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Abstract Abundant exact interaction solutions, including lump-soliton, lump-
kink, and lump-periodic solutions, are computed for the Hirota-Satsuma-Ito
equation in (2+1)-dimensions, through conducting symbolic computations with
Maple. The basic starting point is a Hirota bilinear form of the Hirota-Satsuma-
Ito equation. A few three-dimensional plots and contour plots of three special
presented solutions are made to shed light on the characteristic of interaction
solutions.
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1 Introduction

In the classical theory of differential equations, the main aim of Cauchy prob-
lems is to determine the existence of a solution for a differential equation, which
satisfies given initial data. Laplace’s method aims to solve Cauchy problems
for linear ordinary differential equations, and the Fourier transform method,
for linear partial differential equations. In modern soliton theory, the isomon-
odromic and inverse scattering transform methods have been introduced for
solving Cauchy problems for nonlinear ordinary and partial differential equa-
tions [1,6,41].

Usually, only constant-coefficient and linear differential equations are solv-
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able explicitly, and it is extremely difficult to determine exact solutions to
variable-coefficient or nonlinear differential equations. Nevertheless, the Hirota
bilinear method provides an efficient approach to soliton solutions [2,10]. Soli-
tons are a kind of analytic solutions exponentially localized, historically found
for nonlinear integrable equations. Let a polynomial P determine a Hirota
bilinear form

P (Dx, Dy, Dt)f · f = 0,

where Dx, Dy, and Dt are Hirota’s bilinear derivatives [10], for a given partial
differential equation with a dependent variable u = u(x, y, t). Within the Hirota
bilinear formulation, soliton solutions can often be determined through

u = 2(log f)xx or u = 2(log f)x, f =
∑
µ=0,1

exp

( N∑
i=1

µiξi +
∑
i<j

µiµjaij

)
,

where
∑

µ=0,1 denotes the sum over all possibilities for µ1, µ2, . . . , µN taking
either 0 or 1, and the wave variables and the phase shifts are given by

ξi = kix+ liy − ωit+ ξi,0, 1 6 i 6 N,

and

eaij = −P (ki − kj , li − lj , ωj − ωi)
P (ki + kj , li + lj , ωj + ωi)

, 1 6 i < j 6 N,

with ki, li, and ωi satisfying the corresponding dispersion relation and ξi,0 being
arbitrary translation shifts.

It is shown that there exists another kind of interesting analytic solutions
called lumps, originated from solving soliton equations in (2 + 1)-dimensions
(see, e.g., [37,38,43]). Lumps are a class of rational analytic function solutions
that are localized in all directions in space. Taking long wave limits of N -
soliton solutions can generate special lumps [42]. Positon and complexiton
solutions add valuable insights into the diversity of exact solutions to nonlinear
integrable equations [22,47]. Recent studies also tell that there exist interaction
solutions (see, e.g., [36]) between two different kinds of solutions to integrable
equations. Particularly, integrable equations in (2 + 1)-dimensions exhibit the
remarkable richness of interaction solutions (see, e.g., [35]), which can be used to
describe various wave phenomena in sciences. The KP I equation possesses lump
solutions [24], among which are special ones generated from soliton solutions
[39]. Other integrable equations which possess lump solutions include the three-
dimensional three-wave resonant interaction [13], the BKP equation [7,49], the
Davey-Stewartson equation II [42], the Ishimori-I equation [12], and the KP
equation with a self-consistent source [54]. The most important step in getting
lumps is to determine positive quadratic function solutions to bilinear equations
[37], based on which some general analyses on lumps were made (see, e.g., [37]
for Hirota bilinear equations and [38] for generalized bilinear equations).
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In this paper, we would like to consider the Hirota-Satsuma-Ito (HSI) equa-
tion in (2 + 1)-dimensions. It is known that the Hirota-Satsuma shallow water
wave equation [10]

ut = uxxt + 3uut − 3uxvt − ux, vx = −u, (1)

has a bilinear form
(DtD

3
x −DtDx −D2

x)f · f = 0, (2)

under the logarithmic transformation u = 2(log f)xx. An integrable (2 + 1)-
dimensional extension of the Hirota-Satsuma equation reads [9]:

wt = uxxt + 3uut − 3uxvt + ux, wx = −uy, vx = −u, (3)

and its derivative form, called the HSI equation in (2 + 1)-dimensions and
passing the three-soliton test [9],

P (u) = uxx + uty + 3(utux)x + utxxx = 0, (4)

has a bilinear form under the logarithmic transformation u = 2(log f)x:

B(f) = (DtD
3
x +DtDy +D2

x)f · f = 0. (5)

Actually, under u = 2(log f)x, we have the relation P (u) = (B(f)/f2)x.
This paper aims to search for interaction solutions including lump-soliton,

lump-kink, and lump-periodic solutions to the HSI equation in (2+1)-dimensions
(4), through symbolic computations with Maple. The Hirota bilinear form is
the starting point for our search (see, e.g., [21,33,37,38,62] for other equations).
For three special presented solutions, a few three-dimensional plots and contour
plots will be made via the Maple plot tool, to shed light on the characteristic of
interaction solutions. A few concluding remarks will be given in the last section.

2 Interaction solutions

A search for positive quadratic solutions to the bilinear equation (5) generates
a class of lump solutions to the HSI equation in (2 + 1)-dimensions (4):

u = 2(log f)x, f = (a1x+a2y+a3t+a4)
2 + (a5x+a6y+a7t+a8)

2 +a9, (6)

where 

a2 = −a
2
1a3 + 2a1a5a7 − a3a25

a23 + a27
,

a6 =
a21a7 − 2a1a3a5 − a25a7

a23 + a27
,

a9 = −3(a21 + a25)(a
2
3 + a27)(a1a3 + a5a7)

(a1a7 − a3a5)2
,

(7)
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and all other ai’s are arbitrary. It is easy to see that

a1a6 − a2a5 =
(a21 + a25)(a1a7 − a3a5)

a23 + a27
, (8)

and thus, the conditions of a1a3 + a5a7 < 0 and a1a7 − a3a5 6= 0 guarantee
that u = 2(log f)xx will present lump solutions to the HSI equation in (2 + 1)-
dimensions (4).

In what follows, we would like to compute interaction solutions between
lumps and another kind of exact solutions, including solitons, kinks, and pe-
riodic solutions. To begin with, suppose that the wave variables are defined
by 

ξ1 = a1x+ a2y + a3t+ a4,

ξ2 = a5x+ a6y + a7t+ a8,

ξ3 = a9x+ a10y + a11t+ a12,

(9)

and adopt an ansatz
f = ξ21 + ξ22 + g(ξ3) + a13, (10)

where ai, 1 6 i 6 13, are constant parameters, and g is a given test function.
We will only study three special kinds of lump interactions with homoclinic,
heteroclinic, and periodic (sinusoidal and cosinusoidal) test functions.

2.1 Lump-soliton solutions

If we take a choice with a hyperbolic test function

f = ξ21 + ξ22 + cosh(ξ3) + a13, (11)

then upon setting a10 = 0, we can have the following two solutions for the
parameters: {

a1 = ba5, a2 = −ba5a29, a3 = 0, a6 = a5a
2
9,

a7 =
2a5
a29

, a10 = 0, a11 = − 1

a9
, a13 = −32a45 − a49

4a25a
2
9

}
, (12)

where b2 − 3 = 0, and{
a1 = −ba5, a2 = 2ba5a

2
9, a3 =

a5
3ba29

, a6 = 0,

a7 =
a5
a29
, a10 = 0, a11 = − 1

a9
, a13 = −32a45 − 9a49

12a25a
2
9

}
, (13)

where 3b2 − 1 = 0.
If we take a choice with another hyperbolic test function

f = ξ21 + ξ22 + sinh(ξ3) + a13, (14)
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then

a13 = −32a45 + a49
4a25a

2
9

or a13 = −32a45 + 9a49
12a25a

2
9

, (15)

and all other parameters do not change. This set of parameters generates a
class of singular interaction solutions to the HSI equation in (2 + 1)-dimensions
(4) through u = 2(log f)x.

For a special case of the first solution (12) with

a4 = 1, a5 = 1, a8 = −1, a9 = 3, a12 = 2,

three three-dimensional plots and contour plots of the corresponding interaction
solution are made via Maple plot tools, to shed light on the characteristic of
interaction solutions, in Figure 1.

Figure 1: Profiles of u when t = 0, 50, 100: 3d plots (top) and contour plots (bottom)

2.2 Lump-kink solutions

If we take a choice with an exponential test function

f = ξ21 + ξ22 + eξ3 + a13, (16)

then we can have the following two solutions for the parameters:{
a1 =

3

2
a7a

2
9, a2 = −3

2
a5a

2
9, a3 = −2a5

3a29
,

a6 =
9

4
a7a

4
9, a10 =

1

2
a39, a11 = − 2

3a9
, a13 = 0

}
, (17)
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and {
a2 =

a1(4a
2
1 − 9a27a

4
9)

6a27a
2
9

, a3 = 0, a5 = −4a21 − 9a27a
4
9

12a7a29
,

a6 = −16a41 − 216a21a
2
7a

4
9 + 81a47a

8
9

144a37a
4
9

,

a10 =
4a21 − 3a27a

4
9

12a27a9
, a11 = − 12a27a

3
9

4a21 + 9a27a
4
9

,

a13 =
(4a21 − 9a27a

4
9)(16a41 + 72a21a

2
7a

4
9 + 81a47a

8
9)

576a21a
2
7a

6
9

}
. (18)

For a special case of the second solution (18) with

a1 = 2, a4 = 1, a7 = −1, a8 = −1, a9 = 1, a12 = 2,

three three-dimensional plots and contour plots of the corresponding interaction
solution are made via Maple plot tools, to shed light on the characteristic of
interaction solutions, in Figure 2.

Figure 2: Profiles of u when t = 0, 3, 5: 3d plots (top) and contour plots (bottom)

2.3 Lump-periodic solutions

If we take a choice with a trigonometric test function

f = ξ21 + ξ22 + g(ξ3) + a13, g = sin or cos, (19)
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then upon setting a10 = 0, we can have the following two solutions for the
parameters: {

a1 = ba5, a2 = ba5a
2
9, a3 = 0, a6 = −a5a29,

a7 = −2a5
a29

, a10 = 0, a11 =
1

a9
, a13 =

32a45 − a49
4a25a

2
9

}
, (20)

where b2 − 3 = 0, and{
a1 = ba5, a2 = 2ba5a

2
9, a3 =

a5
3ba29

, a6 = 0,

a7 = −a5
a29
, a10 = 0, a11 =

1

a9
, a13 =

32a45 − 9a49
12a25a

2
9

}
, (21)

where 3b2 − 1 = 0.
For a special case of the first solution (20) with

a5 = −1, a4 = −1, a8 = −1, a9 = 1, a12 = −2, g = sin,

three three-dimensional plots and contour plots of the corresponding interaction
solution are made via Maple plot tools, to shed light on the characteristic of
interaction solutions, in Figure 3.

Figure 3: Profiles of u when t = 0, 3, 5: 3d plots (top) and contour plots (bottom)
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All the interaction solutions generated above provide a valuable supplement
to the existing theories on soliton solutions and dromion-type solutions, devel-
oped through powerful existing techniques including the Hirota perturbation
approach, the Riemann-Hilbert approach, symmetry reductions, and symme-
try constraints (see, e.g., [4,5,15–18,20,27,46,61]).

3 Concluding remarks

We have studied the (2 + 1)-dimensional Hirota-Satsuma-Ito equation to ex-
plore diverse interaction solutions, through symbolic computations with Maple.
The results enrich the theory of solitons, providing a new example of (2 + 1)-
dimensional nonlinear integrable equations, which possess abundant interaction
solutions. Three-dimensional plots and contour plots of the three specially cho-
sen interaction solutions were made by using the plot tool in Maple.

On one hand, recent studies show that many nonintegrable equations possess
lump solutions, which include (2 + 1)-dimensional generalized KP, BKP, KP-
Boussinesq, Sawada-Kotera, and Bogoyavlensky-Konopelchenko equations (see,
e.g., [3,19,31,33,34,40,55,56,58]). Diversity of lump solutions supplements exact
solutions generated from different kinds of combinations (see, e.g., [32,45,48]),
and yields the corresponding Lie-Bäcklund symmetries, which can be used to
determine conservation laws by symmetries and adjoint symmetries [11,23,26].
On the other hand, some other studies exhibit diverse interaction solutions for
many integrable equation in (2+1)-dimensions. Those include lump-soliton in-
teraction solutions (see, e.g., [35,50,52,53]) and lump-kink interaction solutions
(see, e.g., [14,44,59,60]). In the (3 + 1)-dimensional case, a class of lump-type
solutions, being rationally localized in almost all directions in space, were con-
structed for the integrable Jimbo-Miwa equations. Various such solutions were
computed for the (3+1)-dimensional Jimbo-Miwa equation (see, e.g., [25,51,57])
and the (3 + 1)-dimensional Jimbo-Miwa like equation [8]. Some other recent
studies also demonstrate the remarkable richness of lumps and interaction so-
lutions in the case of linear partial differential equations in (3 + 1)-dimensions
[28,29] and (4 + 1)-dimensions [30].

We conjecture that the existence of interaction solutions with diverse fea-
tures would strongly reflect complete integrability of partial differential equa-
tions. Naturally, it is interesting to search for lump solutions and interaction
solutions to partial differential equations of all orders and dimensions. The
other interesting problem is to characterize either linear or nonlinear partial
differential equations which exhibit the existence of diverse lump solutions and
interaction solutions.
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19. Lü X, Chen S T, Ma W X. Constructing lump solutions to a generalized Kadomtsev-
Petviashvili-Boussinesq equation. Nonlinear Dynam, 2016, 86: 523–534
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