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Abstract. The paper aims to construct optical solitons and travelling wave solutions to two birefringent nonlinear
models which consist of two-component form of vector solitons in optical fibre: the Biswas–Arshed model with
Kerr-type nonlinearity and without four-wave mixing terms and the nonlinear Schrödinger equation with quadratic-
cubic law of refractive index along with four-wave mixing terms. These nonlinear Schrödinger equations are applied
in many physical and engineering fields. Optical solitons are considered in the context of photonic crystal fibres,
couplers, polarisation-preserving fibres, metamaterials, birefringent fibres, and so on. Two reliable integration
architectures, namely, the extended simplest equation method and the generalised sub-ODE approach, are adopted.
As a result, bright soliton, kink and dark soliton, singular soliton, hyperbolic wave, a periodic wave, elliptic function
solutions of Weierstrass and Jacobian types, and other travelling wave solutions, such as breather solutions and optical
rogons, are derived, together with the existence conditions. In addition, the amplitude and intensity diagrams are
portrayed by taking appropriate values for a few selected solutions. Furthermore, based on linear stability analysis,
the modulation instability was explored for the obtained steady-state solutions. The reported results of this paper
can enrich the dynamical behaviours of the two considered nonlinear models and can be useful in many scientific
fields, such as mathematical physics, mathematical biology, telecommunications, engineering and optical fibres.
This study confirms that the proposed approaches are sufficiently effective in extracting a variety of analytical
solutions to other nonlinear models in both engineering and science.

Keywords. Traveling wave solution; birefringent fibre models; the simplest equation method; the sub-ODE
method; optical soliton.
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1. Introduction

In natural and applied sciences, several nonlinear phe-
nomena, such as optical fibres, acoustics, fluid dynam-
ics, plasma physics, mechanics, biology, biophysics,
solid-state physics, Higgs mechanism, propagation of
shallow-water waves, thermodynamics and mathemat-
ical finance, are described by partial differential equa-
tions (PDEs). Many researchers have been interested in
investigating the nonlinear Shrödinger (NLS)

equation for the last few decades since the NLS equation
has numerous applications in optical fibres, plasma and
other fields of science and engineering [1–3].

There exist many approaches to investigate non-
linear equations in engineering and science, such as
the Hirota’s bilinear approach [4,5], the trigonomet-
ric function series method [6], the modified mapping
method [7], the modified trigonometric function series
method [8,9], the bifurcation method [10,11], the tanh–
coth method [12], the Jacobi elliptic function method
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[13,14], the exp-function method [15], the F-expansion
method [16], the mapping method [17], new φ6-model
expansion method [18], the unified Riccati equation
expansion method [19], the modified simple equation
method [20], the extended simplest equation method
[20,21], the generalised sub-ODE method [22–24], the
new extended auxiliary equation method [25,26], the
transformed rational function method [27] and the mul-
tiple exp-function method [28]. Very recently, N-soliton
solutions have been explored for local integrable equa-
tions (see, e.g., [29]) and nonlocal integrable equations
(see, e.g., [30–32]). Some other related works on recent
developments in the solitary wave solutions of nonlin-
ear equations based on various methods and interesting
physical applications are listed in [33–41].

The idea of solving nonlinear PDE via most of these
techniques is to reduce it to a nonlinear ordinary dif-
ferential equation (ODE) and hence solve it by the
procedures of these approaches, leading to the exact
solutions to the original PDE under consideration.

Therefore, the objective of this paper is to apply the
extended simplest equation and the generalised sub-
ODE methods to extract optical soliton solutions and
other solutions to two models, namely, the Biswas–
Arshed model with Kerr-type nonlinearity in birefrin-
gent fibres without four-wave mixing (FWM) terms and
the NLS equation in birefringent fibres with quadratic–
cubic law of refractive index along with FWM, respec-
tively.

To this end, the current article is structured as follows:
In §2, the descriptions of the used approaches are pre-
sented. In §3 and 4, optical soliton solutions and other
solutions of the two considered models are derived via
a variety of applications of these novel approaches. In
§5, graphical discussion of the obtained solutions is pre-
sented. In §6, the modulation instability of the obtained
steady-state solutions of this paper is analysed. In §7,
conclusions are drawn.

2. Preliminaries

We take a nonlinear PDE with two independent variables
x, t and one dependent variable u as

M(u, ux , ut , uxx , uxt , utt , . . .) = 0, (1)

where M denotes a polynomial in u(x, t) and its par-
tial derivatives, including highest-order derivatives and
nonlinear terms.

Let the transformation

u(x, t) = U (h̄), h̄ = x − ω1t, (2)

where ω1 is a constant representing the speed wave, to
simplify eq. (1) to the ODE

N (U (h̄),U
′
(h̄), U

′′
(h̄), . . .) = 0, (3)

where N is a polynomial in U (h̄) as well as its total
derivatives with respect to h̄.

2.1 The extended simplest equation method

For the method of extended simplest equation, consider
the following projective Riccati equations:

r ′(h̄)= − r(h̄)s(h̄), s′(h̄) = − s2(h̄) +� r(h̄) − λ,

(4)

where � and λ are constants. Let

r(h̄) = 1

τ(h̄)
, s(h̄) = τ ′(h̄)

τ (h̄)
, (5)

where τ(h̄) is the solution of the following ODE:

τ ′′(h̄) + λτ(h̄) = �. (6)

It is a common knowledge that eq. (6) possesses distinct
types of the following solutions:

Type 1. If λ ≺ 0, then we have the hyperbolic function
solutions

τ(h̄) = S1 cosh(
√−λ h̄) + S2 sinh(

√−λ h̄) + �/λ

(7)

and hence(
τ ′(h̄)

τ (h̄)

)2

= (λ S2
1 − λ S2

2 − �2/λ)

(
1

τ(h̄)

)2

−ε + 2�/τ(h̄). (8)

Type 2. If λ � 0, then the trigonometric function solu-
tions follow as

τ(h̄) = S1 cos(
√

λ h̄) + S2 sin (
√

λ h̄) + �/λ (9)

and hence(
τ ′(h̄)

τ (h̄)

)2

= (λ S2
1 + λ S2

2 − �2/λ)

(
1

τ(h̄)

)2

−ε + 2�/τ(h̄). (10)

Type 3. If λ = 0, then we have the following solutions

τ(h̄) = �

2
h̄2 + S1 h̄ + S2, (11)

and hence(
τ ′(h̄)

τ (h̄)

)2

= ( S2
1 − 2 �S2)

(
1

τ(h̄)

)
+ 2�/τ(h̄).

(12)

where S1 and S2 are arbitrary constants.
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Step1. Assume that eq. (3) admits the proposed extended
solution

U (h̄) =
M∑

m=0

Am

(
τ ′(h̄)

τ (h̄)

)m

+
M−1∑
n=0

Bn

(
τ ′(h̄)

τ (h̄)

)n (
1

τ(h̄)

)
, (13)

where Am (m = 0, 1, 2, . . . , M) and Bn (n =
0, 1, 2, . . . , M − 1) are constants to be determined
provided AM BM−1 �= 0.

Step 2. By substituting (13) into (3) and using eqs (8),
(10) and (12), we get a set of algebraic equations to be
solved for the unknowns Am , Bn, ω1, λ and �.

Step 3. Using Mathematica or Maple software, we can
solve this system of algebraic equations and then we
attain the exact solutions of eq. (1) utilising the solutions
provided in eqs (7), (9) and (11).

2.2 The generalised sub-ODE method

In this context, Zi-Liang Li [22] has proposed, for the
first time, a generalised sub-ODE with higher-order non-
linear terms of the form

� ′2(h̄) = A�2−2q(h̄) + B�2−q(h̄) + C�2(h̄)

+D�2+q(h̄) + E�2+2q(h̄), q � 0, (14)

where � ′(h̄) = d�/dh̄, A, B,C, D and E are con-
stants.

The solutions of the generalised sub-ODE eq. (14)
are provided in [22–24]. Therefore, we can present the
framework of the generalised sub-ODE method in the
following steps:

Step 1. Assume that eq. (3) has the formal solution

U (h̄) = ��N (h̄), � � 0, (15)

where N is a parameter and ψ(h̄) satisfies eq. (14). In
(15), we calculate N by using the homogeneous balance
method which is detailed as follows:

Deg(U ) = N ,

Deg(U 2) = 2N , . . . , Deg(U ′) = N + q,

Deg(U ′′) = N + 2q, . . . . (16)

Step 2. Replacing eq. (15) by eq. (3) along with eq. (14)
and gathering all the coefficients of �N j (h̄)

[
� ′(h̄)

]

(
 = 0, 1; j = 0, 1, 2, 3, . . .) and equating them to

zero, we receive a system of algebraic equations with
respect to ω1, A, B,C, D, E and �.

Step 3. With the assistance of the solutions of eq. (14)
presented in [22–24], we can extract optical soliton solu-
tions and other solutions of the nonlinear PDE (1) under
investigation.

3. Biswas–Arshed model with Kerr-type
nonlinearity in birefringent fibres without FWM

3.1 The governing model

Biswas and Arshad [42] recently devised the Biswas–
Arshed equation (BAE), which is a more expanded
version of the Schrödinger equation. The BAE is one
of the most well-known models in the telecommunica-
tions sector. The Biswas–Arshed equation for Kerr law
[43–52] in polarisation-preserving fibres is

iUt + α1Uxx + α2Uxt + i(β1Uxxx + β2Uxxt )

= i
[
δ
(|U |2U)

x + ε
(|U |2)xU + η|U |2Ux

]
, (17)

where U (x, t) is the complex valued function repre-
senting the wave pattern. The coefficients of α1 and α2
provide sequentially that group velocity dispersion and
spatio-temporal dispersion exist in order. Also, the coef-
ficients ofβ1 andβ2 provide sequentially that third-order
dispersion and third-order spatio-temporal dispersion
exist in order. The coefficients of δ, ε and η provide
self-steepening and nonlinear dispersions in order.

It is well-known [43–52] that Biswas–Arshed model
in birefringent fibres without FWM is written in the form

iUt + α1Uxx + β1Uxt + i(γ1Uxxx + �1Uxxt )

= i
[
δ1
(|U |2U)

x + σ1
(|V |2V )x]

+i
[
ε1
(|U |2)x + τ1

(|V |2)x]U
+i

[
η1|U |2 + r1|V |2]Ux , (18)

iVt + α2Vxx + β2Vxt + i(γ2Vxxx + �2Vxxt )

= i
[
δ2
(|V |2V )x + σ2

(|U |2U)
x

]
+i

[
ε2
(|V |2)x + τ2

(|U |2)x] V
+i

[
η2|V |2 + r2|U |2] Vx , (19)

where the complex valued functionsU (x, t) and V (x, t)
denote the wave pattern, the coefficients αi and βi (i =
1, 2) represent the group velocity dispersion and spatio-
temporal dispersion respectively, while the coefficients
γi and �i guarantee the third-order dispersion and third-
order spatio-temporal dispersion, respectively. Also,
the coefficients δi , σi , εi , τi , ηi and ri secure self-
steepening and nonlinear dispersions. One of the most
prominent models in the telecommunications sector dur-
ing a possible slow down is the Biswas–Arshed model.
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The most notable aspect of this model is that it ignores
self-phase modulation and has negligible group velocity
dispersion. In addition, both second-order and third-
order spatio-temporal descriptions are included in the
model to compensate for low group velocity dispersion.
Therefore, extracting optical solitons and travelling
wave solutions of this model is of prime importance.
We have also addressed other types of nonlinearity of
this model in refs [53–56].

3.2 Mathematical analysis

To consider the Biswas–Arshed coupled systems (18)
and (19), in birefringent fibres without FWM, we
assume that

U (x, t) = G1(h̄) exp [i�(x, t)] , (20)

V (x, t) = G2(h̄) exp [i�(x, t)] (21)

and

h̄ = x − ωt + h̄0, �(x, t) = −κx + C0t + �0,

(22)

where ω, κ, C0 and �0 are constants that are not equal
to zero representing some physical concepts of the
model, such as soliton velocity, soliton frequency, wave
number and phase constant, respectively and h̄0 is an
arbitrary constant.

The function�(x, t),which is a real function, denotes
the phase component of the soliton, while the real func-
tions Gi (h̄) (i = 1, 2) represent the pulse shape of the
solitons. Using (20) and (21) with (22) in eqs (18) and
(19) and extracting the real and imaginary terms, the
following equations are available:

[αs − ωβs + 3κγs − (2κω + C0)�s]G ′′
s (h̄)

+ [C0κ(βs + κ�s) − γsκ
3 − C0 − αsκ

2]Gs(h̄)

−κ(δs + ηs)G
3
s (h̄)

− κσsG
3
s∗ (h̄) − κrsGs(h̄)G2

s∗ (h̄) = 0, (23)

[γs − ω�s]G ′′′
s (h̄) + [ωκβs + C0βs − ω − 2καs

−3γsκ
2 + ωκ2�s + 2C0κ�s]G ′

s (h̄)

− (2εs + ηs + 3δs)Gs
2(h̄)G ′

s (h̄)

−2τsGs(h̄)Gs∗(h̄)Gs∗
′(h̄)

− rsG
′
s (h̄)G2

s∗ (h̄) − 3σsGs∗
′(h̄)G2

s∗ (h̄) = 0, (24)

where s = 1, 2 and s∗ = 3 − s. By the balancing
procedure, we have Gs(h̄) = Gs∗(h̄). Therefore, from
eq. (24), we obtain

[γs − ω�s]G ′′′
s (h̄) + [ωκβs + C0βs − ω − 2καs

−3γsκ
2 + ωκ2�s + 2C0κ�s]G ′

s (h̄)

−(2εs + ηs + 3δs + 2τs + rs
+3σs)G

2
s (h̄)G ′

s (h̄) = 0. (25)

Putting the linearly independent function coefficients in
eq. (25) to zero, we thus have

ω = 3γsκ
2 − 2C0κ�s + 2καs − C0βs

κβs + �sκ2 − 1
(26)

and

ω = γs

�s
, (27)

together with the constraint conditions

2εs + ηs + 3δs + 2τs + rs + 3σs = 0, s = 1, 2. (28)

Equations (26) and (27) give also the constraints

3�sγsκ
2 − 2C0κ�2

s + 2αs�sκ − C0βs�s

−κβsγs − κ2�sγs + γs = 0, s = 1, 2. (29)

Therefore, from eq. (23), we get the following ODE:

[αs − ωβs + 3κγs − (2κω + C0)�s]G ′′
s (h̄)

−[−C0κ(βs + κ�s) + γsκ
3 + C0 + αsκ

2]Gs(h̄)

−κ(δs + ηs + rs + σs)G
3
s (h̄) = 0. (30)

Hence, we aim to solve eq. (30) to find the optical soli-
tons and travelling wave solutions of the Biswas–Arshed
model in birefringent fibres without FWM, namely the
system of eqs (18) and (19). To this end, let us rewrite
eq. (30) in the form

�0sG
′′
s (h̄) + �1sGs(h̄) + �3sG

3
s (h̄) = 0, (31)

where⎧⎪⎨
⎪⎩

�0s = αs − ωβs + 3κγs − (2κω + C0)�s,

�1s= − [−C0κ(βs+κ�s)+γsκ
3 + C0+αsκ

2],
�3s = −κ(δs + ηs + rs + σs).

(32)

3.3 Solutions of eq. (31) via the extended simplest
equation method

According to the regime of the extended simplest equa-
tion method, we have the balance number M = 1,
by adopting the homogeneous balance technique to eq.
(31). Therefore, eq. (31) has the general solution

Gs(h̄) = A0 + A1

(
τ ′(h̄)

τ (h̄)

)
+ B1

(
1

τ(h̄)

)
, (33)

where A0, A1 and B1 are constants, provided A1B1 �=
0 and the function τ(h̄) satisfies the linear ODE (6).
Accordingly, we have the following distinct types of
solutions:
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Type 1. If λ ≺ 0. Here, we put (33) into eq. (31) and
using eqs (6) and (8), setting all terms with the same
order of (1/τ(h̄)) j

(
τ ′(h̄)/τ(h̄)

)
and (1/τ(h̄))i (i =

0, 1, 2, 3, 4; j = 0, 1, 2, 3) to zero, we obtain
nonlinear algebraic equations. With the assistance of
Mathematica, the solutions of this resulting system are
provided by the following outputs:

Output 1.

A0 = 0, A1 = θ

√
− �0s

2�3s
,

B1 = θ

√
4�2

1s(S
2
1 − S2

2) − �2�2
0s

4�1s�3s
,

λ = −2�1s

�0s
, � = �, (34)

provided �0s�3s ≺ 0, �1 s�3 s(4�2
1 s(S

2
1 − S2

2) −
�2�2

0 s) � 0 and θ = ±1.
From (7), (20), (21), (33) and (34), we have the hyper-

bolic solutions of eqs (18) and (19) in the form

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U (x, t) = θ

⎛
⎜⎜⎝
√

−�11

�31

⎡
⎢⎢⎣

S1 sinh

(
h̄
√

2�11
�01

)
+ S2 cosh

(
h̄
√

2�11
�01

)

S1 cosh

(
h̄
√

2�11
�01

)
+ S2 sinh

(
h̄
√

2�11
�01

)
− ��01

2�11

⎤
⎥⎥⎦

+

√
4�2

11(S
2
1−S2

2 )−�2�2
01

4�11�31

S1 cosh

(
h̄
√

2�11
�01

)
+ S2 sinh

(
h̄
√

2�11
�01

)
− ��01

2�11

⎞
⎟⎟⎠ ei(−κx+C0t+�0),

V (x, t) = θ

⎛
⎜⎜⎝
√

−�12

�32

⎡
⎢⎢⎣

S1 sinh

(
h̄
√

2�12
�02

)
+ S2 cosh

(
h̄
√

2�12
�02

)

S1 cosh

(
h̄
√

2�12
�02

)
+ S2 sinh

(
h̄
√

2�12
�02

)
− ��02

2�12

⎤
⎥⎥⎦

+

√
4�2

12(S
2
1−S2

2 )−�2�2
02

4�12�32

S1 cosh

(
h̄
√

2�12
�02

)
+ S2 sinh

(
h̄
√

2�12
�02

)
− ��02

2�12

⎞
⎟⎟⎠ ei(−κx+C0t+�0),

(35)

provided �1s�3s ≺ 0, �1 s�0 s � 0 and θ = ±1.
Particularly, if S1 = 0, S2 �= 0 and � = 0 in (35), we

have the combo singular soliton solutions in the form

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U (x, t) =
(

θ

√
−�11

�31

[
csch

(
h̄

√
2�11

�01

)

+ coth

(
h̄

√
2�11

�01

)])
ei(−κx+C0t+�0),

V (x, t) =
(

θ

√
−�12

�32

[
csch

(
h̄

√
2�12

�02

)

+ coth

(
h̄

√
2�12

�02

)])
ei(−κx+C0t+�0).

(36)

Output 2.

A0 = 0, A1 = θ

√
− �0s

2�3s
,

B1 = θ

√
−�1s

�3s
(S2

1−S2
2), λ = −2�1s

�0s
, � = 0, (37)

provided �0s�3s ≺ 0, �1 s�3 s(S2
1 − S2

2) ≺ 0 and
θ = ±1.

From (7), (20), (21), (33) and (37), we attain the fol-
lowing solutions of hyperbolic type of eqs (18) and (19)
in the form
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U (x, t) =

⎛
⎜⎜⎝

θ

√
−�11

�31

[
S1 sinh

(
h̄
√

2�11
�01

)
+ S2 cosh

(
h̄
√

2�11
�01

)
+
√

−(S2
1 − S2

2)

]

S1 cosh

(
h̄
√

2�11
�01

)
+ S2 sinh

(
h̄
√

2�11
�01

)
⎞
⎟⎟⎠ ei(−κx+C0t+�0),

V (x, t) =

⎛
⎜⎜⎝

θ

√
−�12

�32

[
S1 sinh

(
h̄
√

2�12
�02

)
+ S2 cosh

(
h̄
√

2�12
�02

)
+
√

−(S2
1 − S2

2)

]

S1 cosh

(
h̄
√

2�12
�02

)
+ S2 sinh

(
h̄
√

2�12
�02

)

⎞
⎟⎟⎠ ei(−κx+C0t+�0),

(38)

provided �1s�3s ≺ 0, �1 s�0 s � 0 and θ = ±1.

Output 3.

A0 = 0, A1 = 0, B1 = θ

√
2�1s

�3s
(S2

1 − S2
2),

λ = �1s

�0s
, � = 0, (39)

provided �1 s�3 s(S2
1 − S2

2) � 0 and θ = ±1. From
(7), (20), (21), (33) and (39), we attain the following
solutions of hyperbolic type:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U (x, t)

=

⎛
⎜⎜⎝

θ

√
−2�11

�31
(S2

1 − S2
2)

S1 cosh

(
h̄
√

−�11
�01

)
+ S2 sinh

(
h̄
√

−�11
�01

)
⎞
⎟⎟⎠

× ei(−κx+C0t+�0),

V (x, t)

=

⎛
⎜⎜⎝

θ

√
−2�12

�32
(S2

1 − S2
2)

S1 cosh

(
h̄
√

−�12
�02

)
+ S2 sinh

(
h̄
√

−�12
�02

)
⎞
⎟⎟⎠

× ei(−κx+C0t+�0),

(40)

provided �0s�1s ≺ 0, �1 s�3 s(S2
1 − S2

2) ≺ 0 and
θ = ±1.

If S1 = 0 and S2 �= 0, in (40), we attain the following
solutions of singular type:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U (x, t) =
(

θ

√
2�11

�31

[
csch

(
h̄

√
−�11

�01

)])

× ei(−κx+C0t+�0),

V (x, t) =
(

θ

√
2�12

�32

[
csch

(
h̄

√
−�12

�02

)])

× ei(−κx+C0t+�0),

(41)

and if S2 = 0 and S1 �= 0, in (40), we have the bright
soliton solution in the form

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U (x, t) =
(

θ

√
−2�11

�31

[
sech

(
h̄

√
−�11

�01

)])

× ei(−κx+C0t+�0),

V (x, t) =
(

θ

√
−2�12

�32

[
sech

(
h̄

√
−�12

�02

)])

× ei(−κx+C0t+�0).

(42)

Output 4.

A0 = 0,

A1 = θ

√
−2�0s

�3s
, B1 = 0,

λ = − �1s

2�0s
, � = 0, (43)

provided �0 s�3 s ≺ 0 and θ = ±1.
From (7), (20), (21), (33) and (43), we attain the fol-

lowing solutions of hyperbolic type of eqs (18) and (19):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U (x, t)

= θ

√
−�11

�31

×

⎡
⎢⎢⎣
S1 sinh

(
h̄
√

�11
2�01

)
+ S2 cosh

(
h̄
√

�11
2�01

)

S1 cosh

(
h̄
√

�11
2�01

)
+ S2 sinh

(
h̄
√

�11
2�01

)
⎤
⎥⎥⎦

× ei(−κx+C0t+�0),

V (x, t) = θ

√
−�12

�32

×

⎡
⎢⎢⎣
S1 sinh

(
h̄
√

�12
2�02

)
+ S2 cosh

(
h̄
√

�12
2�02

)

S1 cosh

(
h̄
√

�12
2�02

)
+ S2 sinh

(
h̄
√

�12
2�02

)
⎤
⎥⎥⎦

× ei(−κx+C0t+�0),

(44)

provided �1 s�3 s ≺ 0, �0 s�1 s � 0 and θ = ±1.
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If S1 = 0 and S2 �= 0, in (44), we attain the following
dark soliton solutions of singular type:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

U (x, t) =
{
θ

√
−�11

�31
coth

(
h̄
√

�11
2�01

)}

×ei(−κx+C0t+�0),

V (x, t) =
{
θ

√
−�12

�32
coth

(
h̄
√

�12
2�02

)}

×ei(−κx+C0t+�0),

(45)

provided �1 s�3 s ≺ 0, �0 s�1 s � 0 and θ = ±1.
If S2 = 0 and S1 �= 0, in (44), we have the dark soliton

solution⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

U (x, t) =
{
θ

√
−�11

�31
tanh

(
h̄
√

�11
2�01

)}

×ei(−κx+C0t+�0),

V (x, t) =
{
θ

√
−�12

�32
tanh

(
h̄
√

�12
2�02

)}

×ei(−κx+C0t+�0),

(46)

provided �1 s�3 s ≺ 0, �0 s�1 s � 0 and θ = ±1.

Output 5.

A0 = 0,

A1 = θ

√
− �0s

2�3s
,

B1 = 0,

� = 2θ�1s

�0s

√
−(S2

1 − S2
2),

λ = −2�1s

�0s
, (47)

provided �0 s�3 s ≺ 0 and θ = ±1.
From (7), (20), (21), (33) and (47), we attain the fol-

lowing solutions of hyperbolic type of eqs (18) and (19):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U (x, t) = θ

√
−�11

�31

⎡
⎢⎢⎣

S1 sinh

(
h̄
√

2�11
�01

)
+ S2 cosh

(
h̄
√

2�11
�01

)

S1 cosh

(
h̄
√

2�11
�01

)
+ S2 sinh

(
h̄
√

2�11
�01

)
− θ

√
S2

1 − S2
2

⎤
⎥⎥⎦ ei(−κx+C0t+�0),

V (x, t) = θ

√
−�12

�32

⎡
⎢⎢⎣

S1 sinh

(
h̄
√

2�12
�02

)
+ S2 cosh

(
h̄
√

2�12
�02

)

S1 cosh

(
h̄
√

2�12
�02

)
+ S2 sinh

(
h̄
√

2�12
�02

)
− θ

√
S2

1 − S2
2

⎤
⎥⎥⎦ ei(−κx+C0t+�0),

(48)

provided �1 s�3 s ≺ 0, �0 s�1 s � 0 and θ = ±1.
If S2 = 0 and S1 �= 0, in (48), we have the combo

singular soliton solution in the form⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U (x, t) = θ

√
−�11

�31

×

⎡
⎢⎢⎣ 1

coth

(
h̄
√

2�11
�01

) − θ csch

(
h̄
√

2�11
�01

)
⎤
⎥⎥⎦

× ei(−κx+C0t+�0),

V (x, t) = θ

√
−�12

�32

×

⎡
⎢⎢⎣ 1

coth

(
h̄
√

2�12
�02

) − θ csch

(
h̄
√

2�12
�02

)
⎤
⎥⎥⎦

× ei(−κx+C0t+�0).

(49)

Type 2. If λ � 0. Here, we put (33) into eq. (31) and
using eqs (6) and (10), setting all terms with the same
order of (1/τ(h̄)) j

(
τ ′(h̄)/τ(h̄)

)
and (1/τ(h̄))i (i =

0, 1, 2, 3, 4; j = 0, 1, 2, 3) to zero, we attain nonlinear
algebraic equations. With the assistance of Mathemat-
ica, the solutions of this resulting system are provided
by the following outputs:

Output 1.

A0 = 0, A1 = θ

√
− �0s

2�3s
,

B1 = θ

√
4�2

1s(S
2
1 + S2

2) − �2�2
0s

4�1s�3s
,

λ = −2�1s

�0s
, � = �, (50)
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provided �0 s�3 s ≺ 0, �1 s�3 s(4�2
1 s(S

2
1 + S2

2) −
�2�2

0 s) � 0 and θ = ±1. From (9), (20), (21), (33)
and (50), we obtain the following solution of periodic
type of eqs (18) and (19):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U (x, t) = θ

⎛
⎜⎜⎝
√

�11

�31

⎡
⎢⎢⎣

−S1 sin

(
h̄
√

−2�11
�01

)
+ S2 cos

(
h̄
√

−2�11
�01

)

S1 cos

(
h̄
√

−2�11
�01

)
+ S2 sin

(
h̄
√

−2�11
�01

)
− ��01

2�11

⎤
⎥⎥⎦

+

√
4�2

11(S
2
1+S2

2 )−�2�2
01

4�1�3

S1 cos

(
h̄
√

−2�11
�01

)
+ S2 sin

(
h̄
√

−2�11
�01

) − ��01
2�11

⎞
⎟⎟⎠ ei(−κx+C0t+�0),

V (x, t) = θ

⎛
⎜⎜⎝
√

�12

�32

⎡
⎢⎢⎣

−S1 sin

(
h̄
√

−2�12
�02

)
+ S2 cos

(
h̄
√

−2�12
�02

)

S1 cos

(
h̄
√

−2�12
�02

)
+ S2 sin

(
h̄
√

−2�12
�02

)
− ��02

2�12

⎤
⎥⎥⎦

+

√
4�11

2(S2
1+S2

2 )−�2�2
01

4�1�3

S1 cos

(
h̄
√

−2�12
�02

)
+ S2 sin

(
h̄
√

−2�12
�02

)
− ��02

2�12

⎞
⎟⎟⎠ ei(−κx+C0t+�0),

(51)

provided �1 s�3 s � 0, �0 s�1 s ≺ 0 and θ = ±1.
If S2 = 0, S1 �= 0 and � = 0, in (51), we obtain the

following solutions of the periodic type of eqs (18) and
(19):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U (x, t) = θ

√
�11

�31

[
sec

(
h̄

√
−2�11

�01

)

− tan

(
h̄

√
−2�11

�01

)]
ei(−κx+C0t+�0),

V (x, t) = θ

√
�12

�32

[
sec

(
h̄

√
−2�12

�02

)

− tan

(
h̄

√
−2�12

�02

)]
ei(−κx+C0t+�0).

(52)

Output 2.

A0 = 0, A1 = θ

√
− �0s

2�3s
,

B1 = θ

√
�1s

�3s
(S2

1 + S2
2),

λ = −2�1s

�0s
, � = 0, (53)

provided �0 s�3 s ≺ 0, �1 s�3 s(S2
1 + S2

2) � 0 and
θ = ±1.

From (9), (20), (21), (33) and (53), we attain the fol-
lowing solutions of the periodic type of eqs (18) and
(19):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U (x, t) = θ

√
�11

�31

⎡
⎢⎢⎣

−S1 sin

(
h̄
√

−2�11
�01

)
+ S2 cos

(
h̄
√

−2�11
�01

)
+
√
S2

1 + S2
2

S1 cos

(
h̄
√

−2�11
�01

)
+ S2 sin

(
h̄
√

−2�11
�01

)
⎤
⎥⎥⎦ ei(−κx+C0t+�0),

V (x, t) = θ

√
�12

�32

⎡
⎢⎢⎣

−S1 sin

(
h̄
√

−2�12
�02

)
+ S2 cos

(
h̄
√

−2�12
�02

)
+
√
S2

1 + S2
2

S1 cos

(
h̄
√

−2�12
�02

)
+ S2 sin

(
h̄
√

−2�12
�02

)
⎤
⎥⎥⎦ ei(−κx+C0t+�0),

(54)
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provided �1 s�3 s � 0, �0 s�1 s ≺ 0 and θ = ±1.
If S1 = 0 and S2 �= 0 in (54), we obtain the periodic

wave solutions in the form

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U (x, t) = θ

√
�11

�31

[
cot

(
h̄

√
−2�11

�01

)

+ csc

(
h̄

√
−2�11

�01

)]
ei(−κx+C0t+�0),

V (x, t) = θ

√
�12

�32

[
cot

(
h̄

√
−2�12

�02

)

+ csc

(
h̄

√
−2�12

�02

)]
ei(−κx+C0t+�0),

(55)

but if S2 = 0 and S1 �= 0 in (54), we obtain the periodic
wave solution.

Output 3.

A0 = 0, A1 = 0, B1 = θ

√
−2�1s

�3s
(S2

1 + S2
2),

λ = �1s

�0s
, � = 0, (56)

provided �1 s�3 s(S2
1 + S2

2) ≺ 0 and θ = ±1. From
(9), (20), (21), (33) and (56), we obtain the following
solutions of the periodic type of eqs (18) and (19):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U (x, t) =

⎛
⎜⎜⎝

θ

√
−2�11

�31
(S2

1 + S2
2)

S1 cos

(
h̄
√

�11
�01

)
+S2 sin

(
h̄
√

�11
�01

)
⎞
⎟⎟⎠

× ei(−κx+C0t+�0),

V (x, t) =

⎛
⎜⎜⎝

θ

√
−2�12

�32
(S2

1+S2
2)

S1 cos

(
h̄
√

�12
�02

)
+S2 sin

(
h̄
√

�12
�02

)
⎞
⎟⎟⎠

× ei(−κx+C0t+�0),

(57)

provided �0 s�1 s � 0, �1 s�3 s(S2
1 + S2

2) ≺ 0 and
θ = ±1.

If S1 = 0 and S2 �= 0, in (57), we have the singular
periodic solution in the form

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U (x, t) =
(

θ

√
−2�11

�31

[
csc

(
h̄

√
�11

�01

)])

× ei(−κx+C0t+�0),

V (x, t) =
(

θ

√
−2�12

�32

[
csc

(
h̄

√
�12

�02

)])

× ei(−κx+C0t+�0),

(58)

but, if S2 = 0 and S1 �= 0, in (57), we have the periodic
solution in the form⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U (x, t) =
(

θ

√
−2�11

�31

[
sec

(
h̄

√
�11

�01

)])

× ei(−κx+C0t+�0),

V (x, t) =
(

θ

√
−2�12

�32

[
sec

(
h̄

√
�12

�02

)])

× ei(−κx+C0t+�0).

(59)

Output 4.

A0 = 0, A1 = θ

√
−2�0s

�3s
,

B1 = 0, λ = − �1s

2�0s
, � = 0, (60)

provided �0 s�3 s ≺ 0 and θ = ±1.
From (9), (20), (21), (33) and (60), we attain the fol-

lowing solutions of the periodic type of eqs (18) and
(19):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U (x, t) = θ

√
�11

�31

×

⎡
⎢⎢⎣

−S1 sin

(
h̄
√

− �11
2�01

)
+ S2 cos

(
h̄
√

− �11
2�01

)

S1 cos

(
h̄
√

− �11
2�01

)
+ S2 sin

(
h̄
√

− �11
2�01

)
⎤
⎥⎥⎦

× ei(−κx+C0t+�0),

V (x, t) = θ

√
�12

�32

×

⎡
⎢⎢⎣

−S1 sin

(
h̄
√

− �12
2�02

)
+ S2 cos

(
h̄
√

− �12
2�02

)

S1 cos

(
h̄
√

− �12
2�02

)
+ S2 sin

(
h̄
√

− �12
2�02

)
⎤
⎥⎥⎦

× ei(−κx+C0t+�0),

(61)
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provided �1 s�3 s � 0, �0 s�1 s ≺ 0 and θ = ±1.
If S1 = 0 and S2 �= 0, in (61), we have the periodic

solution, but if we set S2 = 0 and S1 �= 0, in (61), again
we have attain the solution of the periodic type.

Output 5.

A0 = 0, A1 = θ

√
− �0s

2�3s
,

B1 = 0,

λ = −2�1s

�0s
, �=2θ�1s

�0s

√
S2

1 + S2
2 , (62)

provided �0 s�3 s ≺ 0 and θ = ±1.
From (9), (20), (21), (33) and (62), we have the fol-

lowing periodic solutions of eqs (18) and (19):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U (x, t) = θ

√
�11

�31

⎡
⎢⎢⎣

−S1 sin

(
h̄
√

−2�11
�01

)
+ S2 cos

(
h̄
√

−2�11
�01

)

S1 cos

(
h̄
√

−2�11
�01

)
+ S2 sin

(
h̄
√

−2�11
�01

)
− θ

√
S2

1 + S2
2

⎤
⎥⎥⎦

× ei(−κx+C0t+�0),

V (x, t) = θ

√
�12

�32

⎡
⎢⎢⎣

−S1 sin

(
h̄
√

−2�12
�02

)
+ S2 cos

(
h̄
√

−2�12
�02

)

S1 cos

(
h̄
√

−2�12
�02

)
+ S2 sin

(
h̄
√

−2�12
�02

)
− θ

√
S2

1 + S2
2

⎤
⎥⎥⎦

× ei(−κx+C0t+�0),

(63)

provided �1 s�3 s � 0, �0 s�1 s ≺ 0 and θ = ±1.
If S1 = 0 and S2 �= 0, in (63), then we thus obtain the

following solutions of the periodic type:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U (x, t) =

⎛
⎜⎜⎝θ

√
�11

�31

⎡
⎢⎢⎣ 1

tan

(
h̄
√

−2�11
�01

) − θ sec

(
h̄
√

−2�11
�01

)
⎤
⎥⎥⎦
⎞
⎟⎟⎠ ei(−κx+C0t+�0),

V (x, t) =
(

θ

√
�12

�32

×

⎡
⎢⎢⎣ 1

tan

(
h̄
√

−2�12
�02

) − θ sec

(
h̄
√

−2�12
�02

)
⎤
⎥⎥⎦
⎞
⎟⎟⎠ ei(−κx+C0t+�0),

(64)
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but, if S2 = 0 and S1 �= 0, in (63), we have the singular
periodic solutions in the form

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U (x, t) =
(

θ

√
�11

�31

×

⎡
⎢⎢⎣ 1

cot

(
h̄
√

−2�11
�01

) − θcsc

(
h̄
√

−2�11
�01

)
⎤
⎥⎥⎦
⎞
⎟⎟⎠

× ei(−κx+C0t+�0),

V (x, t) =
(

θ

√
�12

�32

×

⎡
⎢⎢⎣ 1

cot

(
h̄
√

−2�12
�02

) − θcsc

(
h̄
√

−2�12
�02

)
⎤
⎥⎥⎦
⎞
⎟⎟⎠

× ei(−κx+C0t+�0).

(65)

Type 3. If λ = 0.
Here, we put (33) into eq. (31) and using eqs (6) and
(12), setting all terms with the same order of (1/τ(h̄)) j(
τ ′(h̄)/τ(h̄)

)
and (1/τ(h̄))i (i = 0, 1, 2, 3, 4; j = 0, 1,

2, 3) to zero, we receive a system of algebraic equations.
With the assistance of Mathematica, the solutions of this
resulting system are provided by the following outputs:

Output 1.

A0 = 0, A1 = θ

√
− �0s

2�3s
,

B1 = θ

√
−�0s(S2

1 − 2�S2)

2�3s
, �1s = 0,

� = �, (66)

provided �0 s�3 s ≺ 0, �0 s�3 s(S2
1 − 2�S2) ≺ 0 and

θ = ±1.
From (11), (20), (21), (33) and (66), we have the fol-

lowing solutions of eqs (18) and (19):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U (x, t) =
⎛
⎝ θ

√
− �01

2�31

�
2 h̄

2 + S1h̄ + S2

⎞
⎠

×
[
�h̄+S1+

√
S2

1−2�S2

]
ei(−κx+C0t+�0),

V (x, t) =
⎛
⎝ θ

√
− �02

2�32

�
2 h̄

2 + S1h̄ + S2

⎞
⎠

×
[
�h̄+S1+

√
S2

1−2�S2

]
ei(−κx+C0t+�0).

(67)

Output 2.

A0 = 0, A1 = θ

√
− �0s

2�3s
, B1 = 0,

�1s = 0, � = S2
1

2S2
, (68)

provided �0s�3s ≺ 0, �1 s = 0 and θ = ±1.
From (11), (20), (21), (33) and (68), we have the fol-

lowing solutions of eqs (18) and (19):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U (x, t) = 2θ

√
− �01

2�31

(
S2

1 h̄ + 2S1S2

S2
1 h̄

2 + 4S1S2h̄ + 4S2
2

)

× ei(−κx+C0t+�0),

V (x, t) = 2θ

√
− �02

2�32

(
S2

1 h̄ + 2S1S2

S2
1 h̄

2 + 4S1S2h̄ + 4S2
2

)

× ei(−κx+C0t+�0).

(69)

3.4 Solutions of eq. (31) via the generalised sub-ODE
equation method

Balancing G ′′
s
(h̄) and G3

s (h̄) in eq. (31), we have N +
2q = 3N which yields N = q. Hence, eq. (31) takes
the essential solution

Gs(h̄) = ��(h̄)q , � � 0, (70)

where �(h̄) satisfies eq. (14).
The following set of algebraic equations is obtained

by substituting (70) along with (14) into eq. (31) and
gathering all the coefficients of � jq(h̄)

[
� ′(h̄)

]r
( j =

0, 1, 2, 3; r = 0, 1) as

�(h̄)0 = �0s Bq
2 = 0, (71a)

�(h̄)q = �0sCq
2 + �1s = 0, (71b)

�(h̄)2q = �0s Dq2 = 0, (71c)

�(h̄)3q = 2�0s Eq
2 + �3s�

2 = 0. (71d)

On solving eqs (71a)–(71d), we get
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A = 0, B = 0, D = 0,

� = θq

√
−2�0s E

�3s
, C = −�1s

�0sq2 , (72)

provided �0 s�3 s E ≺ 0 and θ = ±1.

With regard to the solutions of eq. (14) listed in [22–
24], we thus obtain the following variety of analytical
solutions drawn below:

Type 1. Since, B = D = 0, then the following cases
arise:

Case I. Equation (14) has the solution

�(h̄) =
[

1

E
℘ (qh̄, g2, g3) − C

3E

] 1
2q

, (73)

where

g2 = 4C2 − 12AE

3

and

g3 = 4C(−2C2 + 9AE)

27
.

Here, ℘ (qh̄, g2, g3) is known as Weierstrass elliptic
function which satisfies the ODE: ℘′2 = 4℘3 − g2℘ −
g3, where g2 and g3 are called invariants of the Weier-
strass elliptic function, in which

′ := d/dh̄.
Since A = 0, we get Weierstrass elliptic function

solutions to the coupled systems (18) and (19) specified
in the form

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U (x, t)

=
[
θ

√
−2(3�01℘ (x − ωt + h̄0, g2, g3) + �11)

3�31

]

× ei(−κx+C0t+�0),

V (x, t)

=
[
θ

√
−2(3�02℘ (x − ωt + h̄0, g2, g3) + �12)

3�32

]

× ei(−κx+C0t+�0),

(74)

provided �3 s ≺ 0 and θ = ±1, where g2 = 4�2
1s/3�2

0s
and g3 = 8�3

1s/27�3
0s .

The Weierstrass elliptic function, in particular, can be
expressed in terms of the Jacobi elliptic functions cn
and ns as [48]

℘ (qh̄, g2, g3) = e2 − (e2 − e3)cn
2(Rh̄;m), (75)

℘ (qh̄, g2, g3) = [e3 + (e1 − e3)ns
2(Rh̄;m)], (76)

where R = √
e1 − e3,m2 = (e2 − e3)/(e1 − e3) is the

modulus of the Jacobi elliptic functions cn and ns =
1/sn such that 0 ≺ m ≺ 1, ei (i = 1, 2, 3; e1 ≥ e2 ≥
e3) represent the three roots of the cubic equation

4z3 − g2z + g3 = 0. (77)

Therefore, solution (74) can be rewritten as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

U (x, t) =
⎡
⎣θ

√
−2(3�01[e2 − (e2 − e3)cn2(Rh̄;m)] + �11)

3�31

⎤
⎦ ei(−κx+C0t+�0),

V (x, t) =
⎡
⎣θ

√
−2(3�02[e2 − (e2 − e3)cn2(Rh̄;m)] + �12)

3�32

⎤
⎦ ei(−κx+C0t+�0),

(78)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

U (x, t) =
⎡
⎣θ

√
−2(3�01[e3 + (e1 − e3)ns2(Rh̄;m)] + �11)

3�31

⎤
⎦ ei(−κx+C0t+�0),

V (x, t) =
⎡
⎣θ

√
−2(3�02[e3 + (e1 − e3)ns2(Rh̄;m)] + �12)

3�32

⎤
⎦ ei(−κx+C0t+�0).

(79)
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Ifm → 1, (i.e. e2 → e1), then cn(Rh̄;m) → sech(Rh̄)

and ns(Rh̄;m) → coth(Rh̄), and therefore we obtain
soliton solutions of bright and singular types of eqs (18)
and (19) as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

U (x, t) =
⎡
⎣θ

√
−2(3�01[e1 − (e1 − e3) sech2(Rh̄)] + �11)

3�31

⎤
⎦ ei(−κx+C0t+�0),

V (x, t) =
⎡
⎣θ

√
−2(3�02[e1 − (e1 − e3) sech2(Rh̄)] + �12)

3�32

⎤
⎦ ei(−κx+C0t+�0),

(80)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

U (x, t) =
⎡
⎣θ

√
−2(3�01[e3 + (e1 − e3)coth2(Rh̄)] + �11)

3�31

⎤
⎦ ei(−κx+C0t+�0),

V (x, t) =
⎡
⎣θ

√
−2(3�02[e3 + (e1 − e3)coth2(Rh̄)] + �12)

3�32

⎤
⎦ ei(−κx+C0t+�0),

(81)

respectively.

Case II. Equation (14) has the solution

�(h̄) =
[

3
√
E−1℘′ (qh̄, g2, g3)

6℘ (qh̄, g2, g3) +C

] 1
p

, g2 = C2

12
+AE,

g3 = C(36AE − C2)

216
. (82)

Since A = 0, we attain solutions of Weierstrass elliptic
function type of eqs (18) and (19) as

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

U (x, t) =
⎡
⎣θ

√
−2�3

01

�31

(
3℘′ (x − ωt + h̄0, g2, g3)

6�01℘ (x − ωt + h̄0, g2, g3) − �11

)⎤
⎦ ei(−kx+ct+�0),

V (x, t) =
⎡
⎣θ

√
−2�3

02

�32

(
3℘′ (x − ωt + h̄0, g2, g3)

6�02℘ (x − ωt + h̄0, g2, g3) − �12

)⎤⎦ ei(−kx+ct+�0),

(83)

provided �0 s�3 s ≺ 0 and θ = ±1, where

g2 = �2
1s

12�2
0s

and g3 = �3
1s

216�3
0s

.

Type 2. Since A = B = 0, then we have the following
cases:

Case I. Equation (14) has the solution

�(h̄) =
⎡
⎣ 2Csech2

(
q
√
C

2 h̄
)

2
√

� − (
√

� + D)sech2
(
p
√
C

2 h̄
)
⎤
⎦

1
q

,

C � 0, � = D2 − 4CE � 0. (84)

Since D = 0, we attain the solutions of hyperbolic func-
tion type of eqs (18) and (19) as
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U (x, t) =
[
θ

√
−2�11

�31

×
⎛
⎜⎝1 − tanh2

(
1
2

√
−�11

�01
(x − ωt + h̄0)

)

1 + tanh2
(

1
2

√
−�11

�01
(x − ωt + h̄0)

)
⎞
⎟⎠
⎤
⎥⎦

× ei(−κx+C0t+�0),

V (x, t) =
[
θ

√
−2�12

�32

×
⎛
⎜⎝1 − tanh2

(
1
2

√
−�12

�02
(x − ωt + h̄0)

)

1 + tanh2
(

1
2

√
−�12

�02
(x − ωt + h̄0)

)
⎞
⎟⎠
⎤
⎥⎦

× ei(−κx+C0t+�0),

(85)

provided �1s�3s ≺ 0, �0 s�1 s ≺ 0 and θ = ±1.

Case II. Equation (14) provides the solution

�(h̄) =
⎡
⎣ 2C csch2

(
θq

√
C

2 h̄
)

2
√

� + (
√

� − D) csch2
(

θq
√
C

2 h̄
)
⎤
⎦

1
q

,

C � 0, � = D2 − 4CE � 0, θ = ±1.

(86)

Since D = 0, we attain the solutions of the hyperbolic
function type of eqs (18) and (19) as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U (x, t) =
[
θ

√
−2�11

�31

×
⎛
⎜⎝−1 + coth2

(
1
2

√
−�11

�01
(x − ωt + h̄0)

)

1 + coth2
(

1
2

√
−�11

�01
(x − ωt + h̄0)

)
⎞
⎟⎠
⎤
⎥⎦

× ei(−κx+C0t+�0),

V (x, t) =
[
θ

√
−2�12

�32

×
⎛
⎜⎝−1 + coth2

(
1
2

√
−�12

�02
(x − ωt + h̄0)

)

1 + coth2
(

1
2

√
−�12

�02
(x − ωt + h̄0)

)
⎞
⎟⎠
⎤
⎥⎦

× ei(−κx+C0t+�0),

(87)

provided �1s�3s ≺ 0, �0 s�1 s ≺ 0 and θ = ±1.

Case III. Equation (14) provides the solution

�(h̄) =
⎡
⎣−

2Csec2
(
q
√−C

2 h̄
)

2
√

� − (
√

� − D)sec2
(
q
√−C

2 h̄
)
⎤
⎦

1
q

,

C ≺ 0, � = D2 − 4CE � 0. (88)

Since D = 0, we attain the following wave solutions of
the periodic type of eqs (18) and (19) as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U (x, t) =
[
θ

√
−2�11

�31

×
⎛
⎜⎝1 + tan2

(
1
2

√
�11
�01

(x − ωt + h̄0)
)

1 − tan2
(

1
2

√
�11
�01

(x − ωt + h̄0)
)
⎞
⎟⎠
⎤
⎥⎦

× ei(−κx+C0t+�0),

V (x, t) =
[
θ

√
−2�12

�32

×
⎛
⎜⎝1 + tan2

(
1
2

√
�12
�02

(x − ωt + h̄0)
)

1 − tan2
(

1
2

√
�12
�02

(x − ωt + h̄0)
)
⎞
⎟⎠
⎤
⎥⎦

× ei(−κx+C0t+�0),

(89)

provided �1s�3s ≺ 0, �0 s�1 s � 0 and θ = ±1.

Case IV. Equation (14) provides the solution

�(h̄) =
⎡
⎣ 2Ccsc2

(
θq

√−C
2 h̄

)

2
√

� − (
√

� + D) csc2
(

θq
√−C
2 h̄

)
⎤
⎦

1
q

,

C ≺ 0, � = D2 − 4CE � 0, θ = ±1.

(90)

Since D = 0, we attain the following wave solutions of
the singular periodic type of eqs (18) and (19):
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U (x, t) =
[
θ1

√
−2�11

�31

×
⎛
⎜⎝1 + cot2

(
θ
2

√
�11
�01

(x − ωt + h̄0)
)

1 − cot2
(

θ
2

√
�11
�01

(x − ωt + h̄0)
)
⎞
⎟⎠
⎤
⎥⎦

× ei(−κx+C0t+�0),

V (x, t) =
[
θ1

√
−2�12

�32

×
⎛
⎜⎝1 + cot2

(
θ
2

√
�12
�02

(x − ωt + h̄0)
)

1 − cot2
(

θ
2

√
�12
�02

(x − ωt + h̄0)
)
⎞
⎟⎠
⎤
⎥⎦

× ei(−κx+C0t+�0),

(91)

provided �1s�3s ≺ 0, �0 s�1 s � 0, θ1 = ∓1 and
θ = ±1.

Case V. Equation (14) has the solution

�(h̄) =
⎡
⎣−

Csec2
(
q
√−C

2 h̄
)

D + 2θ
√−CE tan

(
q
√−C

2 h̄
)
⎤
⎦

1
q

,

C ≺ 0, E � 0, θ = ±1. (92)

Since D = 0, we attain the following wave solutions of
the periodic type of eqs (18) and (19) as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U (x, t) =
[√

−�11

2�31
sec

(
1

2

√
�11

�01
(x − ωt + h̄0)

)

× csc

(
1

2

√
�11

�01
(x − ωt + h̄0)

)]

× ei(−κx+C0t+�0),

V (x, t) =
[√

−�12

2�32
sec

(
1

2

√
�12

�02
(x − ωt + h̄0)

)

× csc

(
1

2

√
�12

�02
(x − ωt + h̄0)

)]

× ei(−κx+C0t+�0),

(93)

provided �1 s�3 s ≺ 0 and �0 s�1 s � 0.

Case VI. Equation (14) has the solution

�(h̄) =
⎡
⎢⎣ 4Cq2eθq

√
Ch̄

(
eθq

√
Ch̄ − Dq2

)2 − 4CEq4

⎤
⎥⎦

1
q

,

C � 0, θ = ±1. (94)

Since D = 0, we obtain the solutions of the following
form:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U (x, t) =
⎛
⎝ 4�11θq

√
−2�01E

�31

�01e
θ

√
−�11

�01
(x−ωt+h̄0) + 4�11Eq2e

−θ

√
−�11

�01
(x−ωt+h̄0)

⎞
⎠ ei(−κx+C0t+�0),

V (x, t) =
⎛
⎝ 4�12θq

√
−2�02E

�32

�02e
θ

√
−�12

�02
(x−ωt+h̄0) + 4�12Eq2e

−θ

√
−�12

�02
(x−ωt+h̄0)

⎞
⎠ ei(−κx+C0t+�0),

(95)

provided �0s�3s E ≺ 0, �0 s�1 s ≺ 0 and θ = ±1.

Case VII. Equation (14) provides the solution

�(h̄) =
[

4Cq2eθq
√
Ch̄

−1 + 4CEq4e2θq
√
Ch̄

] 1
q

,

C � 0, D = 0, θ = ±1. (96)
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Then, we have

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

U (x, t) =
⎛
⎝ 4�11θq

√
−2�01E

�31

�01e
−θ

√
−�11

�01
(x−ωt+h̄0) + 4�11Eq2e

θ

√
−�11

�01
(x−ωt+h̄0)

⎞
⎠ ei(−κx+C0t+�0),

V (x, t) =
⎛
⎝ 4�12θq

√
−2�02E

�32

�02e
−θ

√
−�12

�02
(x−ωt+h̄0) + 4�12Eq2e

θ

√
−�12

�02
(x−ωt+h̄0)

⎞
⎠ ei(−κx+C0t+�0),

(97)

provided �0s�3s E ≺ 0, �0 s�1 s ≺ 0 and θ = ±1.

4. NLSE in birefringent fibres
with quadratic–cubic (QC) law of refractive index
along with FWM

4.1 The governing model

The governing NLSE with quadratic–cubic nonlinearity
for polarisation-preserving fibres has the form [57–60]

iψt + aψxx + (k1 |ψ | + k2|ψ |2)ψ = 0, (98)

where ψ(x, t) is the complex-valued wave function
which stands for optical solitons, a signifies the coef-
ficient of group velocity dispersion and k1 and k2
represent quadratic and cubic nonlinearities, while i =√−1.

In birefringent fibres with pulses divided into two,
then the corresponding coupled vector NLSE with
quadratic cubic law of refractive index along with FWM
can be specified in the form

iψt + a1ψxx + k1ψ

√
|ψ |2 + |φ|2 + ψφ∗ + ψ∗φ

+(
1|ψ |2 + m1|φ|2)ψ + n1φ
2ψ∗ = 0, (99)

iφt + a2φxx + k2φ

√
|φ|2 + |ψ |2 + ψ∗φ + ψφ∗

+(
2|φ|2 + m2|ψ |2)φ + n2ψ
2φ∗ = 0, (100)

where 
i and mi (i = 1, 2) are from self-phase modu-
lation and cross-phase modulation, respectively, while
ni give the effect of FWM. Here ∗ denotes the complex
conjugate. The QC nonlinearity first appeared in 1994
[56] and the references therein. Other types of nonlin-
earity can be found in refs [61–63].

4.2 Mathematical analysis

Gomez-Aguilar et al [57] studied the system of eqs (99)
and (100) by a variety of analytical methods. Therefore,
we also conduct our analysis to further investigate the
coupled systems (99) and (100) by using the proposed
approaches of this paper to extract its other travelling
wave solutions and other optical solitons in a concise

manner. To this aim, we introduce the following wave
transformation:

ψ(x, t) = H1(h̄)eiG(x,t), (101)

φ(x, t) = H2(h̄)eiG(x,t) (102)

and

h̄ = x − βt, (103)

G(x, t) = −κx + ωt + τ, (104)

where β, κ , ω and τ are non-zero constants to be evalu-
ated which stand for the velocity of soliton, frequency of
solitons for the two components, soliton wave number
and phase constants, respectively. Also, H1(h̄), H2(h̄)

are real functions denoting the amplitudes of solitons for
the two components while G(x, t) denotes phase com-
ponent of the soliton. Replacing eqs (101) and (102) into
eqs (99) and (100) and separating into real and imagi-
nary parts, we have

asH
′′
s − (ω + asκ

2)Hs + ks H
2
s + ks HsHs∗ + 
s H

3
s

+(ms + ns)HsH
2
s∗ = 0, (105)

(2asκ + β) H ′
s = 0, (106)

for s = 1, 2 and s∗ = 3−s. From eq. (106), the velocity
of the soliton is obtained as

β = −2asκ. (107)

On comparing the formulas of soliton velocity, we then
have

a1 = a2 = a. (108)

Therefore, soliton velocity can be written as

β = −2aκ. (109)

As a result, the real part eq. (105) becomes

aH ′′
s − (ω + aκ2)Hs + ks H

2
s + ks HsHs∗ + 
s H

3
s

+(ms + ns)HsH
2
s∗ = 0. (110)

Now, by the balancing procedure, we obtain

Hs = Hs∗ . (111)
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Hence, eq. (110) is transformed to the following form:

aH ′′
s − (ω + aκ2)Hs + 2ks H

2
s

+(
s + ms + ns)H
3
s = 0. (112)

Let us rewrite eq. (112) as

aH ′′
s (h̄) − (ω + aκ2)Hs(h̄)

+�2s H
2
s (h̄) + �3s H

3
s (h̄) = 0, (113)

where

�2s = 2ks, �3s = 
s + ms + ns . (114)

Therefore, we are concerned to consider eq. (113) by
using the proposed techniques of the current paper to
extract the new exact solutions of the coupled systems
(99) and (100) as follows:

4.3 Solutions of eq. (113) via the extended simplest
equation method

Similarly, according to the regime of the extended sim-
plest equation method and by the homogeneous balance
technique in eq. (113), we thus have the balance number
M = 1. Therefore, eq. (113) has the formal solution

Hs(h̄) = A0 + A1

(
τ ′(h̄)

τ (h̄)

)
+ B1

(
1

τ(h̄)

)
, (115)

where A0, A1 and B1 are constants that should be calcu-
lated, provided A1B1 �= 0 and the function τ(h̄) satisfies
the linear ODE (6). Accordingly, we acquire the follow-
ing distinct types of solutions:

Type 1. If λ ≺ 0. Here, we replace (115) into eq.
(113) and using eqs (6) and (8), setting all the terms
with the same order of (1/τ(h̄)) j

(
τ ′(h̄)/τ(h̄)

)
and

(1/τ(h̄))i (i = 0, 1, 2, 3, 4; j = 0, 1, 2, 3) to zero, we
attain nonlinear algebraic equations. With the assistance
of Mathematica, the solutions of this resulting system
are provided by the following outputs:

Output 1.

A0 = − �2s

3�3s
, A1 = θ

√
− 2a

�3s
, B1 = 0,

κ = θ

√−3ω + 2�2s A0

3a
,

λ = −15a�2s A0 + 2�2
2s A

2
1

18a2 , � = 0, (116)

provided �2s �= 0, a�3s ≺ 0, a(−3ω + 2�2 s A0) � 0
and θ = ±1.

From (7), (101), (102), (115) and (116), we obtain the
following wave solutions of the hyperbolic type of eqs
(99) and (100) as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ(x, t) =

⎡
⎢⎢⎢⎢⎣− �21

3�31

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 + θ1

⎛
⎜⎜⎜⎜⎝
C1 sinh

(
h̄

√
− �2

21
18a�31

)
+ C2 cosh

(
h̄

√
− �2

21
18a�31

)

C1 cosh

(
h̄

√
− �2

21
18a�31

)
+ C2 sinh

(
h̄

√
− �2

21
18a�31

)

⎞
⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

⎤
⎥⎥⎥⎥⎦

× e
i

[
−κx+

(
− 2�2

21
9�31

−aκ2
)
t+τ

]
,

φ(x, t) =

⎡
⎢⎢⎢⎢⎣− �22

3�32

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 + θ1

⎛
⎜⎜⎜⎜⎝
C1 sinh

(
h̄

√
− �2

22
18a�32

)
+ C2 cosh

(
h̄

√
− �2

22
18a�32

)

C1 cosh

(
h̄

√
− �2

22
18a�32

)
+ C2 sinh

(
h̄

√
− �2

22
18a�32

)

⎞
⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

⎤
⎥⎥⎥⎥⎦

× e
i

[
−κx+

(
− 2�2

22
9�32

−aκ2
)
t+τ

]
,

(117)
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provided �2s �= 0, a�3s�
2
2s ≺ 0 and θ1 = ∓1.

Output 2.

A0 = − �2s

3�3s
, A1 = θ

√
− a

2�3s
, B1 = 0,

κ = θ

√−3ω + 2�2s A0

3a
, λ = −2�2s A0

3a
,

� = θλ

√
C2

1 − C2
2 , (118)

provided �2s A0 �= 0, a�3s ≺ 0, a(−3ω+2�2 s A0) � 0
and θ = ±1.

From (7), (101), (102), (115) and (118), we obtain the
following wave solutions of the hyperbolic type of eqs
(99) and (100):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ(x, t) =

⎡
⎢⎢⎢⎢⎣− �21

3�31

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 + θ1

⎛
⎜⎜⎜⎜⎝

C1 sinh

(
h̄

√
− 2�2

21
9a�31

)
+ C2 cosh

(
h̄

√
− 2�2

21
9a�31

)

C1 cosh

(
h̄

√
− 2�2

21
9a�31

)
+ C2 sinh

(
h̄

√
− 2�2

21
9a�31

)
+ θ

√
C2

1 − C2
2

⎞
⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

⎤
⎥⎥⎥⎥⎦

× e
i

[
−κx+

(
− 2�2

21
9�31

−aκ2
)
t+τ

]
,

φ(x, t) =

⎡
⎢⎢⎢⎢⎣− �22

3�32

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 + θ1

⎛
⎜⎜⎜⎜⎝

C1 sinh

(
h̄

√
− 2�2

22
9a�32

)
+ C2 cosh

(
h̄

√
− 2�2

22
9a�32

)

C1 cosh

(
h̄

√
− 2�2

22
9a�32

)
+ C2 sinh

(
h̄

√
− 2�2

22
9a�32

)
+ θ

√
C2

1 − C2
2

⎞
⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

⎤
⎥⎥⎥⎥⎦

× e
i

[
−κx+

(
− 2�2

22
9�32

−aκ2
)
t+τ

]
,

(119)

provided �2s �= 0, a�3s�
2
2s ≺ 0, ω = −2�2

2s
9�3s

− aκ2,
θ1 = ∓1 and θ = ±1.

Output 3.

A0 = 0, A1 = θ

√
− a

2�3s
, B1 = 0, �2s = 0,

λ = 2(ω + aκ2)

a
,

� = θλ

√
C2

1 − C2
2 , (120)

provided ω + aκ2 �= 0, a�3s ≺ 0 and θ = ±1.

From (7), (101), (102), (115) and (120), we obtain the
following wave solutions of the hyperbolic type of eqs
(99) and (100):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ(x, t) =

⎡
⎢⎢⎣θ

√
ω + aκ2

�31

⎛
⎜⎜⎝

C1 sinh

(
h̄
√

−2(ω+aκ2)
a

)
+ C2 cosh

(
h̄
√

−2(ω+aκ2)
a

)

C1 cosh

(
h̄
√

−2(ω+aκ2)
a

)
+ C2 sinh

(
h̄
√

−2(ω+aκ2)
a

)
+ θ

√
C2

1 − C2
2

⎞
⎟⎟⎠
⎤
⎥⎥⎦

× ei[−κx+ωt+τ ],

φ(x, t) =

⎡
⎢⎢⎣θ

√
ω + aκ2

�31

⎛
⎜⎜⎝

C1 sinh

(
h̄
√

−2(ω+aκ2)
a

)
+ C2 cosh

(
h̄
√

−2(ω+aκ2)
a

)

C1 cosh

(
h̄
√

−2(ω+aκ2)
a

)
+ C2 sinh

(
h̄
√

−2(ω+aκ2)
a

)
+ θ

√
C2

1 − C2
2

⎞
⎟⎟⎠
⎤
⎥⎥⎦

× ei[−κx+ωt+τ ],

(121)
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provided �3s(ω + aκ2) � 0, a(ω + aκ2) ≺ 0, �2 s = 0
and θ = ±1.

Output 4.

A0 = A0, A1 = θ

√
− a

2�3s
, B1 = 0,

κ = θ

√
−ω + 2�2s A0 + 4�3s A2

0

a
,

C2 = θC1, λ = − A2
0

A2
1

, � = 0, (122)

provided A0 �= 0, a�3 s ≺ 0, a(−ω + 2�2 s A0 +
4�3 s A2

0) � 0 and θ = ±1.
From (7), (101), (102), (115) and (122), we obtain the

following wave solutions of the hyperbolic type of eqs
(99) and (100):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ(x, t) =

⎡
⎢⎢⎣A0

⎧⎪⎪⎨
⎪⎪⎩

1 + θ

⎛
⎜⎜⎝

sinh

(
h̄
√

−2�31
a A0

)
− cosh

(
h̄
√

−2�31
a A0

)

cosh

(
h̄
√

−2�31
a A0

)
− sinh

(
h̄
√

−2�31
a A0

)
⎞
⎟⎟⎠

⎫⎪⎪⎬
⎪⎪⎭

⎤
⎥⎥⎦

× ei
[−κx+(2�21A0+4�31A2

0−aκ2)t+τ
]
,

φ(x, t) =

⎡
⎢⎢⎣A0

⎧⎪⎪⎨
⎪⎪⎩

1 + θ

⎛
⎜⎜⎝

sinh

(
h̄
√

−2�32
a A0

)
− cosh

(
h̄
√

−2�32
a A0

)

cosh

(
h̄
√

−2�32
a A0

)
− sinh

(
h̄
√

−2�32
a A0

)
⎞
⎟⎟⎠

⎫⎪⎪⎬
⎪⎪⎭

⎤
⎥⎥⎦

× ei
[−κx+(2�22A0+4�32A2

0−aκ2)t+τ
]
,

(123)

provided A0 �= 0, a�3 s ≺ 0 and θ = ±1.

Output 5.

A0 = A0, A1 = A1, B1 = 0,

κ = θ

√
−ω + 2�2s A0 + 4�3s A2

0

a
,

C2 = θC1, λ = − A2
0

A2
1

, � = 0, (124)

provided A0 �= 0, A1 �= 0, a(−ω + 2�2 s A0 +
4�3 s A2

0) � 0 and θ = ±1.
From (7), (101), (102), (115) and (124), we obtain the

following wave solutions of the hyperbolic type of eqs
(99) and (100):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ(x, t)=
⎡
⎣A0

⎧⎨
⎩1+θ

⎛
⎝sinh

(
h̄ A0
A1

)
−cosh

(
h̄ A0
A1

)

cosh
(
h̄ A0
A1

)
−sinh

(
h̄ A0
A1

)
⎞
⎠
⎫⎬
⎭
⎤
⎦

× ei
[−κx+(2�21A0+4�31A2

0−aκ2)t+τ
]
,

φ(x, t)=
⎡
⎣A0

⎧⎨
⎩1+θ

⎛
⎝sinh

(
h̄ A0
A1

)
−cosh

(
h̄ A0
A1

)

cosh
(
h̄ A0
A1

)
−sinh

(
h̄ A0
A1

)
⎞
⎠
⎫⎬
⎭
⎤
⎦

× ei
[−κx+(2�22A0+4�32A2

0−aκ2)t+τ
]
,

(125)

provided A0 �= 0, A1 �= 0 and θ = ±1.

Type 2. If λ � 0. Here, we substitute (115) into eq. (113)
and using eqs (6) and (8), setting all terms with the same
order of (1/τ(h̄)) j

(
τ ′(h̄)/τ(h̄)

)
and (1/τ(h̄))i (i =

0, 1, 2, 3, 4; j = 0, 1, 2, 3) to zero, we attain the nonlin-
ear algebraic equations. With the help of Mathematica,
the solutions of this resulting system are provided by the
following outputs:
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Output 1.

A0 = − �2s

3�3s
, A1 = θ

√
− 2a

�3s
, B1 = 0, κ = θ

√−3ω + 2�2s A0

3a
,

λ = −15a�2s A0 + 2�2
2s A

2
1

18a2 , � = 0, (126)

provided �2s �= 0, a�3s ≺ 0, a(−3ω + 2�2 s A0) � 0 and θ = ±1.
From (9), (101), (102), (115) and (126), we attain the following wave solutions of the periodic type of eqs (99)

and (100):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ(x, t) =

⎡
⎢⎢⎢⎢⎣− �21

3�31

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 + θ1i

⎛
⎜⎜⎜⎜⎝

−C1 sin

(
h̄

√
�2

21
18a�31

)
+ C2 cos

(
h̄

√
�2

21
18a�31

)

C1 cos

(
h̄

√
�2

21
18a�31

)
+ C2 sin

(
h̄

√
�2

21
18a�31

)

⎞
⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

⎤
⎥⎥⎥⎥⎦ e

i

[
−κx+

(
− 2�2

21
9�31

−aκ2
)
t+τ

]
,

φ(x, t) =

⎡
⎢⎢⎢⎢⎣− �22

3�32

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 + θ1i

⎛
⎜⎜⎜⎜⎝

−C1 sin

(
h̄

√
�2

22
18a�32

)
+ C2 cos

(
h̄

√
�2

22
18a�32

)

C1 cos

(
h̄

√
�2

22
18a�32

)
+ C2 sin

(
h̄

√
�2

22
18a�32

)

⎞
⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

⎤
⎥⎥⎥⎥⎦ e

i

[
−κx+

(
− 2�2

22
9�32

−aκ2
)
t+τ

]
,

(127)

provided �2s �= 0, a�3s�
2
2s � 0 and θ1 = ∓1.

Output 2.

A0 = − �2s

3�3s
, A1 = θ

√
− a

2�3s
, B1 = 0,

κ = θ

√−3ω + 2�2s A0

3a
, λ = −2�2s A0

3a
, � = θλ

√
C2

1 + C2
2 , (128)

provided �2s A0 �= 0, a�3s ≺ 0, a(−3ω + 2�2 s A0) � 0 and θ = ±1.
From (9), (101), (102), (115) and (128), we attain the following wave solutions of the periodic type of eqs (99)

and (100):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ(x, t) =

⎡
⎢⎢⎢⎢⎣− �21

3�31

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 + θ1i

⎛
⎜⎜⎜⎜⎝

−C1 sin

(
h̄

√
2�2

21
9a�31

)
+ C2 cos

(
h̄

√
2�2

21
9a�31

)

C1 cos

(
h̄

√
2�2

21
9a�31

)
+ C2 sin

(
h̄

√
2�2

21
9a�31

)
+ θ

√
C2

1 + C2
2

⎞
⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

⎤
⎥⎥⎥⎥⎦

× e
i

[
−κx+

(
− 2�2

21
9�31

−aκ2
)
t+τ

]
,

φ(x, t) =

⎡
⎢⎢⎢⎢⎣− �22

3�32

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 + θ1i

⎛
⎜⎜⎜⎜⎝

−C1 sin

(
h̄

√
2�2

22
9a�32

)
+ C2 cos

(
h̄

√
2�2

22
9a�32

)

C1 cos

(
h̄

√
2�2

22
9a�32

)
+ C2 sin

(
h̄

√
2�2

22
9a�32

)
+ θ

√
C2

1 + C2
2

⎞
⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

⎤
⎥⎥⎥⎥⎦

× e
i

[
−κx+

(
− 2�2

22
9�32

−aκ2
)
t+τ

]
,

(129)
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provided �2s �= 0, a�3s�
2
2s � 0, ω = −2�2

2s
9�3s

− aκ2, θ1 = ∓1 and θ = ±1.

Output 3.

A0 = 0, A1 = θ

√
− a

2�3s
, B1 = 0, �2s = 0, λ = 2(ω + aκ2)

a
, � = θλ

√
C2

1 + C2
2 , (130)

provided ω + aκ2 �= 0, a�3s ≺ 0 and θ = ±1.
From (9), (101), (102), (115) and (130), we attain the following wave solutions of the periodic type of eqs (99)

and (100) as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ(x, t) =

⎡
⎢⎢⎣θ

√
−ω + aκ2

�31

⎛
⎜⎜⎝

−C1 sin

(
h̄
√

2(ω+aκ2)
a

)
+ C2 cos

(
h̄
√

2(ω+aκ2)
a

)

C1 cos

(
h̄
√

2(ω+aκ2)
a

)
+ C2 sin

(
h̄
√

2(ω+aκ2)
a

)
+ θ

√
C2

1 + C2
2

⎞
⎟⎟⎠
⎤
⎥⎥⎦

× ei[−κx+ωt+τ ],

φ(x, t) =

⎡
⎢⎢⎣θ

√
−ω + aκ2

�31

⎛
⎜⎜⎝

−C1 sin

(
h̄
√

2(ω+aκ2)
a

)
+ C2 cos

(
h̄
√

2(ω+aκ2)
a

)

C1 cos

(
h̄
√

2(ω+aκ2)
a

)
+ C2 sin

(
h̄
√

2(ω+aκ2)
a

)
+ θ

√
C2

1 + C2
2

⎞
⎟⎟⎠
⎤
⎥⎥⎦

× ei[−κx+ωt+τ ],

(131)

provided �3 s(ω + aκ2) ≺ 0, a(ω + aκ2) � 0, �2 s = 0 and θ = ±1.

Output 4.

A0 = A0, A1 = θ

√
− a

2�3s
, B1 = 0, κ = θ

√
−ω + 2�2s A0 + 4�3s A2

0

a
,

C2 = θ iC1, λ = − A2
0

A2
1

, � = 0, (132)

provided A0 �= 0, a�3 s ≺ 0, a(−ω + 2�2 s A0 + 4�3 s A2
0) � 0 and θ = ±1.

From (9), (101), (102), (115) and (132), we attain the following wave solutions of the periodic type of eqs (99)
and (100):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ(x, t) =

⎡
⎢⎢⎣A0

⎧⎪⎪⎨
⎪⎪⎩

1 + θ i

⎛
⎜⎜⎝

− sin

(
h̄
√

2�31
a A0

)
+ θ i cos

(
h̄
√

2�31
a A0

)

cos

(
h̄
√

2�31
a A0

)
+ θ i sin

(
h̄
√

2�31
a A0

)
⎞
⎟⎟⎠

⎫⎪⎪⎬
⎪⎪⎭

⎤
⎥⎥⎦

× ei
[−κx+(2�21A0+4�31A2

0−aκ2)t+τ
]
,

φ(x, t) =

⎡
⎢⎢⎣A0

⎧⎪⎪⎨
⎪⎪⎩

1 + θ i

⎛
⎜⎜⎝

− sin

(
h̄
√

2�32
a A0

)
+ θ i cos

(
h̄
√

2�32
a A0

)

cos

(
h̄
√

2�32
a A0

)
+ θ i sin

(
h̄
√

2�32
a A0

)
⎞
⎟⎟⎠

⎫⎪⎪⎬
⎪⎪⎭

⎤
⎥⎥⎦

× ei
[−κx+(2�22A0+4�32A2

0−aκ2)t+τ
]
,

(133)

provided A0 �= 0, a�3 s � 0 and θ = ±1.

Output 5.

A0 = A0, A1 = A1, B1 = 0, κ = θ

√
−ω + 2�2s A0 + 4�3s A2

0

a
,
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C2 = θ iC1, λ = − A2
0

A2
1

, � = 0, (134)

provided A0 �= 0, A1 �= 0, a(−ω + 2�2 s A0 +
4�3 s A2

0) � 0 and θ = ±1.
From (9), (101), (102), (115) and (134), we obtain the

following wave solutions of the periodic type of eqs (99)
and (100):

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ψ(x, t) =
⎡
⎣A0

⎧⎨
⎩1 + θ i

⎛
⎝− sin

(
h̄ i A0

A1

)
+ θ i cos

(
h̄ i A0

A1

)

cos
(
h̄ i A0

A1

)
+ θ i sin

(
h̄ i A0

A1

)
⎞
⎠
⎫⎬
⎭
⎤
⎦ ei

[−κx+(2�21A0+4�31A2
0−aκ2)t+τ

]
,

φ(x, t) =
⎡
⎣A0

⎧⎨
⎩1 + θ i

⎛
⎝− sin

(
h̄ i A0

A1

)
+ θ i cos

(
h̄ i A0

A1

)

cos
(
h̄ i A0

A1

)
+ θ i sin

(
h̄ i A0

A1

)
⎞
⎠
⎫⎬
⎭
⎤
⎦ ei

[−κx+(2�22A0+4�32A2
0−aκ2)t+τ

]
,

(135)

provided A0 �= 0, A1 �= 0 and θ = ±1.

Type 3. If λ = 0.
Here, we substitute (115) into eq. (113) and using
eqs (6) and (12), setting all terms with the same
order of (1/τ(h̄)) j

(
τ ′(h̄)/τ(h̄)

)
and (1/τ(h̄))i (i =

0, 1, 2, 3, 4; j = 0, 1, 2, 3) to zero, we obtain nonlinear
algebraic equations. With the help of Mathematica, the
solutions of this resulting system are provided by the
following outputs:

Output 1.

A0 = − �2s

2�3s
, A1 = 0, B1 = 6a�

�2s
,

a = −�2
2s(C

2
1 − 2�C2)

18�2�3s
,

κ = θ

√−2ω + �2s A0

2a
, � = �, (136)

provided �2 s �= 0, � �= 0, a(−2ω + �2 s A0) ≺ 0 and
θ = ±1.

From (11), (101), (102), (115) and (136), we obtain
the following solutions of eqs (99) and (100):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ(x, t)

=
[
− �21

2�31

(
1 + 4(C2

1 − 2�C2)

3�(�h̄2 + 2C1h̄ + 2C2)

)]

× e
i

[
−κx+

(−18�2�2
21+4κ2�2

21(C2
1−2�C2)

72�31�2

)
t+τ

]
,

φ(x, t)

=
[
− �22

2�32

(
1 + 4(C2

1 − 2�C2)

3�(�h̄2 + 2C1h̄ + 2C2)

)]

× e
i

[
−κx+

(−18�2�2
22+4κ2�2

22(C2
1−2�C2)

72�32�2

)
t+τ

]
,

(137)

provided �2 s �= 0 and � �= 0.

Output 2.

A0 = 0, A1 = θ

√
− a

2�3s
,

B1 = θ A1

√
C2

1 − 2�C2, �2s = 0,

κ = θ

√
−ω

a
, � = �, (138)

provided a�3 s ≺ 0 and θ = ±1.
From (11), (101), (102), (115) and (138), we attain

the rational solution of eqs (99) and (100) as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ(x, t) =
[
θ

√
− a

2�31

×

⎛
⎜⎜⎝

2

(
�h̄ + C1 +

√
C2

1 − 2�C2

)

�h̄2 + 2C1h̄ + 2C2

⎞
⎟⎟⎠
⎤
⎥⎥⎦

× ei
[−κx+(−aκ2

)
t+τ

]
,

φ(x, t) =
[
θ

√
− a

2�32

×

⎛
⎜⎜⎝

2

(
�h̄ + C1 +

√
C2

1 − 2�C2

)

�h̄2 + 2C1h̄ + 2C2

⎞
⎟⎟⎠
⎤
⎥⎥⎦

× ei
[−κx+(−aκ2

)
t+τ

]
,

(139)

provided a�3 s ≺ 0, ω = −aκ2, �2 s = 0 and θ = ±1.

Output 3.

A0 = 0, A1 = 0, B1 = −3a�

�2s
, κ = θ

√
−ω

a
,

a = −2�2
2s(C

2
1 − 2�C2)

9�2�3s
, � = �, (140)

provided aω ≺ 0, �2 s �= 0, � �= 0 and θ = ±1.
From (11), (101), (102), (115) and (140), we obtain

the following solutions of the rational type of eqs (99)
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and (100):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ(x, t) =
[

4�21(C2
1 − 2�C2)

3��31(�h̄2 + 2C1h̄ + 2C2)

]

× ei
[−κx+(−aκ2

)
t+τ

]
,

φ(x, t) =
[

4�22(C2
1 − 2�C2)

3��32(�h̄2 + 2C1h̄ + 2C2)

]

× ei
[−κx+(−aκ2

)
t+τ

]
,

(141)

provided �2 s �= 0, � �= 0.
The procedures for taking C1 and C2 as particular

values drawn in §3.3 can also be achieved to construct a
further variety of other analytical solutions of eqs (99)
and (100).

4.4 Solutions of eq. (113) via the generalised
sub-ODE method

Now, balancing H ′′
s (h̄) with H3

s in eq. (113), by using
(16), we get n + 2q = 3n ⇒ n = q. Hence, eq. (113)
admits the formal solution

Hs(h̄) = ��(h̄)q . (142)

Substituting (142) along with (14) into eq. (113) and
equating all the coefficients of �(h̄) jq ( j = 0, 1, 2, 3)

with zero, we get the following set of algebraic equa-
tions:

�(h̄)0 : a�Bq2 = 0, (143a)

�(h̄)q : a�Cq2 − �(ω + aκ2) = 0, (143b)

�(h̄)2q : 3

2
a�Dq2 + �2�2s = 0, (143c)

�(h̄)3q : 2a�Eq2 + �3�3s = 0. (143d)

On solving eqs (143a)–(143d), we get

A = 0, B = 0,

� = θq

√
−2aE

�3s
,

C = (ω + aκ2)

aq2 ,

D = 2θ1�2s

3q

√
− 2E

a�3s
, (144)

provided aE�3 s ≺ 0, �2 s �= 0, ω �= −aκ2, θ1 = ∓1
and θ = ±1.

With regard to the solutions of eq. (14), we obtain the
following types of the exact solutions of systems (99)
and (100) as follows:

Type 1. Since A = B = D = 0, then the following
cases arises:

Case I. Equation (14) has the solution

�(h̄) =
[
θ

√
−C

E
sech(q

√
Ch̄)

] 1
q

,

C > 0, E < 0, θ = ±1. (145)

Then, we obtain the following solutions of the bright
soliton type of eqs (99) and (100) as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ(x, t) =
⎡
⎣θ

√
2(ω + aκ2)

�31

× sech

⎛
⎝
√

ω + aκ2

a
(x + 2aκt)

⎞
⎠
⎤
⎦ ei(−κx+ωt+τ),

φ(x, t) =
⎡
⎣θ

√
2(ω + aκ2)

�32

× sech

⎛
⎝
√

ω + aκ2

a
(x + 2aκt)

⎞
⎠
⎤
⎦ ei(−κx+ωt+τ),

(146)

provided (ω + aκ2)�3 s � 0, a(ω + aκ2) � 0, �2 s = 0
and θ = ±1.

Case II. Equation (14) provides the following solution:

�(h̄) =
[
θ

√
−C

E
sec(q

√−Ch̄)

] 1
q

,

C < 0, E > 0, θ = ±1. (147)

Then, we obtain the following solutions of the periodic
type of eqs (99) and (100):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ(x, t) =
⎡
⎣θ

√
2(ω + aκ2)

�31

× sec

⎛
⎝
√

−(ω + aκ2)

a
(x + 2aκt)

⎞
⎠
⎤
⎦ ei(−κx+ωt+τ),

φ(x, t) =
⎡
⎣θ

√
2(ω + aκ2)

�32

× sec

⎛
⎝
√

−(ω + aκ2)

a
(x + 2aκt)

⎞
⎠
⎤
⎦ ei(−κx+ωt+τ),

(148)

provided (ω + aκ2)�3 s � 0, a(ω + aκ2) ≺ 0, �2 s = 0
and θ = ±1.
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Case III. Equation (14) provides the solution

�(h̄) =
[

θ

q
√
Eh̄

] 1
q

,

C = 0, E > 0, θ = ±1. (149)

Then, we obtain the following solutions of the rational
type of eqs (99) and (100):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ(x, t) =
[
θ

√
− 2a

�31
× 1

(x + 2aκt)

]

× ei(−κx−aκ2t+τ),

φ(x, t) =
[
θ

√
− 2a

�32
× 1

(x + 2aκt)

]

× ei(−κx−aκ2t+τ),

(150)

provided a�3 s ≺ 0, �2 s = 0 and θ = ±1.

Type 2.

Case I: By using the conditions of �(h̄) of eq. (73),
we obtain the following solutions of Weierstrass elliptic
function type of eqs (99) and (100):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ(x, t)

=
⎡
⎣θ

√
−2[3a℘(x+2aκt, g2, g3)−(ω+aκ2)]

3�31

⎤
⎦

× ei(−κx+ωt+τ),

φ(x, t)

=
⎡
⎣θ

√
−2[3a℘(x+2aκt, g2, g3)−(ω+aκ2)]

3�32

⎤
⎦

× ei(−κx+ωt+τ),

(151)

provided

�3s ≺ 0, g2 = 4(ω + aκ2)
2

3a2 , g3 = −8(ω + aκ2)
3

27a3

and

θ = ±1.

Case II. Using the conditions of �(h̄) of eq. (82), lead to
the following solutions of Weierstrass elliptic function
type of eqs (99) and (100):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ(x, t)

=
⎡
⎣3θ

√
−2a3

�31

℘ (x + 2aκt, g2, g3)

6a℘ (x+2aκt, g2, g3)+ω+aκ2

⎤
⎦

× ei(−κx+ωt+τ),

φ(x, t)

=
⎡
⎣3θ

√
−2a3

�32

℘ (x + 2aκt, g2, g3)

6a℘ (x+2aκt, g2, g3)+ω+aκ2

⎤
⎦

× ei(−κx+ωt+τ),

(152)

provided

a�3s ≺ 0, g2 = (ω + aκ2)
2

12a2 ,

g3 = −(ω + aκ2)
3

216a3

and θ = ±1.

Remark. Similarly, as drawn in §3.5, we can in particu-
lar rewrite the Weierstrass elliptic function solutions of
(151) in terms of Jacobi elliptic functions and this is left
to our readers.

Type 3. Since B = E = 0, then, we obtain the following
cases:

Case I: Equation (14) provides the following solution:

�(h̄) =
[
−C

D
sech2

(q√
C

2
h̄
)] 1

q

,C > 0, D < 0.

(153)

Since A = 0, then, we obtain the following solutions of
bright soliton type of eqs (99) and (100) as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ(x, t) =
⎡
⎣3(ω + aκ2)

2�21

× sech2

⎛
⎝1

2

√
ω + aκ2

a
(x + 2aκt)

⎞
⎠
⎤
⎦

× ei(−κx+ωt+τ),

φ(x, t) =
⎡
⎣3(ω + aκ2)

2�22

×sech2

⎛
⎝1

2

√
ω + aκ2

a
(x + 2aκt)

⎞
⎠
⎤
⎦

× ei(−κx+ωt+τ),

(154)

provided a(ω + aκ2) � 0, �2 s �= 0 and �3 s = 0.
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Case II. Equation (14) provides the following solution:

�(h̄) =
[
−C

D
sec2

(q√−C

2
h̄
)] 1

q

, C < 0, D > 0.

(155)

Since A = 0, we obtain the following solutions of the
periodic type of eqs (99) and (100):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ(x, t) =
⎡
⎣3(ω + aκ2)

2�21

×sec2

⎛
⎝1

2

√
−(ω + aκ2)

a
(x + 2aκt)

⎞
⎠
⎤
⎦

× ei(−κx+ωt+τ),

φ(x, t) =
⎡
⎣3(ω + aκ2)

2�22

×sec2

⎛
⎝1

2

√
−(ω + aκ2)

a
(x + 2aκt)

⎞
⎠
⎤
⎦

× ei(−κx+ωt+τ),

(156)

provided a(ω + aκ2) ≺ 0, �2 s �= 0 and �3 s = 0.

Type 4. Since A = B = 0, then we attain the following
cases:

Case I: Equation (14) has the solution

�(h̄) =
[

1

2

√
C

E

(
1 + θ tanh

(
q
√
C

2
h̄

)] 1
q

,

C > 0, E > 0, D = −2
√
CE, θ = ±1. (157)

This yields the following solutions of the hyperbolic
function type of eqs (99) and (100) as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ(x, t) =
⎡
⎣ − �21

3�31

×
⎧⎨
⎩1 + θ tanh

⎛
⎝
√

−�2
21

18a�21
(x + 2aκt)

⎞
⎠
⎫⎬
⎭
⎤
⎦

× e
i(−κx+

(
− 2�2

21
9�31

−aκ2
)
t+τ)

,

φ(x, t) =
⎡
⎣ − �22

3�32

×
⎧⎨
⎩1 + θ tanh

⎛
⎝
√

−�2
22

18a�22
(x + 2aκt)

⎞
⎠
⎫⎬
⎭
⎤
⎦

× e
i(−κx+

(
− 2�2

22
9�32

−aκ2
)
t+τ)

,

(158)

provided a�3s ≺ 0, �2 s �= 0 and θ = ±1.

Case II: Equation (14) provides the solution

�(h̄) =
[

sech(q
√
Ch̄)

1 − D
2C sech(q

√
Ch̄)

] 1
q

,

C > 0, D < 2C, E = D2

4C
− C. (159)

This yields the soliton solutions of eqs (99) and (100)
as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ(x, t) =

⎡
⎢⎢⎣

−3θ1
√

2(ω + aκ2) sech

(√
ω+aκ2

a h̄

)

√
� + √

2θ�21 sech

(√
ω+aκ2

a h̄

)
⎤
⎥⎥⎦

× ei(−κx+ωt+τ),

φ(x, t) =

⎡
⎢⎢⎣

−3θ1
√

2(ω + aκ2) sech

(√
ω+aκ2

a h̄

)

√
� + √

2θ�22 sech

(√
ω+aκ2

a h̄

)
⎤
⎥⎥⎦

× ei(−κx+ωt+τ),

(160)

provided (ω+aκ2)a � 0, � � 0, θ1 = ∓1 and θ = ±1,
where � = 2�2

2 s + 9(ω + aκ2)�3 s .

Case III. Equation (14) has the solution

�(h̄) =
[

4

(qh̄)2 − 4E

] 1
q

,

C = 0, D = 1, E < 0. (161)

Then,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ(x, t) =
[
− 12a�21

2�2
21(x + 2aκt)2 + 9a�31

]

× ei(−κx+(−aκ2)t+τ),

φ(x, t) =
[
− 12a�22

2�2
22(x + 2aκt)2 + 9a�32

]

× ei(−κx+(−aκ2)t+τ),

(162)

provided �2s �= 0.

Case IV. Equation (14) has the solution

�(h̄) =
[ 2C sech2

(
q
√
C

2 h̄
)

2
√

� − (
√

� + D) sech2
(
q
√
C

2 h̄
)
] 1

q

,

C > 0, � = D2 − 4CE > 0. (163)
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Thus, we obtain the following solutions of the soliton
type of eqs (99) and (100):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ(x, t) =

⎡
⎢⎢⎣

3
√

2θ1(ω + aκ2)sech2
(

1
2

√
(ω+aκ2)

a [x + 2aκt)]

)

2
√

� −
(√

� + θ
√

2�21

)
sech2

(
1
2

√
(ω+aκ2)

a [x + 2aκt]

)
⎤
⎥⎥⎦ ei(−κx+ωt+τ),

φ(x, t) =

⎡
⎢⎢⎣

3
√

2θ1(ω + aκ2)sech2
(

1
2

√
(ω+aκ2)

a [x + 2aκt)]

)

2
√

� −
(√

� + θ
√

2�22

)
sech2

(
1
2

√
(ω+aκ2)

a [x + 2aκt]

)
⎤
⎥⎥⎦ ei(−κx+ωt+τ),

(164)

provided a(ω+aκ2) � 0, � � 0, θ1 = ∓1 and θ = ±1,
where � = 2�2

2 s + 9(ω + aκ2)�3 s .

Case V. Equation (14) has the solution

�(h̄) =
[ 2C csch2

(
θq

√
C

2 h̄
)

2
√

� + (
√

� − D) csch2
(
q
√
C

2 h̄
)
] 1

q

,

C > 0, � = D2 − 4CE > 0, θ = ±1. (165)

Thus, we obtain the following solutions of the soliton
type of eqs (99) and (100):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ(x, t) =

⎡
⎢⎢⎣

3
√

2θ1(ω + aκ2)csch2
(

θ
2

√
(ω+aκ2)

a [x + 2aκt]

)

2
√

� +
(√

� − θ
√

2�21

)
csch2

(
θ
2

√
(ω+aκ2)

a [x + 2aκt]

)
⎤
⎥⎥⎦ ei(−κx+ωt+τ),

φ(x, t) =

⎡
⎢⎢⎣

3
√

2θ1(ω + aκ2)csch2
(

θ
2

√
(ω+aκ2)

a [x + 2aκt]

)

2
√

� +
(√

� − θ
√

2�22

)
csch2

(
θ
2

√
(ω+aκ2)

a [x + 2aκt]

)
⎤
⎥⎥⎦ ei(−κx+ωt+τ),

(166)

provided a(ω+aκ2) � 0, � � 0, θ1 = ∓1 and θ = ±1,
where � = 2�2

2 s + 9(ω + aκ2)�3 s .

Case VI. Equation (14) has the solution

�(h̄) =
[

2C sech(q
√
Ch̄)

θ
√

� − D sech(q
√
Ch̄)

] 1
q

,

C > 0, � = D2 − 4CE > 0, θ = ±1. (167)

Therefore, we attain the solutions of eqs (99) and (100)
as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ(x, t) =⎡
⎢⎢⎣

3
√

2θ1(ω + aκ2) sech

(√
(ω+aκ2)

a [x + 2aκt]

)

√
� − √

2θ�21 sech

(√
(ω+aκ2)

a [x + 2aκt]

)
⎤
⎥⎥⎦

× ei(−κx+ωt+τ),

φ(x, t) =⎡
⎢⎢⎣

3
√

2θ1(ω + aκ2) sech

(√
(ω+aκ2)

a [x + 2aκt]

)

√
� − √

2θ�22 sech

(√
(ω+aκ2)

a [x + 2aκt]

)
⎤
⎥⎥⎦

× ei(−κx+ωt+τ),

(168)

provided a(ω+aκ2) � 0, � � 0, θ1 = ∓1 and θ = ±1,
where � = 2�2

2 s + 9(ω + aκ2)�3 s .

Case VII. Equation (14) has the solution

�(h̄) =
[

− CD sech2(
q
√
C

2 h̄)

D2 − CE[1 + θ tanh(
q
√
C

2 h̄)]2

] 1
q

,

C > 0, θ = ±1. (169)

Therefore, we obtain the following solutions of the soli-
ton type of eqs (99) and (100):
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ(x, t) =

⎡
⎢⎢⎢⎣

12(ω + aκ2)�21sech2
(

1
2

√
(ω+aκ2)

a [x + 2aκt]

)

8�2
21 + 9(ω + aκ2)�31

(
1 + θ tanh

(
1
2

√
(ω+aκ2)

a [x + 2aκt]

))2

⎤
⎥⎥⎥⎦ ei(−κx+ωt+τ),

φ(x, t) =

⎡
⎢⎢⎢⎣

12(ω + aκ2)�22sech2
(

1
2

√
(ω+aκ2)

a [x + 2aκt]

)

8�2
22 + 9(ω + aκ2)�32

(
1 + θ tanh

(
1
2

√
(ω+aκ2)

a [x + 2aκt]

))2

⎤
⎥⎥⎥⎦ ei(−κx+ωt+τ),

(170)

provided a(ω + aκ2) � 0, �2 s �= 0 and θ = ±1.

Case VIII. Equation (14) provides the solution

�(h̄) =
[

CD csch2(
q
√
C

2 h̄)

D2 − CE[1 + θ coth(
q
√
C

2 h̄)]2

] 1
q

,

C > 0, θ = ±1. (171)

Therefore, we obtain the following solutions of the soliton type of eqs (99) and (100) as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ(x, t) =

⎡
⎢⎢⎢⎣

−12(ω + aκ2)�21csch2
(

1
2

√
(ω+aκ2)

a [x + 2aκt]

)

8�2
21 + 9(ω + aκ2)�31

(
1 + θ coth 1

2

√
(ω+aκ2)

a [x + 2aκt]

)2

⎤
⎥⎥⎥⎦ ei(−κx+ωt+τ),

φ(x, t) =

⎡
⎢⎢⎢⎣

−12(ω + aκ2)�22csch2
(

1
2

√
(ω+aκ2)

a [x + 2aκt]

)

8�2
22 + 9(ω + aκ2)�32

(
1 + θ coth 1

2

√
(ω+aκ2)

a [x + 2aκt]

)2

⎤
⎥⎥⎥⎦ ei(−κx+ωt+τ),

(172)

provided a(ω + aκ2) � 0, �2 s �= 0 and θ = ±1.

Case IX. Equation (14) provides the solution

�(h̄) =
[

2C csch(q
√
Ch̄)

θ
√−� − D csch(q

√
Ch̄)

] 1
q

, C > 0, � = D2 − 4CE > 0, θ = ±1. (173)

Thus, we attain the following solutions of eqs (99) and (100) as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ(x, t) =

⎡
⎢⎢⎣

−3
√

2i(ω + aκ2) csch

(√
(ω+aκ2)

a [x + 2aκt]

)

√
� − i

√
2�21 csch

(√
(ω+aκ2)

a [x + 2aκt]

)
⎤
⎥⎥⎦ ei(−κx+ωt+τ),

φ(x, t) =

⎡
⎢⎢⎣

−3
√

2i(ω + aκ2) csch

(√
(ω+aκ2)

a [x + 2aκt]

)

√
� − i

√
2�22 csch

(√
(ω+aκ2)

a [x + 2aκt]

)
⎤
⎥⎥⎦ ei(−κx+ωt+τ),

(174)
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provided a(ω + aκ2) � 0, � � 0, where � = 2�2
2 s + 9(ω + aκ2)�3 s and i = √−1.

Case X. Equation (14) has the solution

�(h̄) =
[

− C sech2(
q
√
C

2 h̄)

D + 2θ
√
CE tanh(

q
√
C

2 h̄)

] 1
q

, C > 0, E > 0, θ = ±1. (175)

Therefore, we obtain the following solutions of the soliton type of eqs (99) and (100) as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ(x, t) =

⎡
⎢⎢⎣

3(ω + aκ2)sech2
(

1
2

√
(ω+aκ2)

a [x + 2aκt]

)

2�21 + 3
√−2(ω + aκ2)�31 tanh

(
1
2

√
(ω+aκ2)

a [x + 2aκt]

)
⎤
⎥⎥⎦ ei(−κx+ωt+τ),

φ(x, t) =

⎡
⎢⎢⎣

3(ω + aκ2)sech2
(

1
2

√
(ω+aκ2)

a [x + 2aκt]

)

2�22 + 3
√−2(ω + aκ2)�32 tanh

(
1
2

√
(ω+aκ2)

a [x + 2aκt]

)
⎤
⎥⎥⎦ ei(−κx+ωt+τ),

(176)

provided a(ω + aκ2) � 0 and (ω + aκ2)�3 s ≺ 0.

Case XI. Equation (14) has the solution

�(h̄) =
[

C csch2(
q
√
C

2 h̄)

D + 2θ
√
CE coth(

q
√
C

2 h̄)

] 1
q

, C > 0, E > 0, θ = ±1. (177)

Therefore, we attain the following solutions of the soliton type of eqs (99) and (100):
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ(x, t) =

⎡
⎢⎢⎣

−3(ω + aκ2)csch2
(

1
2

√
(ω+aκ2)

a [x + 2aκt]

)

2�21 + 3
√−2(ω + aκ2)�31 coth

(
1
2

√
(ω+aκ2)

a [x + 2aκt]

)
⎤
⎥⎥⎦ ei(−κx+ωt+τ),

φ(x, t) =

⎡
⎢⎢⎣

−3(ω + aκ2)csch2
(

1
2

√
(ω+aκ2)

a [x + 2aκt]

)

2�22 + 3
√−2(ω + aκ2)�32 coth

(
1
2

√
(ω+aκ2)

a [x + 2aκt]

)
⎤
⎥⎥⎦ ei(−κx+ωt+τ),

(178)

provided a(ω + aκ2) � 0 and (ω + aκ2)�3 s ≺ 0.

Case XII. Equation (14) has the solutions for C < 0, � = D2 − 4CE > 0:

�(h̄) =
[

−
2C sec2

(
q
√−C

2 h̄
)

2
√

� − (
√

� − D) sec2
(
q
√−C

2 h̄
)
] 1

q

,

(179a)

�(h̄) =
[ 2C csc2

(
θq

√−C
2 h̄

)

2
√

� − (
√

� + D) csc2
(

θq
√−C
2 h̄

)
] 1

q

,

(179b)

�(h̄) =
[

2C sec(q
√−Ch̄)

θ
√

� − D sec(q
√−Ch̄)

] 1
q

, (179c)

�(h̄) =
[

2C csc(q
√−Ch̄)

θ
√

� − D csc(q
√−Ch̄)

] 1
q

. (179d)
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Therefore, we attain the solutions of eqs (99) and (100) in the following forms:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ(x, t) =

⎡
⎢⎢⎣

3
√

2θ1(ω + aκ2)sec2
(

1
2

√
− (ω+aκ2)

a [x + 2aκt]

)

2
√

� −
(√

� − θ1
√

2�21

)
sec2

(
1
2

√
− (ω+aκ2)

a [x + 2aκt]

)
⎤
⎥⎥⎦ ei(−κx+ωt+τ),

φ(x, t) =

⎡
⎢⎢⎣

3
√

2θ1(ω + aκ2)sec2
(

1
2

√
− (ω+aκ2)

a [x + 2aκt]

)

2
√

� −
(√

� − θ1
√

2�22

)
sec2

(
1
2

√
− (ω+aκ2)

a [x + 2aκt]

)
⎤
⎥⎥⎦ ei(−κx+ωt+τ),

(180)

provided a(ω + aκ2) ≺ 0, � � 0 and θ1 = ∓1, where � = 2�2
2 s + 9(ω + aκ2)�3 s ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ(x, t) =

⎡
⎢⎢⎣

3
√

2θ1(ω + aκ2)csc2
(

θ
2

√
− (ω+aκ2)

a [x + 2aκt]

)

2
√

� −
(√

� + θ
√

2�21

)
csc2

(
θ
2

√
− (ω+aκ2)

a [x + 2aκt]

)
⎤
⎥⎥⎦ ei(−κx+ωt+τ),

φ(x, t) =

⎡
⎢⎢⎣

3
√

2θ1(ω + aκ2)csc2
(

θ
2

√
− (ω+aκ2)

a [x + 2aκt]

)

2
√

� −
(√

� + θ
√

2�22

)
csc2

(
θ
2

√
− (ω+aκ2)

a [x + 2aκt]

)
⎤
⎥⎥⎦ ei(−κx+ωt+τ),

(181)

provided a(ω + aκ2) ≺ 0, � � 0, θ1 = ∓1 and θ = ±1, where � = 2�2
2 s + 9(ω + aκ2)�3 s ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ(x, t) =

⎡
⎢⎢⎣

3
√

2θ1(ω + aκ2) sec

(√
− (ω+aκ2)

a [x + 2aκt]

)

√
� − √

2θ�21 sec

(√
− (ω+aκ2)

a [x + 2aκt]

)
⎤
⎥⎥⎦ ei(−κx+ωt+τ),

φ(x, t) =

⎡
⎢⎢⎣

3
√

2θ1(ω + aκ2) sec

(√
− (ω+aκ2)

a [x + 2aκt]

)

√
� − √

2θ�22 sec

(√
− (ω+aκ2)

a [x + 2aκt]

)
⎤
⎥⎥⎦ ei(−κx+ωt+τ),

(182)

provided a(ω + aκ2) ≺ 0, � � 0, θ1 = ∓1 and θ = ±1, where � = 2�2
2 s + 9(ω + aκ2)�3 s ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ(x, t) =

⎡
⎢⎢⎣

3
√

2θ1(ω + aκ2) csc

(√
− (ω+aκ2)

a [x + 2aκt]

)

√
� − √

2θ�21 csc

(√
− (ω+aκ2)

a [x + 2aκt]

)
⎤
⎥⎥⎦ ei(−κx+ωt+τ),

φ(x, t) =

⎡
⎢⎢⎣

3
√

2θ1(ω + aκ2) csc

(√
− (ω+aκ2)

a [x + 2aκt]

)

√
� − √

2θ�22 csc

(√
− (ω+aκ2)

a [x + 2aκt]

)
⎤
⎥⎥⎦ ei(−κx+ωt+τ),

(183)
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provided a(ω+aκ2) ≺ 0, � � 0, θ1 = ∓1 and θ = ±1,
where � = 2�2

2 s + 9(ω + aκ2)�3 s , respectively.

Case XIII. Equation (14) has the solution

�(h̄) =
[

4Cq2eθq
√
Ch̄

−1 + 4CEq4e2θq
√
Ch̄

] 1
q

,

C > 0, D = 0, θ = ±1. (184)

Thus, the solutions of eqs (99) and (100) are in the
following form:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ(x, t)

=
⎡
⎣ 4θq(ω + aκ2)

√
−2aE

�31

−ae−θ

√
ω+aκ2

a h̄ + 4Eq2(ω + aκ2)eθ

√
ω+aκ2

a h̄

⎤
⎦,

× ei(−κx+ωt+τ),

φ(x, t)

=
⎡
⎣ 4θq(ω + aκ2)

√
−2aE

�32

−ae−θ

√
ω+aκ2

a h̄ + 4Eq2(ω + aκ2)eθ

√
ω+aκ2

a h̄

⎤
⎦,

× ei(−κx+ωt+τ),

(185)

provided aE�3 s ≺ 0, �2 s = 0, a(ω + aκ2) � 0 and
θ = ±1.

5. Graphical results and discussion

In this section, to better understand the dynamical
behaviour of the obtained results, we demonstrated the
graphical configurations of some of them by provid-
ing appropriate values to the parameters. The generated
kink wave, dark soliton, singular bright soliton, sin-
gular and doubly periodic wave solutions have been
graphically illustrated in figures 1–11, using appropri-
ate arbitrary parameters. The physical structure of new
solutions demonstrates the usefulness and strength of
these techniques.

In figure 1, the amplitude and intensity profiles of
non-singular bright solitary wave solution (42) when
α1 = 2.0, ω = 1.0, β1 = 1.0, κ = 1.0, γ1 = 1.0,
C0 = 1.0, �1 = 1.0, δ1 = η1 = σ1 = r1 = −1.0,
h̄0 = 0 and θ = 1.0 are illustrated. In comparison to
the dark solitons, bright solitons in optical fibres are
relatively easy to generate and have a constant phase
throughout the entire pulse.

In figure 2, the amplitude and intensity structures of
singular solitary wave solution (45) with the selected
parameters α1 = 1.0, ω = 1.0, β1 = 2.0, κ = 1.0, γ1 =
0.1, C0 = 0.1, �1 = 1.0, δ1 = η1 = σ1 = r1 = −1.0,
h̄0 = 0 and θ = 1.0 are depicted. It has been observed

that the intensity profile takes the form of a singular
bright soliton with selected values of parameters.

Figure 3 displays the amplitude and intensity struc-
tures of soliton solution (46) when α1 = 1.0, ω = 1.0,
β1 = 2.0, κ = 1.0, γ1 = 0.1, C0 = 0.1, �1 = 1.0,
δ1 = η1 = σ1 = r1 = −1.0, h̄0 = 0 and θ = 1.0. It
is seen that the amplitude profile of wave solution (46)
is kink type (ascending from one state to another) and
the intensity profile takes the form of a dark soliton to
describe the localised intensity drops on a continuous
wave background with selected parameters.

In figures 4 and 5, the evolution of the amplitude and
intensity structures of soliton solution (48) for α1 = 1.0,
ω = 1.0, β1 = 2.0, κ = 1.0, γ1 = 0.1, C0 = 0.1,
�1 = 1.0, δ1 = η1 = σ1 = r1 = −1.0, S1 = 1.10,
S2 = 1.0, h̄0 = 0 and θ = ±1.0 are depicted. It is noted
from the figures that the amplitude structure of wave
solution (46) is a breather-type solution for θ = 1.0 and
is of antikink type for θ = −1.0.

Figure 6 illustrates the evolution of the amplitude and
intensity structures of periodic wave solution (64) when
α1 = 2.0, ω = 1.0, β1 = 1.0, κ = 1.0, γ1 = 1.0,
C0 = 1.0, �1 = 1.0, δ1 = η1 = σ1 = r1 = 1.0, h̄0 = 0
and θ = 1.0.

Evolution of the amplitude and intensity structures of
singular periodic wave solution (89) when α1 = 2.0,
ω = 1.0, β1 = 1.0, κ = 1.0, γ1 = 1.0, C0 = 1.0,
�1 = 1.0, δ1 = η1 = σ1 = r1 = −1.0, h̄0 = 0 and
θ = 1.0 are depicted in figure 7.

Evolution of the amplitude structure of rogue wave
solution (123) when a = −1.0, β = 1.0, A0 = 2.0,

1 = m1 = n1 = 1.0 and θ = 1.0 are depicted in figure
8. It can be noted that from eq. (109), that the frequency
κ of rogue wave solution (123) is half of its velocity
when a = −1.0 and β = 1.0.

Figure 9 represents the evolution of the amplitude pro-
file of rational wave solution (137) when k1 = −1.0,
β = 1.0,C1 = 2.0,C2 = 1.0, 
1 = m1 = n1 = 1.0 and
� = 1. The movement of wave propagation is depicted
at different positions.

Figure 10 represents the evolution of the amplitude
and intensity of kink wave solution (158) when k1 =
1.0, κ = 1.0, a = −1.0, 
1 = m1 = n1 = 1.0 and θ =
1. It is noted from the figure that the amplitude structure
of wave solution (158) is kink type while the intensity
profile takes the form of antikink wave soliton. Also,
solution (158) possesses some kind of symmetry for θ =
±1 (figures not shown here). From symmetry, one can
observe that |ψ++(x, t)| = |ψ−−(x, t)| represents the
kink soliton and |ψ+−(x, t)| = |ψ−+(x, t)| represents
the antikink soliton.

Figure 11 represents the evolution of the amplitude of
bright solution (176) when k1 = 1.0, ω = 0.1, κ = 1.0,
a = 1.0 and 
1 = m1 = n1 = −0.01. It can be noted
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Figure 1. Evolution of the amplitude and intensity of solitary wave solution (42) with parameter values α1 = 2.0, ω = 1.0,
β1 = 1.0, κ = 1.0, γ1 = 1.0, C0 = 1.0, �1 = 1.0, δ1 = η1 = σ1 = r1 = −1.0, h̄0 = 0 and θ = 1.0.

Figure 2. Evolution of the amplitude and intensity of the singular solitary wave solution (45) with parameter values α1 = 1.0,
ω = 1.0, β1 = 2.0, κ = 1.0, γ1 = 0.1, C0 = 0.1, �1 = 1.0, δ1 = η1 = σ1 = r1 = −1.0, h̄0 = 0 and θ = 1.0.
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Figure 3. Evolution of the amplitude and intensity of solitary wave solution (46) with parameter values α1 = 1.0, ω = 1.0,
β1 = 2.0, κ = 1.0, γ1 = 0.1, C0 = 0.1, �1 = 1.0, δ1 = η1 = σ1 = r1 = −1.0, h̄0 = 0 and θ = 1.0.

Figure 4. Evolution of the amplitude and intensity of solitary wave solution (48) with parameter values α1 = 1.0, ω = 1.0,
β1 = 2.0, κ = 1.0, γ1 = 0.1, C0 = 0.1, �1 = 1.0, δ1 = η1 = σ1 = r1 = −1.0, S1 = 1.10, S2 = 1.0, h̄0 = 0 and θ = 1.0.
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Figure 5. Evolution of the amplitude and intensity of solitary wave solution (48) with parameter values α1 = 1.0, ω = 1.0,
β1 = 2.0, κ = 1.0, γ1 = 0.1, C0 = 0.1, �1 = 1.0, δ1 = η1 = σ1 = r1 = −1.0, S1 = 1.10, S2 = 1.0, h̄0 = 0 and θ = −1.0 .

Figure 6. Evolution of the amplitude and intensity of periodic wave solution (64) with parameter values α1 = 2.0, ω = 1.0,
β1 = 1.0, κ = 1.0, γ1 = 1.0, C0 = 1.0, �1 = 1.0, δ1 = η1 = σ1 = r1 = 1.0, h̄0 = 0 and θ = 1.0.
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Figure 7. Evolution of the amplitude and intensity of periodic wave solution (89) with parameter values α1 = 2.0, ω = 1.0,
β1 = 1.0, κ = 1.0, γ1 = 1.0, C0 = 1.0, �1 = 1.0, δ1 = η1 = σ1 = r1 = −1.0, h̄0 = 0 and θ = 1.0.

Figure 8. Evolution of the amplitude of rogue wave solution (123) with parameter values a = −1.0, β = 1.0, A0 = 2.0,

1 = m1 = n1 = 1.0 and θ = 1.0.

Figure 9. Evolution of the amplitude of rational wave solution (137) with parameter values k1 = −1.0, β = 1.0, C1 = 2.0,
C2 = 1.0, 
1 = m1 = n1 = 1.0 and � = 1.
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Figure 10. Evolution of the amplitude and intensity of kink wave solution (158) with parameter values k1 = 1.0, κ = 1.0,
a = −1.0, 
1 = m1 = n1 = 1.0 and θ = 1.

Figure 11. Evolution of the amplitude of bright solution (176) with parameter values k1 = 1.0, ω = 0.1, κ = 1.0, a = 1.0
and 
1 = m1 = n1 = −0.01.

from eq. (109) that when κ increases, wave speed β

increases for a constant value of a. The amplitude profile
of bright soliton (176) remains constant with increase in
wave speed while there is a decrease in the width of the
soliton as depicted in figure 11.

The graphical depiction shows the behaviour of the
obtained solutions as a single soliton, periodic waves,
kink waves, dark–bright solitons and breather waves.
Solitons form as a result of cancelling nonlinear and
dispersive processes in the medium. Soliton is a self-

sustaining wave that advances at a constant speed while
keeping its form. Soliton is formed in a variety of situa-
tions, including light propagation in fibres, energy trans-
mission in hydrogen-bonded spines, physical plasma,
stratified fluid flows, shallow water waves, and so on.
The existence of arbitrary functions in the established
results indicates that these solutions may be more effec-
tive and appropriate in describing the physical events
at hand. The generated solutions are physically relevant
and may be used to explain stability, nonlinear behaviour
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and dispersion effects in physics and mathematics fields.
These acquired solutions can aid numerical solvers in
certifying the accuracy of established solutions and
allowing them to examine the behaviour graphically and
physically. Furthermore, these explicit exact solutions
may provide rich localised behaviours and provide us
with a greater understanding of the underlying mecha-
nisms of nonlinear complex systems. When considering
the localisation-type appearances in solitons theory,
periodic solutions have a highly confined formation
with a temporally periodic structure. Rogue waves are
dangerous events that occur in systems with a large
number of waves. They are common in nature and can
be seen in many situations such as nonlinear optics,
water waves, liquid helium, microwave cavities and
other areas.

6. Modulation instability (MI) analysis

Due to numerous applications such as in high-speed
optical communications, time-resolved spectroscopy,
ultrafast optical switching, super-continuum generation
and so on [64–66], research into MI in optical fibre has
stirred the curiosity of many researchers. MI is caused
by the interaction of group velocity dispersion and non-
linear effects.

6.1 MI of Biswas–Arshed model in birefringent fibres
without FWM

To investigate the MI, we begin with a steady-state solu-
tion of eqs (18) and (19) as

U (x, t) = a1eiωt , V (x, t) = a2eiωt . (186)

Now, we determine whether or not this steady-state solu-
tion is stable in the presence of small perturbations. To
accomplish this, the steady-state solution is perturbed in
such a manner that

U (x, t) = [a1 + ϕ1(x, t)]eiωt ,
V (x, t) = [a2 + ϕ2(x, t)]eiωt , (187)

where ϕ j (x, t), j = 1, 2, represent weak perturbations.
Replacing eq. (187) into eqs (18) and (19) and subse-
quently linearising the resulting equations in ϕ1 and ϕ2,
we get

iϕ1t − ωϕ1 + (α1 − �1ω)ϕ1xx + β1ϕ1xt + iγ1ϕ1xxx

+i�1ϕ1xxt − 2iτ1a
2
1ϕ2x

− i[δ1a
2
1(ϕ∗

1 + 2ϕ1)x + σ1a
2
1(ϕ∗

2 + 2ϕ2)x ]
−i[(η1 + r1 + 2ε1)a

2
1 − β1ω]ϕ1x = 0, (188)

iϕ2t − ωϕ2 + (α2 − �2ω)ϕ2xx + β2ϕ2xt + iγ2ϕ2xxx

+i�2ϕ2xxt − 2iτ2a
2
2ϕ1x

− i[δ2a
2
2(ϕ∗

2 + 2ϕ2)x + σ2a
2
2(ϕ∗

1 + 2ϕ1)x ]
−i[(η2 + r2 + 2ε2)a

2
2 − β2ω]ϕ2x = 0, (189)

where ∗ denotes the complex function’s conjugate. We
get perturbation of ϕ1(x, t) and one can have the MI
analysis of the perturbation ϕ2(x, t) by using the same
approach.

For solving the resulting linear equations, we assume
the general solutions of the following form:{

ϕ1(x, t) = u1ei(Kx−�t) + u2e−i(Kx−�t),

ϕ2(x, t) = u1ei(Kx−�t) + u2e−i(Kx−�t),
(190)

where K denotes the normalised wave number and �

specifies the frequency of perturbation. The two com-
plex constants u1 and u2 satisfy the relation |u1|+|u2| >

0. Substituting the assumed solutions (190) into eq.
(188) and splitting the coefficients of ei(Kx−�t) and
e−i(Kx−�t) provides the following dispersion relation:

K 6γ 2
1 − 2K 5��1γ1 + (A1 + �2

1�
2)K 4 − 2�A2K

3

+(A3 − (β2
1 + 2�1)�

2)K 2

+2�A4K + �2 − ω2 = 0, (191)

where

A1 = 2γ1(2τ1 + η1 + 2δ1 + 2ε1 + 2σ1 + r1)a
2
1

−ω2�2
1 + (2α1�1 − 2β1γ1)ω − α2

1,

A2 = �1(2τ1 + η1 + 2δ1 + 2ε1 + 2σ1 + r1)a
2
1

−γ1 − β1α1,

A3 = (η1 + r1 + 2τ1 + δ1 + σ1 + 2ε1)(η1 + r1

+2τ1 + 3δ1 + 3σ1 + 2ε1)a
4
1

−2ωβ1(2τ1 + η1 + 2δ1 + 2ε1 + 2σ1 + r1)a
2
1

+(β2
1 + 2�1)ω

2 − 2ωα1,

A4 = a2
1 (2τ1 + η1 + 2δ1 + 2ε1 + 2σ1 + r1, ) .

Solving the dispersion relation (191) for �, we get

�(K ) = K 5�1γ1 − A4K + A2K 3 −
√
B1K 8 + B2K 6 + B3K 4 + B4K 2 + ω2

1 + K 4�2
1 − (

β2
1 + 2�1

)
K 2

, (192)
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where B1 = −�2
1A1 +2γ1 (γ1 + A2) �1 +β2

1γ 2
1 , B2 =

−�2
1A3 + (−2A4γ1 + 2A1) �1 + β2

1 A1 + A2
2 − γ 2

1 ,
B3 = �2

1ω
2 − A1 + β2

1 A3 − 2A4A2 + 2�1A3, B4 =
�2

1ω
2 − A1 + β2

1 A3 − 2A4A2 + 2�1A3.
From dispersion relation equation (192), it is revealed

that �(K ) is real for all K if B1K 8 + B2K 6 + B3K 4 +
B4K 2 + ω2 > 0 and 1 + K 4�2

1 − (β2
1 + 2�1)K 2 �=

0. Then, against small perturbations, the steady state
is stable. In contrast, the steady-state solution is always
unstable if B1K 8+B2K 6+B3K 4+B4K 2+ω2 < 0 and
1 + K 4�2

1 − (β2
1 + 2�1)K 2 �= 0, which shows that the

perturbation develops exponentially as �(K ) contains
the imaginary portion. Under this circumstance, for the
occurrence of MI, it could be easily demonstrated that
B1K 8 + B2K 6 + B3K 4 + B4K 2 + ω2 < 0 and 1 +
K 4�2

1 − (β2
1 + 2�1)K 2 �= 0. The rate of growth of the

MI gives spectrum g(K ) as

g(K ) = 2Im(K )

= −2
√
B1K 8 + B2K 6 + B3K 4 + B4K 2 + ω2

1 + K 4�2
1 − (

β2
1 + 2�1

)
K 2

.

(193)

The MI gain spectrum (200) is shown in figure 12
when a1 = 1.0, τ1 = 1.0, η1 = 1.0, δ1 = 1.0, ε1 =
1.0, σ1 = 1.0, r1 = 1.0, �1 = 1.0, α1 = 1.0, β1 = 0.1,
γ1 = 1.0 and w = 1.0.

Figure 12. The MI gain spectrum (193) for
parameter values a1 = 1.0, τ1 = 1.0,
η1 = 1.0, δ1 = 1.0, ε1 = 1.0, σ1 = 1.0, r1 = 1.0,
�1 = 1.0, α1 = 1.0, β1 = 0.1, γ1 = 1.0 and w = 1.0.

6.2 MI of NLSE with quadratic–cubic law of
refractive index along with FWM

Suppose that eqs (99) and (100) have the perturbed
steady-state solutions in the following form:

ψ(x, t) = [b1 + χ1(x, t)]eiωt ,
φ(x, t) = [b2 + χ2(x, t)]eiωt , (194)

respectively, where χ j (x, t), j = 1, 2, are weak pertur-
bations. Substituting eq. (194) into eqs (99) and (100)
and linearising the resulting equations in χ1 and χ2, we
obtained the perturbation field as

iχ1t + [(m1 + n1)b
2
2 − ω]χ1 + a1χ1xx

+[l1b2
1(χ

∗
1 + 2χ1) + m1b1b2(χ

∗
2 + χ2)]

+2n1b1b2χ2 = 0, (195)

iχ2t + [(m2 + n2)b
2
1 − ω]χ2 + a2χ2xx

+[l2b2
2(χ

∗
2 + 2χ2) + m2b1b2(χ

∗
1 + χ1)]

+2n2b1b2χ1 = 0. (196)

We get perturbation of χ1(x, t) and one can have the MI
analysis of the perturbation χ2(x, t) by using the same
approach.

For solving these equations, consider the general solu-
tions of the form{

χ1(x, t) = v1ei(Kx−�t) + v2e−i(Kx−�t),

χ2(x, t) = v1ei(Kx−�t) + v2e−i(Kx−�t),
(197)

where K denotes the normalised wave number and �

represents the frequency of perturbation. The two com-
plex constants v1 and v2 satisfy the relation |v1|+|v2| >

0. Replacing (197) into eq. (195) and decomposing the
coefficients of ei(Kx−�t) and e−i(Kx−�t) provides the
following dispersion relation:

�2 − 2K 2a1ω − ω2 − (n1 + m1)
2 b4

2

−2b1 (m1 + 2n1) (n1 + m1) b
3
2

+ [(−m2
1 − (4n1 + 4l1)m1 − 4n1 (n1 + l1)

)
b2

1

+2 (n1 + m1)
(
w + K 2a1

)]
b2

2

+2b1

[
−3

2

(
8

3
n1 + m1

)
l1b

2
1 + 1

2
m1

2

+ (
w + K 2a1

)
m1 + 2n1

(
w + K 2a1

)]
b2

−3b4
1l

2
1 + 4

(
1

4
m1 + w + K 2a1

)
l1b1

2 − K 4a1
2

= 0. (198)

Solving dispersion relation (198) for �, we get

�(K ) = ±
√
K 4a2

1 + C1K 2 + C2, (199)
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where

C1 = 2
[
(−n1 − m1) b

2
2

−b1 (m1 + 2n1) b2 − 2l1b
2
1 + ω

]
a1,

C2 = (n1 + m1)
2 b4

2 + 2b1 (m1 + 2n1) (n1 + m1) b
3
2

+3b4
1l

2
1 − 4l1

(
ω + 1

4
m1

)
b2

1 + ω2

+
[ (

m1
2 + (4n1 + 4l1)m1 + 4n1 (n1 + l1)

)
b2

1

−2ω (n1 + m1)

]
b2

2

−2

[
−3

2

(
8

3
n1 + m1

)
l1b

2
1 + ωm1

+1

2
m2

1 + 2ωn1

]
b1b2.

The dispersion relation equation (199) leads to �(K )

being real for all K if K 4a2
1 + C1K 2 + C2 > 0. Then,

the steady state becomes stable against weak pertur-
bations. In contrast, this becomes unstable if K 4a2

1 +
C1K 2 + C2 < 0, showing that �(K ) is the imaginary
part and this causes the perturbation to expand exponen-
tially with intensity, resulting in MI. It is easy to see that
MI occurs for K 4a2

1 +C1K 2 +C2 < 0. The growth rate
of the MI gain spectrum g(K ) is

g(K ) = 2Im(K ) = ±2
√
K 4a2

1 + C1K 2 + C2. (200)

The gain spectrum for MI frequency (200) is shown in
figure 13 when a1 = 1.0, n1 = 1.0,m1 = 1.0, l1 =
−1.0, b1 = 1.0, b2 = −1.0 and w = 1.0 with plus sign
(blue curve) and minus sign (red curve) in the expres-
sion. It is evident from the above obtained dispersion
relations that the MI gain spectrum depends on various
coefficients of the considered model equations. There-
fore, the effects of these coefficients on the MI gain
spectrum require a separate deeper analysis and such
detailed studies may be taken up in future.

7. Conclusions

The extended simplest equation and the generalised
sub-ODE methods have been successfully applied to
extraction of optical soliton solutions and travelling
wave solutions to the Biswas–Arshed model in bire-
fringent fibres without FWM terms and the NLSE in
birefringent fibres with quadratic cubic law of refractive
index along with FWM. The obtained solutions include
bright solitons, Weierstrass elliptic function solutions,
hyperbolic function solutions, periodic function solu-
tions and Jacobian elliptic function solutions. Those

Figure 13. The MI gain spectrum (200) for parame-
ter values a1 = 1.0, n1 = 1.0,m1 = 1.0,
l1 = −1.0, b1 = 1.0, b2 = −1.0 and w = 1.0 with plus
sign (blue curve) and minus sign (red curve) in the expres-
sion.

solutions should clarify some physical behaviours in
birefringent fibres. Compared with the studies in [33–
41], we see that our solutions are much broader and
contain all the existing ones in the above literature
and could be beneficial to explain the distinct phys-
ical behaviours. This comparison reflects the novelty
of this paper and elucidate the difference between our
results via the adopted approaches and the already pub-
lished solutions. This, particularly, shows once more that
the sub-ODE expansion idea is a very promising strat-
egy for determining exact solutions for a wide range
of nonlinear model equations, in birefringent fibres as
studied in this paper. We will show in future studies
that these approaches are also powerful in solving non-
linear models in polarisation-preserving fibres, Bragg
gratings, highly dispersive solitons, photonic crystal
fibres and DWDM technology with Kerr and non-Kerr
media. Moreover, the linear stability analysis method
has been used for exploring the MI of the obtained
steady-state solutions to the two considered nonlinear
models. Finally, Mathematica software is used to ver-
ify all the extracted outcomes by substituting them back
into the proposed models.
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