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Abstract
The goal of this paper is to find exact solutions to the improved modified Korteweg-de 
Vries (mKdV) equation with a conformable derivative using the Jacobi elliptic function 
expansion method. The improved mKdV equation is a prominent mathematical model 
in the realm of nonlinear partial differential equations, with widespread applicability in 
diverse scientific and engineering domains. This study leverages the well-known effec-
tiveness of the Jacobi elliptic function expansion method in solving nonlinear differential 
equations, specifically focusing on the intricacies of the improved mKdV problem. The 
investigation reveals innovative and explicit solutions, providing insight into the dynam-
ics of the related physical processes. This paper provides a comprehensive examination 
of these solutions, emphasizing their distinct features and depictions using Jacobi elliptic 
functions. These findings are especially advantageous for specialists in the fields of nonlin-
ear science and mathematical physics, providing significant insights into the behavior and 
development of nonlinear waves in various physical situations. This work also contributes 
to our knowledge of the improved mKdV equation and shows that the Jacobi elliptic func-
tion expansion method is a useful tool for solving complex nonlinear situations. The study 
is enhanced with graphical illustrations of various solutions, which further enhance its ana-
lytical complexity.

Keywords  Improved mKdV Equation · Conformable derivative · Jacobi elliptic function 
expansion method · Exact solutions

1  Introduction

A wide range of scientific and engineering fields place a significant amount of importance 
on nonlinear differential equations. These equations stand out due to their intricate inter-
dependencies between variables, which do not follow a linear or proportional relation-
ship. When it comes to accurately modeling, characterizing, and predicting the behavior 
of multifaceted and dynamic systems, where linear approaches fall short, their unrivalled 
proficiency is the source of their paramount role. These equations are especially impor-
tant in fields such as modeling the climate, biological systems, and complex engineering 
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structures. They provide insights that are necessary for both theoretical and practical 
advancements, making them particularly important in these areas. Researchers and engi-
neers are able to develop a more profound comprehension of their respective fields through 
the use of linear differential equations. These equations capture the unpredictable and fre-
quently chaotic nature of real-world phenomena. In turn, this helps in making decisions 
that are more informed, driving innovation, and paving the way for breakthroughs in a vari-
ety of fields. Because of the nuanced portrayal of the environment and phenomena that they 
provide, the accuracy and depth of analysis are elevated, and as a result, they play a trans-
formative role in the advancement of knowledge and application within these domains.

Obtaining accurate solutions for fractional nonlinear partial differential equations can 
be accomplished through the utilization of a number of various alternative approaches. A 
technique that is successful for obtaining both exact and approximation series solutions for 
a variety of differential equations is the Laplace residual power series technique, which is 
referred to as (Khresat et al. 2023). These solutions can be obtained by using this meth-
odology. This approach is renowned for its simplicity and usefulness. Additionally, the 
extended G∕G�  strategy, detailed in (Bekir and Güner 2013; Gepreel and Omran 2012; 
Özkan et  al. 2023; Zheng 2012), is another robust approach that produces soliton solu-
tions for space-time fractional equations. Not only that, but there is also a fascinating find-
ing concerning sub linear fractional equations. It has been demonstrated in (Řehák 2023) 
that they are capable of producing solutions that exhibit behavior that is asymptotically 
super-linear. This set of solutions is distinguished by a consistent pattern of change, and 
the behavior of these solutions can be correctly portrayed through the use of asymptotic 
equations. The generation of functions, particularly multivariable power series, is another 
method that is worthy of mention. According to (Hwang and Lu 2023), it has been dis-
covered that these functions are quite effective in the process of solving partial difference 
equations. Moreover, various other methods, including the fractional sub equation method 
(Guo et  al. 2012; Lu 2012; Tang et  al. 2012; Wen and Zheng 2013; Zhang and Zhang 
2011; Zheng and Wen 2013) the Jacobi elliptic function expansion method (Inc and Ergüt 
2005; Khan et al. 2022; Zheng 2014) the variational iteration method (Inc 2008), and the 
sine–cosine method (Hirota and Satsuma 1981; Inç and Evans 2004) also noteworthy 
in this subject. The area of fractional calculus has a wide range of applications across a 
variety of fields, such as engineering, biology, and other social sciences, as illustrated in 
(Abdulhameed et al. 2019; Chang et al. 2019; Dubey et al. 2019; Goulart et al. 2019). Not 
only are these methodologies capable of solving partial difference equations, but they also 
provide vital mathematical techniques for solving fractional nonlinear partial differential 
equations. This was noted before in the sentence. A deeper understanding of a wide variety 
of different physical scenarios can be achieved through the utilization of these methodolo-
gies. Alquran et al. (2022) presented new topological and non-topological unidirectional-
wave solutions for the modified-mixed KdV equation and bidirectional-wave solutions for 
the Benjamin Ono equation, utilizing recent techniques to advance the field. In (Alquran 
et al. 2023a), the authors investigated dual-wave solutions to the Kadomtsev–Petviashvili 
model with second-order temporal and spatial–temporal dispersion terms. In (Alquran and 
Alhami 2022), the authors discussed the analysis of lumps, single-stripe, breather-wave, 
and two-wave solutions to the generalized perturbed-KdV equation by means of Hirota’s 
bilinear method. For better understanding also see (Alquran 2022, 2023; Alquran et  al. 
2023b; Eslami and Rezazadeh 2016; Ghanbari 2019; Ghanbari and Baleanu 2020; Ghan-
bari and Gómez-Aguilar 2019a, b; Ghanbari and Kuo 2019; Jaradat and Alquran 2020; 
Khater and Ghanbari 2021; Qiao et al. 2022; Rezazadeh 2018; Younas et al. 2023).
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When it comes to solving nonlinear wave equations and other nonlinear phenomena, the 
Jacobi elliptic function expansion method is a significant innovation that represents a sub-
stantial advancement. There are a number of advantages and disadvantages associated with 
the Jacobi elliptic function approach, which is utilized for the resolution of nonlinear par-
tial differential equations (PDEs). The capacity to produce solutions that are both accurate 
and periodic is one of its key characteristics. This ability is essential for comprehending 
complex nonlinear dynamics. This technique is especially useful for equations that display 
particular symmetries and invariants, since it enables a more in-depth study of the solutions 
to be performed. On the other hand, one of its key shortcomings is that it has a restricted 
applicability; it might not produce solutions for nonlinear PDEs that are more generic or 
complex and do not comply with its particular criteria. When compared to other methods, 
such as the inverse scattering transform, the Jacobi elliptic function method may be easier 
to apply and require less computational effort. However, it does not possess the general-
ity and resilience that are found in techniques that are more adaptable, such as numerical 
simulations. The Jacobi technique excels in offering more explicit analytical solutions for 
the equations that fall within its scope, in contrast to other approaches such as the Hirota 
bilinear approach, which are capable of handling a wider variety of nonlinear partial dif-
ferential equations. In comparison to the hyperbolic tangent function expansion strategy, 
which is more restricted in its scope, this method is renowned for its capacity for diversity. 
These answers frequently include solitary wave solutions as well as shock wave solutions 
(Sait 2023), which exemplifies the method’s capacity to be applied in a variety of contexts. 
Particularly remarkable is the fact that the Jacobi elliptic function expansion approach 
incorporates a wide range of different methodologies. Among these are the trial function 
method, the general projective Riccati equations method, the first integral method, the sim-
ple equations technique, the F-expansion method, the modified simple equation method, 
and the trial function method. Every one of them can be considered a particular instance 
or variant of the Jacobi technique from a different perspective. The Jacobi method is an 
all-encompassing method, which emphasizes the crucial role it plays in nonlinear analy-
sis. There is a void in the study addressing the application of this method to the improved 
mKdV equation with conformable derivative, which is an interesting observation to make. 
It has been noted that there has been no considerable examination in this field as of yet, 
which indicates that there is a viable avenue for future research. This unknown region 
gives a chance to obtain a deeper understanding of the Jacobi elliptic function expansion 
approach and to apply it in unexpected circumstances. This could potentially lead to new 
discoveries and breakthroughs in the field of nonlinear wave dynamics.

To solve complicated nonlinear PDE problems is the driving force behind this study, 
which focuses on the well-known and very versatile Jacobi elliptic function expansion 
approach. The exact solutions of the well-known improved mKdV equation, which incor-
porates conformable derivatives, are studied using this approach. A more comprehensive 
framework is introduced by conformable derivatives, which allows for a deeper investi-
gation of the behavior of the equation. We use the well-established effectiveness of the 
Jacobi elliptic function expansion method to systematically find accurate solutions to diffi-
cult nonlinear PDEs. To fully understand the system under investigation, these answers are 
essential. Our goal is to help better understand and apply these complicated mathematical 
models in different scientific and engineering contexts by shedding light on the dynamic 
nature of their solutions and the intricate characteristics of the improved mKdV equations 
with these derivatives. The improved mKdV equation with the conformable derivatives can 
be express as:
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here � and γ are the parameters describing the order of the conformable derivative.
The rest of the article is organized like this: The relevance of the improved mKdV equa-

tion using conformable derivatives is highlighted in Sect. 2 by providing a brief overview 
of the equation. In Sect. 3, the method of Jacobi elliptic function expansion is introduced. 
Several graphs depicting the answers are shown in Sect. 4, allowing a direct visual exami-
nation of the different behavior’s displayed by these solutions. In Sect. 5, the paper con-
cludes by discussing the study’s general conclusions. Before moving on to the next section, 
we will review some basic features of the conformable derivative, as described in reference 
(Khalil et al. 2014), to make sure that all readers understand and can follow along.

Definition  Abdeljawad 2015): Let � ∶ [0, ∞] → ℝ  be a function. The � − th  order 
conformable derivative of �  is defined by

If  � is �− differentiable in some (0, �) and lim
�→t0+

�(�)(t) if it does, we characterize 
�(�)(0) = lim

�→t0+
�(�)(t).

Theorem  Abdeljawad (2015): Let � ∈ (0, 1] and suppose f, g is �− differential at point 
t > 0. Then, the following are satisfied:

Theorem  Abdeljawad (2015): Assume f , g ∶ (0, ∞) → ℝ  be �− differentiable functions, 
where 0 < 𝛼 ≤ 1.  Let h(t) = f (g(t)). Then h(t) is � − differentiable for all t with t ≠ 0 and 
g(t) ≠ 0 we have

If t = 0 we have

(1.1)D
𝛼

t
u + au2D

𝛾

x
u + bD

𝛼

t
D

𝛾

2x
u + 𝛽D

𝛾

3x
u = 0, t > 0, 0 < 𝛼, 𝛾 ≤ 1

D𝛼(�)(t) = lim
𝜀→ 0

�
(
t + 𝜀 t1−𝛼

)
− f (t)

𝜀
, 𝜀 > 0, 𝛼 ∈ (0, 1).

1. D� (�f + �g) = �D� (f ) + �D�( g) ∀ �, � ∈ ℝ.

2. D� (tq) = qtq−� ∀ q ∈ ℝ.

3. D�(�) = 0, for all constant functions f (t) = � .

4. D� (fg) = fD� (g) + D�( f )g.

5. D�

(
f

g

)
=

gD� (f ) − fD�( g)

g2
.

6. If, in addition, f is differential, then D� (f )(t) = t1−�
df

dt
.

D�(h)(t) = D�(f )(g(t)).D�(g)(t).g(t)�−1.

D�(h)(0) = lim
t→0

D�(f )(g(t)).D�(g)(t).g(t)�−1.
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2 � Methodology of the Proposed Technique

Step 1: Let us take into account the nonlinear partial differential equation that has been 
provided to us, say with two variables.

Step 2: Changing Eq. (2.1) by using the traveling wave transformation in the sense that

where c and w, are constants. In order to simplify things, we may rewrite Eq. (2.1) as an 
ordinary differential equation of integral order with the help of Eq. (2.2).

In addition to this extended indirect approach, the primary objective is to increase the 
probability of finding solutions to an auxiliary ordinary differential equation (the first cat-
egory of the parameter Jacobian equation). The goal is to produce many  Jacobian ellip-
tic solutions for the specific equation. This is done to  accomplish the goal of building 
many Jacobian elliptic solutions. The auxiliary equation can be represented pictorially.

here F� =
�F

��
, � = (x, t)  and P, Q are real constants. The Eq. 2.4 has solution in Table 1 , 

here i2 = −1 , the jacobian elliptic functions sn� = sn(�,m), cn� = cn(�,m), and 
dn� = dn(�,m,), here m(0 < m < 1) is the modulus.

The Jacobi elliptic functions, as indicated in Table 2, were simplified to trigonometric 
and hyperbolic functions by a limiting process as m approaches 1 and 0, respectively.

Consequently, we get many solutions, including periodic, hyperbolic, and trigonometric 
solutions, for the given problem. The Jacobi elliptic function expansion method may be 
utilized to express u(ξ) as a finite series of Jacobi elliptic functions.

where F(ξ) is the solution of the nonlinear ordinary Eq. (2.4) and n, ai(i = 0, 1, 2,… , n) are 
constants to be determine later, the n can be determining the highest order linear term

And the order of highest nonlinear term is

In Eq. (2.3) by substituting Eq. (2.5) and equating the coefficients of power F to zero, 
a system of nonlinear algebraic equations for a_i (where i=0, 1, 2,…, n) may be obtained. 

(2.1)F

(
u,

��u

�t�
,
��u

��x
,
�2�u

�t2�
,
�2�u

�x2�
,… .

)
= 0

(2.2)u = u(�), � = w
t�

�
+ c

x
�

�

(2.3)F
(
u�, u��, u���,…

)
= 0

(2.4)
(
F�
)2
(�) = PF4(�) + QF2(�) + R

(2.5)u(�) =

n∑
i=0

aiF
i(�)

(2.6)O

(
�pu

��p

)
= n + p, p = 1, 2, 3,…

(2.7)O

(
uq

�pu

��p

)
= (q + 1)n + p, q = 0, 1, 2, 3,… p = 1, 2, 3,…
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Solving this system using P, Q, and R values, as provided in Table 1, yields the desired 
solution. By using the technique above of combining the data with the auxiliary equation, 
it is possible to obtain precise answers for Eq. (2.1).

Table 1   The Eq. (2.4) might have many solutions for the function F(�)  depending on the values chosen for 
P, Q, and R 

P Q R F

1 m
2 −(1 + m

2)                                  1 sn, cd

2 −m2 2m2 − 1 1 − m
2 cn

3 −1 2 − m
2

m
2 − 1 dn

4 1 −(1 = m
2) m

2 ns, dc

5 1 − m
2 2m2 − 1 −m2 nc

6 m
2 − 1 2 − m

2 −1 nd

7 1 − m
2 2 − m

2 1 sc

8 −m2(1 − m
2) 2m2 − 1 1 sd

9 1 2 − m
2 F(�) cs

10 1 2m2 − 1 m
2(1 − m

2) −ds

11 −1

4

m
2+1

2

−(1−m2)
2

4

mcn ∓ dn

12 1

4

−2m2+1

2

1

4
nc ∓ cs

13 1−m2

4

m
2+1

2

1−m2

4

nc ∓ sc

14 1

4

m
2−2

2

m
4

4

ns ∓ ds

15 m
2

4

m
2−2

2

m
4

4

sn ∓ icn,
sn√

1−m2sn∓cn

16 1

4

1−2m2

2

1

4
mcn ∓ idn,

sn

1∓cn

17 m
2

4

m
2−2

2

1

4

sn

1∓dn

18 m
2−1

4

m
2+1

2

m
2−1

4

dn

1∓msn

19 1−m2

4

m
2+1

2

−m2+1

4

cn

1∓sn

20 (1−m2)
2

4

m
2+1

2

1

4

sn

dn∓cn

21 m
4

4

m
2−2

2

1

4

cn√
1−m2∓dn

Table 2   In the sense of limiting 
sense for m → 1  and m → 0 , the 
Jacobielliptic functions reduce 
to:

F m → 1 m → 0 F m → 1 m → 0

1 snu tanhu sinu 7 dcu 1 secu
2 cnu sechu cosu 8 ncu coshu secu
3 dnu sechu 1 9 scu sinhu tanu
4 cdu coshu 1 10 nsu dsu cothu cscu
5 sdu sinhu sinu 11 dsu cschu cotu
6 ndu coshu 1 12 csu cschu cotu
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3 � Exact solutions of improved mKdV equation with conformable 
derivatives

In this section, we construct the exact solutions of the space-time improved mKdV equa-
tion by using the Jacobi elliptic function expansion method, the space-time improved 
mKdV Eq. (1.1) . We obtain a nonlinear ordinary differential equation of integer order by 
substituting the wave variable Eq. (2.2) into Eq. (1.1).

By equating the highest order nonlinear component with the highest order derivative 
term in Eq. (3.1), we deduce that n=1. Consequently, the proposed solution for Eq. (3.1) 
takes a simplified form.

The differentiation to u w.r.t � yields

and

Putting the values of u(�), �u
��
, u2

du

d�
 and d

3u

d�3
 from Eq. 3.2 to 3.5  into Eq. 3.1, we obtain.

.By collecting different power of Fi(�) , we get the system of algebraic equations as:

We obtain the coefficients associated with the series shown in Eq. (3.2) by solving the 
system above equations.

and

(3.1)w
du

d�
+ acu2

du

d�
+
(
bc2w + �c3

)d3u
d�3

= 0

(3.2)u(�) = a0 + a1F(�)

(3.3)
du

d�
= a1F

�(�)

(3.4)u2
du

d�
= a2

0
a1F

�(�) + a3
1
F2(�)F�(�) + 2a0a

2

1
F(�)F�(�)

(3.5)
d3u

d�3
= aF���(�) = a1(6PF

2(�)F�(�) + QF�(�)

(3.6)
w
(
a1F

�(�)
)
+ ac

(
a2
0
a1F

�(�) + a3
1
F2(�)F�(�) + 2a0a

2

1
F(�)F�(�)

)

+
(
bc2w + �c3

)
(a1

(
6PF2(�)F�(�) + QF�(�)

)
= 0

(3.7)

F0 ∶ wa1 + aca2
0
a1 + a1

(
bc2w + �c3

)
Q = 0,

F1 ∶ 2aca0a
2

1
= 0,

F2 ∶ aca3
1
+ a16P

(
bc2w + �c3

)
.

(3.8)a0 = 0

(3.9)a1 = ±

√
−6Pc(bw + �c)

a
,
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By employing the approach above to address the problem and utilizing the value pro-
vided in Eq. (2.3), we successfully derived the precise answer for Eq. (1.1).

When  P = m2,Q = −
(
1 + m2

)
,R = 1, and F = sn from Table 1, Thus

Taking into account m →1 from Table 2, the solution for the solitary wave can be found 
by using the following:

When  P = m2,Q = −
(
1 + m2

)
,R = 1, and F = cd can be deduced from Table 1. The 

solution can be evaluated as:

As the limit of m approaches 1 from Table  2, the solitary wave solution may be 
observed,

Considering  P = −m2,Q = 2m2 − 1, and F = cn from Table  1, the solution can be 
acquired as,

Moreover, if the limit of m approaches 1 according to Table 2, the solution for the soli-
tary wave of Equation (1.1) can be expressed as follows:

(3.10)w =
−�c3Q

1 + bc2Q
.

(3.11)
u = ±

√√√√−6�Pc2
(
1 −

bc2Q

1+bc2Q

)

a
F

(
c
x�

�
−

�c3Q

1 + bc2Q

t�

�

)

(3.12)u1,1 = ±

√√√√−6�m2c2
(
1 +

bc2(1+m2)
1−bc2(1+m2)

)

a
sn

(
c
x�

�
+

c3�
(
1 + m2

)

1 − bc2
(
1 + m2

) t
�

�

)

(3.13)
u1,2 = ±

√√√√−6�c2
(
1 +

2bc2

1−2bc2

)

a
tanh

(
c
x�

�
+

2c3�

1 − 2bc2
t�

�

)

(3.14)u1,3 = ±

√√√√−6�m2c2
(
1 +

bc2(1+m2)
1−bc2(1+m2)

)

a
cd

(
c
x�

�
+

c3�
(
1 + m2

)

1 − bc2
(
1 + m2

) t
�

�

)

(3.15)
u1,4 = ±

√√√√−6�c2
(
1 +

2bc2

1−2bc2

)

a
cosh

(
c
x�

�
+

2c3�

1 − 2bc2
t�

�

)

(3.16)u1,5 = ±

√√√√6�m2c2
(
1 −

bc2(2m2−1)
1+bc2(2m2−1)

)

a
cn

(
c
x�

�
−

�c3
(
2m2 − 1

)

1 + bc2
(
2m2 − 1

) t
�

�

)

(3.17)
u1,6 = ±

√√√√6�c2
(
1 −

bc2

1+bc2

)

a
sech

(
c
x�

�
−

�c3

1 + bc2
t�

�

)
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Setting   P = −1,Q = 2 − m2, and F = dn from Table 1, so

When examining the data in Table B for the limit as m approaches 1, it becomes evi-
dent that this solution resembles the single wave described in Eq. 3.17.

For choices P = 1,Q = −
(
1 + m2

)
 and F = ns, from Table 1, in this way the solution 

is found as:

For choices m → 1  the solitary wave solution can be evaluated as,

As the limit of m approaches zero, the periodic solution can be derived by utilizing 
Table 2,

For selecting P = 1, Q = −
(
1 + m2

)
 and F = dc , from Table 1, in this way the solu-

tion can be determined as,

The periodic solution can be obtained as the limit of m approaches zero.,

Assigning P = 1 − m2,Q = 2m2 − 1, and F = nc , from table A, so the solution can be 
found as,

In the context of m approaching zero, concerning Table  2, the solution can be deter-
mined as in Eq. 3.23.

(3.18)u1,7 == ±

√√√√6�c2
(
1 −

bc2(2−m2)
1+bc2(2−m2)

)

a
dn

(
c
x�

�
−

�c3
(
2 − m2

)

1 + bc2
(
2 − m2

) t
�

�

)

(3.19)u1,8 = ±

√√√√−6�c2
(
1 +

bc2(1+m2)
1−bc2(1+m2)

)

a
ns

(
c
x�

�
+

�c3
(
1 + m2

)

1 − bc2
(
1 + m2

) t
�

�

)

(3.20)
u1,9 = ±

√√√√−6�c2
(
1 +

2bc2

1−2bc2

)

a
coth

(
c
x�

�
+

2�c3

1 − 2bc2
t�

�

)

(3.21)
u1,10 = ±

√√√√−6�c2
(
1 +

bc2

1−bc2

)

a
csc

(
c
x�

�
+

�c3

1 − bc2
t�

�

)

(3.22)u1,11 = ±

√√√√−6�c2
(
1 +

bc2(1+m2)
1−bc2(1+m2)

)

a
dc

(
c
x�

�
+

�c3
(
1 + m2

)

1 − bc2
(
1 + m2

) t
�

�

)

(3.23)
u1,12 =

√√√√−6�c2
(
1 +

bc2

1−bc2

)

a
sec

(
c
x�

�
+

�c3

1 − bc2
t�

�

)

(3.24)

u1,13 = ±

√√√√−6�c2
(
1 − m2

)(
1 −

bc2(2m2−1)
1+bc2(2m2−1)

)

a
nc

(
c
x�

�
−

�c3
(
2m2 − 1

)

1 + bc2
(
2m2 − 1

) t
�

�

)
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Regarding the information found in Table A’s P = 1 − m^2, Q = 2 − m^2, and F = sc, 
the solution can be written as,

Furthermore, as m approaches zero, the periodic solution can be obtained according to 
Table 2,

Assuming the given values P = 1, Q = 2 − m^2, and F = cs, the solution can be derived 
by referring to Table 1,

When the parameter m approaches 1, the solitary wave solution can be obtained using 
Table 2,

Furthermore, as the limit of m approaches zero, according to the data shown in Table 2, 
the periodic solution can be expressed as,

By making the corresponding selections from table A, (P = 1, Q = 2m^2−1, F = ds), 
the solution becomes

For the limit as m approaches 1 and m approaches 0, the solitary wave solution and peri-
odic solution exhibit similarities to equations (3.29) and (3.21), respectively, when utilizing 
Tables 1 and 2.

When P =
−1

4
,Q =

m2+1

2
,F = mcn ∓ dn , from Table 1, so the solution can be obtained 

as,

(3.25)

u1,14 = ±

√√√√−6�
(
1 − m2

)
c2
(
1 −

bc2(2−m2)
1+bc2(2−m2)

)

a
sc

(
c
x�

�
−

�c3
(
2 − m2

)

1 + bc2
(
2 − m2

) t
�

�

)

(3.26)
u1,15 = ±

√√√√−6�c2
(
1 −

2bc2

1+2bc2

)

a
tan

(
c
x�

�
−

2�c3

1 + 2bc2
t�

�

)

(3.27)u1,16 = ±

√√√√−6�c2
(
1 −

bc2(2−m2)
1+bc2(2−m2)

)

a
cs

(
c
x�

�
−

�c3
(
2 − m2

)

1 + bc2
(
2 − m2

) t
�

�

)

(3.28)
u1,17 = ±

√√√√−6�c2
(
1 −

bc2

1+bc2

)

a
csch

(
c
x�

�
−

�c3

1 + bc2
t�

�

)

(3.29)
u1,18 = ±

√√√√−6�c2
(
1 −

2bc2

1+2bc2

)

a
cot

(
c
x�

�
−

2�c3

1 + 2bc2
t�

�

)

(3.30)u1,19 = ±

√√√√−6�c2
(
1 −

bc2(2m2−1)
1+bc2(2m2−1)

)

a
ds

[
c
x�

�
−

�c3
(
2m2 − 1

)

1 + bc2
(
2m2 − 1

) t
�

�

]
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As the limit of m approaches 1, according to the data presented in Table 22, the solitary 
wave solution can be expressed as,

Considering P= 1
4
,Q =

−2m2+1

2
,F = ns ∓ cs , from Table 1, the solution can be acquired 

as,

When m approaches 1, according to the information provided in Table 2, the solitary 
wave solution can be expressed as,

For the limit, as m approaches zero, the periodic solution can be obtained as,

Also assigning P = 1−m
2

4
,Q =

m2+1

2
,F = nc ∓ sc , according to the data presented in 

Table 1, the solution can be represented in the following manner,

As the limit of m approaches zero, according to the data provided in Table 2, the peri-
odic solution can be expressed as,

(3.31)

u1,20 = ±

������
3

2
�c2

�
1 −

bc2
�

m2+1

2

�

1+bc2
�

m2+1

2

�
�

a

⎡⎢⎢⎢⎣
mcn

⎛⎜⎜⎜⎝
c
x
�

�
−

�c3
�

m
2+1

2

�

1 + bc2
�

m2+1

2

� t
�

�

⎞⎟⎟⎟⎠
∓ dn

⎛⎜⎜⎜⎝
c
x
�

�
−

�c3
�

m
2+1

2

�

1 + bc2
�

m2+1

2

� t
�

�

⎞⎟⎟⎟⎠

⎤⎥⎥⎥⎦

(3.32)

u1,21 = ±

√√√√ 3

2
�c2

(
1 −

bc2

1+bc2

)

a

[
sech

(
c
x�

�
−

�c3

1 + bc2
t�

�

)
∓ sech

(
c
x�

�
−

�c3

1 + bc2
t�

�

)]

(3.33)

u1,22 = ±

������−
3

2
�c2

�
1 −

bc2
�

−2m2+1

2

�

1+bc2
�

−2m2+1

2

�
�

a

⎡⎢⎢⎢⎣
ns

⎛⎜⎜⎜⎝
c
x
�

�
−

�c3
�

−2m2+1

2

�

1 + bc2
�

−2m2+1

2

�
⎞⎟⎟⎟⎠
∓ cs

⎛⎜⎜⎜⎝
c
x
�

�
−

�c2
�

−2m2+1

2

�

1 + bc2
�

−2m2+1

2

� t
�

�

⎞⎟⎟⎟⎠

⎤⎥⎥⎥⎦

(3.34)

u1,23 = ±

√√√√√−
3

2
�c2

(
1 +

1

2
bc2

1−
1

2
bc2

)

a

[
coth

(
c
x�

�
+

1

2
�c3

1 −
1

2
bc2

t�

�

)
∓ csch

(
c
x�

�
+

1

2
�c3

1 −
1

2
bc2

t�

�

)]

(3.35)

u1,24 = ±

√√√√√−
3

2
�c2

(
1 +

1

2
bc2

1−
1

2
bc2

)

a

[
csc

(
c
x�

�
+

1

2
�c3

1 −
1

2
bc2

t�

�

)
∓ cot

(
c
x�

�
+

1

2
�c3

1 −
1

2
bc2

t�

�

)]

(3.36)

u1,25 = ±

√

√

√

√

√

√

√

√

−3�
(

1−m2
2

)

c2
⎛

⎜

⎜

⎝

1 −
bc2

(

m2+1
2

)

1+bc2
(

m2+1
2

)

⎞

⎟

⎟

⎠

a

⎡

⎢

⎢

⎢

⎣

nc

⎛

⎜

⎜

⎜

⎝

c x
�

�
−

�c3
(

m2+1
2

)

1 + bc2
(

m2+1
2

)

t�
�

⎞

⎟

⎟

⎟

⎠

∓ sc

⎛

⎜

⎜

⎜

⎝

c x
�

�
−

�c3
(

m2+1
2

)

1 + bc2
(

m2+1
2

)

t�
�

⎞

⎟

⎟

⎟

⎠

⎤

⎥

⎥

⎥

⎦
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Considering P = 1
4
, Q =

m2−2

2
,F = ns ∓ ds , the solution can be determined based on the 

data shown in Table 1,

For the case when m tends to 1, according to the data provided in table B, the solution 
for the solitary wave can be expressed as follows.,

Also, regarding P = m
2

4
, Q =

m2−2

2
, F = sn ∓ icn from table A, the solution can be 

stated as,

As the m limit approaches 1, the solitary wave solution can be derived from Table 2,

Also if, P = m
2

4
,Q =

m2−2

2
, F =

sn√
1−m2sn∓cn

 from Table 1, the solution can be expressed 
as,

If the limit of m approaches 1, the solitary wave solution can be derived as,

(3.37)

u1,26 = ±

√√√√√−
3

2
�c2

(
1 −

1

2
bc2

1+
1

2
bc2

)

a

[
sec

(
c
x�

�
−

1

2
�c3

1 +
1

2
bc2

t�

�

)
∓ tan

(
c
x�

�
−

1

2
�c3

1 +
1

2
bc2

t�

�

)]

(3.38)

u1,27 = ±

������−
3

2
�c2

�
1 −

bc2
�

m2−2

2

�

1+bc2
�

m2−2

2

�
�

a

⎡⎢⎢⎢⎣
ns

⎛⎜⎜⎜⎝
c
x
�

�
−

c
3�

�
m

2−2

2

�

1 + bc2
�

m2−2

2

� t
�

�

⎞⎟⎟⎟⎠
∓ ds

⎛⎜⎜⎜⎝
c
x
�

�
−

c
3�

�
m

2−2

2

�

1 + bc2
�

m2−2

2

� t
�

�

⎞⎟⎟⎟⎠

⎤⎥⎥⎥⎦

(3.39)

u1,28 = ±

√√√√√−
3

2
�bc2

(
1 +

1

2
bc2

1−
1

2
bc2

)

a

[
coth

(
c
x�

�
+

1

2
�c3

1 −
1

2
bc2

t�

�

)
∓ csch

(
c
x�

�
+

1

2
�c3

1 −
1

2
bc2

t�

�

)]

(3.40)

u1,29 = ±

√

√

√

√

√

√

√

√

− 3
2 �m

2c2
⎛

⎜

⎜

⎝

1 −
bc2

(

m2−2
2

)

1+bc2
(

m2−2
2

)

⎞

⎟

⎟

⎠

a

⎡

⎢

⎢

⎢

⎣

sn

⎛

⎜

⎜

⎜

⎝

c x
�

�
−

c3�
(

m2−2
2

)

1 + bc2
(

m2−2
2

)

t�
�

⎞

⎟

⎟

⎟

⎠

∓ icn

⎛

⎜

⎜

⎜

⎝

c x
�

�
−

c3�
(

m2−2
2

)

1 + bc2
(

m2−2
2

)

t�
�

⎞

⎟

⎟

⎟

⎠

⎤

⎥

⎥

⎥

⎦

(3.41)

u1,30 = ±

√√√√√−
3

2
�c2

(
1 +

1

2
bc2

1−
1

2
bc2

)

a

[
tanh

(
c
x�

�
+

1

2
�c3

1 −
1

2
bc2

t�

�

)
∓ isech

(
c
x�

�
+

1

2
�c3

1 −
1

2
bc2

t�

�

)]

(3.42)

u1,31 = ±

√

√

√

√

√

√

√

√

− 3
2 �m

2c2
⎛

⎜

⎜

⎝

1 −
bc2

(

m2−2
2

)

1+bc2
(

m2−2
2

)

⎞

⎟

⎟

⎠

a

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

sn
⎛

⎜

⎜

⎝

c x�

�
−

�c3
(

m2−2
2

)

1+bc2
(

m2−2
2

)

t�

�

⎞

⎟

⎟

⎠

√

√

√

√

√1 − m2sn
⎛

⎜

⎜

⎝

c x�
�
−

�c3
(

m2−2
2

)

1+bc2
(

m2−2
2

)

t�
�

⎞

⎟

⎟

⎠

∓ icn
⎛

⎜

⎜

⎝

c x�
�
−

�c3
(

m2−2
2

)

1+bc2
(

m2−2
2

)

t�
�

⎞

⎟

⎟

⎠

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦
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While P = 1
4
, Q =

1−2m2

2
, F = msn ∓ idn , the solution can be expressed as indicated 

in Table 1,

For the limit as m approaches 1, the single wave is identical to the one described in 
Eq. (3.44).

Supposing P = 1
4
, Q =

1−2m2

2
, F =

sn

1∓dn
 , the solution can be determined using the 

information in table A as,

In addition, using Table 2, as a reference m → 1 , the expression for solitary waves 
can be expressed as follows:

The periodic solution can be derived for m → 0 by consulting table B, and it is as 
follows:

Supposing P = m
2

4
, Q =

m2−2

2
, F =

sn

1∓dn
 , from table A, you can figure out the solution 

as,

(3.43)u1,32 = ±

√

√

√

√

√

√

− 3
2 �c

2
(

1 +
1
2 bc

2

1− 1
2 bc

2

)

a

⎡

⎢

⎢

⎢

⎢

⎢

⎣

tanh
(

c x�

�
+

1
2 �c

3

1− 1
2 bc

2
t�

�

)

√

1 − tanh
(

c x�
�
+

1
2 �c

3

1− 1
2 bc

2
t�
�

)

∓ isech
(

c x�
�
+

1
2 �c

3

1− 1
2 bc

2
t�
�

)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(3.44)

u1,33 = ±

√

√

√

√

√

√

√

√

− 3
2 �c

2
⎛

⎜

⎜
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1−2m2
2

)
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2

)

⎞

⎟

⎟

⎠

a

⎡

⎢

⎢

⎢

⎣
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⎛

⎜
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⎜

⎝
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�

�
−
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2
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(
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2

)

t�
�

⎞

⎟

⎟

⎟

⎠
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⎛

⎜

⎜

⎜

⎝

c x
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�c3
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⎟
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⎥
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(3.45)u1,34 = ±

������−
3

2
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�
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2

�

1+bc2
�

1−2m2

2

� t�

�

�

1 ∓ dn

�
c
x�

�
−

�c3
�

1−2m2

2

�

1+bc2
�

1−2m2

2

� t�

�

�

⎤⎥⎥⎥⎥⎥⎦

(3.46)u1,35 = ±
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(3.47)
u1,36 = ±

√√√√√−
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2
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1 −

1

2
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2
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1 +
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When P = 1−m
2

4
,Q =

m2+1

2
, F =

cn

1∓sn
 , the solution can be expressed as indicated in 

Table 1,

If the limit of m approaches zero, the periodic solution can be calculated using the 
information provided in table B.

Supposing P= (1−m
2)2

4
, Q =

m2+1

2
, F =

sn

dn∓cn
 , from Table 1, the solution can be found 

as,

Also, regarding P= m
4

4
, Q =

m2−2

2
, F =

cn√
1−m2∓dn

 , from Table 1, the solution can be 
stated as,

Setting m → 1  by using Table 2, due to this setting,
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(3.49)
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4 � Graphical results

In this section, we explore into the complexities of wave solutions that are derived by the 
Jacobi elliptic function expansion method. In specifically, we apply this method to the 
improved mKdv equation that incorporates conformable derivatives. In order to provide a 
clear and concise illustration of the characteristics and actions of these wave solutions, we 
have carefully chosen particular values for the parameters that are involved. This option 
was made with the intention of displaying a wide variety of soliton wave patterns, which 
are depicted in Figs. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, and 12. The improved mKdV equa-
tion results in wave patterns that are diverse and complex and each figure is a witness to 
the diversity and complexity of these wave patterns. For the purpose of providing a more 
comprehensive perspective, we have utilized both two-dimensional and three-dimensional 
representations together. The surface profiles of the waves are the primary emphasis of the 
two-dimensional plots, whilst the three-dimensional plots add depth and provide a more 
tangible feel of the wave patterns. Additionally, contour plots are given in order to high-
light the gradients and intensities that are present within the wave patterns. This provides a 
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Fig. 1   Two-Dimensional, surface and contour plot for the solution u1,1 for t = 1, a = 1, b = 2, c = 2,

B = 3, m = 0.5, � = 0.5, � = 0.8.

Fig. 2   Two-Dimensional, surface and contour plot for the solution u1,3 for t = 1, a = 1, b = 2, c = 2, 
B = 3, m = 0.5, � = 0.6, � = 0.8.
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Fig. 3   Two-Dimensional, surface and contour plot for the solution u1,7 for t = 1, a = 1, b = 1, c = −1, 
B = 0.5, m = 0.5, � = 0.9, � = 0.1.

Fig. 4   Two-Dimensional, surface and contour plot for the solution u1,11 for t = 1, a = 0.1, b = 100, 
B = 0.5, c = −1, m = 0.5, � = 0.9, � = 0.1.

Fig. 5   Two-Dimensional, surface and contour plot for the solution u1,20 for t = 1, a = 1, b = 1,

B = 0.2, c = −1, m = 0.5, � = 0.8, � = 0.1.B = 0.2, c = −1, m = 0.5, � = 0.8, � = 0.1.

Fig. 6   Two-Dimensional, surface and contour plot for the solution u1,22 for t = 1, a = 1, b = 100, 
B = −0.2, c = −1, m = 0.5, � = 0.9, � = 0.1.
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Fig. 7   Two-Dimensional, surface and contour plot for the solution u1,27 for t = 1, a = 1, b = 1, 
B = −0.2, c = −1, m = 0.5, � = 0.8, � = 0.1.

Fig. 8   Two-Dimensional, surface and contour plot for the solution u1,29 for t = 1, a = 1, b = 1, 
B = −0.2, c = −1, m = 0.5, � = 0.8, � = 0.1.

Fig. 9   Two-Dimensional, surface and contour plot for the solution u1,33 for t = 1, a = 1, b = 1, 
B = −0.2, c = −1, m = 0.5, � = 0.8, � = 0.1.

Fig. 10   Two-Dimensional, surface and contour plot for the solution u1,37 for t = 1, a = 0.1, b = 0.1, 
B = −0.2, c = −1, m = 0.5, � = 0.8, � = 0.1.
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distinct perspective on the wave dynamics. Not only are the graphical representations use-
ful as visual aids, but they also play an important role in validating the theoretical results 
that we had previously derived. We are able to verify the accuracy and dependability of 
the mathematical model as well as the solutions that were obtained by comparing these 
graphical outputs with the theoretical predictions. In Fig. 13, the left side figure represents 
variation of conformable parameter �, of time variable when the parameter � increases the 
amplitude of the solution decreases; the right side in Fig. 13, the middle figure represents 
variation of conformable parameter � , of space variable when the parameter � increases the 
amplitude of the solution increases, and m influences the periodicity and shape of the solu-
tions. As m changes, it affects the waveform’s peaks and troughs, indicating a transition 
from sinusoidal-like waves to sharper, possibly more solitary wave-like structures. As part 
of our effort, we made use of MATLAB, which is well-known for its reliability in math-
ematical computations and visualizations, in order to guarantee that the graphical represen-
tations we presented were accurate and clear. Due to the fact that this programmed is par-
ticularly skilled in charting complicated mathematical functions, it is an excellent option 

Fig. 11   Two-Dimensional, surface and contour plot for the solution u1,40 for t = 1, a = 1, b = 10, 
B = −0.1, c = −3, m = 0.1, � = 0.8, � = 0.1.

Fig. 12   Two-Dimensional, surface and contour plot for the solution u1,40 for t = 1, a = 1, b = 0.1, 
B = −0.5, c = −12, m = 0.9, � = 0.8, � = 0.1.

Fig. 13   u1,40 for t = 1, a = 1, b = 0.1, B = −0.2, c = −1 for various values of �, � , andm.
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for illustrating elaborate wave patterns of solitons that are produced from the improved 
mKdV equation. Due to the fact that this tool is capable of displaying complex mathemati-
cal functions, the decision to employ it was one that was deliberated about. The purpose 
of our research is to bridge the gap between theoretical conceptions and a concrete, visual 
understanding of wave dynamics by utilizing this fusion of theoretical mathematics with 
computational visualization.

5 � Conclusion

Within the scope of this exhaustive investigation, we had thoroughly investigated the use of 
the Jacobi Elliptic Function Expansion Method (JEFE) in order to generate accurate solu-
tions for the improved modified Korteweg-de Vries equation with conformable derivative. 
As a result of our research, we had been able to successfully develop a wide range of solu-
tions. These solutions included soliton, hyperbolic, and trigonometric forms, all of which 
were essential in comprehending the complexity of the equation. An essential component 
of our strategy was the implementation of the Jacobi elliptic function expansion (JEFE), 
in which we made use of a series expansion of degree n in Jacobi elliptic functions. It had 
been demonstrated that this novel approach was exceptionally adaptable, as it had been 
able to produce a wide variety of solutions, ranging from single-function to combined-
function formulations. The effectiveness of the JEFE in producing a wide variety of solu-
tions was especially noteworthy when compared to the effectiveness of other analytical 
methods that were utilized in the field. In order to gain a more in-depth understanding of 
the complexities of these solutions, we utilized MATLAB to plot a variety of surface and 
contour graphs in both two and three dimensions. With the help of this graphical depiction, 
we were able to gain a profound understanding of the dynamic behavior of the solutions 
that we developed. In addition, the results of our inquiry highlighted the extraordinary 
adaptability of the Jacobi elliptic function expansion strategy in the context of solving a 
wide variety of partial differential equations, including those of the conformable deriva-
tive type. It had not only been proved that this method was capable of addressing difficult 
mathematical problems, but it had also made a substantial contribution to the development 
of analytical procedures within the field. In conclusion, the findings of our research demon-
strated that the Jacobi elliptic function expansion approach was a powerful instrument that 
could be utilized in the analytical evaluation of the improved mKdV equation on account 
of its versatility and potency. It was a shining example of how the landscape of mathemati-
cal problem-solving strategies was constantly shifting, notably in the field of partial dif-
ferential equations.

Additionally, we have expressed a strong desire to investigate other structured 
approaches in the future so that we can advance our research. Bifurcation analysis, chaotic 
behaviors, sensitivity analysis, and soliton solutions of a generalized Schrodinger equation 
are some of the methodologies that fall under this category. In addition, we are interested 
in examining the solitary waves of coupled nonlinear Schrodinger equations by means of 
a generalized approach, as well as the periodic and solitary waves of the nonlinear Konno-
Oono Model by means of generalized techniques and a generalized nonlinear Schrodinger 
equation involving mild no locality. In particular, we will be concentrating on analyzing 
the Jacobi elliptic function solutions and the modulation instability brought about by these 
models. The objective of this technique is to derive additional soliton waves of the govern-
ing model, so demonstrating our dedication to enhancing their comprehension and making 
contributions that are original to the field.
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