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A (2+1)-dimensional generalized Kadomtsev–Petviashvili–Ito equation is introduced.

Upon adding some second-order derivative terms, its various lump solutions are explicitly
constructed by utilizing the Hirota bilinear method and calculated through the symbolic

computation system Maple. Furthermore, two specific lump solutions are obtained with

particular choices of the parameters and their dynamical behaviors are analyzed through
three-dimensional plots and contour plots.
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1. Introduction

In the past few decades, with the rapid development of nonlinear science, exact and

numerical solutions of nonlinear partial differential equations (PDEs) have aroused

great interest among many scientists and engineers.1–6 Such as rogue wave solu-

tions which are described an open water phenomenon, in which winds, currents

and nonlinear phenomena. Soliton solutions, which are normally localized in the
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time and space, are exact ones determined by exponentially localized functions.7–10

When the nonlinear differential equations with polynomial nonlinearity are stud-

ied, the existence of solitary solutions should be considered.11 Compared to soliton

solutions, we focus on another type of important exact solutions such as lump

solutions, which are localized in directions only in space. Lump solutions are de-

rived from solving integrable equations in (2+1)-dimensions,12–14 and found out

by taking long wave limits in soliton theory.2,15,16 The main procedure in search-

ing of lump solutions is to construct positive quadratic function solutions to the

Hirota bilinear equations.12 Then lump solutions to the corresponding nonlinear

PDEs can be obtained through the logarithmic transformations, on account of the

positive quadratic function solutions.

As is known, a (2+1)-dimensional partial differential equation can be trans-

formed into a Hirota bilinear form through a depended variable transformation.

Assume that P is a polynomial in x, y and t, then a Hirota bilinear equation can

be defined by

P (Dx, Dy, Dt)f · f = 0, (1.1)

where Dx, Dy, Dt are Hirota bilinear derivatives,12

Dl
xD

m
y D

n
t f(x, y, t) · g(x, y, t)

=

(
∂

∂x
− ∂

∂x′

)l(
∂

∂y
− ∂

∂y′

)m
×
(
∂

∂t
− ∂

∂t′

)n
f(x, y, t) · g(x′, y′, t′)|x′=x,y′=y,t′=t, (1.2)

where f, g are infinitely differentiable functions, and l,m, n are non-negative inte-

gers. Then if f is the solution to Eq. (1.2), the N-soliton solutions to the corre-

sponding partial differential equation in (2+1)-dimensions can be given by17

f =
∑
µ=0,1

exp

(
N∑
i=1

µiξi +
∑
i<j

µiµjaij

)
, (1.3)

under the logarithm transformation u = 2(ln f)x or u = 2(ln f)xx. Here
∑
µ=0,1

denotes the sum of over all possibilities for µ1, . . . , µN in 0, 1, and
ξi = kix+ liy − ωit+ ξi,0, 1 ≤ i ≤ N,

eaij = −P (ki − kj , li − lj , ωj − ωi)
P (ki + kj , li + lj , ωj + ωi)

, 1 ≤ i < j ≤ N,
(1.4)

with the wave numbers ki, li and the frequencies ωi, 1 ≤ i ≤ N satisfying the

corresponding dispersion relations, while the phases shifts ξi,0 being arbitrary.

For example, the Kadomtsev–Petviashvili (KP) equation10

(ut + 6uux + uxxx)x + σuyy = 0 (1.5)
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is a partial differential equation to describe nonlinear wave motion. It can be used

to model water waves of long wavelength with weakly nonlinear restoring forces and

frequency dispersion. When σ = −1, it is the famous KPI equation, which means

the surface tension of water waves is strong compared to gravitational forces.10

When σ = +1, (1.5) is known as the KPII equation, which describes the surface

tension is weak.10 The Ito equation in (2+1)-dimensions is usually written as18,19:

utt + uxxxt + 6uxut + 3uuxt + 3uxxvt + αuyut + βuxut = 0, (1.6)

where vx = u, the coefficients α and β are arbitrary constants. It is reduced to the

(1+1)-dimensional Ito equation by taking α = 0 and β = 0. Then, Eqs. (1.5) and

(1.6) possess the following Hirota bilinear forms:

(DxDt +D4
x + σD2

y)f · f = 0 (1.7)

and

(DxDt +D3
xDt + αDyDt + βDxDt)f · f = 0, (1.8)

through the transformation u = 2(ln f)xx.

We have known that the KPI equation possesses lump solutions20

u =
4(a21 + a25)f − 8(a1ξ1 + a5ξ2)2

f2
,

where the functions of ξ1, ξ2 are given as follows:
ξ1 = a1x+ a2y +

a1a
2
2 − a1a26 + 2a2a5a6

a21 + a25
t+ a4,

ξ2 = a5x+ a6y +
2a1a2a6 − a22a5 + a5a

2
6

a21 + a25
t+ a8

and the corresponding positive quadratic function solution is

f =

(
a1x+ a2y +

a1a
2
2 − a1a26 + 2a2a5a6

a21 + a25
t+ a4

)2

+

(
a5x+ a6y +

2a1a2a6 − a22a5 + a5a
2
6

a21 + a25
t+ a8

)2

+
3(a21 + a25)3

(a1a6 − a2a5)2

under the transformation u = 2(ln f)xx. In this kind of lump solutions, parameters

of a1, a2, a4, a5, a6, a8 are arbitrary, and the condition a1a6 − a2a5 6= 0 guarantees

both analyticity and localization of the solutions in the xy-plane. It is obvious that

the solutions are analytic if and only if the parameter a9 > 0.

A lot of different types of solutions to integrable equations have been stud-

ied, for instance, soliton solutions, lump solutions, interaction solutions between

lump solutions and solitons, lump-kinks, line-solitons, resonance solutions and

other classes of solutions. What we all know is that the KP I equation possesses

plenty of lump solutions,20 and some special lump solutions are obtained from its

soliton solutions.21 Besides, a large number of other integrable equations which
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have been proven to possess lump solutions, such as the three-dimensional three-

wave resonant interaction,22 the Davey–Stewartson II equation,15 the Ishimori-I

equation,23 the B-KP equation,24,25 and the KP equation with a self-consistent

source equation.26 Meanwhile, many non-integrable equations also have been found

that there exist lump solutions, among a few equations which are generalized

KP, KP–Boussinesq, B-KP, Calogero–Bogoyavlenskii–Schiff, Sawada–Kotera and

Bogoyavlensky–Konopelchenko equations in (2+1)-dimensions.27–33 Therefore, we

noticed the importance of finding lump solutions whether or not the equation is in-

tegrable and the key to constructing lump solutions by the Hirota bilinear method.

The goal of this paper is to investigate lump solutions for the following gener-

alized KP–Ito equation combined with some new second-order terms:

α(6uux + uxxx)x + β(uxxxt + 6uxut + 3uuxt + 3uxxvt)

+ δ1uyut + δ2uxx + δ3uxut + +δ4uxuy + δ5uyy + δ6utt = 0, (1.9)

where vx = u, the coefficients α and β satisfy α2 + β2 6= 0, but δi, 1 ≤ i ≤ 6,

are arbitrary constants. It reduces to the KP equation by choosing β = 0, α = 1,

δ1 = δ2 = δ4 = δ6 = 0, and the Ito equation by taking α = 0, β = δ6 = 1, δ2 =

δ4 = δ5 = 0. Based on a bilinear transformation, the new equation enjoys a Hirota

bilinear form. Lump solutions can be worked out through symbolic computation

with Maple. Finally, three-dimensional plots and contour plots of these solutions

are exhibited and their dynamic behaviors are studied. Some conclusions are given

in the last section.

2. Bilinear Form and Lump Solutions

In this section, we will produce some classes of the lump solutions by utilizing the

Hirota bilinear method. We substitute the logarithmic transformation u = 2(ln f)xx
and v = 2(ln f)x into (1.9), it is obvious that the generalized KP-Ito equation

possesses the following Hirota bilinear form:

(αD4
x + βD3

xDt + δ1DyDt + δ2D
2
x + δ3DxDt + δ4DxDy

+ δ5D
2
y + δ6D

2
t )f · f = 0, (2.1)

equivalently,

α(2ffxxxx − 8fxfxxx + 6f2xx) + β((2ffxxxt − 2fxxxft − 6fxfxxt + 6fxxfxt))

+ δ1(2ffyt − 2fyft) + δ2(2ffxx − 2f2x) + δ3(2ffxt − 2fxft)

+ δ4(2ffxy − 2fxfy) + δ5(2ffyy − 2f2y ) + δ6(2fftt − 2f2t ) = 0. (2.2)

Therefore, if f solves the bilinear equation (2.2), then u = 2(ln f)xx solves Eq. (1.9).

Since Eq. (1.9) has the bilinear form (2.1), it is critical to look for the quadratic

function solution. We suppose the quadratic solution f is expressed as

f = (a1x+ a2y + a3t+ a4)2 + (a5x+ a6y + a7t+ a8)2 + a9, (2.3)
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where ai, i = 1, 2, . . . , 9, are arbitrary real constants to be determined. We plug (2.3)

into (2.2), and then a system of nonlinear algebraic equations on the parameters can

be solved by Maple symbolic computations. A set of solutions for the parameters

are exhibited as follows:

Case 1.

a2 =
b

4δ5c1
, a3 =

a1c2
c1

, a6 = −a5δ4 + a7δ1
2δ5

,

a9 = −12δ5(a21 + a25)(αc3 + βc4)

c5
,

where b is a solution of the equation

b2 + (16a1a5δ1δ2δ5 − 8a1a5δ3δ4δ5 + 8a1a7δ1δ3δ5 − 16a1a7δ4δ5δ6)b

− 64(a25δ
2
3 + 4a5a7δ3δ6 + 4δ26a

2
7 − 4δ2δ6a

2
1 − δ23a21)(a25δ2 + a5a7δ3 + a27δ6)δ35

+ 16[(4δ1δ2δ3 + δ23δ4)a35 + (8δ2δ6δ1 + 5δ23δ1 + 4δ3δ4δ6)a7a
2
5

+ (16δ1δ3δ6 + 4δ4δ
2
6)a27a5 − a21δ4(8δ2δ6 − 2δ23)a5

− δ1(8δ2δ6a
2
1 − 2δ23a

2
1 − 12δ26a

2
7)a7](a5δ4 + a7δ1)δ25

− 16(a5δ4 + a7δ1)2[(δ21δ2 + δ1δ3δ4)a25 + 2a7δ1(δ1δ3 + δ4δ6)a5

+ 3δ21δ6a
2
7 − a21(δ21δ2 − δ1δ3δ4 + δ24δ6)]δ5 + 4δ21(a5δ4 + a7δ1)4 = 0

and the above involved five constants ci, i = 1, 2, 3, 4, 5, are defined as follows:

c1 = a5δ1δ4 − 2a5δ3δ5 + a7δ
2
1 − 4a7δ5δ6,

c2 = 4a5δ2δ5 − a5δ24 − a7δ1δ4 + 2a7δ3δ5,

c3 = (a21 + a25)c1,

c4 = a21c1 + a5a7c2,

c5 = c1(a5c2 − a7c1).

(2.4)

Therefore, besides a1a6 − a2a5 6= 0, the other condition assures that the non-

singularity of the lump solution is c1(a5c2 − a7c1) 6= 0, and it should also satisfy

the constraint condition a9 > 0 to ensure that f is positive.

Case 2.

a3 = −a1δ4 + 2a2δ5
δ1

, a6 =
b

δ1c1
, a7 = −a5c2

c1
,

a9 = −3δ1(a21 + a25)(αc3 + βc4)

c5
,

where b needs to satisfy the equation

δ5b
2 − (2a1a5δ

3
1δ2 − 2a1a5δ

2
1δ3δ4 + 2a1a5δ1δ

2
4δ6 − 2a2a5δ

2
1δ3δ5 + 4a2a5δ1δ4δ5δ6)b

− a22(a21δ2 − δ5a22 − a25δ2)δ61 − δ3(2a31δ2 − a21a2δ4 − 4a1a
2
2δ5 + a2a

2
5δ4)a2δ

5
1

− [a41δ2δ
2
3 − (4δ2δ6 + 2δ23)δ4a2a

3
1 − (8δ2δ5δ6a

2
2 − δ24δ6a22 + 5δ23δ5a

2
2
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+ 4δ6a
2
5δ

2
2 − a25δ2δ23)a21 + 8δ6a1a

3
2δ4δ5 + (12δ6a

2
2δ

2
5 + 8δ2δ5δ6a

2
5

− δ24δ6a25 − 2δ23δ5a
2
5)a22]δ41 + (a1δ4 + 2a2δ5)[(4δ2δ6 + δ23)a21

− 6a1a2δ4δ6 − 16δ6a
2
2δ5 − a25(4δ2δ6 − δ23)]δ3a1δ

3
1

− (a1δ4 + 2a2δ5)2[(4δ2δ6 + 5δ23)a21 − 4a1a2δ4δ6 − 12δ6a
2
2δ5

− a25(4δ2δ6 − δ23)]δ6δ
2
1 + 8a1δ3δ

2
6(a1δ4 + 2a2δ5)3δ1

− 4δ36(a1δ4 + 2a2δ5)4 = 0

and the above involved five constants ci, i = 1, 2, 3, 4, 5, are defined as follows:

c1 = a1δ1δ3 − 2a1δ4δ6 + a2δ
2
1 − 4a2δ5δ6,

c2 = 2a1δ1δ2 − a1δ3δ4 + a2δ1δ4 − 2a2δ3δ5,

c3 = δ1(a21 + a25)c1,

c4 = 2δ5δ6(a1δ4 + 2a2δ5)− δ1δ5(a1δ3 + a2δ1)− a21δ4c1 − a25δ1c2,
c5 = c1(a21δ

2
1δ2 − a21δ1δ3δ4 + a21δ

2
4δ6 − 2a1a2δ1δ3δ5

+ 4a1a2δ4δ5δ6 − a22δ21δ5 + 4a22δ
2
5δ6)

(2.5)

which needs to satisfy the conditions c5 6= 0 and a9 > 0, to make sure that the

corresponding solutions f are well defined and positive.

3. Two Specific Lump Solutions and Their Dynamic Behaviors

In this section, special choices of the involved parameters in the Hirota bilinear

equation (2.1) will be adopted to achieve the corresponding lump solutions, and

then the dynamic behaviors of the solutions be discussed.

First, by assuming

α = 1, β = 1, δ1 = δ3 = δ4 = 1, δ2 = δ5 = δ6 = 0

and selecting a special choice for the parameters:

a1 = 1, a3 = 3, a4 = 4, a5 = 1, a7 = −1, a8 = 3,

we get the value of other parameters: a2 = −1, a6 = − 1
2 , a9 = 24. Substituting all

the parameters ai, 1 ≤ i ≤ 9, into the formula (2.3), we obtain a kind of positive

quadratic function solutions to Eq. (2.2)

f1 = (x− y + 3t+ 4)2 +
(
x− y

2
− t+ 3

)2
+ 24. (3.1)

Through the logarithmic transformation: u = 2(ln f)xx, the resulting class of posi-

tive quadratic function solutions yields a class of lump solutions to the generalized

KP-Ito equation (1.9), which is generated as follows:

u1 =
16

(x− y + 3t+ 4)2 +
(
x− y

2 − t+ 3
)2

+ 24

− 4(4x− 3y + 4t+ 14)2(
(x− y + 3t+ 4)2 +

(
x− y

2 − t+ 3
)2

+ 24
)2 . (3.2)
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Fig. 1. (Color online) Profiles of u1 when t = 0, 15, 30: 3d plots (top) and contour plots (bottom).

The three-dimensional plots and contour plots of the above lump solutions (3.2)

are exhibited in Fig. 1, which are made via Maple plot tools.

Second, by taking

α = 1, β = 1, δ1 = δ2 = δ4 = 1, δ3 = δ5 = δ6 = 0

and choosing suitable values for the parameters

a1 = −1, a2 = −3, a4 = 6, a5 = −1, a6 = −1, a8 = −3,

we have a3 = 6
5 , a7 = 8

5 , a9 = 12. In the same way, we can obtain the corresponding

positive quadratic solution as follows:

f2 =

(
x+ 3y − 6

5
t− 6

)2

+

(
x+ y − 8

5
t+ 3

)2

+ 12, (3.3)

which produces another class of lump solutions to the generalized KP-Ito equation:

u2 =
16(

x+ 3y − 6
5 t− 6

)2
+
(
x+ y − 8

5 t+ 3
)2

+ 12

−
16
(
2x+ 4y − 14

5 t− 3
)2((

x+ 3y − 6
5 t− 6

)2
+
(
x+ y − 8

5 t+ 3
)2

+ 12
)2 . (3.4)

Then the lump solutions’ three-dimensional plots and contour plots are displayed

in Fig. 2, which are made via Maple plot tools.
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Fig. 2. (Color online) Profiles of u2 when t = 0, 15, 30: 3d plots (top) and contour plots (bottom).

4. Conclusions

In this paper, a generalized KP-Ito equation has been considered. We presented two

sets of complex lump solutions by using the Hirota bilinear method and symbolic

computation. Then, we obtained two kinds of simple lump solutions through select-

ing appropriate values of the parameters for the positive quadratic function. At the

same time, we used Maple to give some three-dimensional plots and contour plots

of two specific lump solutions in order to make it easy to understand the changes

of the lump solutions with time. All the above results provided us with abundant

new exact solutions. It is necessary to point out that only two specific solutions are

given in this paper, but there are many other more complex exact solutions such as

other kinds of lump solutions and lump-kink solutions that we have not presented

here. If someone is interested, you can also continue to discuss and research.

This study shows that the category of nonlinear partial differential equations

with lump solutions is very broad and rich. It also attempts to point out the re-

lation between the lump solutions and the nonlinear terms contained in the new

generalized equation. It is a common knowledge that many nonlinear phenomena

can be described by interaction solutions between lump solutions and soliton so-

lutions30,34 and a lot of different studies have shown the existence of interaction

solutions between lump solutions and lump-kink solutions and other kinds of exact

solutions to linear wave equations,35 nonlinear integrable equations36–39 as well as

in (3+1)-dimensions.40–42 Since the interaction properties involve much more com-

plicated mathematical computations, the further research for interaction solutions

to other generalized bilinear differential equations is becoming more interesting and

meaningful.
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