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Abstract.

The paper aims to construct optical solitons and travelling wave solutions to two birefringent nonlinear

models which consist of two-component form of vector solitons in optical fibre: the Biswas—Arshed model with
Kerr-type nonlinearity and without four-wave mixing terms and the nonlinear Schrddinger equation with quadratic-
cubic law of refractive index along with four-wave mixing terms. These nonlinear Schrodinger equations are applied
in many physical and engineering fields. Optical solitons are considered in the context of photonic crystal fibres,
couplers, polarisation-preserving fibres, metamaterials, birefringent fibres, and so on. Two reliable integration
architectures, namely, the extended simplest equation method and the generalised sub-ODE approach, are adopted.
As aresult, bright soliton, kink and dark soliton, singular soliton, hyperbolic wave, a periodic wave, elliptic function
solutions of Weierstrass and Jacobian types, and other travelling wave solutions, such as breather solutions and optical
rogons, are derived, together with the existence conditions. In addition, the amplitude and intensity diagrams are
portrayed by taking appropriate values for a few selected solutions. Furthermore, based on linear stability analysis,
the modulation instability was explored for the obtained steady-state solutions. The reported results of this paper
can enrich the dynamical behaviours of the two considered nonlinear models and can be useful in many scientific
fields, such as mathematical physics, mathematical biology, telecommunications, engineering and optical fibres.
This study confirms that the proposed approaches are sufficiently effective in extracting a variety of analytical
solutions to other nonlinear models in both engineering and science.

Keywords. Traveling wave solution; birefringent fibre models; the simplest equation method; the sub-ODE
method; optical soliton.
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1. Introduction

In natural and applied sciences, several nonlinear phe-
nomena, such as optical fibres, acoustics, fluid dynam-
ics, plasma physics, mechanics, biology, biophysics,
solid-state physics, Higgs mechanism, propagation of
shallow-water waves, thermodynamics and mathemat-
ical finance, are described by partial differential equa-
tions (PDEs). Many researchers have been interested in
investigating the nonlinear Shrodinger (NLS)
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equation for the last few decades since the NLS equation
has numerous applications in optical fibres, plasma and
other fields of science and engineering [1-3].

There exist many approaches to investigate non-
linear equations in engineering and science, such as
the Hirota’s bilinear approach [4,5], the trigonomet-
ric function series method [6], the modified mapping
method [7], the modified trigonometric function series
method [8,9], the bifurcation method [10,11], the tanh—
coth method [12], the Jacobi elliptic function method
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[13,14], the exp-function method [15], the F-expansion
method [16], the mapping method [17], new ¢6—model
expansion method [18], the unified Riccati equation
expansion method [19], the modified simple equation
method [20], the extended simplest equation method
[20,21], the generalised sub-ODE method [22-24], the
new extended auxiliary equation method [25,26], the
transformed rational function method [27] and the mul-
tiple exp-function method [28]. Very recently, N-soliton
solutions have been explored for local integrable equa-
tions (see, e.g., [29]) and nonlocal integrable equations
(see, e.g., [30-32]). Some other related works on recent
developments in the solitary wave solutions of nonlin-
ear equations based on various methods and interesting
physical applications are listed in [33—41].

The idea of solving nonlinear PDE via most of these
techniques is to reduce it to a nonlinear ordinary dif-
ferential equation (ODE) and hence solve it by the
procedures of these approaches, leading to the exact
solutions to the original PDE under consideration.

Therefore, the objective of this paper is to apply the
extended simplest equation and the generalised sub-
ODE methods to extract optical soliton solutions and
other solutions to two models, namely, the Biswas—
Arshed model with Kerr-type nonlinearity in birefrin-
gent fibres without four-wave mixing (FWM) terms and
the NLS equation in birefringent fibres with quadratic—
cubic law of refractive index along with FWM, respec-
tively.

To this end, the current article is structured as follows:
In §2, the descriptions of the used approaches are pre-
sented. In §3 and 4, optical soliton solutions and other
solutions of the two considered models are derived via
a variety of applications of these novel approaches. In
§5, graphical discussion of the obtained solutions is pre-
sented. In §6, the modulation instability of the obtained
steady-state solutions of this paper is analysed. In §7,
conclusions are drawn.

2. Preliminaries

We take anonlinear PDE with two independent variables
x, t and one dependent variable u as

M(”? Ux, Ur, Uxx, Uxt, Utt, "'):O’ (1)
where M denotes a polynomial in u(x, t) and its par-
tial derivatives, including highest-order derivatives and

nonlinear terms.
Let the transformation

ulx,t)=U0),h =x — wt, 2)
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where w; is a constant representing the speed wave, to
simplify eq. (1) to the ODE

N ), U (), U (h), ...)=0, 3)

where N is a polynomial in U (%) as well as its total
derivatives with respect to 7.

2.1 The extended simplest equation method

For the method of extended simplest equation, consider
the following projective Riccati equations:

r (W)= —r(h)s(h), s'(h) = — s*(h) +A r(h) — A,

4)
where A and A are constants. Let
r(h) = —, s(h) = ﬂ ®)
() ()
where 7 (%) is the solution of the following ODE:
/() + At (h) = A. (6)

Itis a common knowledge that eq. (6) possesses distinct
types of the following solutions:

Type 1. If A < 0, then we have the hyperbolic function
solutions

t(h) = S| cosh(v—A7) 4+ Sy sinh(v/—Ah) + A/A
(7

and hence

'(h) 2_ 2 2 2 Ly
(T(h)) _(ASI—ASZ—A/A)(%>

—&+2A /T (). ()

Type 2. If L > 0, then the trigonometric function solu-
tions follow as

T(h) = 81 cos(v/AR) + Sy sin (WA R) 4+ A/ )

and hence

/ 2 2
(T (h)) = (A S?+ 183 — A%/2) (L>

(1) T(h)
—&+2A/t(h).

(10)
Type 3. 1f A = 0, then we have the following solutions

A,
r(h)zzh + S1h+ 95, (11)
and hence
HO 1
(12)

where S| and S, are arbitrary constants.
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Step 1. Assume that eq. (3) admits the proposed extended
solution

M ' m
=S (58)

m=0
M—1 , n
v/ (h) 1
B —, 13
+2 B (r(rz)) (r(h)) (1
n=0
where A,, im = 0,1,2,..., M) and B,(n =
0,1,2,..., M — 1) are constants to be determined

provided Ay By—1 # 0.

Step 2. By substituting (13) into (3) and using eqgs (8),
(10) and (12), we get a set of algebraic equations to be
solved for the unknowns A,,, B,,, w1, X and A.

Step 3. Using Mathematica or Maple software, we can
solve this system of algebraic equations and then we
attain the exact solutions of eq. (1) utilising the solutions
provided in eqs (7), (9) and (11).

2.2 The generalised sub-ODE method

In this context, Zi-Liang Li [22] has proposed, for the
first time, a generalised sub-ODE with higher-order non-
linear terms of the form

W2 (h) = AVE2 () + BY(h) + CWA(h)

+DWT(h) + EVPT XM (h), g = 0,  (14)
where W/ (#) = dW¥/dh, A, B,C, D and E are con-
stants.

The solutions of the generalised sub-ODE eq. (14)
are provided in [22-24]. Therefore, we can present the
framework of the generalised sub-ODE method in the
following steps:

Step 1. Assume that eq. (3) has the formal solution

Um) = AVN@®), A =0, (15)

where N is a parameter and v (%) satisfies eq. (14). In
(15), we calculate N by using the homogeneous balance
method which is detailed as follows:

Deg(U) = N,
Deg(U%) =2N,...,Deg(U') =N +¢q,

Deg(U"Y=N+2q,.... (16)

Step 2. Replacing eq. (15) by eq. (3) along with eq. (14)
and gathering all the coefficients of whNJ (h)[lIJ/ (h)]z
€ =0,1;j = 0,1,2,3,...) and equating them to
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zero, we receive a system of algebraic equations with
respectto wy, A, B, C, D, E and A.

Step 3. With the assistance of the solutions of eq. (14)
presented in [22—-24], we can extract optical soliton solu-
tions and other solutions of the nonlinear PDE (1) under
investigation.

3. Biswas—Arshed model with Kerr-type
nonlinearity in birefringent fibres without FWM

3.1 The governing model

Biswas and Arshad [42] recently devised the Biswas—
Arshed equation (BAE), which is a more expanded
version of the Schrodinger equation. The BAE is one
of the most well-known models in the telecommunica-
tions sector. The Biswas—Arshed equation for Kerr law
[43-52] in polarisation-preserving fibres is

iUy + a1Uyx + o2Uy +i(B1Uxxx + B2Uxxtr)
=i[(UPU), +€(IUP) U +nlUPU], (7

where U(x,t) is the complex valued function repre-
senting the wave pattern. The coefficients of «; and o
provide sequentially that group velocity dispersion and
spatio-temporal dispersion exist in order. Also, the coef-
ficients of 81 and S provide sequentially that third-order
dispersion and third-order spatio-temporal dispersion
exist in order. The coefficients of &, € and n provide
self-steepening and nonlinear dispersions in order.

It is well-known [43-52] that Biswas—Arshed model
in birefringent fibres without FWM is written in the form

iUy +a1Usx + BrUyxs +i(Y1Uxxx + A1Uxxt)
=i [511UP0), +or((VEV),]
H[1(UR), + (V)]0

+i [m|UP + 1V *] Uy, (18)
iV +a2Vix + B2 Vs + i (2 Viax + A2 Virr)
=i[&(IVI*V), +o(UPU),]
+i[e2(1VP), + 2(1U1%), ]V
+i [mIVI? + rlUP] Vs, (19)

where the complex valued functions U (x, ¢) and V (x, 1)
denote the wave pattern, the coefficients «; and 8; (i =
1, 2) represent the group velocity dispersion and spatio-
temporal dispersion respectively, while the coefficients
y; and A; guarantee the third-order dispersion and third-
order spatio-temporal dispersion, respectively. Also,
the coefficients §;, o;, €, ti, n; and r; secure self-
steepening and nonlinear dispersions. One of the most
prominent models in the telecommunications sector dur-
ing a possible slow down is the Biswas—Arshed model.
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The most notable aspect of this model is that it ignores
self-phase modulation and has negligible group velocity
dispersion. In addition, both second-order and third-
order spatio-temporal descriptions are included in the
model to compensate for low group velocity dispersion.
Therefore, extracting optical solitons and travelling
wave solutions of this model is of prime importance.
We have also addressed other types of nonlinearity of
this model in refs [53-56].

3.2 Mathematical analysis
To consider the Biswas—Arshed coupled systems (18)

and (19), in birefringent fibres without FWM, we
assume that

Ux,t) =Gi(h)expliQ2(x, )], (20)
Vx,t) = Gy(h)exp[i2(x,1)] (21)
and
h=x—wt+hy, Q(x,t)=—kx+ Cot+ Qp,

(22)

where w, «, Co and €29 are constants that are not equal

to zero representing some physical concepts of the

model, such as soliton velocity, soliton frequency, wave
number and phase constant, respectively and 7 is an
arbitrary constant.

The function Q2 (x, 7), which s areal function, denotes
the phase component of the soliton, while the real func-
tions G;(h) (i = 1, 2) represent the pulse shape of the
solitons. Using (20) and (21) with (22) in eqs (18) and
(19) and extracting the real and imaginary terms, the
following equations are available:

[os — wBs + 3kys — 2w + Co) As1G ()
+[Cok (Bs + i Ay) — 51 = Co — asic®1G ()
—k (s + n5) G ()

— k0yG2i () — kryGy(h) G2 (h) = 0,
lys — a)As]G;” (1) + [wk Bs + Cofs — w — 2Kt

=3y, + ok Ay + 2Cok A1G (R)

— Q&5 + 05 +38)G> (WG (M)

_ZTSGS (h)Gv*(h)GT*/(h)

— ;G () G2 (h) — 30,Gy' (WG (h) =0, (24)
where s = 1, 2 and s* = 3 — 5. By the balancing
procedure, we have Gs(i) = G+ (h). Therefore, from
eq. (24), we obtain
lys — CUAS]G;”(h) + [wk Bs + Cofs — w — 2K

—3ysk? + wi? Ay 4 2Cok Ag1G (h)

—(2e5 +ny + 385 + 215 + 71

+305)G2(h) G, (1) = 0.

(23)

(25)
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Putting the linearly independent function coefficients in
eq. (25) to zero, we thus have

3ysk? — 2Cok Ay + 2k0g — Co By
w =
kBs + Agk? — 1

(26)

and

Vs
w=-—

Ay’ &7

together with the constraint conditions
265 + 15 + 38 + 21 +rs + 30, =0, s=1,2. (28)
Equations (26) and (27) give also the constraints

3Asysk? — 2Cok A2 + 205 Agic — Cofs A

—kBsys — Kk Asys +vs =0, s =1, 2. (29)

Therefore, from eq. (23), we get the following ODE:

[y — By + 3kys — 2ucw + Co) As1GY ()
—[—Cor (Bs + Kk Ag) + ysi® + Co + a5k > 1G5 (h)
—k (85 + g + 15 + 05)G2 (h) = 0. (30)

Hence, we aim to solve eq. (30) to find the optical soli-
tons and travelling wave solutions of the Biswas—Arshed
model in birefringent fibres without FWM, namely the
system of eqs (18) and (19). To this end, let us rewrite
eq. (30) in the form

AosG! () + A1sG(h) + A3 G (1) =0, (31)

where

Aps = oy — wfBs + 3kys — Ckw + Co) Ay,
Ay=— [_COK(,Bs+KAs)+VsK3 + C0+as’(2], (32)
A3y = —k (65 + ns + 15 + 0%).

3.3 Solutions of eq. (31) via the extended simplest
equation method

According to the regime of the extended simplest equa-
tion method, we have the balance number M = 1,
by adopting the homogeneous balance technique to eq.
(31). Therefore, eq. (31) has the general solution

v/ (h) 1
Gs(h) = Ag + Ay (r(h)) + By (%>,

where Ag, A and B are constants, provided A1 B; #
0 and the function t(%) satisfies the linear ODE (6).
Accordingly, we have the following distinct types of
solutions:

(33)
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Type 1. If A < 0. Here, we put (33) into eq. (31) and
using eqs (6) and (8), setting all terms with the same
order of (1/t(h))’ (r/(h)/r(h)) and (1/t(h))" (i
0,1,2,3,4;j 0, 1, 2, 3) to zero, we obtain
nonlinear algebraic equations. With the assistance of
Mathematica, the solutions of this resulting system are
provided by the following outputs:

Output 1.
A
Ag=0, A =0 -2
2A34
AR EHCECEI
4A1s A3s '
2A1s
A= — A=A, (34)
AOs

provided AgsAszs < 0, Aj3Az,(4A2 (57 — §3) —
A’A}) > 0and 0 = 1.

From (7), (20), (21), (33) and (34), we have the hyper-
bolic solutions of eqs (18) and (19) in the form

S} sinh (h 2AH> + S, cosh (h
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A1l 2A11
csch (h )
Az Ao
+coth lell j|) i(rx+Cor+<20)
(36)
2A
oo (Bl
+coth /2A12 :|> gl (rextCot+Q0)

Ux,t)= (0

Output 2.

. AOs
2A34 ’

A 2A
B =6 “(52 $2), = -8
AOS

provided AgsAsz; < 0, Aj;A3,(S? — S3) < 0 and

0 ==+£1.
2A11
Aoi

Ag=0, A1 =0

A =0, 37)

Aqg
Ux,t)=06 T A
1| Sy cosh (h M”) + 82 sinh (h 2AA_0111> - IZ\AAIOII
\/4A%,(5$—S§)—A2Ag,
N 4A1143 i(—kx+Cot+0)
S| cosh (h 2A“> + S sinh <h Aol ) - IZ\AAIOII
J (35)
A S sinh (h 2A12> + S cosh (h 2AA_0122>
Vi, 1) =6 —A”
32 S cosh (h ) + Sz sinh (h ZAAOI;) - ?22
\/4A%2(312—522)—A2A52
4A12A3 ol (—rex+Cot+Q0)
S} cosh (h ZAA—()I;> + S2 sinh (h ZAA_OIZ> - IZ\AAlozz

provided A3 Az < 0, AjsAps > 0and 6 = £1.
Particularly, if S = 0, S # 0 and A = 0in (35), we
have the combo singular soliton solutions in the form

From (7), (20), (21), (33) and (37), we attain the fol-
lowing solutions of hyperbolic type of eqs (18) and (19)
in the form
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6,/ —5L | S sinh (h M”) + S, cosh <h 2AA—0'.') +y-ST=SD ||
Ux,t) = = 4 | ei=rx+Cor+90)
\ S cosh <h ZAA_0111> + S5 sinh <h QAA—O'I‘) )
3 - - (38)
0,/—K2 | S1sinh (h ZAA—0122> + S5 cosh (h ZAA—0122> +y/=ST=SH|)
Vix,t)= = . el(—Kx-i—C()H—Qo)’
S; cosh (h ZA”) + S5 sinh ( 2&‘()122)
rovided AjAsy < 0, AjsAgs = Oand 0 = %1. N A\ |
b e e U, 1) =6 /-== | sech <h ——“)
Output 3. Asr | Aot/ |
A % ei(—KX—i—Cot—l—Qo)
Ag=0, A =0, B =021 (57 - 5D, * - 7 @
A Vix,t) =06, — A sech | & A
=2 Ao (39) | 2 | 02
Agg « el (—kx+Cor+0)
provided AjsA3,(S7 — 83) > 0and 6 = £1. From 11 4.
(7), (20), (21), (33) and (39), we attain the following
solutions of hyperbolic type: Ao =0,
2A
veen Av=0 /-2 B =0,
A2 2 Ass
N ) A
- =l b= A=0, 43)
2Aos

A A
S} cosh (h “) + S, sinh (h —A—;>

% ei(—/cx—l—Cot-i-Qo) ’

] Vi) (40)

02 - )
> + S sinh <h —ﬁ—(‘é)

S%) < 0 and

S1 cosh (h

% ei(—KX-i—Col‘-f—Q())
provided AgsAry < 0, AjgAs(ST —

0 =+1.
If S1 = 0and Sy # 0, in (40), we attain the following
A3

solutions of singular type:
_ A\
Ux,t)=|(06 csch (h —i>
% ei(fo+Cot+§20)
1 (41)

2A [ A\ |
Vi, =60 2212 csch(h —ﬁ)
Axn | Ao/ |

% el(—Kx+C0t+Qo)’

2A1

and if $ = 0 and S1 # 0, in (40), we have the bright
soliton solution in the form

provided AgsAzs < 0and 0 = £1.
From (7), (20), (21), (33) and (43), we attain the fol-
lowing solutions of hyperbolic type of eqs (18) and (19):

Ux,t)

A
Az

Sy sinh (h ﬁloﬂ) + 55 cosh (h /ﬁ—l{;)
S cosh (h %) + S5 sinh (h‘ / %)

i(—kx+Cot+20)
b

Il
S
|

X

X €

% ei(—lcx+Cot+Qo)
(44)

provided Aj;A35 <0, AgsArs > 0and 6 = £1.
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If S = 0and Sy # 0, in (44), we attain the following  provided A A3y < 0, AgsAry > 0and 6 = £1.
dark soliton solutions of singular type: If S = 0 and S; # 0, in (48), we have the combo
singular soliton solution in the form

Ux,t) = {9 A“ coth (h %)} A
| An
_ U(x,t) =6 —
i( /cx-‘rCoH-Qo)
xXe , 45) A3
Vix,t) = {9 A‘2 coth (h %‘022)} |
Xel(—/{x-l—CoH—Qo)’ X
coth (h ZAA—Olll) — O csch (h 2AA_0111>
provided Aj;Aszs <0, AgsArs > 0and 6 = £1. :
If S, = 0and S; # 0, in (44), we have the dark soliton x gl (Frex+Cor+80)
solution 1 (49)
Aqp
- - Vix, 1) =0 -2
Ux,t) =36 —A—;tanh h Kloll Az
i(—kx+Cot+20)
xe , 46) ) |
_ Alz A
V(x’ t) - {9 tanh <h ZA()Z)} Coth (h ZAAIZ) _ 9 CSCh <h ZAA12>
y ei(—/{x-i—CoH-Qo) 0 0
’ « el (—kx+Cot+Q0)

provided Aj;Aszs <0, AgsArs > 0and 6 = £1.

Output 5 Type 2. If A > 0. Here, we put (33) into eq. (31) and
) using eqs (6) and (10), setting all terms with the same

Ap =0, order of (1/t(h))! (¢/(h)/t(h)) and (1/T(h)' (i =

0,1,2,3,4; j =0,1, 2, 3) to zero, we attain nonlinear

Al =6 Aos ; algebraic equations. With the assistance of Mathemat-
2 A3 ica, the solutions of this resulting system are provided
by the following outputs:
By =0,
Output 1.
A= v — (5T = 52), Ag=0, Ay =0 |-
Aos 0 ) 1 A5
2Als
b= ’ @7 2 (@2, Q2 2
Aos B —6 4AT (ST + 85) — A2AG,
provided AgsAzy < 0and 6 = 1. 4A 15 A3 ’
From (7), (20), (21), (33) and (47), we attain the fol- 2A 1
lowing solutions of hyperbolic type of eqs (18) and (19): A = — Aoy A=A, (50)
A

Aot

Sy sinh (71,/221L ) + S; cosh ( 7,/ 221
Ar1 01 i (—kx+Cot+0)
U(x,t) =0 _A_ el( kx+Co 0 ,
31 S cosh (h M—“) + S5 sinh (h 2A“> — 9,/512 — S%

(48)

S} sinh <h ZA”) + S, cosh <h ZAA_OI;>
Vix,t) = —ﬁ ei(—Kx-&-Cot—i-QO)’

A
2| 5 cosh (h ZAA0122> + S, sinh (h@) - Om
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provided AgsAzy < 0, A1sA3(4AT (S7 + S3) —
A2A}) = 0and @ = £1. From (9), (20), (21), (33)
and (50), we obtain the following solution of periodic
type of egs (18) and (19):

A
Ux,t) =0 11

Pramana — J. Phys. (2023) 97:119

. 2A 2A
—S8) sin (FL/_WII]) + S5 cos <h1/—ﬁ>

Az

4A%,(S2+53)—A2AZ,
4A1 A3

+
2A . 2A AA
S| cos (h Aolll) S sin (h — D) T 30

_2Aqn : \/ﬁ _ AAg
S1 cos <h For ) + 8> sin (h Aor ) YT

ol (—kx+Cot+80)

(5D
A —S§7 sin (h —ZAAO'22> + S>cos <h —ZAAO‘;)
Vx,0) =0 A”
32 2A . 2A AA
S1 cos (h —ﬁ) + S sin (h _Wlf) TN
\/4A112(512+S§)—A2A%1
+ 48143 ei(—Kx-l—C()t-f—Q())’
2A - 2A AA
S cos (h,/—ﬁlzz) + S sin <h,/—ﬁ) ETNTY
provided AjA3s > 0, AgsA1s <0and 8 = +£1. Output 2.
If S =0,8; #0and A = 0, in (51), we obtain the
following solutions of the periodic type of eqs (18) and Aos
(19): 2A3;
Ay 2A1 Ajs
Ux,1) =6 [— sec(h — ) B =6 S?+ 89,
Az |: Aoi : A3s( It
2Als
2A : - _ —
i (h 2 )} dCxvicuan A= — . A=0 (53)

(52)
V(x,1)=6

A1 ( 2A12)
— |sec|h,l—
Az A

—tan (h _2A]2> ei(—KX-i-Cot-f—Qo).
Ao

provided AgsAsy < 0, A1 A34(S7 + S3) = 0 and
0 ==l1.

From (9), (20), (21), (33) and (53), we attain the fol-
lowing solutions of the periodic type of eqs (18) and
(19):

2A11

AL | TS sin (h _ZAA_0111> + 82 cos (h\/_A_m) +\/512+S§
Ux,t)=26 AH ei(—Kx-i—Cot—l-Qo)’
\ Az

S cos (h _ZAA_0111> + S, sin (h

_2A1
Aot ]

(54)

—8] sin (h

2A 24 2, 2 |
_T)lj> + S cos (h\/—T)‘;> —i-\/S1 + 55

A
Vix, 1) =0 =2
ARD)

S cos (h —2AA0122> + S» sin (h

_2App
A

i(—kx+Cot+20)
€ s
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provided Aj;Aszs > 0, AgsA1s <0and 6 = £1.
If S; = 0and S, # 0in (54), we obtain the periodic
wave solutions in the form

Ary 2A11
Ux,t)=0 |—|cot|h |—
A3 Api

1 esc (h _2A11):| ei(—/{x-l—CoH-Qo)’

AV

]
A 2A
Vi, =6 =2 cot (h - 12)
Ax Ag2
_2A12> ol (—kx+Cot+<0)
Aoz ’

(55)

+ csc (h

butif S = 0 and S| # 0in (54), we obtain the periodic
wave solution.

Output 3.
2A
Ag=0, A =0, B =0 -1+ 52,
A3y
Ay
A= , A=0, (56)
Ao

provided A15A3s(512 + S%) < 0 and 6 = *1. From
9), (20), (21), (33) and (56), we obtain the following
solutions of the periodic type of eqs (18) and (19):

2A 2 2
0,/—22L(5? + 83)

Ux,t) =
S cos (h ﬁ—(‘)i>+S2 sin (h 2—(1;)
% ei(—Kx-i—C()t-f—Q())
1
2010 (<2, Q2

S| cos (h ﬁ—(‘);)%—Sz sin (h 2—5)

% ei(—Kx-i—C()t-f—Q()) ,

(57)

provided AgsAry = 0, A1sA34(S7 + S3) < 0 and
0 ==+l1.

If S = 0and S # 0, in (57), we have the singular
periodic solution in the form
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)

2A11
Ux,t)y=1|0|—
A3z

% ei(—Kx+Cot+Qo) ,

2A1 | A |
Vi, ) =0 |-222 csc(h i)
A3 Ao

% ei(—KX-l—Cot-i-Qo),

(58)

but, if S> = 0 and 7 # 0, in (57), we have the periodic
solution in the form

2A11 i Aqy |
Ukx,t)y=1(0.[— sec|h |—
Az i AV |
% ei(—Kx+C0t+Qo)
o _ (59)
2A A
Vi, =622 sec(h i)
A3z i Ag ]
x el (—rx+Cot+80)
Output 4.
2A
Ag=0, Aj =6 |20
A3s
A1s
B =0,1=— , A=0, (60)
2Aps

provided AgsAszs < 0and 6 = £1.

From (9), (20), (21), (33) and (60), we attain the fol-
lowing solutions of the periodic type of eqs (18) and
(19):

UGty =0 |21
' A3y

— 87 sin <h,/—2AA—1011> + S cos (h —2AA—‘011)

S cos (h,/—ﬁ—‘&) + S» sin (FL/—QAA—I(;I)

% ei (—kx+Cot+20) ,

X

(61)
A

Az
—S| sin (Fm—ﬁ‘é) + S, cos (h,/—ﬁ—‘é)
S cos (hw/_zAAlgz) + S sin <h1/—2AA'022)

% ei(—KX-l—Cot-i-Qo),

Vx,t) =10

X
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provided Aj Az > 0, AgsArs < 0and 0 = £1. B =0,
If S = 0and S> # 0, in (61), we have the periodic

solution, but if we set S» = 0 and S7 # 0, in (61), again - 2A 1 A_29A1s 2452 62)
we have attain the solution of the periodic type. Aos Ags Y71 2>
Output 5. )
provided AgsAzs < 0Oand 6 = £1.
Aos From (9), (20), (21), (33) and (62), we have the fol-
Ao=0, A= _2A3s’ lowing periodic solutions of eqs (18) and (19):

— S g _2An _2Au
Al S1 sin (h\/Tm) + S> cos <h e )
Ux,t)=0 o
31 S cos <h —ZAA—OII‘> + S sin (h —ZAA—OIII) _em
% el (—kx+Cor+Q0)
— S g _2An _2A1
Al Sy sin (h\/Toz) + S>cos (h A >
A
32 S| cos <h —ZAA—OI;) + §> sin (h —ZAA—0122> — em

% ei (—kx+Cot+20) ,

(63)

Vix,t) =0

provided Aj3Azs > 0, AgsArs < 0and 8 = £1.
If S; = 0and $3 # 0, in (63), then we thus obtain the
following solutions of the periodic type:

Ux,0)= |6 % ! i (—Kx+Cor+Q0).
3 tan (h\/Tﬁ) — 0 sec (h —ZAAO'II)

A

Vi, =[6 /22 64)
Az

X ! ei(—Kx—l—CoH—Qo),
_2A1y _2Ap
tan (h Ao 0 sec (h Ao >
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but, if S = 0 and S| # 0, in (63), we have the singular
periodic solutions in the form

Ue.n = (6. /21
’ Azy
|

_2Any _ _2An
cot <h Ao ) Ocsc<h Ao >

i(—kx+Cot+20)

X €
(65)
Vix, 1) = (9 /i—z
1
X

2A 2A
cot <h — Aolzz) - 9csc<h — AO‘;)

x el (—rx+Cot+Q0)

Type 3. 1f A = 0.

Here, we put (33) into eq. (31) and using eqs (6) and
(12), setting all terms with the same order of (1/7 (%))’
(r’(h)/r(h)) and (1/7(h))' (i =0,1,2,3,4;,j=0,1,
2, 3) to zero, we receive a system of algebraic equations.
With the assistance of Mathematica, the solutions of this
resulting system are provided by the following outputs:

Output 1.

A
Ag=0, A =6 |-
2 A3,

Aps(S2 —2AS
B =6, — 0s ( 1 2)’
2A34

Als = Oa

A=A, (66)

provided AgsAzy < 0, AgsA3,(S? —2AS,) < 0and
0 ==+l1.

From (11), (20), (21), (33) and (66), we have the fol-
lowing solutions of eqs (18) and (19):

A
0\ —2as
SR+ Sih+ 5,
% |:Ah+S1+ /512—21\52] ei(—KX+COt+QO)’
A
91/_T0322

SR+ S1h+ S,

x [Ah-i—Sl—i—,/ 512—21\52] gf (Trx+Cot+Eo),

Ux,t)=

(67)

Vix,t) =
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Output 2.

A
Ap=0. A1 =0]-=2 B =0,

2A34

St

A =0,A=—, 68
s 25, (68)

provided ApsAszs <0, Ajy =0and 6 = +1.
From (11), (20), (21), (33) and (68), we have the fol-
lowing solutions of eqs (18) and (19):

A
U, t) =20 |——=1 (

S?h + 2815,
2A31

S?h% + 45180 + 455

x el (—rx+Cot+80) ,

A S?h + 2818
Vi =20 |2 [ 2
2A3 STh* + 481850 + 485

% ei(—Kx-i—Col‘-f—Q()) )

(69)

3.4 Solutions of eq. (31) via the generalised sub-ODE
equation method

Balancing G;/(h) and G2 (h) in eq. (31), we have N +
2g = 3N which yields N = g. Hence, eq. (31) takes
the essential solution

Gs(h) = AV (h)4, A > 0, (70)

where W (%) satisfies eq. (14).

The following set of algebraic equations is obtained
by substituting (70) along with (14) into eq. (31) and
gathering all the coefficients of wiq (h)[\ll/ (h)]r( j =
0,1,2,3;r=0,1) as

W) = AgsBg> =0, (71a)
W) = AgsCq* + Ay =0, (71b)
W(h)2 = Aoy Dg® =0, (71c)
W(h)3 = 2A0Eq® + A3 A2 = 0. (71d)

On solving eqs (71a)—(71d), we get
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A=0, B=0, D=0,
—Ajy

2A0 E
A=0q |- . C=—3,
Asg Aosq

provided AgsAzsE <0and 6 = +£1.

With regard to the solutions of eq. (14) listed in [22—
24], we thus obtain the following variety of analytical
solutions drawn below:

(72)

Type 1. Since, B = D = 0, then the following cases
arise:

Case 1. Equation (14) has the solution

wm>=[lp@hgbm>—flyﬁ (73)
E 3E
where
4C% — 12AE
g2=""5
and

_ 4C(—2C* +9AE)
= - :

83

Here, g (gh, g2, g3) is known as Weierstrass elliptic
function which satisfies the ODE: g’ 2= 43 — grp —
g3, where g> and g3 are called invariants of the Weier-
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U(x,t)
_ g |_2GR01p (x — ot +ho, 82.83) + A1)
B 3A3
% ei(*Kx+C0l+Q())
3 (74)
Vix,t)
_ | g [_2CAnp (x — ot + N0, 82, 83) + A12)
3A3
% ei(—Kx+C0t+Qo)

provided Az < Oand 6 = +1, where go = 4A%S/3A(2)s
and g3 = 8A3 /27A3..
The Weierstrass elliptic function, in particular, can be

expressed in terms of the Jacobi elliptic functions cn
and ns as [48]

(75)
(76)

© (qh, g2, 83) = ex — (e2 — e3)cn*(Rh; m),
© (qh, g2, &3) = [e3 + (e1 — e3)ns*(Rh; m)],

where R = \/e| — e3, m? = (e2 —e3)/(e1 — e3) is the
modulus of the Jacobi elliptic functions cn and ns =
1/snsuchthat0 <m < 1,¢; (i = 1,2,3;¢e1 > e >
e3) represent the three roots of the cubic equation

strass elliptic function, in which L= d/dh. 3
Since A = 0, we get Weierstrass elliptic function 477 — grz+ g3 =0. (77)
solutions to the coupled systems (18) and (19) specified
in the form Therefore, solution (74) can be rewritten as
Ule. 1) = _2(3A01[€2 — (ea — e3)en2(Ri; m)] + Ary) i (—Kx+Cor+00)
’ 3A3; ’
- - 78)
V=6 _2(3A02[€2 — (e2 — e3)cn?(Rh; m)] + Ar2) i (KX Cot+20)
’ 3A3 ’
Ule.r) = ~2BAoiles + (e1 — e3)ns2(Rh; m)] + Aqy) i (—kx+Cor+Q0)
3A3)
- : (79)
Vo = | o _2(Aqple3 + (e1 — e3)ns2(Rh; m)] + Arp) ol (—kx+Cor+220)
’ 3Ax
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Ifm — 1, (i.e.ep — eq),thencn(RA; m) — sech(Rh)
and ns(R#A; m) — coth(R%), and therefore we obtain
soliton solutions of bright and singular types of eqs (18)
and (19) as
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Ux,t) = 9\/_2(3A01[61 — (e1 — e3) sech®(RR)] + A1) i (—x+Cot+90)
3A3g
‘ : - (80)
Vie.t) = 9\/_2(3A02[61 — (e] — e3) sech®(RH)] + A12) i (—kx+Col+20).
3A3
Ux,t)= |6 _2BAqiles + (e1 — e3)coth®(RR)] + Aq1) o (—kx+Cot+20)
’ 3A3q ’
a _ 81)
V(x, 1) = 9\/_2(3A02[e3 + (e1 — e3)coth®(RM)] + Ar2) i (—kx+Cot+20).
3A3
respectively. Type 2. Since A = B = 0, then we have the following

Case 11. Equation (14) has the solution

cases:

Case 1. Equation (14) has the solution

1 1
_ | WETW Ghggy) |T_C 2Csech? (451 ’
v = 69 (qh, g2, 83)+C |’ 2= E+AE’ V(h) = 7 ,
2WA — (WA + D)sech? (%h)
C(36AE — C?)
B=—"F (82) C>0, A=D?—4CE > 0. (84)
Since A = 0, we attain solutions of Weierstrass elliptic
function type of eqs (18) and (19) as
_ . _
U= | 6 24y, ( 3’ (x — wt + ko, g2, &3) ) i (—kx-rer+520)
V' Az \6Agip (x — ot + ho, g2, 83) — A1y
] - _ (83)
3
V' A \6Ape (x — ot +Tig, g2, 83) — A2

provided AgsAzs < 0and 8 = £1, where

A2 A3
12A1s2 and g5 = 500
Os

82 =

Since D = 0, we attain the solutions of hyperbolic func-
tion type of eqs (18) and (19) as
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2A1
U,H)= 6]
AGS|
| — tanh? (% AU ot + ho))
X
1+tanh2(% A“(x a)t—i—ho))
% ei(—KX+C0f+QO)
d ’ (85)
2A
Vi, =6 [-2212
Az

1 — tanh? (%‘/ A12(x — ot + ho))

1 + tanh? (% —R2(x — ot + ho))

% ei (—kx+Cot+20) ’

X

provided A1;Azs <0, AgsAjs <0and 6 = £1.
Case 11. Equation (14) provides the solution

2C esch? (25Sn) i
2JV/A 4 (VA — D) csch? (eq%ﬁh)

C>0, A=D?>—4CE >0, 0 =+1.
(86)

W (h) =

’

Since D = 0, we attain the solutions of the hyperbolic
function type of eqs (18) and (19) as

2A11
Az

Ux,t) = |:9 —

—1 + coth? (% A”(x —wt+h0)>

X

1 + coth? (% —ﬁ—(‘)i(x —wt + ho)>

% ei (—kx+Cot+0)
d ' (87)

Vix,t) =10 |—
Az

—1 + coth? (% /- A‘z(x—a)t-i—ho))

1 + coth? (% —A(y —r + ho))

x ei(fo+C0t+Qo)’

X

provided AsA3s < 0, AgsArs < 0and 6 = £1.
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Case 111. Equation (14) provides the solution

2Csec? (@h) ‘
v = _2«/Z — (WA — D)sec? (@h) ’

C <0, A=D?—4CE > 0.

(88)

Since D = 0, we attain the following wave solutions of
the periodic type of eqs (18) and (19) as

—2A11
A3

Ux,t) = |:0

1 + tan? (% %(x — wt + ho)>
X

1 —tanz( A“(x—a)t—kho)>

% ei (—kx+Cot+20)
] (89)

_2A
Vix, 1) = [9 12

A3z
1 + tan? (%1/2_5()‘ — ot + ho)>

1 — tan? ( A‘Z 2(x — ot + ho))

X

% ei (—kx+Cot+20) ,

provided A1;Azs <0, AgsArs > 0and 6 = £1.
Case 1V. Equation (14) provides the solution

Q=

2Ccsc? (%h)
27 A — (VA + D)csc? (@h)

C <0, A=D?

V(h) =

’

—4CE >0, 6 ==l.
(90)

Since D = 0, we attain the following wave solutions of
the singular periodic type of eqs (18) and (19):
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—2Aq1
Az

Ux,t)= |:91

1 + cot? (% ﬁ—g(x — wt + ho)>
X

1 — cot? (% ﬁ—(‘)i(x — ot + ho)>

x el (X +Cot+90)
C
—2A12
Az

Vix,t) = |:91

1+ cot? (/42 — ot + o))
X

1—cot? (/42 — ot + o))
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[ A1
U(x,t) = |: sec( A—(x—wt+h0)>
01
X CSC ﬁ(x — wt + ho)
Ao

% ei(—xx—i—Cgt—l—Qg) ,

—A11
2A31

1

2

1

2

. Vix, 1) —A1z L2204 i)
1) = sec| =./—(x —
g 2A3 2V Az e 0
1 AIZ( 4 ho)
XCSC| —,.| — —
2\ Ay O

% ei (—kx+Cot+20) ,

« el (—rx+Cot+%0) 93)
provided A1;Az; < 0, AgsAy > 0,6 = F1 and provided Aj;Azs < 0and AgsAgy > 0.
0 ==+l Case V1. Equation (14) has the solution
Case V. Equation (14) has the solution
1
q
1 4Cq2ebaVCh
Csec? (q szch) ? V(h) = 3 ,
W) = | — , (eﬂqﬁh - Dq2) — ACEq*
D +207/=CE tan (5S1)
C>0, 0==I. %94)
C<0, E-O0, 6==I. (92)
Since D = 0, we obtain the solutions of the following
form:
4A110q,) 2L
Ux,t) = Y4y a5 i (—x+Cor+90)
Agre — 5L (r—wr-+ho) Ay Eqle” — 5L r—wr-+ho)
95)
4A120q,) 280k
V(x,t) = 1274 A3 ef (—Kkx+Cot+Q0)
Aose —i—(lé(x—wt—i—ho) 4 4A12que_0 —ﬁ—(l)g(x—wwrho)

Since D = 0, we attain the following wave solutions of
the periodic type of eqs (18) and (19) as

provided Aps A3 E <0, AgsArs <0and 6 = £1.

Case VII. Equation (14) provides the solution
4Cq2etaVCh

7
V(h) = ,
" —1 + 4CEg*e20avCh
C>0, D=0, 6==I.

(96)
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Then, we have
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el (—ix+Cot+£20)
9

o7

i(—kx+Cot+2)
€ )

G 4A119q,/—_2AA2011E
U(x,t) = :
A A
A016_9 — 3L (r—wr-+ho) +4A11Eq269‘/—r(')}(x—wt+ho)
481204,/ 202k
Vix,t) =
(. 1) 0 /=212 (x _rthg) 0./ =212 (x ot 1hg)
Agpe 202 + 4A12Eq26 202

provided Ags A3 E <0, AgsArs <0and 6 = £1.

4. NLSE in birefringent fibres
with quadratic—cubic (QC) law of refractive index
along with FWM

4.1 The governing model

The governing NLSE with quadratic—cubic nonlinearity
for polarisation-preserving fibres has the form [57-60]

iV + aVox + ki Y|+ kaly Py =0, (98)

where ¥ (x,t) is the complex-valued wave function
which stands for optical solitons, a signifies the coef-
ficient of group velocity dispersion and ki and kp
represent quadratic and cubic nonlinearities, while i =
V-1

In birefringent fibres with pulses divided into two,
then the corresponding coupled vector NLSE with
quadratic cubic law of refractive index along with FWM
can be specified in the form

Wi+ @ + ki 1P+ 101 + Y + vt

+( Y12+ milp) Y +nig*y* =0, (99)
i+ axer + kot B2 + 10 + e + o
+ (L2l + malY )¢ + nay?e* =0, (100)

where ¢; and m; (i = 1, 2) are from self-phase modu-
lation and cross-phase modulation, respectively, while
n; give the effect of FWM. Here * denotes the complex
conjugate. The QC nonlinearity first appeared in 1994
[56] and the references therein. Other types of nonlin-
earity can be found in refs [61-63].

4.2 Mathematical analysis

Gomez-Aguilar et al [57] studied the system of eqs (99)
and (100) by a variety of analytical methods. Therefore,
we also conduct our analysis to further investigate the
coupled systems (99) and (100) by using the proposed
approaches of this paper to extract its other travelling
wave solutions and other optical solitons in a concise

manner. To this aim, we introduce the following wave
transformation:

W (x, 1) = Hy(h)e'C™", (101)
¢ (x,1) = Hy(h)e' " (102)
and

h=x—pt, (103)
G(x,t) = —kx + ot + 1, (104)

where B, k, w and T are non-zero constants to be evalu-
ated which stand for the velocity of soliton, frequency of
solitons for the two components, soliton wave number
and phase constants, respectively. Also, Hy (%), H>(h)
are real functions denoting the amplitudes of solitons for
the two components while G (x, ) denotes phase com-
ponent of the soliton. Replacing eqs (101) and (102) into
eqs (99) and (100) and separating into real and imagi-
nary parts, we have

ag HS” — (v + asKZ)HS + kg Hs2 4+ k H Hg + ESHS3
+(ms + ns)HsHsz* =0, (105)
(2asc + B) H] = 0, (106)

fors = 1,2 and s* = 3 —s. From eq. (106), the velocity

of the soliton is obtained as
B = —2ayk. (107)

On comparing the formulas of soliton velocity, we then
have

ay =ap =a. (108)
Therefore, soliton velocity can be written as
B = —2axk. (109)

As aresult, the real part eq. (105) becomes
aHYN - (w + aKZ)Hs + ksHsz + kg Hg Hox + ESH?

+(ms +ns)HvHs2* =V (110)
Now, by the balancing procedure, we obtain
Hs = Hx. (111)
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Hence, eq. (110) is transformed to the following form:

aHSN — (w+ aKZ)Hs + 2ksHs2

+(ls +my +ny)H? = 0. (112)
Let us rewrite eq. (112) as
aH!(h) — (@ + ax?) Hy (1)
Do  H2 () 4 T3y HE () = 0, (113)
where
[y = 2ks, T3y = &5 +ms +n;. (114)

Therefore, we are concerned to consider eq. (113) by
using the proposed techniques of the current paper to
extract the new exact solutions of the coupled systems
(99) and (100) as follows:

4.3 Solutions of eq. (113) via the extended simplest
equation method

Similarly, according to the regime of the extended sim-
plest equation method and by the homogeneous balance
technique in eq. (113), we thus have the balance number
M = 1. Therefore, eq. (113) has the formal solution
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where Ag, A and B; are constants that should be calcu-
lated, provided A1 B; # 0and the function t (%) satisfies
the linear ODE (6). Accordingly, we acquire the follow-
ing distinct types of solutions:

Type 1. If » < 0. Here, we replace (115) into eq.
(I13) and using eqgs (6) and (8), setting all the terms
with the same order of (1/7(h))’ (¢/(h)/t()) and
(1/t(h) (i =0,1,2,3,4;j =0, 1,2, 3) to zero, we
attain nonlinear algebraic equations. With the assistance
of Mathematica, the solutions of this resulting system
are provided by the following outputs:

Output 1.
r 2
0= -2 A =0 |- B =0,
3F33 F3s
—3w + 2N Ag
k=0, — = 70
3a
—15als,Ag + 22 A2
A= 2570 271 A=, (116)
1842

provided I'y; # 0, al'3y < 0, a(—3w + 2IM25Ag) > 0
and 0 = £1.

7/ (h) 1
e = Ao+ A (r(h) ) o (%) ’

From (7), (101), (102), (115) and (116), we obtain the
following wave solutions of the hyperbolic type of eqs

(13) 99y and (100) as

(117)

_ Iy + Cocosh | A,/ — Iy
18als 2 18al's

5 - 5
" 18al's + C2 sinh | 71,/ — 18al'3»

21
v(x,0)=|——=—11+6
3F 1 2
o el [—Kx—&—(—%—aﬁ)t—f—r]
]
Ci sinh (h
22
=|—=—={1+06
P (x,1) 3 + 6
Cicosh | h
i|:—:<x+(— ZF%Z —ak2>t+ri|
x e T3 i
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. 2 _ 2
provided I'zy # 0, al'3, "5, < 0 and 6; = F1. provided 'y # 0, aF3SF§s <0, 0= _gll:ij — ax?,
Output 2. 0 = :Fl and 0 = £1.
Output 3.
r
AO:_31—12S9 1 = - Iil ) BIZO,
3s 3s Apg=0, A =6 , By =0, I'yy=0,
3s
-3 20 A —2I'yA
o — o + 21 0’ _ 2s 0’ 2w + ax?)
3a 3a A= ——,
a
A =01,/CT - C3, (118) A —ga/c? - 2, (120)
szvédediisf‘o # 0.al'3; < 0,a(=30+2I2540) = 0 Lrovided w + ax® # 0, al3; < 0 and 6 = £1.
and 0 = £1.
From (7), (101), (102), (115) and (118), we obtain the
following wave solutions of the hyperbolic type of eqs
(99) and (100):
. 21"2 2r3,
Cisinh | & 9ar3 + Cpcosh | 7 9aF31
r
Yt = | —— {146
303 2r2 : r3, >
Cicosh [ R —9a13311 + Cysinh | A 9ar231 +6,/C3 C2
l|:—l(x+(—§£i—al( >t+r]
X e 9
] (119)
2 2
C) sinh (h _92aFF232> + Cs cosh (h ;%;)
r ; ;
pa.n = |- 1146
332 21“22 21“%2 2 2
Cicosh | h —9uT + Cpsinh | & —0aly +6,/C; —C;
z[ KX+(*%*HK >t+ri|
X e ;

From (7), (101), (102), (115) and (120), we obtain the
following wave solutions of the hyperbolic type of eqs
(99) and (100):

2 Cy sinh (h\/@) + C, cosh <h\/_2TJ;aK2)>
Yy = |6 |25
T r
. Cj cosh <h\/@> + C, sinh (h\/_ZTZaKZ)) + em
_X ei[—/cx—i-a)t-i-t]
* B ’ _ (121)
+ ak? Ci sinh (%/@) + C> cosh <h\/_7 E(wJ;aKZ)>
w aK
d(x, 1) =
r
! C1 cosh (h\/@) + C, sinh (hW) +9m
_X ei[—Kx+wt+t]
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provided I'ss(w + a1<2) > 0,a(w+ alcz) <0, Ty, =0
and 6 = £1.

Output 4.

9’

o \/ —w + 2T Ag + 4T3, A}
K =
a

A2

0

C, =6C, A_——Z, A =0, (122)
1

provided Ag # 0, al'3y < 0, a(—w + 2" 3Ag +
4T'35A3) = 0and 6 = +1.
From (7), (101), (102), (115) and (122), we obtain the
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provided A9 # 0, A1 # 0, a(—w + 2I';A¢ +
4T3,A%) = 0and 6 = *1.

From (7), (101), (102), (115) and (124), we obtain the
following wave solutions of the hyperbolic type of eqs

(99) and (100):
sinh (hﬁ—?) —cosh (hﬁ—?)
V(x,0)=|Ag 1+6 - :
cosh <h A—?) —sinh (h A—?)
X ei[_Kx+(2F21A0+4F31A(2)—LIK2)I+‘[]
sinh (Fzﬁ—?) —cosh (hﬁ—?)
cosh <h ﬁ—?) —sinh (h ﬁ—‘l’)
x eil—Kx+@rnAg+4TnAf—ax?)i+1]

12
following wave solutions of the hyperbolic type of eqs (125)
(99) and (100):
sinh (h\/—T% AO) — cosh (h \/_27% Ao)
cosh (h —ZIZ%AO) — sinh (h\/—T%AO)
X ei[—/cx+(2F21A()+4F31A%—a/(2)t+r]
(123)
sinh (71 —Z%AO) — cosh (h —— Ao)
¢(x, 1) = |Apgy1+0
cosh (h —22JA0> — sinh (h\/—T%AO)
X ei[_KX+(2F22A0+4F32A%—akz)l+l’]

provided Ag # 0, al'3; < Oand 6 = %1.

Output 5.

Ag=Ag, A=A, B =0,

’

\/ —@ + 2T Ag + 4T3, A2
k=20
a

AZ
C;=0C, r=-=2 A=0, (124)
Al

provided Ag # 0, A} #0and 6 = £1.

Type 2.1f A > 0. Here, we substitute (115) intoeq. (113)
and using egs (6) and (8), setting all terms with the same
order of (1/t(h)’ (v/(h)/t(R)) and (1/T(R))' (i =
0,1,2,3,4; j =0,1,2, 3) to zero, we attain the nonlin-
ear algebraic equations. With the help of Mathematica,
the solutions of this resulting system are provided by the
following outputs:



119 Page 20 of 39 Pramana — J. Phys. (2023) 97:119

Output 1.
I, 2 —3w + 25, A
Ap = — 2‘, A =0 __a, B =0, k=80 M,
3I3, I3 3a
—15als,Ag + 202 A2
P LU el T N ) (126)

1842

provided I'ys # 0, al'sy < 0, a(—3w + 2I'25A0) > Oand 0 = %1.
From (9), (101), (102), (115) and (126), we attain the following wave solutions of the periodic type of eqs (99)
and (100):

_ . - _
—C sin ( 18a1“31> + C; cos ( 18a21'1‘31 ) \ a2,
' . i| —kx+ —ﬁ—ax 1+t
Yx,t)=|—=——314+6qi e
3F31 F
C| cos h 18aF31 + C5 sin 18a21131
~ - (127)

_ r2 -
—Cysin| A + C; cos 22
I ' 1 ( 18ar32> ( 18aT'3; i[_/(ﬁ(_%_ak )HT}
o(x,t) = | ——— {1+ 64 e 3

3T
32 F%Z l—‘22
Cj cos T8l + C» sin 18aF32

provided 'y # 0, al'3g F%S > 0and 6 = F1.

’

’

Output 2.
r
Ag=——=", A =0 -—= B =0,
31—‘3‘; 2F3s
3w+ 205, A 2T A
PR B e W L N Y (o e (128)
3a 3a 1 2

provided I'ysAg # 0, al'3s < 0, a(—3w + 2I'25Ap) > Oand 6 = £1.
From (9), (101), (102), (115) and (128), we attain the following wave solutions of the periodic type of eqs (99)

and (100):
2 2
- —Cj sin (h 92‘;31) + C; cos (h ;{%ﬂ)
21 .

Yx,t) = | —=——131+64i
3031 213, 213, [ 2
Cicos|h 9aF31 + Cosin | & 9aF31 +6,/Cy +C5

. rs,
i |:—KX+(—W—QK >t+r]
X € )

2 2
- —(C1 sin (h 92;;32>—|—C2cos( i?;)
d,t) = | ——2 146

33 2 T2
Ci cos (Fz 9201;32) + C; sin (h 9a13322 + 9,/C% + C%
or2
y el |:—Kx+(—ﬁ—ak >t+ri|

(129)

’
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2
provided 'y # 0, aF3SF%S =0,w = —% —ak?,6; =Fland 6 = +1.
Output 3.

2 2
Ao=0. =0/ Bi=0, Ty=0, 2=2CT0D s ogfeiy (130)
3s a

provided w + ax? # 0, al's; < 0 and 6 = =+1.
From (9), (101), (102), (115) and (130), we attain the following wave solutions of the periodic type of eqs (99)

and (100) as
i - 2wrtax?) et ]
o + ax? —Cysin (h/@) + Cy cos (h %)
l)0('x9 t) =|(0,— T
| reos (/220 4 casin (ny 22 ) 10 e 4+ 3

% et[—/cx—l—a)t—i-r] ,

* - . (131)
- 2(w+ax?) \/m
o+ ax? —Cjsin (h\/wTiaK) + C> cos (h %)
px, 1) =|0,/— T
o\ Cicos (h\/z(%‘mz)) + Cysin (h,/M) +0,/C? + C2
x ei[f/(x+a)t+r] -
provided '3 s (w + ak?) < 0,a(w+ak?) = 0,72y =0and 6 = +1.
Output 4.
Ao Ao Ao B0 k=g @t 2 asA0 + 4T AG
0 - Ov 1 - 2F3s ’ 1 - ’ - a ’
A2
C;=0iC;, r=--2 A=0, (132)
A7

provided Ag # 0,al'ss < 0,a(—w + 22 3A0 + 4F3SA(2)) > 0and 6 = £1.
From (9), (101), (102), (115) and (132), we attain the following wave solutions of the periodic type of eqs (99)
and (100):

—sin (h 2EIJAO> + 6i cos (h 21%AO)

cos(h ZI;JAO)+9isin<h 2%%)

% ei[—Kx+(2F21A()+4F31A%—alc2)t+r]’
* (133)

_sin<h Z%AO)Jreicos (h "“;JAO)

cos (h %Ao) + 6i sin (h 21;JAO)

X ei[_Kx+(2F22A0+4F32A(2)—a/(2)t+1;]
provided Ag # 0, al'3s > 0and 0 = £1.

Output 5.

Y(x,t) =|Apq140i

d)(x’t): AO4 14+ 6i

—w + 2T Ag + 4T3, A2
AO = AO’ Al = Al’ Bl =O7 K =9\/ “ 2s 0 3S 07
a
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A2
Cy=0iC;, r=--2 A=0, (134)
A
1
provided Ag # 0, A
4T3,A%) = 0and 6 = %1,
From (9), (101), (102), (115) and (134), we obtain the

# 0, a(—w + 2T23Ag +

Pramana — J. Phys. (2023) 97:119

provided 'y # O and A # 0.
Output 2.

2 — =
following wave solutions of the periodic type of eqs (99) Bi =04 V C1—2AC;, T =0,
and (100): w
k=0 /-2 A=A (138)
a
[ —sin hﬂ) + 0i cos (h@> ]
V(x,t)=|Agq1+0i < l . A (| e[t CraAotaTaiAG—ayi o]
i cos (h%) + 6i sin <h’AJ> } 135)
_ —sin hi;“—lo)-i-el'COS (Fl@> ] ) ) )
¢(x’ t) — AO 11 + Qi ” ' el[—K}C+(2F22A0+4F32A0—GK )l‘+l’],
i .o i
i cos (hA—lO) + 0i sin (h—0> i

provided Ag # 0, A} #0and 6 = £1.

Type 3. 1f A = 0.

Here, we substitute (115) into eq. (113) and using
eqs (6) and (12), setting all terms with the same
order of (1/t(n))! (t'(h)/t (M) and (1/T(R)' (i =
0,1,2,3,4; j =0,1,2, 3) to zero, we obtain nonlinear
algebraic equations. With the help of Mathematica, the
solutions of this resulting system are provided by the
following outputs:

Output 1.
I 6a A
Ag=—=2, A =0, B =—0,
2F3s FZS
_ _T3(C} —2AC)
18A2l3,
—2w + Iy A
k=0 % A=A, (136)
a

provided I'ys # 0, A # 0, a(—2w 4+ I'25Ap) < 0 and
0 ==1.

From (11), (101), (102), (115) and (136), we obtain
the following solutions of eqs (99) and (100):

V(x,1)
Iy 4(C? —2ACy)
= —0|1+ 5
203 3A(AR? +2C1H +2C»)

C18A2I2. 44,212, (c2—
i[_Kx+< 18AZTS, +4%T5, (C 2AC2))Z+T
2
4(C? —2ACy)

723 A2
2
= -——=11 =+ 5
2I'3, 3A(AR” +2C 1R+ 2C))

212 212 (2
il —iext —18A F22+4K r22(C172AC2) .
2
723y A

'(137)

X €

9’

provided al'3; < O and 0 = £1.
From (11), (101), (102), (115) and (138), we attain
the rational solution of eqs (99) and (100) as

a
2IM3

2 (Ah +Cy+,/C} — 2AC2)

ARZ +2C1h +2C

Y(x,t) = [9

ei [—K)C+(—aK2)Z+T]

(139)

AR +Cy +,/C} —2AC2)

AR% 4+ 2C1H +2C,

\S)
7N

x ei[*l(x+(*al(2)l‘+‘[] ,

provided al'3s < 0, w = —ak?, Tpy =0and § = 1.

Output 3.
3aA
A0=07 A1=05 Bl=_ ) k=0 )
2s a
—2I'2 (C? —2AC
P T 2 A= A, (140)

9A2l3 ’

provided aw < 0,25 #0, A #0and 6 = £1.
From (11), (101), (102), (115) and (140), we obtain
the following solutions of the rational type of eqs (99)
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and (100): ~
4T51(C? —2AC
Vet = 21(21 2)
3AT31(ARS 4+ 2C 1R+ 2C))
% ei[—Kx—f—(—aKz)t-i—r]’
) B - (141)
4T2(C? — 2ACy)
$(x.1) = >
_3AF32(Ah +2Ch +2C2)_
x ei[ka+(fal(2)t+r]

provided I';; # 0, A # 0.

The procedures for taking C; and C, as particular
values drawn in §3.3 can also be achieved to construct a
further variety of other analytical solutions of eqs (99)
and (100).

4.4 Solutions of eq. (113) via the generalised
sub-ODE method

Now, balancing H!'(h) with HJ in eq. (113), by using
(16), we get n +2qg = 3n = n = q. Hence, eq. (113)
admits the formal solution

Hy(h) = AV (h)4. (142)

Substituting (142) along with (14) into eq. (113) and
equating all the coefficients of W (%)/9 (j = 0, 1,2, 3)
with zero, we get the following set of algebraic equa-
tions:

) :aABg* =0, (143a)
V() :ahCq® — Aw + ax?) =0, (143b)
3
W (7)) EaADqZ + ATy =0, (143c¢)
W(h)¥ : 2aAEq® + A°T35 = 0. (1434d)
On solving eqs (143a)—(143d), we get
A=0,B=0,
A—p 2aE
- F3s '
Co (w + ax?)
=
20/T 2E
p="1%/ = (144)
3q aF3s

provided aET35 < 0, Tas # 0, w # —ak?, 0; = Fl
and 6 = £1.

With regard to the solutions of eq. (14), we obtain the
following types of the exact solutions of systems (99)
and (100) as follows:
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Type 1. Since A = B = D = 0, then the following
cases arises:

Case 1. Equation (14) has the solution

1
U(h) = [9,/—% sech(q«/Eh)]q,

C>0E<0,60==l. (145)

Then, we obtain the following solutions of the bright
soliton type of eqs (99) and (100) as

2 2
vx, )= |6 2@ +ak”)
I3
2 .
x sech @+ aK (x + 2akt) | | el rextertn
3 (146)
2 2
¢(X, l) — 9 M
'3
2 .
x sech |/ @t ax (x + 2akt) | | el rxtertn
a

provided (w +ax?)T'3s > 0, a(w +ak?) = 0, T2 =0
and 60 = %1.

Case 11. Equation (14) provides the following solution:

v (h) = |:9,/ —% sec(qv—Ch)] q,

C<0, E>0, 6==l1. (147)

Then, we obtain the following solutions of the periodic
type of egs (99) and (100):

2 2
U, =60 2w+ ax”)
I3
/ 2
X Sec —M(x + 2axt) | | el CTRxtertT)
a
3 (148)
2 2
¢(x’ t) — 9 M
'3
/ 2
X Sec —M(x + 2axt) | | el CTRxtertT)
a

provided (w+akH)T35 = 0, a(w+ak?) <0,T, =0
and 0 = £1.
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Case 111. Equation (14) provides the solution

0
v (h) = ,
e [qﬁrj
C=0, E>0, 0==+I. (149)

Then, we obtain the following solutions of the rational
type of egs (99) and (100):

vixn = _F31 x (x + 2akt)

v a2
% el( KX—ak t+r)’

3 (150)

o, 1) = _F32 x (x + 2axt)

i(—Kx—a/c21+r)
9

X €
provided al'3y < 0, ')y =0and 6 = £1.
Type 2.

Case 1. By using the conditions of W (%) of eq. (73),
we obtain the following solutions of Weierstrass elliptic
function type of eqs (99) and (100):

Y(x, 1)
_ 1y —2[3ap (x+2axkt, g2, g3) — (w+ak?)]
B 331
% ei(—/cx—l—a)t—i-r)
’ (151)
d(x,1)
_ o —2[3ap (x+2akt, g, 83)— (w+ak?)]
B 33
% ei(—Kx—I—a)t—l—r)’
provided
242 243
. 0 4(w + ak?) 8(w + ak”)
<0, =, = 7
3s 82 302 g3 27(13
and
6 = =+1.

Case 11. Using the conditions of W (%) of eq. (82), lead to
the following solutions of Weierstrass elliptic function
type of egs (99) and (100):
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V(x,1)
_ |30 2a3 o (x + 2akt, g2, g3)
- ['31 6ap (x+2akt, g2, g3)+w—+ak?

% el (—kx+wt+71) ,

| 6. 0)

_ |3 ] 2 © (x 4 2axt, g, g3)
N '3, 6ap (x+2akt, g2, g3) +w+ak?

% el(*Kx+a)l+T)’

(152)

provided
2.2
als, <0, go= 2T
1242
_ (w+ aK2)3
S 216a3
and 60 = +£1.

Remark. Similarly, as drawn in §3.5, we can in particu-
lar rewrite the Weierstrass elliptic function solutions of
(151) in terms of Jacobi elliptic functions and this is left
to our readers.

Type 3. Since B = E = 0, then, we obtain the following
cases:

Case 1. Equation (14) provides the following solution:

1
C JC N7
W(h) = | —= sech? (q—h) C>0.D <0.
D 2

(153)

Since A = 0, then, we obtain the following solutions of
bright soliton type of eqs (99) and (100) as

3(w + ax?)
D)= —F=5—
Vi(x, 1) 3Ty,
1 2
x sech? 5,/ M(x + 2axt)
a
% ei(—Kx—i—a)t-i—r)
} ’ (154)
3(w + ak?)
k) t - - A=
¢ (x,1) T
1 2
x sech? 3 M(x + 2axt)
V a
% ei(—Kx+wt+r)

provided a(w + ak?) = 0, Ty #0and I';, = 0.



Pramana — J. Phys. (2023) 97:119

Case 11. Equation (14) provides the following solution:
1

/—C q
9 . h)} . C<0.D=>0.

V(h) = [—% sec’ (
(155)

Since A = 0, we obtain the following solutions of the
periodic type of eqs (99) and (100):

3(w + ax?)
2T

1 2
xsec? 5‘/ —M(X + 2axt)
a

% ei(—Kx—&-wt—f—r)’

x, 1) =

) (156)
3(w + ak?)
D)= —w5—
¢ (x,1) T

1 2

xsec? 3 —M(x + 2akt)

V a
% ei(—Kx+a)t+r)

provided a(w + ak?) < 0, T2 # 0and '3 = 0.

Type 4. Since A = B = 0, then we attain the following
cases:

Case I: Equation (14) has the solution

1
1 /C gv/C \1¢
VY ==, =11 h|{ —
(h) |:2 E( + A tan ( 5 h):| ,
C>0, E>0, D=-2JCE, 6=+1. (157

This yields the following solutions of the hyperbolic
function type of eqs (99) and (100) as

_
33

_F%l
1 + 6 tanh — 2axt
X + 6 tan 184>, (x 4+ 2akt)

2r3
i(—kx+ <— ﬁ —aK2>t+‘[)

Vix, 1) =

X € )
] (158)
[
, 1) = _—
¢ (x,1) 3T
-5,
1 + 6 tanh 2akt
X + 6 tan 18Ty (x 4+ 2akt)

; rs, 2
i(—kx+ 915, TaK t+1)
X € : )
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provided al'3; < 0,25 # O and 6 = +£1.
Case 1I: Equation (14) provides the solution

sech(g+/Ch) ]5

1-— % sech(g+/Ch)
2

D
C>0, D<2C, E=———C.
4C

This yields the soliton solutions of eqs (99) and (100)
as

El

W(h) = [

(159)

—3613/2(w + ax?) sech ( %h)

Vix, 1) = -
VB + /20T 5; sech ( “H'%h)
% ei(—/(x—f—a)t—i-r)
1
—3601v2(w + ax?) sech ( %h)
P(x, 1) =

V' E + /26T 2, sech < %‘”‘%’z)

x el(f/(x+a)t+r)’

(160)

provided (a)+a/c2)a > 0,8 >0,00 =Flandb = +£1,
where E = 2I' + 9(w + ak?)I's;.

Case 111. Equation (14) has the solution

4 1
V) =|——s——1| ,
® ==z
C=0, D=1, E <O. (161)
Then,
- 12aT )
V) =| = —Z
215, (x + 2akt)” + 9al'3;
% ei(—/cx+(—a/c2)t+r)
{ _ ’ _ (162)
12al’
S, 1) = | —=— 2
215, (x + 2akt)” + 9al'3;
« ei(—Kx+(—aK2)t+r)
provided I'yg # 0.
Case IV. Equation (14) has the solution
2C sech? <¥h> i
W (h) =|: NG ] )
2VA — (VA + D) sech? (44E1)
C>0, A=D>—4CE > 0. (163)
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Thus, we obtain the following solutions of the soliton
type of egs (99) and (100):

3v260) (@ + ax?)sech? ( (“’+“K ) [x + 2a/<t)]>
w(x l‘) — ei(—Kx+a)t+r)
2JE — («/E + 9«/§F21> sech? (%,/ (‘“zﬂ [x + 2alct]>
(164)
37201 (w + ax?)sech? (% (“):ﬂ [x + 2a/ct)]>
¢(x l‘) — ei(—/{x—i—a)t—i—r)
2WE - (f NG Fzz) sech? ( o) [y 4 2a1<t]>
provided a(w+ax?) = 0,2 = 0,0; = Flandf = +1, vx, 1) =

where E =2I'?_+9 a)-l—alc2 I's,.
2s 9 T35 34201 (w + ax?) sech < (")“LT‘”CZ) [x + 2a/<t]>
Case V. Equation (14) has the solution

2C csch? (%h) i VE — V20T sech < (w+TaKZ) [x + 2a/<t])
- P L
2VA + (VA = Dycsch? (445) x ¢l (rrtertn), 168)
¢(x, 1) =

C>0, A=D>—4CE >0, 6==l. (165)
2
Thus, we obtain the following solutions of the soliton 3261 (@ + ar®) sech ( (w+a¢) [x + 2axt ]>

type of egs (99) and (100):
VB — /20Ty, sech (,/ (“’+“K ) [x + 2a/<t]>

% el(—/(x—i—a)t—i—r)’

3426, (@ + ax?)csch? ( (w+aK ) [x + 2a1ct])
w(x’ t) — ei(—Kx-f—a)l-i—T),
2J/E + (f 02 F21> csch? < (o) [ 4 2a1ct])
(166)
3v20) (@ + ax?)csch? < (w+"K ) [x + 2a/<t])
¢(X l) — i(—kx+wt+T1)
2JE + (\/_ 0\/_F22) csch? ( (“’+“K ) [x + 2a/ct]>

provided a(w+ak?) = 0,8 = 0,6; = Flandd = £1, provideda(w+ak?) = 0, > 0,0, = Fland6 = +1,

where E = 2I'5 + 9(w + aKZ)ng. where E = 2I'7_ + 9(w + aicz)ng.
Case V1. Equation (14) has the solution Case VII. Equation (14) has the solution
1
2C sech(g~/Ch) 0 CD sechz(Mfl) i
Y= 575 ~ Dsechigv/cn) v = [_ N ] ’
: q — CE[1 + 0 tanh(2%E 1) ?
C>0, A=D"—4CE >0, 6 ==l1. (167) C>0. 0=%+1 (169)

Therefore, we attain the solutions of eqs (99) and (100)  Therefore, we obtain the following solutions of the soli-
as ton type of eqs (99) and (100):
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12(w 4 ak?)Ty;sech? (% (“H'T”Kz) [x + 2a/<t]>
w(x’ l,) — 5 ei(*KX+wt+T)’
813, + 9w + ak?)I'3 (1 + 0 tanh (%,/ (orad) v 4 2am))
: _ (170)
12(w + ax?)Taysech? (%w/ (““Laﬂ [x + 2aKt]>
¢(x’ l‘) — - ei(—Kx—&-a)t—l—r)’
8F%2 +9(w + a3 (1 + 6 tanh (% (‘”+T‘”‘2) [x + 2a1<t]>)
provided a(w + ak?) > 0, Toy #0and 6 = +1.
Case VIII. Equation (14) provides the solution
1
C D csch? (24 h) 7
V(h) = 7
D? — CE[1 + 6 coth(1% 1) 2
C>0, 6==l1. 171)
Therefore, we obtain the following solutions of the soliton type of eqs (99) and (100) as
—12(w + ax?)Tyjcsch? (%,/ (“’J’T‘”‘Z) [x + 2a/ct])
lp_(x’ t) — : 5 ei(—/cx—&-wt—i—r)’
81"%1 +9(w + ak®)I'3 (1 + 6 coth % (‘”zﬂ [x + 2a/<t])
] - ~ (172)
—12(w + ax®)Typcsch? (%\/ (“’Jraﬂ [x + 2a/<t]>
¢(x’ [) — : E ei(—l{x—i—a)t-i—r)’
8I'3, + 9(w + ak?)I'3; (1 + 6 coth 1/ T4 [ 4 2a/ct]>
provided a(w + ak?) = 0, Ty, #0and 6 = +1.
Case 1X. Equation (14) provides the solution
1
2C csch Ch q
W(h) = [9 = CS;(‘“:I(_ \)/a)} >0, A=D>—4CE>0, 6=+l. (173)
~—A — D csch(g
Thus, we attain the following solutions of eqs (99) and (100) as
—32i(w + ak?) csch ( (“’:iz) [x + 2a1<t])
w(x’ t) — ei(ka+a)t+r)’
VB — i/2T csch (w/ (‘”Jraﬂ [x + 2a1<t]>
4 ) B (174)
—34/2i (@ + ak?) csch ( “”:iz) [x + 2alct])
¢(x’ l‘) — ei(—xx—f—a)t—l—r)’
E—1i 27 CSC (otac?) [x + 2akt]
VE — iY/30; csch (ke
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provided a(w + ak?) = 0, E = 0, where E = ZF%S + 9w+ a3 and i = /—1.
Case X. Equation (14) has the solution
1
C sech%#h) a
7 , C>0, E>0, 6==1. (175)
D +20/CE tanh(£4<h)

\D(h):[—

Therefore, we obtain the following solutions of the soliton type of eqs (99) and (100) as

3(w + ax?)sech? <% (o) [ 4 2aKt])
w(x t) — ei(—Kx+wt+r)
2Ty + 3v/—2(w + ax?)T3; tanh (% (“’+T‘”‘2) [x + 2a/ct])
_ _ (176)
3(w + ax?)sech? (% (“’Jraﬂ [x + 2a/ct]>
¢(x t) — ei(—/(x—i—wt—i—r)
20 + 3\/—2(w + ak?)I'3; tanh <% (“’:ﬂ [x + Zam‘])
provided a(w + a/cz) > 0and (w + a/cz)F3s < 0.
Case XI. Equation (14) has the solution
Cosch?(2Cn) 7
V(h) = 7 , C>0, E>0, 0==l. (177)
D +26+/CE coth(1%<h)
Therefore, we attain the following solutions of the soliton type of eqs (99) and (100):
—3(w + ax?)csch? (%‘/ (‘”Jraﬂ [x + 2a1ct]>
1//(x l) — ei(—KX+a)t+‘[)
2T + 3v/—2(w + ax?)I'3 coth (% (ora?) [y 4 2a/ct]>
; - - (178)
—3(w + ax?)csch? <% (”Jraﬂ [x + 2a1ct])
¢(x t) — ei(—/(x—i—a)t—i—f)
200 + 3\/—2(a) + ax?)I'3; coth <% (‘“Jraﬂ [x + 2a1<t])
provided a(w + ax?) > 0 and (v + ax*)I'35 < 0.
Case XII. Equation (14) has the solutions for C < 0, A = D? —4CE > 0:
2 (gv=C 1 _ _1
2C sec ( 2 7’) 4 2C sec(g/—Ch) 74
V() =| - N , V(n) = ; (179¢)
2V A — (WA = D) sec? (q - h) L0V/A — D sec(qg/—Ch) |
(175%) [ 2C ~—Ch i
— q
2C esc? (45=Cn) ; W(h) = ceav—Ch 1 (179d)
\Ij(h) — |: ] , _Gx/K—Dcsc(q\/—Ch)_
2WA — (WA + D)esc? (9‘1— V;%)

(179b)
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Therefore, we attain the solutions of eqs (99) and (100) in the following forms:

3201 (w + ax?)sec? (%,/ —(M'aiz) [x + 2a1ct])
w(x l,) — ei(—Kx+wt+r)
2/ 2 — («/E — 91«/51"21) sec? <%,/ —(“’”LTMZ) [x + ZaKt])
4 ) ) (180)
3201 (w + ax?)sec? (%‘/ _(w:ﬂ [x + 2a/ct])
¢(x’ [) — ei(—Kx+wt+r)
2VE - (VE - 01V sec? (%, [t [y zam>
provided a(w + ax?) < 0, E = O and 6 = F1, where & = 2I'3_ + 9(w + ax*)T3y,
3201 (w + ax?)csc? (%,/ —(‘”Jra—‘“‘z) [x + 2a/<t]>
lp_(x’ t) — ei(—Kx-f—a)l-l—‘L')’
2VE - (VE 4020 ) ese (g,/_wgﬂ e+ zam)
B B (181)
34260 (@ + ax?)csc? (g,/ —(‘”Jraﬂ [x + 2a1<t])
¢(x’ l‘) — ei(—lcx+a)t+r)’
2JE — («/@ + 9«/§F22) csc? <%,/ —(“’:ﬂ [x + 2alct]>
provided a(w + ax?) < 0, E = 0,0; = F1 and 6 = £1, where E = 2I'5 + 9(w + ax )Ty,
3201 (w + ax?) sec _ (wtax?) [x + 2axt]
a
lp_(x’ t) — ei(—Kx—i—a)t-i—r)’
VB — /20Ty sec _ (wtac?) [x + 2axt]
| a
(182)
3201 (w + ak?) sec _ (wtac?) [x + 2akt]
a
¢(x’ l‘) — ei(—lcx—i—a)t—i—r)’
VB — /20T sec (,/ —(“’JFT“KZ) [x + 2a/ct]>
provided a(w + ax?) < 0, E = 0,0; = F1 and 6 = £1, where E = 2I'3_ + 9(» + ax )Ty,
3201 (w + ak?) csc _ (wtax?) [x + 2axt]
a
w(x’ l) — ei(—/(x—l—a)t—l-r)’
VB — /26T csc (‘/ —(°°+Ta'(2) [x + 2a/ct])
) ) (183)
3201 (w + ak?) csc _ (wtak?) [x + 2akt]
a
¢(x’ t) — ei(—lcx—i—a)t—i—r)’
V& — +/20T 5 csc (,/ —(“’JFT“KZ) [x + 2a/ct]>
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provided a(w+ax?) < 0,2 = 0,6 = Flandf = +1,
where 2 = 2F%s + 9(w + ax?)T'3y, respectively.

Case XIII. Equation (14) has the solution

1

A4Cg2efavCh 7
o[
—1 +4CEqg*e29avCh

C>0, D=0, 6==l1. (184)

Thus, the solutions of eqs (99) and (100) are in the
following form:

v(x, 1)

40q(w + alcz),/—zlf’—f
@: aKZ @: aKZ
—qe VR +4Eq%(w + ax?)e’V e

% el (—kx+wt+1) ’

1
¢(x,1)
2 2aE
40q(w + ak*),/— s
: (IKZ w aKZ ’
—qe OV —1—4Eq2(a)—|—a/<2)eeV e

i(—kx+wt+T1)

(185)

X €

provided aET'33 < 0, 'y = 0, a(w + ak?) = 0 and
0 =+l1.

5. Graphical results and discussion

In this section, to better understand the dynamical
behaviour of the obtained results, we demonstrated the
graphical configurations of some of them by provid-
ing appropriate values to the parameters. The generated
kink wave, dark soliton, singular bright soliton, sin-
gular and doubly periodic wave solutions have been
graphically illustrated in figures 1-11, using appropri-
ate arbitrary parameters. The physical structure of new
solutions demonstrates the usefulness and strength of
these techniques.

In figure 1, the amplitude and intensity profiles of
non-singular bright solitary wave solution (42) when
ar =20, 0w =10, 8 =10, «x =10, y1 = 1.0,
Co=10,A1 =10,61 =n =01 =r = —1.0,
fip = 0 and & = 1.0 are illustrated. In comparison to
the dark solitons, bright solitons in optical fibres are
relatively easy to generate and have a constant phase
throughout the entire pulse.

In figure 2, the amplitude and intensity structures of
singular solitary wave solution (45) with the selected
parameterso; = 1.0,0 = 1.0, 81 = 2.0,k = 1.0,y =
01,Co=0.1,A1=1.0,61 =n =01 =r = —1.0,
fip = 0 and 0 = 1.0 are depicted. It has been observed
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that the intensity profile takes the form of a singular
bright soliton with selected values of parameters.

Figure 3 displays the amplitude and intensity struc-
tures of soliton solution (46) when 1 = 1.0, w = 1.0,
B1 =20,k =10,y =0.1,Cy = 0.1, Ay = 1.0,
dy=n =0, =r=-10,Ap=0and 9 = 1.0. It
is seen that the amplitude profile of wave solution (46)
is kink type (ascending from one state to another) and
the intensity profile takes the form of a dark soliton to
describe the localised intensity drops on a continuous
wave background with selected parameters.

In figures 4 and 5, the evolution of the amplitude and
intensity structures of soliton solution (48) foro; = 1.0,
w =10, =20,« =10,y = 0.1, Co = 0.1,
A1 =10,61 =n =01 =r = —1.0, 51 = 1.10,
S> = 1.0,9 = 0and 8 = £1.0 are depicted. It is noted
from the figures that the amplitude structure of wave
solution (46) is a breather-type solution for & = 1.0 and
is of antikink type for 6 = —1.0.

Figure 6 illustrates the evolution of the amplitude and
intensity structures of periodic wave solution (64) when
ar =20, 0w =10, 8 =10, «x =10, y1 = 1.0,
Co=10,A1=10,81=m=01=r1=10,p=0
and 6 = 1.0.

Evolution of the amplitude and intensity structures of
singular periodic wave solution (89) when «; = 2.0,
w =10, =10,« =10,y = 1.0, Co = 1.0,
A1 = 1.0, 51 =N =01 =T = —1.0, ho = 0 and
6 = 1.0 are depicted in figure 7.

Evolution of the amplitude structure of rogue wave
solution (123) when a = —1.0, 8 = 1.0, Ag = 2.0,
¢y =mp =n; = 1.0and § = 1.0 are depicted in figure
8. It can be noted that from eq. (109), that the frequency
k of rogue wave solution (123) is half of its velocity
whena = —1.0and 8 = 1.0.

Figure 9 represents the evolution of the amplitude pro-
file of rational wave solution (137) when k; = —1.0,
,3 = I.O,Cl = 2.0,C2 = 1.0,51 =m|=n) = 1.0and
A = 1. The movement of wave propagation is depicted
at different positions.

Figure 10 represents the evolution of the amplitude
and intensity of kink wave solution (158) when k| =
1.0,k =1.0,a=-10,4; =m;=n;=10and 0 =
1. It is noted from the figure that the amplitude structure
of wave solution (158) is kink type while the intensity
profile takes the form of antikink wave soliton. Also,
solution (158) possesses some kind of symmetry for 6 =
41 (figures not shown here). From symmetry, one can
observe that |44 (x, )| = |Wy__(x,t)| represents the
kink soliton and |y _(x, t)| = |Y¥_4+(x, t)| represents
the antikink soliton.

Figure 11 represents the evolution of the amplitude of
bright solution (176) when k; = 1.0, w = 0.1, x = 1.0,
a=1.0and £, = m; = n; = —0.01. It can be noted
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from eq. (109) that when « increases, wave speed S
increases for a constant value of a. The amplitude profile
of bright soliton (176) remains constant with increase in
wave speed while there is a decrease in the width of the
soliton as depicted in figure 11.

The graphical depiction shows the behaviour of the
obtained solutions as a single soliton, periodic waves,
kink waves, dark—bright solitons and breather waves.
Solitons form as a result of cancelling nonlinear and
dispersive processes in the medium. Soliton is a self-

sustaining wave that advances at a constant speed while
keeping its form. Soliton is formed in a variety of situa-
tions, including light propagation in fibres, energy trans-
mission in hydrogen-bonded spines, physical plasma,
stratified fluid flows, shallow water waves, and so on.
The existence of arbitrary functions in the established
results indicates that these solutions may be more effec-
tive and appropriate in describing the physical events
at hand. The generated solutions are physically relevant
and may be used to explain stability, nonlinear behaviour
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and dispersion effects in physics and mathematics fields.
These acquired solutions can aid numerical solvers in
certifying the accuracy of established solutions and
allowing them to examine the behaviour graphically and
physically. Furthermore, these explicit exact solutions
may provide rich localised behaviours and provide us
with a greater understanding of the underlying mecha-
nisms of nonlinear complex systems. When considering
the localisation-type appearances in solitons theory,
periodic solutions have a highly confined formation
with a temporally periodic structure. Rogue waves are
dangerous events that occur in systems with a large
number of waves. They are common in nature and can
be seen in many situations such as nonlinear optics,
water waves, liquid helium, microwave cavities and
other areas.

6. Modulation instability (MI) analysis

Due to numerous applications such as in high-speed
optical communications, time-resolved spectroscopy,
ultrafast optical switching, super-continuum generation
and so on [64—66], research into MI in optical fibre has
stirred the curiosity of many researchers. MI is caused
by the interaction of group velocity dispersion and non-
linear effects.

6.1 MI of Biswas—Arshed model in birefringent fibres
without FWM

To investigate the MI, we begin with a steady-state solu-
tion of eqs (18) and (19) as

Ux,t) =aie'™, V(x,t) = are'. (186)

Now, we determine whether or not this steady-state solu-
tion is stable in the presence of small perturbations. To
accomplish this, the steady-state solution is perturbed in
such a manner that

U(x,t) = [a + ¢1(x, 1)]e",

V(x,1) = [as + @2(x, )]’ (187)

where ¢;(x, 1), j = 1, 2, represent weak perturbations.
Replacing eq. (187) into eqs (18) and (19) and subse-
quently linearising the resulting equations in ¢ and ¢,
we get
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ig1r — wp1 + (0] — A@)Pixx + Bi1@1xe + IV1Plxxx
HiA Q1 — 2ifla%§02x
— i[8187 (¢} + 201)x + 0147 (95 + 2902).]
—il(n +r1 +2eDat — frolgre =0, (188)
192 — 0@y + (2 — Aow)Paxx + B2gaxs + iV2¢2xxx
HiA2@oxxt — 2i":2“§(/’1x
— i[82a3 (93 + 2¢2)x + 0203 (9] + 201):]
—~i[(m2 + 12+ 2€2)a3 — prwlgay =0,
where * denotes the complex function’s conjugate. We
get perturbation of ¢;(x, ) and one can have the MI
analysis of the perturbation > (x, t) by using the same
approach.

For solving the resulting linear equations, we assume
the general solutions of the following form:

(189)

p1(x,1) = ulei(Kx_Q’) 4 Mze_i(Kx_Q’),

@2(x, 1) = uye! K37 g gype i Kx=0n) ()

where K denotes the normalised wave number and 2
specifies the frequency of perturbation. The two com-
plex constants | and u; satisfy the relation |u|+|uz| >
0. Substituting the assumed solutions (190) into eq.
(188) and splitting the coefficients of el (Kx=80) and
e~ H(Kx=81 provides the following dispersion relation:

K®2 —2K QA 1y + (A1 + AIQHK* — 2QAK3

+(A3 — (B} + 28R K

+2QA4K + Q> — »® =0, (191)

where

A1 = 2y1 2Ty 4 11 + 281 + 2€1 + 201 +r1)at
—w? AT+ QA =281y — af,

Ay = A1ty + 11 + 281 + 261 + 201 4 r)at
—y1 — Biai,

Az = (n +r1 + 21 + 61 + o1+ 2€1) (1 + 11
4271 4 381 + 301 + 2€1)a}
—20B1 (271 + 11 + 281 + 261 + 201 + r1)a}
+(B} +2A )0 — 20a1,

Ay =a? Qui+m + 281 +2€1 + 201 +11,).

Solving the dispersion relation (191) for €2, we get

K A1y1 — A4K + AsK3 — \/B1K3 + ByKS + B3K* + B4K? + w2

Q(K) =

1+ K*AT — (BT +2A1) K2

, (192)
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where By = —ATA1+2y1 (1 + A2) A1+ BTy, By =
—ATA3 + (<2447 +2AD A1 + BTAL + A5 — ¥},
By = Atw? — Ay + BfA3 — 2A4A; + 2A1A3, By =
Alw? — Ay + BPA3 — 2A4A5 + 2A 1 As.

From dispersion relation equation (192), it is revealed
that Q (K) is real for all K if B K® + BoK® + B3K* +
B4sK? + @* > 0and | + K*A2 — (87 + 2A)K? #
0. Then, against small perturbations, the steady state
is stable. In contrast, the steady-state solution is always
unstable if B K8+ By K%+ B3K*+ BsK?*+w? < 0and
1+ K*A? — (B +2A1)K? # 0, which shows that the
perturbation develops exponentially as €2(K) contains
the imaginary portion. Under this circumstance, for the
occurrence of M1, it could be easily demonstrated that
BiK3 + BoK® + B3K* + B4K?> + w?* < Oand 1 +
K*A% — (B +2A1)K? # 0. The rate of growth of the
MI gives spectrum g(K) as

g(K) =2Im(K)
_ —2y/BiK® + ByK® + B3K* + B4K? + o”
B 1+ KA — (Bf +2A1) K2

(193)

The MI gain spectrum (200) is shown in figure 12
when ay = 1.0, T = 1.0,771 = 1.0, 81 = 1.0, €] =
1.0,01 =1.0,r1 =1.0,A1 =1.0,a1 = 1.0, B =0.1,
y1 = 1.0and w = 1.0.

-10 -5 0 5 10

K
Figure 12. The MI gain  spectrum (193) for
parameter values a; = 1.0, 7y = 1.0,
nm = 10,61 = 1.0, = 1.0,00 = 1.0, 1 = 1.0,

Al =10,01=10,8 =0.1,7 = 1.0and w = 1.0.
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6.2 MI of NLSE with quadratic—cubic law of
refractive index along with FWM

Suppose that eqs (99) and (100) have the perturbed
steady-state solutions in the following form:

(x, 1) = [by + x1(x, )]’

P (x, 1) = [by + xa(x, )], (194)

respectively, where x;(x, 1), j = 1, 2, are weak pertur-
bations. Substituting eq. (194) into eqgs (99) and (100)
and linearising the resulting equations in y; and x», we
obtained the perturbation field as

ixi + [(my + n1)b% —wlx1 + a1 X1xx
HILBT(XF + 2x1) + mibiba (x5 + x2)]

+2n1b1bay2 =0, (195)
i X2 + [(m2 + n2)b} — ®lx2 + a2 x2xx

b3 (X5 + 2x2) + mabiba(x} + x1)]

+2n7b1byx1 = 0. (196)

We get perturbation of 1 (x, ¢) and one can have the MI
analysis of the perturbation y»(x, ¢) by using the same
approach.

For solving these equations, consider the general solu-
tions of the form

x1(x,t) = vlei(Kx_Q’) 4 vze—i(Kx—Qt)’

—i(Kx—Q1) (197)

x2(x,t) = vlei(Kx_Qt) + ve

where K denotes the normalised wave number and 2
represents the frequency of perturbation. The two com-
plex constants vi and v, satisfy the relation |vy|+|v2| >
0. Replacing (197) into eq. (195) and decomposing the
coefficients of e/ (KX=%) and e~/ (Kx=2) provides the
following dispersion relation:
Q% — 2K2a1a) —w - (n1 + m1)2 19‘2l

—2by (my 4 2n1) (ny 4+ my) b3

+[(=m} — (4ny + 41y my — 4ny (n1 + 1)) b

+2 (ny +my) (w + K2ar)] b3

+2b [—5 (gnl —l—ml) l1b7 + FM1

+ (w + Kzal) mi + 2ny (w + Kzal)] by

1
—3bi17 + 4 (Zml +w+ K2a1) l1b1? — K*ay?
= 0. (198)

Solving dispersion relation (198) for €2, we get

Q(K) = i\/K4a%+C1K2+Cz, (199)
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where
Ci =2[(-ny —my) b3
—b1 (m1 +2n1) by — 211]9% +a)] ai,
Cy = (n +m1)? b3 + 2by (my + 2ny) (ny +my) b

1
+3b}17 — 4l (a)—i- Zm1> b} +
—I—[(ml2 + (4ny + 4l my +4ny (ny + 1)) b

—2w (nq +m1)]b%

3 /8
-2 [—5 (5”1 —|—m1)llb%+a)m1
1 2
—|—§m1 + 2wn | b1bs.

The dispersion relation equation (199) leads to Q(K)
being real for all K if K4a% + C1K2+ Cy > 0. Then,
the steady state becomes stable against weak pertur-
bations. In contrast, this becomes unstable if K 4a% +
C1K? + C3 < 0, showing that Q(K) is the imaginary
part and this causes the perturbation to expand exponen-
tially with intensity, resulting in MI. It is easy to see that
MI occurs for K4a% +C1K*4+C, <0.The growth rate
of the MI gain spectrum g(K) is

g(K) =2Im(K) = :|:2\/K4a12 + C1K? + Cy.  (200)

The gain spectrum for MI frequency (200) is shown in
figure 13 when a1 = 1.0,n; = 1.0,m; = 1.0,]; =
—1.0,b;y = 1.0, b = —1.0 and w = 1.0 with plus sign
(blue curve) and minus sign (red curve) in the expres-
sion. It is evident from the above obtained dispersion
relations that the MI gain spectrum depends on various
coefficients of the considered model equations. There-
fore, the effects of these coefficients on the MI gain
spectrum require a separate deeper analysis and such
detailed studies may be taken up in future.

7. Conclusions

The extended simplest equation and the generalised
sub-ODE methods have been successfully applied to
extraction of optical soliton solutions and travelling
wave solutions to the Biswas—Arshed model in bire-
fringent fibres without FWM terms and the NLSE in
birefringent fibres with quadratic cubic law of refractive
index along with FWM. The obtained solutions include
bright solitons, Weierstrass elliptic function solutions,
hyperbolic function solutions, periodic function solu-
tions and Jacobian elliptic function solutions. Those
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200
100
g(K) 01
-100
-200
-10 5 0 5 10
K
Figure 13. The MI gain spectrum (200) for parame-
ter values a1 = 10,ny = 10,m; = 1.0,
i = —1.0,b; = 1.0,b, = —1.0 and w = 1.0 with plus

sign (blue curve) and minus sign (red curve) in the expres-
sion.

solutions should clarify some physical behaviours in
birefringent fibres. Compared with the studies in [33—
41], we see that our solutions are much broader and
contain all the existing ones in the above literature
and could be beneficial to explain the distinct phys-
ical behaviours. This comparison reflects the novelty
of this paper and elucidate the difference between our
results via the adopted approaches and the already pub-
lished solutions. This, particularly, shows once more that
the sub-ODE expansion idea is a very promising strat-
egy for determining exact solutions for a wide range
of nonlinear model equations, in birefringent fibres as
studied in this paper. We will show in future studies
that these approaches are also powerful in solving non-
linear models in polarisation-preserving fibres, Bragg
gratings, highly dispersive solitons, photonic crystal
fibres and DWDM technology with Kerr and non-Kerr
media. Moreover, the linear stability analysis method
has been used for exploring the MI of the obtained
steady-state solutions to the two considered nonlinear
models. Finally, Mathematica software is used to ver-
ify all the extracted outcomes by substituting them back
into the proposed models.
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