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Abstract

The goal of this paper is to find exact solutions to the improved modified Korteweg-de
Vries (mKdV) equation with a conformable derivative using the Jacobi elliptic function
expansion method. The improved mKdV equation is a prominent mathematical model
in the realm of nonlinear partial differential equations, with widespread applicability in
diverse scientific and engineering domains. This study leverages the well-known effec-
tiveness of the Jacobi elliptic function expansion method in solving nonlinear differential
equations, specifically focusing on the intricacies of the improved mKdV problem. The
investigation reveals innovative and explicit solutions, providing insight into the dynam-
ics of the related physical processes. This paper provides a comprehensive examination
of these solutions, emphasizing their distinct features and depictions using Jacobi elliptic
functions. These findings are especially advantageous for specialists in the fields of nonlin-
ear science and mathematical physics, providing significant insights into the behavior and
development of nonlinear waves in various physical situations. This work also contributes
to our knowledge of the improved mKdV equation and shows that the Jacobi elliptic func-
tion expansion method is a useful tool for solving complex nonlinear situations. The study
is enhanced with graphical illustrations of various solutions, which further enhance its ana-
lytical complexity.

Keywords Improved mKdV Equation - Conformable derivative - Jacobi elliptic function
expansion method - Exact solutions

1 Introduction

A wide range of scientific and engineering fields place a significant amount of importance
on nonlinear differential equations. These equations stand out due to their intricate inter-
dependencies between variables, which do not follow a linear or proportional relation-
ship. When it comes to accurately modeling, characterizing, and predicting the behavior
of multifaceted and dynamic systems, where linear approaches fall short, their unrivalled
proficiency is the source of their paramount role. These equations are especially impor-
tant in fields such as modeling the climate, biological systems, and complex engineering
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structures. They provide insights that are necessary for both theoretical and practical
advancements, making them particularly important in these areas. Researchers and engi-
neers are able to develop a more profound comprehension of their respective fields through
the use of linear differential equations. These equations capture the unpredictable and fre-
quently chaotic nature of real-world phenomena. In turn, this helps in making decisions
that are more informed, driving innovation, and paving the way for breakthroughs in a vari-
ety of fields. Because of the nuanced portrayal of the environment and phenomena that they
provide, the accuracy and depth of analysis are elevated, and as a result, they play a trans-
formative role in the advancement of knowledge and application within these domains.

Obtaining accurate solutions for fractional nonlinear partial differential equations can
be accomplished through the utilization of a number of various alternative approaches. A
technique that is successful for obtaining both exact and approximation series solutions for
a variety of differential equations is the Laplace residual power series technique, which is
referred to as (Khresat et al. 2023). These solutions can be obtained by using this meth-
odology. This approach is renowned for its simplicity and usefulness. Additionally, the
extended G/G’ strategy, detailed in (Bekir and Giiner 2013; Gepreel and Omran 2012;
Ozkan et al. 2023; Zheng 2012), is another robust approach that produces soliton solu-
tions for space-time fractional equations. Not only that, but there is also a fascinating find-
ing concerning sub linear fractional equations. It has been demonstrated in (Rehdk 2023)
that they are capable of producing solutions that exhibit behavior that is asymptotically
super-linear. This set of solutions is distinguished by a consistent pattern of change, and
the behavior of these solutions can be correctly portrayed through the use of asymptotic
equations. The generation of functions, particularly multivariable power series, is another
method that is worthy of mention. According to (Hwang and Lu 2023), it has been dis-
covered that these functions are quite effective in the process of solving partial difference
equations. Moreover, various other methods, including the fractional sub equation method
(Guo et al. 2012; Lu 2012; Tang et al. 2012; Wen and Zheng 2013; Zhang and Zhang
2011; Zheng and Wen 2013) the Jacobi elliptic function expansion method (Inc and Ergiit
2005; Khan et al. 2022; Zheng 2014) the variational iteration method (Inc 2008), and the
sine—cosine method (Hirota and Satsuma 1981; In¢ and Evans 2004) also noteworthy
in this subject. The area of fractional calculus has a wide range of applications across a
variety of fields, such as engineering, biology, and other social sciences, as illustrated in
(Abdulhameed et al. 2019; Chang et al. 2019; Dubey et al. 2019; Goulart et al. 2019). Not
only are these methodologies capable of solving partial difference equations, but they also
provide vital mathematical techniques for solving fractional nonlinear partial differential
equations. This was noted before in the sentence. A deeper understanding of a wide variety
of different physical scenarios can be achieved through the utilization of these methodolo-
gies. Alquran et al. (2022) presented new topological and non-topological unidirectional-
wave solutions for the modified-mixed KdV equation and bidirectional-wave solutions for
the Benjamin Ono equation, utilizing recent techniques to advance the field. In (Alquran
et al. 2023a), the authors investigated dual-wave solutions to the Kadomtsev—Petviashvili
model with second-order temporal and spatial-temporal dispersion terms. In (Alquran and
Alhami 2022), the authors discussed the analysis of lumps, single-stripe, breather-wave,
and two-wave solutions to the generalized perturbed-KdV equation by means of Hirota’s
bilinear method. For better understanding also see (Alquran 2022, 2023; Alquran et al.
2023b; Eslami and Rezazadeh 2016; Ghanbari 2019; Ghanbari and Baleanu 2020; Ghan-
bari and Gomez-Aguilar 2019a, b; Ghanbari and Kuo 2019; Jaradat and Alquran 2020;
Khater and Ghanbari 2021; Qiao et al. 2022; Rezazadeh 2018; Younas et al. 2023).
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When it comes to solving nonlinear wave equations and other nonlinear phenomena, the
Jacobi elliptic function expansion method is a significant innovation that represents a sub-
stantial advancement. There are a number of advantages and disadvantages associated with
the Jacobi elliptic function approach, which is utilized for the resolution of nonlinear par-
tial differential equations (PDEs). The capacity to produce solutions that are both accurate
and periodic is one of its key characteristics. This ability is essential for comprehending
complex nonlinear dynamics. This technique is especially useful for equations that display
particular symmetries and invariants, since it enables a more in-depth study of the solutions
to be performed. On the other hand, one of its key shortcomings is that it has a restricted
applicability; it might not produce solutions for nonlinear PDEs that are more generic or
complex and do not comply with its particular criteria. When compared to other methods,
such as the inverse scattering transform, the Jacobi elliptic function method may be easier
to apply and require less computational effort. However, it does not possess the general-
ity and resilience that are found in techniques that are more adaptable, such as numerical
simulations. The Jacobi technique excels in offering more explicit analytical solutions for
the equations that fall within its scope, in contrast to other approaches such as the Hirota
bilinear approach, which are capable of handling a wider variety of nonlinear partial dif-
ferential equations. In comparison to the hyperbolic tangent function expansion strategy,
which is more restricted in its scope, this method is renowned for its capacity for diversity.
These answers frequently include solitary wave solutions as well as shock wave solutions
(Sait 2023), which exemplifies the method’s capacity to be applied in a variety of contexts.
Particularly remarkable is the fact that the Jacobi elliptic function expansion approach
incorporates a wide range of different methodologies. Among these are the trial function
method, the general projective Riccati equations method, the first integral method, the sim-
ple equations technique, the F-expansion method, the modified simple equation method,
and the trial function method. Every one of them can be considered a particular instance
or variant of the Jacobi technique from a different perspective. The Jacobi method is an
all-encompassing method, which emphasizes the crucial role it plays in nonlinear analy-
sis. There is a void in the study addressing the application of this method to the improved
mKdV equation with conformable derivative, which is an interesting observation to make.
It has been noted that there has been no considerable examination in this field as of yet,
which indicates that there is a viable avenue for future research. This unknown region
gives a chance to obtain a deeper understanding of the Jacobi elliptic function expansion
approach and to apply it in unexpected circumstances. This could potentially lead to new
discoveries and breakthroughs in the field of nonlinear wave dynamics.

To solve complicated nonlinear PDE problems is the driving force behind this study,
which focuses on the well-known and very versatile Jacobi elliptic function expansion
approach. The exact solutions of the well-known improved mKdV equation, which incor-
porates conformable derivatives, are studied using this approach. A more comprehensive
framework is introduced by conformable derivatives, which allows for a deeper investi-
gation of the behavior of the equation. We use the well-established effectiveness of the
Jacobi elliptic function expansion method to systematically find accurate solutions to diffi-
cult nonlinear PDEs. To fully understand the system under investigation, these answers are
essential. Our goal is to help better understand and apply these complicated mathematical
models in different scientific and engineering contexts by shedding light on the dynamic
nature of their solutions and the intricate characteristics of the improved mKdV equations
with these derivatives. The improved mKdV equation with the conformable derivatives can
be express as:

@ Springer



542 Page 4 of 22 A.Farooq et al.

D:u+au2Dlu+bD:D;Xu+ﬂD;Xu=0, t>0, 0 <a,y <1 (1.1

here a and vy are the parameters describing the order of the conformable derivative.

The rest of the article is organized like this: The relevance of the improved mKdV equa-
tion using conformable derivatives is highlighted in Sect. 2 by providing a brief overview
of the equation. In Sect. 3, the method of Jacobi elliptic function expansion is introduced.
Several graphs depicting the answers are shown in Sect. 4, allowing a direct visual exami-
nation of the different behavior’s displayed by these solutions. In Sect. 5, the paper con-
cludes by discussing the study’s general conclusions. Before moving on to the next section,
we will review some basic features of the conformable derivative, as described in reference
(Khalil et al. 2014), to make sure that all readers understand and can follow along.

Definition Abdeljawad 2015): Let 2 : [0, co] —» R be a function. The @ —th order
conformable derivative of 2 is defined by

A I—a) _
D)) = lin}) (t - ste ) f(t), e>0, ae (0,1).

If A is a— differentiable in some (0, a) and lin()l A@(r) if it does, we characterize
-0+
AD0) = lirrol A@ ().
et

Theorem Abdeljawad (2015): Let « € (0, 1] and suppose f, g is a— differential at point
t > 0. Then, the following are satisfied:

1. D*(6f +yg) = 6D*(f)+yD*(g) Vé,y €eR.

2. D7) = gt Vg eR.

3. D%(y) = 0, for all constant functions f(¢) = y.

4. D" (fg) = fD" (g) + D*(f)g.

D% _ o
s Da<z> _ D)
g 8
. .. L . a i
6. If, in addition, f is differential, then D* (f)(¢) = t e

Theorem Abdeljawad (2015): Assume f,g : (0, c0) > R be a— differentiable functions,
where 0 < a < 1. Let h(t) = f(g(t)). Then h(t) is a — differentiable for all t with t # 0 and
g(t) # 0 we have

D*(h)(1) = D*(f)(g(1)-D*()(1)-g()" "

If t = 0 we have

D*()(0) = lim D*(f )(&()).D*()(0)-g(1)* ™"
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2 Methodology of the Proposed Technique

Step 1: Let us take into account the nonlinear partial differential equation that has been
provided to us, say with two variables.

0% 0% 0%u 0%u
PS8 28 20078 ) .
(” e 3ox” 92 oxr ) @D

Step 2: Changing Eq. (2.1) by using the traveling wave transformation in the sense that

v
X

u=ul), &= w% + 67 2.2)

where ¢ and w, are constants. In order to simplify things, we may rewrite Eq. (2.1) as an
ordinary differential equation of integral order with the help of Eq. (2.2).

F(u " u",..)=0 (2.3)

In addition to this extended indirect approach, the primary objective is to increase the
probability of finding solutions to an auxiliary ordinary differential equation (the first cat-
egory of the parameter Jacobian equation). The goal is to produce many Jacobian ellip-
tic solutions for the specific equation. This is done to accomplish the goal of building
many Jacobian elliptic solutions. The auxiliary equation can be represented pictorially.

2
(F')°(¢&) = PF*(&) + QF* (&) + R 24
here F' = ‘;i;, & = (x,1) and P, Q are real constants. The Eq. 2.4 has solution in Table 1 ,
here i = -1, the jacobian elliptic functions sn& = sn(&,m),cné = cn(€,m), and

dné = dn(&,m,), here m(0 < m < 1) is the modulus.
The Jacobi elliptic functions, as indicated in Table 2, were simplified to trigonometric
and hyperbolic functions by a limiting process as m approaches 1 and 0, respectively.
Consequently, we get many solutions, including periodic, hyperbolic, and trigonometric
solutions, for the given problem. The Jacobi elliptic function expansion method may be
utilized to express u(§) as a finite series of Jacobi elliptic functions.

n

W =Y aF @5)
i=0
where F(&) is the solution of the nonlinear ordinary Eq. (2.4) and n,a;(i=0, 1,2, ...,n) are

constants to be determine later, the n can be determining the highest order linear term

0ﬂ =n+ =1,2,3 2.6
e p, P (2.6)

And the order of highest nonlinear term is

»
0<qu—;> —(q+Dn+p, g=0,1,23,... p=123, ... @7

In Eq. (2.3) by substituting Eq. (2.5) and equating the coefficients of power F to zero,
a system of nonlinear algebraic equations for a_i (where i=0, 1, 2,..., n) may be obtained.
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Table 1 The Eq. (2.4) might have many solutions for the function F(¢) depending on the values chosen for

P, Q,and R
P Q R F
1 ) —(1+m?) sn, cd
2 —m? 2m? —1 1 —m? cn
3 -1 2 — m? m? —1 dn
4 1 —(1=m? m? ns, dc
5 1 —m? 2m? — 1 —m? nc
6 m? —1 2 —m? -1 nd
7 1 —m? 2 —m? 1 sc
8 —m?(1 —m?) 2m? -1 1 sd
9 1 2 —m? F(&) cs
10 1 2m? — 1 m*(1 — m?) —ds
11 = m2+1 _(1_mz)2 men Fdn
4 2 —
12 1 —2m’+1 1 ncFcs
4 2 4
13 1-m? m2+1 1-m? nc F sc
4 2 4
14 1 m=2 mt ns ¥ ds
4 2 4
15 n? m=2 mt snF icn, —————
T 3 2 + V1-m2snFcn
16 : 1=22 ) men F idn, ——
4 2 4 1Fcn
17 m? m>=2 l sn
T 2 4 1Fdn
18 m2=1 m2+1 m2=1 dn
4 2 4 1Fmsn
19 1-m* m2+1 —m’+1 cn
4 ) 4 1Fsn
20 a-m)’ m+1 1 sn
4 2 4 dnFcn
21 mt m=2 1 oo
”n P 4 V1-m2Fdn
Table 2 In the sense of limiting F mo1 m—0 F m—o1 m—0
sense form — 1 and m = 0, the
.tI (z:f:oblelllptlc functions reduce 1 snu tanhu sinu 7 deu 1 secu
' 2 cnu  sechu cosu 8 ncu coshu secu
3 dnu  sechu 1 9 scu sinhu tanu
4 cdu  coshu 1 10 nsudsu cothu cscu
5 sdu  sinhu sinu 11 dsu cschu cotu
6 ndu  coshu 1 12 csu cschu cotu

Solving this system using P, Q, and R values, as provided in Table 1, yields the desired
solution. By using the technique above of combining the data with the auxiliary equation,

it is possible to obtain precise answers for Eq. (2.1).
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3 Exact solutions of improved mKdV equation with conformable
derivatives

In this section, we construct the exact solutions of the space-time improved mKdV equa-
tion by using the Jacobi elliptic function expansion method, the space-time improved
mKdV Eq. (1.1). We obtain a nonlinear ordinary differential equation of integer order by
substituting the wave variable Eq. (2.2) into Eq. (1.1).

du zdu 2 3 d3u

w— +acu"— + (bc‘w + pc’)— =0
E izt ) 5 3.
By equating the highest order nonlinear component with the highest order derivative

term in Eq. (3.1), we deduce that n=1. Consequently, the proposed solution for Eq. (3.1)
takes a simplified form.

u(é) =ag+a,F(&) (3.2)
The differentiation to u w.r.t £ yields

du

% — alF/(f) (33)
and
;Z—Z = a3, F'(&) + @} FA)F(€) + 2a0at FOF (€) 4
dPu 1" 2 / !
e aF"' (&) = a|(6PF“(&)F' (&) + QF'(¢) (3.5)

Putting the values of u(§), ‘;—g, 142;1—;

w(a,F'(&)) + ac(aja, F' (&) + @ FA(E)F (&) + 2apa; F(E)F (£))
+(bPw + ) (a, (6PFA(E)F'(£) + QF'(&)) =0

and %‘ from Eq. 3.2 to 3.5 into Eq. 3.1, we obtain.
(3.6)

.By collecting different power of F'(£), we get the system of algebraic equations as:
FO: wa, + aca(z)a] +a, (bczw + ﬂc3)Q =0,
F' : 2acaya® =0, (3.7)
F? . aca? + a16P(bczw + ﬂc3).

We obtain the coefficients associated with the series shown in Eq. (3.2) by solving the
system above equations.

ag=0 (3.8)

a = + [-6PC(Z’2’V + ﬂc)’ (39)

and
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_ =B

Y Tr b0 (3.10)

By employing the approach above to address the problem and utilizing the value pro-
vided in Eq. (2.3), we successfully derived the precise answer for Eq. (1.1).

_ . _ bc2Q
"=i\J 6ﬁP‘2(1 1+hczQ>F<cx_y_ﬂﬁ> 3.11)

a y  1+bc?Q a

When P=m?,Q=—(1+m?),R=1,and F = sn from Table 1, Thus

_6ﬂm2c2<1+ 1:251212)2 ) , 1)
PR ) o X CPUF) ) (Ga)
’ a 4 1—bc2(1+m2) a

Taking into account m —1 from Table 2, the solution for the solitary wave can be found
by using the following:

—6ﬁc2<1+ Ebcz > ’ 35 L«
Uyp = i\J 120 tanh <cx— + Mr—) G.13)
’ 14

When P=m?,Q=—(1+m?),R=1,and F = cd can be deduced from Table 1. The
solution can be evaluated as:

be2(1+m?)
¢—6ﬂm202<1+m> d( x  _Cp+m) r“) (3.14)
cay\c—+ —————~— .
Y

a 1—bc2(1+m?) «

M1,3 = *

As the limit of m approaches 1 from Table 2, the solitary wave solution may be
observed,

—6ﬁcz<l + ﬂ) 3

1-2b¢2 X 2c°f © (3.15)
=+ hlc—+ —— ’
“14 \J a €08 <C y 1=-2bc%2a >
Considering P = —m?,Q =2m? -1, and F = cn from Table 1, the solution can be

acquired as,
bc2(2m2—1)
J o (1= 5Bm) (o pPni=1) (3.16)
, a Y 1+b02(2m2_1) *

Moreover, if the limit of m approaches 1 according to Table 2, the solution for the soli-
tary wave of Equation (1.1) can be expressed as follows:

(3.17)
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Setting P=-1,0=2— m?, and F = dn from Table 1, so

be2(2-m?)
6ﬂC2<l - 1+b62(27m2)>dn Cx_}' B ﬂc3(2—m2) ﬁ (318)
a Y 14bc2(2-m?) @

U, ===

When examining the data in Table B for the limit as m approaches 1, it becomes evi-
dent that this solution resembles the single wave described in Eq. 3.17.

For choices P = 1,0 = —(1 +m?) and F = ns, from Table 1, in this way the solution
is found as:

—6pc2(1 4 Lol :
_. fc < l—b02(1+m2)>ns Cx_y N Mﬁ (3.19)
a 1—bc2(1+m?) @

For choices m — 1 the solitary wave solution can be evaluated as,

x7
c—+——=

Ug ==
1.9 y 1-=-2bc% a

a

—6ﬂc2(l + Lﬂ) 3 g
—2bc th( 2pc ¢ > (3.20)

As the limit of m approaches zero, the periodic solution can be derived by utilizing
Table 2,

_6ﬂ02<1 + fcz.z ) y 3 L«
Upo == — T e (cx_ + _be 1 > (3.21)

a y 1—bc a

For selecting P =1, 0 = —(1 + mz) and F = dc, from Table 1, in this way the solu-
tion can be determined as,

be?(14m?)
~6pc? (1 + ks ) ey
U = id [-be (1) dc Cx_r + Mt_ (3.22)
’ a 14 1—bc2(1+m2) a

The periodic solution can be obtained as the limit of m approaches zero.,

—6pc2( 1+ fczz 5 .
U = \J ch@i + Lt_) (3.23)

a y 1-bcta

Assigning P =1 —m?,Q = 2m? — 1, and F = nc, from table A, so the solution can be
found as,

U3
a

be?(2m?-1
+J —6ﬁ02(1 - m2) <1 - _1+hc(2(2m2—)1)> v ﬂC3<2m2 _ 1) 1
= ne(lc=- ————
B v 14b32(2m?-1) @
(3.24)

In the context of m approaching zero, concerning Table 2, the solution can be deter-
mined as in Eq. 3.23.
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Regarding the information found in Table A’s P =1 — m"2, Q = 2 — m"2, and F = sc,
the solution can be written as,

bc2(2—m?
_6ﬁ(1 - m2)c2<1 - —1+bc(2(2—m)2)> o ﬁc3(2 _mz) p
scflc=-——————
a 4 1+bcz(2—m2) a
(3.25)

Furthermore, as m approaches zero, the periodic solution can be obtained according to
Table 2,

Upjg ==

Ups == M~ T2
a

_ 0 _ _2be?
6pc (1 1+2bc? )t x7 28 (3.26)
a
Yy  1+42bc%a

Assuming the given values P = 1, Q = 2 — m”"2, and F = cs, the solution can be derived
by referring to Table 1,

bcz(Z—mz)
~6pe2(1 - —H,,Cz(z_,ﬂ))m P AT
a 4 l+bc2(2—m2) a

Upje ==

When the parameter m approaches 1, the solitary wave solution can be obtained using
Table 2,

U ==

—6pc2(1- 1) .
1+bc? csch( X pc ¢ > (3.28)

o — L
a y 1+4+bc?a

Furthermore, as the limit of m approaches zero, according to the data shown in Table 2,
the periodic solution can be expressed as,

_ ) __2bc?
6pc (1 1+2hc2)cot<cx_7 B 24¢3 t") (3.29)
a

u =+ —
L18 y 1+2bca

By making the corresponding selections from table A, (P = 1, Q = 2m"2-1, F = ds),
the solution becomes

—6pc2(1 - bcz(Zmz—l)
u1,19=i\J ﬂC( 1+bc2(2mz_1)>dslcx_y Mﬁ] (3.30)

a Y 1+b32(2m?-1)

For the limit as m approaches 1 and m approaches 0, the solitary wave solution and peri-
odic solution exhibit similarities to equations (3.29) and (3.21), respectively, when utilizing
Tables 1 and 2. ,

When P = _Tl, 0= %ﬂ, F = mcn F dn, from Table 1, so the solution can be obtained
as,
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1 1
X! ﬂc<m+) I d X ﬁc<m+) 1
Fdnlc— - ————

men|c— — ——————————— —
V4 1+bcz(m2+l> a Y 1+bcz(m~+l) a
2 2
(3.31)

As the limit of m approaches 1, according to the data presented in Table 22, the solitary
wave solution can be expressed as,

pc 1 ol X pcc 1=
sec cC— — —_
1+bc? a i y 1+bcta

(3.32)
Considering P= i 0= _ZmTZH, F = ns ¥ cs, from Table 1, the solution can be acquired
as,
3
—'ﬂcz(l - o —2mP41
2 ﬁC s a
Uppp = * iCSCX_Y_MI_

Y l+bcz(’2+:“) @
(3.33)

When m approaches 1, according to the information provided in Table 2, the solitary
wave solution can be expressed as,

l c2
_3pc2
2ﬁC (1 + 1- Ib 2) ¥ lﬂCj ta x‘y %ﬂc3 P
Ujsy =+ coth| c— + ——— Fosch| c— + ————
’ vl Y 1

1 1
a 1y a Ly a
2 2

(3.34)

[N]

For the limit, as m approaches zero, the periodic solution can be obtained as,

3802 1 %hcz
_Eﬂc + 1—%bcz ¥ %ﬂCS P X’ %ﬂ()s P
Upgy ==x CSC C—+—1— F cot C—+—l—
a Y 1-lba r1-1b2 @

(3.35)
—m? 2 . .
Also assigning P = le,Q = '"TH,F = nc F sc, according to the data presented in
Table 1, the solution can be represented in the following manner,
()ei- 22
-3p( = )erf1 - 3 w2 2
IMFZ(MTH) ¥ ﬂcS(Tﬂ) l‘" ¥ ﬂcz(TH> 1
Uyps = =+ nefe— - —————— iscc————
a v 1+bc2('“7“)” Y 1+bc2(’" )"’
(3.36)

As the limit of m approaches zero, according to the data provided in Table 2, the peri-
odic solution can be expressed as,
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1pe2

_3g2fq -2
2ﬁC <1 1+%b(,‘2) X7 %ﬁc3 1 X7 %ﬁCB P
Uy e = sec| c— - ——F—= | Ftan| c—~ - ——F——
a v o1+ lpca 71+ lbea

(3.37)
, F = ns ¥ ds, the solution can be determined based on the

H+

Considering P = i, 0=
data shown in Table 1,

o1 =2
—28¢ _z 2 2_
1erc( 2) X7 Csﬂ(¥) 1 X7 63ﬂ<mT2> I
Uy = % nsfc— - ————— |Fds|c— - ——F— —
' a 4 1+bc2(’ﬁ)“ v 1+bc2( 2)“
2 2
(3.38)

For the case when m tends to 1, according to the data provided in table B, the solution
for the solitary wave can be expressed as follows.,

2
—=pbc*( 1+
ﬂ ¢ ( 1- ib’) X7 %ﬂ()3 @\ _ X7 %ﬂCS s
Ujpg = £ coth c7+—_ ¥ csch 6.7_,_—_

a 1—%1)020’ 1—%17020‘
(3.39)
Also, regarding P = mTZ, 0= # F = sn Ficn from table A, the solution can be

stated as,
pe2 (M2
_%ﬂmzcz - <—222 3 me=2 ; me=2
Hbcz<mT) X! ﬂ( ) X! ﬂ( )
U = % snjc— — Ficnlc— —

a 4 1+bc‘2("l 2>a 4 1+bc‘2("l 2)(1

(3.40)

As the m limit approaches 1, the solitary wave solution can be derived from Table 2,

3ﬂ 201+ Flad 1 1

_35. 27

2 1=2bc? X7 Eﬁ(—'} [" x7 Eﬂc3 I

Upzp=\| ———— = |tanh| c— + ———— Fisech| c— + ————
’ a roo1- —bc2 7 1- Ebc2 o

(3.41)
Also if, P = "7'2, 0= '"272, F = \/1S—— from Table 1, the solution can be expressed
m=sn¥cn

as,

a g3 ((m2=2 13 )
2 X “_ . X 2 [
1_’”5”5———2 = |Ficn|c— - —F—5—*—
Y 1+b(‘2("122) « ¥ 1+bc2(’"2*2) «

If the limit of m approaches 1, the solitary wave solution can be derived as,
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1,3
y 5B’
tanh( c> + 2—5
7 1-5bc2 @

L ge3 1 5e3
7 3 Pe . 4 3 b g
=+ 21 2 ) sisech( ¢ + 2] =
4 1-5bc2 @ 14 1-5bc2 @

Uz ==+

(3.43)

While P = i, 0= l_i"’ F = msn ¥ idn, the solution can be expressed as indicated
in Table 1,
—3pc2|1 - ﬁ
U (o ) ) (e o)
U3 = - msn 67_1+b62<ﬂ); Fidn 67_1+bcz<ﬂ);
2 2
(3.44)

For the limit as m approaches 1, the single wave is identical to the one described in
Eq. (3.44).

Supposing P = 1 0=
information in table A as,

L F =

sn
1xdn’

o2 1-2m2
300 ch(%) x7 ( s )
-2 1 - ———4~ sn| ¢ — 4~
2 1+bc2( =n ) v 1+bc2( ) a
Upgy =+ : (3.45)

a , ﬂc3(l—2m ) .
l¥dn[ & -—2/ 12
y 1+bc2< "i"’z) a

In addition, using Table 2, as a reference m — 1, the expression for solitary waves
can be expressed as follows:

1,2 1p3
350 5170 X B e
—=pc 1 tanh [ c= —_— -
2‘6 ( + l—ébc2 y + 1—%/7(‘2 a
a v, 38
1Fsech( ¢ + 27-C
y I—Ebc2 a

The periodic solution can be derived for m — 0 by consulting table B, and it is as
follows:

(3.46)

——ﬂ()2 b02 |
e L (3.47)
Uy 36 =% sinf ¢— — ————
a Y 1+ Ebcz a
Supposing P = %, 0= m22_2, F= ls" from table A, you can figure out the solution

as,
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m2— m?-2
BT Lo CE) Y e ) e
2 1+bc2(#) ¥ 1+bc2(#) a
U =+ 2 (3.48)
’ a 3 m2-2
_ a (")
1¥dn| c= - =
Y Itbe (T) a
o 2 . . L .
When P = 1Tm,Q = m2+1, F = 1‘_';, the solution can be expressed as indicated in
—
Table 1,
1712 Vﬂz
1-m? 2 bcz(Tﬂ) X7 ﬂca(Tﬂ) 1«
3= )pe| 1 - —F+ en| c= — —22 L
2 T+be? (52 ) v b () @
u ==+
1,38 = = a 3 m24L
1x xr pe ( 2 ) 1
Fsn| & - —3LE5
7 1+hc2(%) a
(3.49)

If the limit of m approaches zero, the periodic solution can be calculated using the

information provided in table B.
1, 5 3
3 ~bc y ~pc’ e
—2pc 1 - = cos| ¢~ — 2—==<
2 1+Ebcz b4 1+§hc~ a
Uz =+ P . (3.50)
1 Fsin( X - ELaa
Y l+%bc2 a

S

2
mil g "m, from Table 1, the solution can be found

he P U=’ 5
Supposing P="——, 0 = = =
as,
_3pasm2 o f "C(Tﬂ) sl ¢ 2 —
2 T+ (21 v
Upg =% ™
a d x7 ﬁﬁ(#) I —_ XY ﬂc}(mT) I
nfcXf-—22 " )Fxen[ct-—2 2%
T () @ T ()«
(.51)
4 2_ N .
Also, regarding P= mT, 0= mz I F= 1 ‘"Z , from Table 1, the solution can be
—m-Fdn
stated as,
— le,_
ol ) o),
= b\ 1= —5 el e = — Ny
1+ch<7) 7 1+hc2( . ) a
Uy == P
m2-2
”_ v (") .
1 —m?Fdn| c= — v
v 1+b(:2(m7*) a
(3.52)

Setting m — 1 by using Table 2, due to this setting,
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Fig.1 Two-Dimensional, surface and contour plot for the solution u; fort = 1,a = 1,b = 2, ¢ = 2,
B=3 m=05y=05 a=038.

Fig.2 Two-Dimensional, surface and contour plot for the solution uj; fort=1,a=1,b=2,c¢c =2,
B=3 m=051y=06,a =08.

112 1g.3
3402 2be X, 38 s
> Pc <1 + 1_%1762) sech(cy + e a)
Uiy =% (3.53)

a 7 Lge3 1
— X 2

sech| c=— + -

+ y 1-1bc? a

4 Graphical results

In this section, we explore into the complexities of wave solutions that are derived by the
Jacobi elliptic function expansion method. In specifically, we apply this method to the
improved mKdv equation that incorporates conformable derivatives. In order to provide a
clear and concise illustration of the characteristics and actions of these wave solutions, we
have carefully chosen particular values for the parameters that are involved. This option
was made with the intention of displaying a wide variety of soliton wave patterns, which
are depicted in Figs. 1, 2, 3,4, 5,6,7,8,9, 10, 11, and 12. The improved mKdV equa-
tion results in wave patterns that are diverse and complex and each figure is a witness to
the diversity and complexity of these wave patterns. For the purpose of providing a more
comprehensive perspective, we have utilized both two-dimensional and three-dimensional
representations together. The surface profiles of the waves are the primary emphasis of the
two-dimensional plots, whilst the three-dimensional plots add depth and provide a more
tangible feel of the wave patterns. Additionally, contour plots are given in order to high-
light the gradients and intensities that are present within the wave patterns. This provides a
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Fig.3 Two-Dimensional, surface and contour plot for the solution u, ; for ¢ =
B =05 m=05y =09 a=0.1

Fig.4 Two-Dimensional, surface and contour plot for the
B=05 c=-1,m=05,y =09,a =0.1.
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Fig.5 Two-Dimensional, surface and contour plot for the solution Uy 50 for t=1,a=1, b =1,
B=02 ¢c=-1,m=05y=08 a=01B=02, ¢c=-1,m=05,y =08, « =0.1.
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Fig.6 Two-Dimensional, surface and contour plot for the solution
B=-02 ¢c=-1,m=05 y =09, a =0.1.
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03

Fig.7 Two-Dimensional, surface and contour plot for the solution u;,; for t =1, a=1,b =1

B=-02 ¢c=-1,m=05 y =08, a =0.1.

Fig.8 Two-Dimensional, surface and contour plot for the solution u;, for t =1, a =1, b =1

B=-02 ¢c=-1,m=05 y =08, a =0.1.

Fig.9 Two-Dimensional, surface and contour plot for the solution uj 33 for t=1,a=1,b
B=-02 ¢c=-1,m=05 y =08, a =0.1.

Fig. 10 Two-Dimensional, surface and contour plot for the solution U 37 fort =1, a=0.1, b = 0.1,

B=-02 ¢c=-1,m=05 y =08, a =0.1.
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Fig.11 Two-Dimensional, surface and contour plot for the solution u; 4y for t = 1, a = 1, b = 10,

B=-01 ¢c=-3, m=01y =08, a =0.1.

Fig. 12 Two-Dimensional, surface and contour plot for the solution Uy 49 fort=1,a=1,b = 0.1,
B=-05 ¢c=-12, m=09, y =08, « = 0.1.

Fig.13 u,yofort =1, a =1, b = 0.1, B = -0.2, ¢ = —1forvarious values of , y, and m.

distinct perspective on the wave dynamics. Not only are the graphical representations use-
ful as visual aids, but they also play an important role in validating the theoretical results
that we had previously derived. We are able to verify the accuracy and dependability of
the mathematical model as well as the solutions that were obtained by comparing these
graphical outputs with the theoretical predictions. In Fig. 13, the left side figure represents
variation of conformable parameter a, of time variable when the parameter a increases the
amplitude of the solution decreases; the right side in Fig. 13, the middle figure represents
variation of conformable parameter y, of space variable when the parameter y increases the
amplitude of the solution increases, and m influences the periodicity and shape of the solu-
tions. As m changes, it affects the waveform’s peaks and troughs, indicating a transition
from sinusoidal-like waves to sharper, possibly more solitary wave-like structures. As part
of our effort, we made use of MATLAB, which is well-known for its reliability in math-
ematical computations and visualizations, in order to guarantee that the graphical represen-
tations we presented were accurate and clear. Due to the fact that this programmed is par-
ticularly skilled in charting complicated mathematical functions, it is an excellent option
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for illustrating elaborate wave patterns of solitons that are produced from the improved
mKdV equation. Due to the fact that this tool is capable of displaying complex mathemati-
cal functions, the decision to employ it was one that was deliberated about. The purpose
of our research is to bridge the gap between theoretical conceptions and a concrete, visual
understanding of wave dynamics by utilizing this fusion of theoretical mathematics with
computational visualization.

5 Conclusion

Within the scope of this exhaustive investigation, we had thoroughly investigated the use of
the Jacobi Elliptic Function Expansion Method (JEFE) in order to generate accurate solu-
tions for the improved modified Korteweg-de Vries equation with conformable derivative.
As a result of our research, we had been able to successfully develop a wide range of solu-
tions. These solutions included soliton, hyperbolic, and trigonometric forms, all of which
were essential in comprehending the complexity of the equation. An essential component
of our strategy was the implementation of the Jacobi elliptic function expansion (JEFE),
in which we made use of a series expansion of degree n in Jacobi elliptic functions. It had
been demonstrated that this novel approach was exceptionally adaptable, as it had been
able to produce a wide variety of solutions, ranging from single-function to combined-
function formulations. The effectiveness of the JEFE in producing a wide variety of solu-
tions was especially noteworthy when compared to the effectiveness of other analytical
methods that were utilized in the field. In order to gain a more in-depth understanding of
the complexities of these solutions, we utilized MATLAB to plot a variety of surface and
contour graphs in both two and three dimensions. With the help of this graphical depiction,
we were able to gain a profound understanding of the dynamic behavior of the solutions
that we developed. In addition, the results of our inquiry highlighted the extraordinary
adaptability of the Jacobi elliptic function expansion strategy in the context of solving a
wide variety of partial differential equations, including those of the conformable deriva-
tive type. It had not only been proved that this method was capable of addressing difficult
mathematical problems, but it had also made a substantial contribution to the development
of analytical procedures within the field. In conclusion, the findings of our research demon-
strated that the Jacobi elliptic function expansion approach was a powerful instrument that
could be utilized in the analytical evaluation of the improved mKdV equation on account
of its versatility and potency. It was a shining example of how the landscape of mathemati-
cal problem-solving strategies was constantly shifting, notably in the field of partial dif-
ferential equations.

Additionally, we have expressed a strong desire to investigate other structured
approaches in the future so that we can advance our research. Bifurcation analysis, chaotic
behaviors, sensitivity analysis, and soliton solutions of a generalized Schrodinger equation
are some of the methodologies that fall under this category. In addition, we are interested
in examining the solitary waves of coupled nonlinear Schrodinger equations by means of
a generalized approach, as well as the periodic and solitary waves of the nonlinear Konno-
Oono Model by means of generalized techniques and a generalized nonlinear Schrodinger
equation involving mild no locality. In particular, we will be concentrating on analyzing
the Jacobi elliptic function solutions and the modulation instability brought about by these
models. The objective of this technique is to derive additional soliton waves of the govern-
ing model, so demonstrating our dedication to enhancing their comprehension and making
contributions that are original to the field.
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