equations deepens our understanding of wave structure formation, stability, and the potential for chaotic behavior 
nder certain conditions, which aids in both theoretical advancements and practical applications.
The equations governing this system are given by

𝜌𝑡 + (𝑟𝑠)𝑥 = 0, 𝑟𝑥𝑡 − 2𝜌𝑟 = 0, 𝑠𝑥𝑡 − 2𝜌𝑠 = 0,

here 𝜌 = 𝜌(𝑥, 𝑡), 𝑟 = 𝑟(𝑥, 𝑡), and 𝑠 = 𝑠(𝑥, 𝑡) are scalar functions. By substituting 𝑠 = 𝑟, the system reduces to the real 
D system. Conversely, if we set 𝑠 = 𝑟∗, we have a complex coupled dispersionless (CCD) system. These equations are called 
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dispersionless because they do not include a dispersive term. Even without this term, they display intricate behaviors such as periodic 
solutions, rational solutions, bright and dark soliton solutions, and other localized structures, making them an exciting field of study 
in nonlinear dynamics and mathematical physics. The term ‘‘dispersionless’’ signifies the lack of a dispersive component [2,3], 
separating it from the quasi-classical limit of certain ordinary integrable systems, where the dispersive term is eliminated using an 
appropriate limit [4,5].

Connections to other integrable systems, including the complex short pulse equation [6], which is famous for its loop soliton 
solutions via hodograph transformation, and the sine-Gordon and Pohlmeyer-Lund-Regge models [3], are shown through the analysis 
of coupled dispersionless equations. Several facets of CD equations have been studied, such as loop soliton solutions obtained by 
variable transformations that reveal necessary amplitude conditions for soliton interactions [7]. Higher-order rogue waves and 
multisoliton solutions have also been discovered for the semi-discrete CD system, highlighting the versatility of the model [8]. 
Solitons in multicomponent systems have also been studied using the Hirota bilinear technique [9] and Darboux transformation 
(DT) [10].

Artificial intelligence (AI) now extends beyond laboratory settings into practical applications like manufacturing. Neural networks 
represent a pivotal subfield within AI. Many scientific publications released annually feature some aspects of AI, especially neural 
networks, as indicated in Refs. [11–14]. Over the past five years, remarkable progress has been made in leveraging AI for theoretical 
research in fields such as pure mathematics and theoretical physics [15]. This trend starkly contrasts AI technology’s broader 
reshaping of various human activities over the previous decade [16–18]. Neural networks require training to solve specific problems, 
with backpropagation serving as the foundational algorithm from which many others have evolved [19–21]. Raissi et al. [22] 
introduced the physics-informed neural network (PINN) framework for solving nonlinear partial differential equations (PDEs), 
addressing both forward and inverse problems by embedding physical laws into the loss function. Unlike traditional analytical 
methods that struggle with complex parameter estimation, neural networks offer a robust alternative. For instance, Wu et al. [23] 
successfully applied a modified PINN to predict soliton dynamics and model parameters in birefringent fibers. More recently, 
the bilinear neural network method (BNNM) has emerged as a powerful technique for deriving exact analytical solutions of 
nonlinear evolution equations (NLEEs), combining the bilinear method with neural network architectures [24–26]. This method has 
been applied to various models, including the (4+1)-dimensional BLMP-like equation for fluid dynamics [27], integro-differential 
equations involving interference and soliton solutions [28], and the p-gBKP equation [24]. Furthermore, Zhang and Li [29] 
proposed a bilinear residual network method to obtain rogue wave solutions, highlighting the versatility and effectiveness of neural 
network-based approaches in solving complex nonlinear systems.

Among the more advanced techniques is the Levenberg–Marquardt algorithm (LMA), which enhances training efficiency by 
incorporating aspects of Newton’s method [30]. The LMA stands out as a robust optimization method extensively employed in 
training artificial neural networks (ANNs) for its effectiveness in reducing error functions. This algorithm merges the principles of 
gradient descent with the Gauss–Newton method, optimizing its suitability for tackling nonlinear least squares challenges. When 
implemented in ANNs, LMA significantly boosts predictive accuracy and enhances computational speed, as evidenced by multiple 
research findings [31–33]. Waheed et al. [34] presented novel soliton solutions for a fifth-order nonlinear partial differential 
equation, the Lax equation, using the exp-function method, and verified these solutions with the LM-ANN, providing a detailed 
analysis through performance graphs, error histograms, and regression techniques. Riaz et al. [35] investigated the modified 
Korteweg–de Vries equation in (2+1) dimensions with a time-dependent coefficient, establishing a robust theoretical framework 
through the identification of the Lax pair and construction of multisoliton solutions via Darboux transformation, then integrated the 
LM-ANN to train soliton solutions, advancing to the understanding of soliton dynamics and demonstrating their properties through 
extensive graphical analyses. For more applications of LM-ANN, see the reference within [34,35].

Our work presents an innovative approach using the DT to find analytical solutions for nonlocal CCD equations. In addition, we 
combine these solutions with the LM-ANN, a neural network framework that enhances the resilience of our outcomes. The combined 
strategy used in this study facilitates a comprehensive exploration of the dynamics involved, effectively linking theoretical knowledge 
to practical numerical evaluation. This approach yields fresh insights into systems not extensively analyzed in previous research, 
thereby shedding light on their complex behaviors and interactions. This methodical exploration gives us a deeper understanding of 
wave behavior, stability, and non-linear interactions. This enhances our understanding of nonlinear effects and nonlocal dynamics, 
which are crucial for progressing the field and have implications in physics, engineering, and applied mathematics. Ablowitz et al. 
in [36] explored the nonzero boundary conditions at infinity for a nonlocal sine-Gordon equation known as the nonlocal CD equation:

𝜌𝑡(𝑥, 𝑡) + (𝑟(𝑥, 𝑡)𝑟(−𝑥,−𝑡))𝑥 = 0, 𝑟𝑥𝑡(𝑥, 𝑡) = 2𝑟(𝑥, 𝑡)𝜌(𝑥, 𝑡),

where 𝜌(𝑥, 𝑡) = 𝜌(−𝑥,−𝑡). They studied soliton solutions using the inverse scattering method, including one-soliton and two-soliton 
forms. In this work, we study a reverse space–time nonlocal CCD system: 

𝜌𝑡(𝑥, 𝑡) +
(

𝑟(𝑥, 𝑡)𝑟∗(−𝑥,−𝑡)
)

𝑥 = 0, 𝑟𝑥𝑡(𝑥, 𝑡) − 2𝜌(𝑥, 𝑡)𝑟(𝑥, 𝑡) = 0, (1.1)

with 𝜌(𝑥, 𝑡) = 𝜌∗(−𝑥,−𝑡). The system (1.1) is referred to as a nonlocal complex coupled dispersionless system because it involves 
complex-valued fields and the nonlocal term 𝑟(𝑥, 𝑡)𝑟∗(−𝑥,−𝑡), which introduces space–time reflection symmetry. The Lax pair 
associated with system (1.1) is given by 

𝛷 = 𝜁𝐀𝛷, 𝛷 = (𝜁−1𝐉 + 𝐁)𝛷, (1.2)
𝑥 𝑡

934 
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where 𝛷 = 𝛷(𝑥, 𝑡; 𝜁 ) is the matrix-valued function that evolves according to the spatial and temporal parts of the Lax representation, 
with 𝜁 being the spectral parameter, and

𝐀 = i
(

−𝜌(𝑥, 𝑡) −𝑟𝑥(𝑥, 𝑡)
− (𝑟∗(−𝑥,−𝑡))𝑥 𝜌(𝑥, 𝑡)

)

, 𝐉 =

(

i
2 0
0 − i

2

)

, 𝐁 =
(

0 −𝑟(𝑥, 𝑡)
𝑟∗(−𝑥,−𝑡) 0

)

.

In [37], the authors investigated a nonlocal CCD system (1.1) and derived its DT to obtain multisoliton solutions. They explored 
various one- and two-soliton and periodic solutions and conducted an asymptotic analysis of these solutions. This study extends 
the analysis of nonlocal coupled dispersionless systems by integrating DT methods with the LM-ANN. Specifically, we apply LM-
ANN to the solutions obtained from the DT, introducing an innovative approach to exploring system dynamics. This integration 
of machine learning techniques broadens our investigative scope and significantly enhances our results’ precision and predictive 
accuracy, distinguishing our work from previous research. The importance of the obtained results lies in their ability to uncover 
key aspects of nonlinear wave dynamics and validate analytical solutions through data-driven methods. Below, we outline several 
contributions that highlight the significance of these findings:

• The solutions describe wave dynamics in a current-fed string under an external magnetic field, highlighting their physical 
significance.

• Analytical expressions obtained via Darboux transformation provide exact profiles for understanding nonlinear behavior.
• Both symmetry-preserving and non-preserving solutions are explored, revealing a rich structure of possible dynamics.
• Validation through a neural network with the Levenberg–Marquardt algorithm confirms their reliability, even with noisy data.
• Relative 𝐿2 errors and comprehensive visualizations, including surface and contour plots, support the accuracy of results.
• The combined analytical and computational approach bridges theoretical modeling with empirical validation, offering new 
insights into wave behavior and stability.

The structure of this paper is laid out as follows: Section 1 provides an overview of the CD system, highlights significant past 
findings, and introduces the (1.1) along with its associated Lax pair. Section 2 discusses the DT and elaborates on deriving the 𝑛-fold 
solutions for the (1.1), represented through simple determinant ratios. Section 3 is dedicated to the computation and analysis of one- 
and two-soliton solutions against a zero background, utilizing analytical methods and the LM-ANN focusing on relative 𝐿2 error. 
The paper concludes with Section 4, which summarizes the main findings and proposes potential avenues for future research.

2. Darboux transformation

The exploration of soliton equations has drawn significant attention from researchers employing diverse mathematical strategies. 
In particular, the inverse scattering method has been investigated by scholars such as Ablowitz et al. [38], Constantin et al. [39], 
and Pogrebkov [40]. Painlevé analysis has also received considerable attention, with contributions from Ablowitz et al. [38], Liu 
et al. [41], and Xia et al. [42]. The Bäcklund transformation has been covered in works by Konno and Wadati [43], Yin et al. [44], 
Luo [45], and Gao [46]. The algebraic geometry approach received attention in work by Belokolos et al. [47], while [48,49] explored 
the Hirota bilinear form, and similarity transformation is covered in [50]. Among these methods, the DT is thoroughly examined by 
Matveev and Salle [51]. This technique is celebrated for generating a comprehensive range of analytical solutions, such as breather 
solutions [52] and rational and rogue wave solutions [53]. The DT’s efficacy and versatility make it a key tool for exploring nonlinear 
phenomena across diverse systems. Recent studies have notably improved the comprehension of coupled dispersionless equations 
in multiple settings through DT. In [54], matrix-coupled dispersionless equations were introduced, which included the development 
of a generalized Bäcklund-Darboux transformation and led to obtaining explicit multipole solutions and analyzing their asymptotic 
behavior. Further, research introduced a matrix-coupled dispersionless system featuring a Lax pair, with solutions expressed using 
properties of quasideterminants [55]. Another study [56] delved into rogue waves on periodic backgrounds, using the one-fold and 
two-fold DT to form algebraically decaying solitons and rogue wave solutions derived from Jacobi elliptic functions. DT was further 
applied to derive various soliton solutions for focusing and defocusing spatial discrete coupled complex short pulse equations [57]. 
The geometric and algebraic aspects of defocusing complex coupled dispersionless equations in Minkowski space were also examined 
using the Frenet and Darboux frames [58]. Collectively, these works underscore the DT’s versatility and efficiency of DT in producing 
analytical solutions and studying the dynamics of non-linear systems.

In this section, we introduce the Darboux matrix and construct the DT (𝐓) for the system given by (1.1). This transformation 
can be defined as 

𝛷̂ ≡ 𝐓𝛷 = (𝜁−1𝐼 −𝐌)𝛷, (2.1)

where 𝐌 is the 2 × 2 auxiliary matrix. This matrix simplifies the system, allowing us to apply the Lax pair formulation to derive 
soliton solutions. It includes important interaction terms necessary for analyzing the system (for more details, see [51]). We define1

1 The Darboux transformation can be implemented through two approaches: the inverse matrix and projector method, each with distinct advantages. We use 
the inverse matrix approach, as defined in (2.1), which uses 𝐌 = 𝐇𝐙𝐇−1 to update the spectral parameter 𝜁 efficiently, making it ideal for iterative Darboux 
transformation applications. In contrast, the projector approach, that is, 𝛷̂ = (𝜁 − 𝜈∗)

(

𝐼 − 𝜈−𝜈∗

𝜁−𝜇∗ 𝑃
)

 employs a projector matrix 𝑃 to selectively modify spectral 
data, useful in cases like multisoliton interactions where specific modes need emphasis or suppression.
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𝐌 as 𝐇𝐙−1𝐇−1, with 𝐇 representing the specific matrix solution associated with the Lax pair (1.2), and 𝐙 being the diagonal matrix 
of eigenvalues. The next proposition introduces a fundamental DT for the matrix 𝐀 that appears in the spatial part of the Lax pair 
(1.2). It is important to note that the same results also apply to matrices 𝐉 and 𝐁.

Proposition 1.  When applying the DT given in (2.1), the new matrix solution 𝐀̂ maintain the same form as A  in (1.2), provided that the 
matrix M  satisfies the following conditions:

𝐀̂ = 𝐀 − (𝐌)𝑥 , (2.2)

(𝐌)𝑥 𝐌 − 𝐀𝐌 +𝐌𝐀 = 0. (2.3)

The proof can be obtained through a simple computation.

Theorem 2.1.  Consider 𝐇1,𝐇2,… ,𝐇𝑛 as particular matrix solutions of the Lax pair defined by (1.2) evaluated at the matrix eigenvalues 
𝐙1,𝐙2,… ,𝐙𝑛, respectively. The 𝑛-fold iteration of the DT in terms of the inverse matrix can be expressed as follows, with the notation 
𝐇(1) = 𝐇𝐙−1, such that 

𝐀[𝑛] = 𝐀 −

(𝑛−1
∑

𝑖=1
𝐇(1)

[𝑖]𝐇
−1
[𝑖]

)

𝑥

. (2.4)

For 𝐇𝑘 =
(

𝑋2𝑘−1 𝑋2𝑘
𝑌2𝑘−1 𝑌2𝑘

)

 and 𝐙𝑘 =
(

𝜁2𝑘−1 0
0 𝜁2𝑘

)

, where 𝑘 = 1,… , 𝑛, we obtain 𝑛-fold solutions to the equation of motion. 
These solutions are expressed as ratios of simple determinants. The matrices 𝐇𝑘 and 𝐙𝑘 consist of the functions 𝑋2𝑘−1, 𝑋2𝑘, 𝑌2𝑘−1, 
and 𝑌2𝑘, and the eigenvalues 𝜁2𝑘−1 and 𝜁2𝑘 respectively. This formulation simplifies the solution process, making it easier to find the 
determinant solutions for the scalar components of the system. The 𝑛-fold solution 𝐴[𝑛] is given by 

𝐴[𝑛] = 𝐴 −

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢
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, (2.5)

where 𝑋(1)
1 = 𝜁−11 𝑋1 and

|𝐇̂| =

|

|

|

|

|

|

|

|

|

|

|

|

𝑋1 … 𝑋2𝑛
𝑌1 … 𝑌2𝑛
⋮ ⋮

𝑋(𝑛−1)
1 … 𝑋(𝑛−1)

2𝑛

𝑌 (𝑛−1)
1 … 𝑌 (𝑛−1)

2𝑛

|

|

|

|

|

|

|

|

|

|

|

|

.

In the next section, we will calculate explicit expressions of one- and two-soliton solutions of the nonlocal CCD system (1.1) on the 
vanishing background.

3. Explicit solutions

To obtain the explicit solution, we start with the seed solution, defined as 

𝑟 = 0, 𝜌 = 𝑎, (3.1)

where 𝑎 is a constant. This seed solution serves as a starting point for solving the system. The solution 𝛷 =
(

𝑋 𝑌
)T to the Lax 

pair (1.2) using the seed solution (3.1) is given by 

𝑋 = ei(−𝜁𝑎𝑥+
𝑡
2𝜁 +𝐴), 𝑌 = ei(𝜁𝑎𝑥−

𝑡
2𝜁 +𝐵). (3.2)
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Fig. 1. Flowchart of the LM-ANN framework.
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Fig. 2. The profiles of the solution 𝑟[1] in Eq.  (3.5) are presented for the parameters: 𝑎 = −0.5, 𝜅1 = 1.2, 𝜅2 = 1.5, 𝐵1 = 1, and 𝐵2 = −1.

Fig. 3. The profiles of the solution 𝑟∗[1] in Eq.  (3.5) are presented with the same parameters as in Fig.  2.
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Fig. 4. The solution profiles of 𝑟∗[2] in Eq.  (3.6) are shown for the parameters: 𝑎 = −0.25, 𝜅1 = 1.2, 𝜅2 = 1.8, 𝜅31.8, 𝜅4 = 8.1, 𝐵1 = 1.5, 𝐵2 = 1, 𝐵3 = 1.5 and 𝐵4 = 1.

Fig. 5. The solution profiles of 𝑉 = 𝑟[2]𝑟∗[2] are shown with the same parameters as in Fig.  4.
939 



A. Farooq et al. Chinese Journal of Physics 97 (2025) 933–947 
Fig. 6. The profiles of the solution 𝑟[2] in Eq.  (3.6) are illustrated for the parameters 𝑎 = 0.25, 𝜅1 = 1.5, 𝜅3 = −0.8, 𝐵1 = 1.5, 𝐵2 = 1, 𝐵3 = 1.5, and 𝐵4 = 1.

Fig. 7. The profiles of the solution 𝜌[2] in Eq.  (3.6) are illustrated for the parameters 𝑎 = 0.25, 𝜅1 = 1.2, 𝜅2 = 1.8, 𝜅31.8, 𝜅4 = 2.1, 𝐵1 = 1.5, 𝐵2 = 1, 𝐵3 = 1.5 and 
𝐵4 = 1.
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In (3.2) 𝐴 and 𝐵 are real constants. Since the system (1.1) is expressed in terms of the fields 𝜌 and 𝑟, expressing the determinant 
solutions for these fields is more appropriate. Therefore, we can express 𝜌[𝑛] and 𝑟[𝑛], derived from (2.5), in the following form 

𝜌[𝑛] = 𝜌 + i
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, 𝑟[𝑛] = 𝑟 + i
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. (3.3)

In what follows, we will explicitly compute the one-soliton (𝑛 = 1) solutions. These solutions are derived under the following 
reductions: 𝜁1 = i𝜅1, 𝜁2 = −i𝜅2, 𝐴1 = −𝐵1, 𝐴2 = 𝐵2, where 𝜅1 ≠ 𝜅2 are real constants. With these reductions, they maintain a 
symmetric structure. Hence, we have 

𝜌[1] = 𝑎 −
2𝑎(𝜅1 + 𝜅2)2

𝜅1𝜅2
[

2 sinh
(

𝜃1 − i𝐵1
)]2

, (3.4)

𝑟[1] = −
(𝜅1 + 𝜅2) 𝑒𝜃2+i(−𝐵1)

𝜅1𝜅2
[

2 sinh(𝜃1 − i𝐵1)
] , 𝑟∗[1] =

(𝜅1 + 𝜅2) 𝑒−𝜃2+𝑖(𝐵1)

𝜅1𝜅2
[

2 sinh(𝜃1 − i𝐵1)
] , (3.5)

where

𝜃1 =
2𝑎𝑥𝜅2

1𝜅2 +
(

2𝑎𝑥𝜅2
2 + 𝑡

)

𝜅1 + 𝑡𝜅2
2𝜅1𝜅2

, 𝜃2 =
2𝑎𝑥𝜅2

1𝜅2 +
(

−2𝑎𝑥𝜅2
2 − 𝑡

)

𝜅1 + 𝑡𝜅2
2𝜅1𝜅2

.

The spectral parameters are carefully chosen to ensure that the dynamical variables preserve the nonlocal symmetry. This allows 
the two solutions, given in (3.5), to be related to each other through parity, time reversal, and complex conjugation. The profiles of 
symmetry-preserving soliton solutions (3.5) for nonlocal CCD system (1.1) are shown in Figs.  2 and 3. The solution (3.4) represents 
the structure of the dark soliton. It can be observed that the behavior of 𝑟[1] and 𝑟∗[1] evaluated at (𝑥, 𝑡) and (−𝑥, −𝑡) respectively 
is driven by their exponential terms. Specifically, the terms e2𝑎𝑥𝜅21  in 𝑟[1] and e−2𝑎𝑥𝜅21  in 𝑟∗[1] are responsible for growth and decay, 
respectively. As 𝑥 and 𝑡 increase, the exponential in 𝑟[1] leads to growth, while the exponential in 𝑟∗[1], evaluated at −𝑥 and −𝑡, causes 
decay. These terms reflect the energy balance in soliton solutions, with one solution expanding while the other decays. It is this 
dynamic nature that is captured in the solution having localized and evolving solitons. If the exponential terms were removed, the 
solutions would no longer retain their characteristic growth and decay to uniform wave profile with a loss of dynamic interaction 
between the solitons. Without exponential terms, the solution would not have the energy exchange defining the growth of one 
solution and the decay of the other. This would decrease the interaction and localization of the soliton in space–time and could 
yield a static or less dynamic wave pattern. If 𝑎 = 0, the exponential growth and decay terms vanish, but 𝑟[1] and 𝑟∗[1] are individually 
non-trivial. Each solution takes on a distinct, well-defined form, even when the spatial terms are absent. This is further supported 
by the product 𝑉 = 𝑟[1](𝑥, 𝑡)𝑟∗[1](−𝑥,−𝑡) because it gives rise to a combined structure that remains localized in time and thus indeed 
supports a temporal soliton. In other words, while the spatial growth and decay terms are eliminated, the solution keeps its solitonic 
character manifesting itself in the form of the time-localized pulse with non-trivial features both in 𝑟[1] and 𝑟∗[1] individually as well 
as in their product.

In what follows, we derive two-soliton solutions to examine how solitons interact within a nonlocal system. Such interactions 
are crucial for understanding non-linear wave behavior as they reveal important aspects of wave stability and persistence under 
nonlocal effects. Studying two-soliton solutions is relevant in fields like ferromagnetism, optical fibers, and other disciplines, where 
soliton collisions can significantly affect energy transfer, structural changes, and the overall dynamics of nonlinear systems. For 
𝑛 = 2, the solutions 𝜌[2] and 𝑟[2] with the seed solution (3.1) have the following form 

𝜌[2] = 𝑎 + i
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, (3.6)

where

𝐇̂2 =

|
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.

For the parameters 𝜁1 = i𝜅1, 𝜁2 = −i𝜅2, 𝐴1 = −𝐵1, 𝐴2 = 𝐵2, 𝜁3 = i𝜅3, 𝜁4 = −i𝜅4, 𝐴3 = −𝐵3, and 𝐴4 = 𝐵4, the solution is said to 
be symmetrically preserved. This configuration results in different behaviors for 𝑟[2](𝑥, 𝑡) and 𝑟∗[2](−𝑥, −𝑡): the structure of 𝑟[2](𝑥, 𝑡)
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represents the interaction of two growing solitons (see Fig.  4), while 𝑟∗[2](−𝑥, −𝑡) exhibits the decay of two solitons. In particular, 
the product 𝑉 = 𝑟[2](𝑥, 𝑡)𝑟∗[2](−𝑥, −𝑡) demonstrates the interaction of two stable solitons as seen in Fig.  5, a phenomenon that 
underscores the unique characteristics of the nonlocal system. In the nonlocal case, such an interaction allows for sustained stability 
over time, essential for applications requiring long-term soliton persistence. Furthermore, the structure of 𝑞[2] shows interactions 
of two dark solitons as depicted in Fig.  7, revealing the presence of dark soliton solutions in the nonlocal regime. Dark solitons in 
nonlocal systems provide information on phase shifts and wave cancellations, which are relevant for various physical applications.

However, when the parameters are modified to 𝜁1 = i𝜅1, 𝜁2 = −i𝜅1, 𝐴1 = −𝐵1, 𝐴2 = 𝐵2, 𝜁3 = i𝜅3, 𝜁4 = −i𝜅3, 𝐴3 = −𝐵3, and 𝐴4 = 𝐵4, 
we observe the interaction of two bright solitons. This case, where 𝜅1 = 𝜅2 and 𝜅3 = 𝜅4, leads to a solution that is not symmetrically 
preserved, as seen in the classical system. In this case, the lack of symmetry leads to solitons not exhibiting the self-sustaining, 
non-decaying properties observed in a nonlocal system. This highlights the unique behaviors that symmetry preservation introduces 
in nonlocal systems compared to the classical context. These findings are illustrated in Fig.  6, which visualizes the interactions 
between two bright solitons. The two-soliton solutions describe the elastic interaction of two individual solitons, where two distinct 
lumps of energy, moving at different velocities, interact and scatter without altering their shapes. By applying DT repeatedly to the 
seed solution, explicit expressions for higher-order multi-solitons can be derived. For example, a three-soliton configuration models 
the scattering of three solitons with different amplitudes. The characteristics of multisoliton configurations in local and nonlocal 
CCD systems can be further investigated and compared with their discrete counterparts, where one or both independent variables 
are discretized. More complex multisoliton solutions, such as breather and rogue wave solutions, can also be obtained using the DT. 
In the asymptotic limit, the multisoliton configuration factorizes into single 𝑛 solitons, a behavior that becomes apparent when the 
asymptotic limit is taken.

3.1. Levenberg–Marquardt artificial neural network

The Levenberg–Marquardt (LM) algorithm is a supervised training technique used to optimize weights in feedforward neural 
networks. A conventional neural network comprises several layers, each containing a limited number of neurons. The output layer 
is essential for generating the network’s results. Prior levels, referred to as hidden layers, facilitate input processing by modifying data 
through a sequence of computations. Feedforward neural networks, such as the widely utilized multilayer perceptron (MLP), exhibit 
a sequential architecture in which each layer is exclusively connected to the subsequent layer. Modifiable synaptic weights connect 
neurons within these layers [59], essential for the network’s learning mechanism. Throughout training, the algorithm modifies 
these weights according to the input and expected output to reduce errors, enhancing the network’s efficacy. Initially, weights are 
randomly assigned and have no inherent significance unless they are optimized through training [60].

The network architecture examined in the study is such that 𝐪 contained values for the input variable. The input variable is 
associated with each of 𝑁 neurons in a hidden layer (HL) by using weights (𝐰𝑖; 𝑖 = 1, 2,… , 𝑁). Following [61], the mapping has 
two forms for the relationship between output ̂𝐡 and input variable:

HL(1)𝑖 = 𝐰(1)
𝑖 𝐪 + 𝐛(1)𝑖 ; 𝐞(1)𝑖 = 𝐠l1(HL

(1)
𝑘 ),

OL(2)𝑖 = 𝐰(2,1)
𝑖 𝐪 + 𝐛(1)𝑖 , 𝐡̂ = 𝐞(2)𝑖 = 𝐠l2(HL

(2)
𝑘 ).

For a neural network with 𝑁 neurons, initial biases are denoted by 𝐛(1)1 ,𝐛(1)2 ,… ,𝐛(1)𝑁 . Before activation, the input to each neuron 𝑘
is the sum of 𝐛(1)𝑘  and the weighted inputs 𝐰𝑘𝐪. An activation function, which could be either linear or nonlinear, designated as 
𝐠(⋅), modifies this input in each neuron, resulting in 𝐠𝑘

(

𝐛(1)𝑘 + 𝐰𝑘𝐪
)

= 𝐠𝑘
(

𝑛(1)𝑘

)

, for 𝑘 = 1, 2,… , 𝑁 . Once activated, these values are 
passed to the output layer (OL), cumulatively expressed as ∑𝑁

𝑘=1 𝐰
′
𝑘𝐠𝑘

(

𝐛(1)𝑘 + 𝐰𝑘𝐪
)

+𝐛(2), with 𝐰𝑘 = (𝑘 = 1, 2,… , 𝑁) representing the 
bias parameters in both the hidden and output layers. This transformed output is then processed by another function 𝐟 (⋅), leading 
to 𝐟

(

∑𝑁
𝑘=1 𝐰

′
𝑘𝐠𝑘(.) + 𝐛(2)

)

= 𝐠𝑘
(

𝑛(2)𝑘

)

. This output subsequently estimates the target variable ̂𝐡 for the training dataset or 𝐡:

𝐡̂ = 𝐟
( 𝑁
∑

𝑘=1
𝐰′
𝑘𝐠

(

𝐰𝑘𝐪 + 𝐛(1)𝑘

)

+ 𝐛(2)
)

. 𝑘 = 1, 2,… , 𝑁

To train the solutions 𝑟[1], 𝑟∗[1], in (3.5), 𝑟[2], 𝜌[2] in (3.6), 𝑟∗[2], and 𝑉 = 𝑟[2]𝑟∗[2], using the LM-ANN, we divide the data into two 
parts: 70% of the organized dataset is used for training, and the remaining 30% is used for testing. In all solutions, the variables 𝑥
and 𝑡 are considered input variables. A commonly used performance metric measures the difference between actual and predicted 
data during the model training phase, articulated as follows:

𝐺 = 𝐾𝑈 (𝑈, 𝑃 ) = 1
𝑁

𝑛
∑

𝑖=1
(𝐡𝑖 − 𝐡̂𝑖)2,

where 𝐾𝑈  denotes the average of squared deviations, reflecting network errors; 𝑈 corresponds to the training data of paired inputs 
and targets; and 𝑃  describes the neural network’s structure, including the number of layers, the number of units in each, and the 
type of activation function. 𝐾  plays a critical role in activating early stopping mechanisms to prevent overfitting and is widely 
𝑈
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Table 1
Solution 𝑟[1] in (3.5): Model performance with clean and noisy data for 𝑡 = 0.5. Refer to Fig.  2.
 Activation No of nodes Clean data (Relative 𝐿2 error) Noise data (Relative 𝐿2 error)
 function in each HL Trained Testing Trained (1% Noise) Testing (1% Noise) Trained (5% Noise) Testing (5% Noise) 
 tanh [5, 5, 5] 8.4729e−08 1.4909e−07 0.00033732 0.00059323 0.0017174 0.0031362  
 tanh [10, 10, 10] 1.4886e−07 2.7043e−07 0.0003345 0.00061294 0.0017704 0.0027553  
 tanh [20, 20, 20] 7.6309e−07 1.4911e−06 0.0003079 0.00068087 0.0019583 0.002557  
 tanh [5, 5, 5, 5] 1.4739e−07 2.7297e−07 0.00032791 0.00061335 0.0018462 0.0027322  
 tanh [10, 10, 10, 10] 3.3562e−07 6.5454e−07 0.00032279 0.00066367 0.0019268 0.0026621  
 tanh [20, 20, 20, 20] 2.9657e−07 5.3123e−07 0.00034128 0.00053372 0.0018002 0.002547  
 sigmoid [5, 5, 5] 8.3347e−07 1.453e−06 0.00034082 0.00053593 0.0018704 0.0024503  
 sigmoid [10, 10, 10] 1.2928e−06 1.9787e−06 0.00032578 0.00071692 0.0017614 0.0030593  
 sigmoid [20, 20, 20] 7.0481e−07 1.4568e−06 0.00032889 0.00055222 0.0021325 0.0028303  
 sigmoid [5, 5, 5, 5] 5.2121e−07 9.4023e−07 0.0003541 0.00054816 0.0017959 0.0017959  
 sigmoid [10, 10, 10, 10] 1.9426e−07 2.5936e−07 0.00030426 0.00063301 0.0018541 0.0026543  
 sigmoid [20, 20, 20, 20] 7.7554e−07 1.3264e−06 0.0003441 0.00055538 0.0019102 0.0019102  

Table 2
Solution 𝑟∗[1] in (3.5): Model performance with clean and noisy data for 𝑡 = 0.5.
 Activation No of nodes Clean data (Relative 𝐿2 error) Noise data (Relative 𝐿2 error)
 function in each HL Trained Testing Trained (1% Noise) Testing (1% Noise) Trained (5% Noise) Testing (5% Noise) 
 tanh [5, 5, 5] 1.7654e−06 2.8164e−06 0.00036827 0.00055543 0.0018268 0.0030727  
 tanh [10, 10, 10] 2.6111e−06 4.4766e−06 0.00035669 0.00059653 0.0018138 0.0033708  
 tanh [20, 20, 20] 3.0556e−06 6.0053e−06 0.00036974 0.00062545 0.0016929 0.0030196  
 tanh [5, 5, 5, 5] 3.1486e−06 5.4751e−06 0.00034812 0.00056264 0.0018499 0.002857  
 tanh [10, 10, 10, 10] 2.0005e−06 3.8793e−06 0.00037552 0.00060913 0.0017759 0.0034193  
 tanh [20, 20, 20, 20] 1.7582e−06 2.9307e−06 0.00037503 0.00058248 0.0018411 0.0027667  
 sigmoid [5, 5, 5] 4.2248e−06 1.453e−06 0.00034422 0.00053593 0.0018193 0.0025366  
 sigmoid [10, 10, 10] 1.4297e−06 2.6714e−06 0.00034733 0.00052253 0.0019086 0.0029701  
 sigmoid [20, 20, 20] 4.5782e−06 8.0543e−06 0.0003608 0.00054468 0.0017619 0.0023565  
 sigmoid [5, 5, 5, 5] 5.4047e−06 7.8359e−06 0.00039218 0.0005756 0.0017828 0.0035557  
 sigmoid [10, 10, 10, 10] 5.2915e−06 8.9121e−06 0.0003714 0.00060505 0.0017263 0.0028074  
 sigmoid [20, 20, 20, 20] 7.7554e−07 1.3264e−06 0.00035477 0.00051751 0.0017269 0.0030786  

used in MATLAB training routines. For the complete procedure of LM-ANN, see the flowchart in Fig.  1. To evaluate the solution’s 
performance as predicted by LM-ANN, we calculate the relative 𝐿2 error as:

Relative-𝐿2 =

√

MSE
√

∑

𝑖 𝒉
2
𝑖

.

The network is designed with three hidden layers, each containing ten nodes, and employs hyperbolic tangent activation functions 
to handle non-linear patterns effectively. After training, the network’s predictions are compared to the exact values, and the 
differences (errors) are analyzed. The exact solutions (see Figs.  2(a), 3(a), 4(a), 5(a), 6(a), 7(a), 2(d), 3(d), 4(d), 5(d), 6(d), and 7(d)), 
neural network predictions (see Figs.  2(b), 3(b), 4(b), 5(b), 6(b), 7(b), 2(e), 3(e), 4(e), 5(e), 6(e), and 7(e)), and errors (see Figs. 
2(c), 3(c), 4(c), 5(c), 6(c), 7(c), 2(f), 3(f), 4(f), 5(f), 6(f), and 7(f)) are visualized using 3D surface and contour plots, demonstrating 
the network’s ability to approximate the solutions 𝑟[1], 𝑟∗[1], in (3.5), 𝑟[2], 𝜌[2] in (3.6), 𝑟∗[2], and 𝑉 = 𝑟[2]𝑟∗[2], accurately and reliably. 
Furthermore, we use a neural network with multiple layers, each containing varying numbers of nodes, to model the solutions 
of (1.1). The network employs various activation functions in the hidden layers to effectively capture the non-linear patterns in 
the data. We also add Gaussian noise to the target data to make the training process more realistic. The network is trained using 
the LM-ANN method for up to ten iterations to avoid overtraining and improve accuracy. The training stops if a certain quality is 
reached, the maximum number of iterations is exceeded, or other stopping criteria are met. The network’s performance is measured 
using the relative 𝐿2 errors, as shown in Tables  1, 2, 3, 4, 5, and 6 for 𝑡 = 0.5. These tables compare the predicted solutions to the 
exact solutions, including 𝑟[1], 𝑟∗[1], 𝑟∗[2], 𝜌[2], and 𝑉 = 𝑟[2]𝑟∗[2]. The results show that the network performs well, with predictions 
closely matching the exact solutions, proving its effectiveness and reliability in modeling complex behaviors.

4. Concluding remarks

This study provides an in-depth analysis of the nonlocal CCD system, employing theoretical and neural network approaches to 
derive and validate soliton solutions. Using the Darboux transformation, we obtained analytical solutions represented by simple 
determinant ratios, focusing on symmetry-preserving and non-preserving soliton solutions. Our findings reveal that when spectral 
parameters are chosen without coherent relations, the dynamical variables yield complex-valued potential terms, resulting in non-
preserving symmetry solutions. In contrast, parameter choices with coherent relationships lead to symmetric dynamical variables and 
symmetry-preserving solutions. Furthermore, we enhanced and verified these solutions by implementing the Levenberg–Marquardt 
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Table 3
Solution 𝑟∗[2]: Model performance with clean and noisy data for 𝑡 = 0.5.
 Activation No of nodes Clean data (Relative 𝐿2 error) Noise data (Relative 𝐿2 error)
 function in each HL Trained Testing Trained (1% Noise) Testing (1% Noise) Trained (5% Noise) Testing (5% Noise) 
 tanh [5, 5, 5] 2.7227e−06 4.4809e−06 0.00028677 0.00046886 0.0015395 0.002341  
 tanh [10, 10, 10] 1.6311e−06 2.9171e−06 0.0003123 0.00047046 0.001566 0.0022733  
 tanh [20, 20, 20] 2.3846e−06 5.355e−06 0.00030507 0.00045438 0.0016239 0.0022741  
 tanh [5, 5, 5, 5] 2.4618e−06 4.4232e−06 0.00029342 0.00039213 0.0015411 0.0023353  
 tanh [10, 10, 10, 10] 1.2968e−06 2.4799e−06 0.00031503 0.00046439 0.001521 0.0025139  
 tanh [20, 20, 20, 20] 2.2485e−06 5.0339e−06 0.00029566 0.00046686 0.0015628 0.0021857  
 sigmoid [5, 5, 5] 1.8872e−06 2.898e−06 0.00031142 0.00048858 0.0015167 0.002507  
 sigmoid [10, 10, 10] 1.5551e−06 2.6766e−06 0.00033158 0.00042895 0.001545 0.0024539  
 sigmoid [20, 20, 20] 2.2946e−06 4.4904e−06 0.0003115 0.00045137 0.0015096 0.002309  
 sigmoid [5, 5, 5, 5] 1.3658e−06 2.675e−06 0.00031846 0.0004486 0.0014893 0.0024307  
 sigmoid [10, 10, 10, 10] 5.2915e−06 8.9121e−06 0.0003714 0.00060505 0.0015971 0.0024695  
 sigmoid [20, 20, 20, 20] 2.3157e−06 4.7955e−06 0.00030517 0.00043517 0.00156 0.0023748  

Table 4
Solution 𝑉 = 𝑟[2]𝑟∗[2]: Model performance with clean and noisy data for 𝑡 = 0.5.
 Activation No of nodes Clean data (Relative 𝐿2 error) Noise data (Relative 𝐿2 error)
 function in each HL Trained Testing Trained (1% Noise) Testing (1% Noise) Trained (5% Noise) Testing (5% Noise) 
 tanh [5, 5, 5] 5.397e−05 0.00011702 0.00033138 0.00060537 0.0016744 0.0030827  
 tanh [10, 10, 10] 0.00016905 0.00031178 0.00038545 0.00059186 0.0016635 0.0027755  
 tanh [20, 20, 20] 2.0645e−06 5.2314e−06 0.00035613 0.00047847 0.0018082 0.0027576  
 tanh [5, 5, 5, 5] 0.00037186 0.00059648 0.00032237 0.000605 0.0016826 0.0028983  
 tanh [10, 10, 10, 10] 0.00021088 0.00023458 0.00041407 0.00057393 0.0016758 0.0024823  
 tanh [20, 20, 20, 20] 1.4793e−06 9.1648e−05 0.00035142 0.00050362 0.0017843 0.0024369  
 sigmoid [5, 5, 5] 0.00079593 0.0011571 0.00089993 0.0010604 0.0016273 0.0025847  
 sigmoid [10, 10, 10] 2.4259e−06 1.2524e−05 0.00034922 0.00047839 0.0017003 0.0022386  
 sigmoid [20, 20, 20] 2.1089e−06 2.325e−05 0.00033757 0.00055142 0.0017051 0.0026508  
 sigmoid [5, 5, 5, 5] 0.00018835 0.00028656 0.0003828 0.00055376 0.001865 0.0027416  
 sigmoid [10, 10, 10, 10] 3.8072e−06 1.5634e−05 0.00037025 0.00052723 0.001797 0.0027272  
 sigmoid [20, 20, 20, 20] 1.4196e−05 2.5897e−05 0.00036477 0.000559 0.0017467 0.0030069  

Table 5
Solution 𝑟[2] in (3.6): Model performance with clean and noisy data for 𝑡 = 0.5.
 Activation No of nodes Clean data (Relative 𝐿2 error) Noise data (Relative 𝐿2 error)
 function in each HL Trained Testing Trained (1% Noise) Testing (1% Noise) Trained (5% Noise) Testing (5% Noise) 
 tanh [5, 5, 5] 9.2021e−07 1.4912e−06 0.00018143 0.00025223 0.00086409 0.0013559  
 tanh [10, 10, 10] 1.0025e−06 1.8416e−06 0.00017612 0.00026251 0.00088679 0.0013736  
 tanh [20, 20, 20] 2.0645e−06 1.8425e−06 0.00017262 0.00025973 0.00091399 0.0014292  
 tanh [5, 5, 5, 5] 5.3412e−07 8.1092e−07 0.00016468 0.0002604 0.00089185 0.0013972  
 tanh [10, 10, 10, 10] 7.3515e−07 1.2747e−06 0.00017616 0.00025679 0.00087464 0.0012712  
 tanh [20, 20, 20, 20] 9.1012e−07 2.0379e−06 0.00018352 0.00029509 0.00084639 0.0013802  
 sigmoid [5, 5, 5] 4.0744e−07 7.7193e−07 0.00017374 0.00025279 0.00087157 0.0013996  
 sigmoid [10, 10, 10] 9.6703e−07 2.0109e−06 0.00017451 0.00027066 0.00083334 0.0015296  
 sigmoid [20, 20, 20] 2.4697e−06 5.8662e−06 0.00017631 0.00026908 0.00093604 0.0012481  
 sigmoid [5, 5, 5, 5] 5.8084e−07 9.4758e−07 0.00017222 0.00025243 0.00085568 0.0013575  
 sigmoid [10, 10, 10, 10] 3.8072e−06 1.4974e−06 0.00016827 0.00026621 0.00091027 0.0014134  
 sigmoid [20, 20, 20, 20] 1.978e−05 4.1206e−05 0.00018113 0.00026593 0.00085856 0.0012924  

algorithm within an artificial neural network framework, which strengthened the reliability of our results through rigorous statistical 
analysis. This combined analytical and neural network enabled a thorough exploration of the dynamics of the nonlocal CCD system, 
bridging theoretical insights with empirical validation.

Future work could expand the analysis of the generalized CD system to more complex configurations of current-fed strings 
in external magnetic fields, incorporating nonlocal effects. This includes examining how variations in magnetic field strength, 
current, boundary conditions, and external perturbations influence wave behavior, stability, and nonlinear interactions. We also 
aim to investigate the development of chaotic dynamics and turbulence under specific conditions, and assess the impact of material 
properties and temperature variations to enhance the model’s applicability to real-world scenarios. On the computational side, we 
plan to develop unsupervised learning strategies based on PINNs, where the network weights will be optimized using bio-inspired 
algorithms such as particle swarm optimization (PSO) and genetic algorithms (GA). In parallel, for the LM-ANN framework, we 
intend to incorporate the regularization techniques to enhance generalization and reduce overfitting in the training process.
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Table 6
Solution 𝜌[2] in (3.6): Model performance with clean and noisy data for 𝑡 = 0.5.
 Activation No of nodes Clean data (Relative 𝐿2 error) Noise data (Relative 𝐿2 error)
 function in each HL Trained Testing Trained (1% Noise) Testing (1% Noise) Trained (5% Noise) Testing (5% Noise) 
 tanh [5, 5, 5] 0.00024984 0.00030687 0.0002426 0.00043529 0.00073001 0.0011219  
 tanh [10, 10, 10] 0.00061781 0.00074252 0.00020918 0.00034875 0.00068497 0.0011235  
 tanh [20, 20, 20] 5.4358e−06 1.2935e−05 0.00014342 0.0002293 0.0007006 0.0010899  
 tanh [5, 5, 5, 5] 0.00017888 0.0007381 0.00016468 0.00027522 0.00071169 0.0010612  
 tanh [10, 10, 10, 10] 4.8607e−06 7.7803e−06 0.00013857 0.00020345 0.00066194 0.0011345  
 tanh [20, 20, 20, 20] 3.1935e−06 6.0108e−05 0.000136382 0.00029509 0.00068296 0.0010518  
 sigmoid [5, 5, 5] 6.6285e−05 0.00019839 0.00014917 0.00028424 0.00066415 0.0010335  
 sigmoid [10, 10, 10] 2.4066e−05 9.4161e−05 0.00015303 0.00021903 0.0006821 0.0010697  
 sigmoid [20, 20, 20] 0.00015388 0.0011209 0.00013789 0.00029984 0.00066926 0.00098081  
 sigmoid [5, 5, 5, 5] 0.00021223 0.00037656 0.00024742 0.00042597 0.0045414 0.007016  
 sigmoid [10, 10, 10, 10] 5.4107e−06 7.8939e−05 0.00013876 0.00021922 0.00071248 0.00118  
 sigmoid [20, 20, 20, 20] 1.0084e−05 1.0084e−05 0.00013891 0.00022801 0.00066258 0.0010335  
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