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A (241)-dimensional generalized Kadomtsev—Petviashvili-Ito equation is introduced.
Upon adding some second-order derivative terms, its various lump solutions are explicitly
constructed by utilizing the Hirota bilinear method and calculated through the symbolic
computation system Maple. Furthermore, two specific lump solutions are obtained with
particular choices of the parameters and their dynamical behaviors are analyzed through
three-dimensional plots and contour plots.
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1. Introduction

In the past few decades, with the rapid development of nonlinear science, exact and
numerical solutions of nonlinear partial differential equations (PDEs) have aroused
great interest among many scientists and engineers.! ¢ Such as rogue wave solu-
tions which are described an open water phenomenon, in which winds, currents
and nonlinear phenomena. Soliton solutions, which are normally localized in the
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time and space, are exact ones determined by exponentially localized functions.” 1°
When the nonlinear differential equations with polynomial nonlinearity are stud-
ied, the existence of solitary solutions should be considered.!! Compared to soliton
solutions, we focus on another type of important exact solutions such as lump
solutions, which are localized in directions only in space. Lump solutions are de-

12214 and found out

rived from solving integrable equations in (2+1)-dimensions,
by taking long wave limits in soliton theory.?1%16 The main procedure in search-
ing of lump solutions is to construct positive quadratic function solutions to the
Hirota bilinear equations.? Then lump solutions to the corresponding nonlinear
PDEs can be obtained through the logarithmic transformations, on account of the
positive quadratic function solutions.

As is known, a (241)-dimensional partial differential equation can be trans-
formed into a Hirota bilinear form through a depended variable transformation.
Assume that P is a polynomial in z, y and t, then a Hirota bilinear equation can

be defined by
P(Dy,Dy,Dy)f - f =0, (1.1)

where D, D, D; are Hirota bilinear derivatives,2

AN
- \oz Ox' oy Oy
0 0

X <8t - at,> f(l',y;t) : g(xl7yl7tl)|fﬂ’217y/:y»t/:t7 (12)

where f, g are infinitely differentiable functions, and [, m,n are non-negative inte-
gers. Then if f is the solution to Eq. (1.2), the N-soliton solutions to the corre-
sponding partial differential equation in (2+1)-dimensions can be given by!”

N
f= Z exp <Zﬂi§i + Zﬂiﬂjaij)a (1.3)
i=1

1=0,1 i<j
under the logarithm transformation u = 2(In f); or u = 2(In f)g,. Here 30,4
denotes the sum of over all possibilities for p1,...,un in 0,1, and

& = kix + Ly — wit + & o, 1<i<N,

P(k‘i—k'j,li—lj,w]‘ —wi) (14)

P(ki + kj, i + 1, wj + wi)

eﬂij —_

; 1<i<j<N,

with the wave numbers k;,l; and the frequencies w;, 1 < i < N satisfying the
corresponding dispersion relations, while the phases shifts ; ¢ being arbitrary.
For example, the Kadomtsev—Petviashvili (KP) equation!®

(ut + 6uty + Uzpe)z + OUyy =0 (1.5)
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is a partial differential equation to describe nonlinear wave motion. It can be used
to model water waves of long wavelength with weakly nonlinear restoring forces and
frequency dispersion. When o = —1, it is the famous KPI equation, which means
the surface tension of water waves is strong compared to gravitational forces.!C
When o = +1, (1.5) is known as the KPII equation, which describes the surface

tension is weak.1? The Ito equation in (2+1)-dimensions is usually written as'8:1:

Utt + Uggat + OUg U + SUUgr + SUgave + auyuy + Buguy =0, (1.6)

where v, = u, the coefficients a and 8 are arbitrary constants. It is reduced to the
(141)-dimensional Ito equation by taking & = 0 and 8 = 0. Then, Egs. (1.5) and
(1.6) possess the following Hirota bilinear forms:

(DeDy+ Dy +0D)f-f=0 (1.7)
and
(DyDy+ DDy + aDyDy + 8D, Dy)f - f =0, (1.8)

through the transformation v = 2(In f)4,.
We have known that the KPI equation possesses lump solutions?
~ Aaf +ad)f — 8(ar&s + asé)?
= 7 ,

where the functions of &1, s are given as follows:

0

_ alag — alag + 2asa5a4
51 =a1x + a2y + 2 2
ay + ag

t Gy,

2a1a0a6 — a2as + asa?
2 596 1 1 g

= asx a
&2 5T + agy + Tra

and the corresponding positive quadratic function solution is

2 2 2
105 — ai1ag + 2aza5a6
2 6 t+ay

+ +
f ayxr a
! 2y a%—&-ag

2a1a0a6 — a§a5 + a5a§
a? + a?

2
3(a? 4 a?)?
t+%>+((192

+ (G5JS + agy +
a1ae — CL2G5)

under the transformation v = 2(In f),.. In this kind of lump solutions, parameters
of a1, a9, a4, as, ag, ag are arbitrary, and the condition ajag — azas # 0 guarantees
both analyticity and localization of the solutions in the xy-plane. It is obvious that
the solutions are analytic if and only if the parameter ag > 0.

A lot of different types of solutions to integrable equations have been stud-
ied, for instance, soliton solutions, lump solutions, interaction solutions between
lump solutions and solitons, lump-kinks, line-solitons, resonance solutions and
other classes of solutions. What we all know is that the KP I equation possesses
plenty of lump solutions,?? and some special lump solutions are obtained from its
soliton solutions.?' Besides, a large number of other integrable equations which
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have been proven to possess lump solutions, such as the three-dimensional three-
wave resonant interaction,?? the Davey-Stewartson II equation,'® the Ishimori-I
equation,?® the B-KP equation,?%2% and the KP equation with a self-consistent
source equation.?6 Meanwhile, many non-integrable equations also have been found
that there exist lump solutions, among a few equations which are generalized
KP, KP-Boussinesq, B-KP, Calogero-Bogoyavlenskii—Schiff, Sawada—Kotera and
Bogoyavlensky-Konopelchenko equations in (2+1)-dimensions.2” 33 Therefore, we
noticed the importance of finding lump solutions whether or not the equation is in-
tegrable and the key to constructing lump solutions by the Hirota bilinear method.

The goal of this paper is to investigate lump solutions for the following gener-
alized KP—Ito equation combined with some new second-order terms:

a(6uuac + ua:wc)x + 6(“3:90901& + 6ugus + Jutgy + 3u;cacvt)
+ 81Uy + SoUgy + d3Upts + +04Uzty + O5Uyy + dsuy =0,  (1.9)

where v, = u, the coefficients a and 3 satisfy o? + 82 # 0, but §;,1 < i < 6,
are arbitrary constants. It reduces to the KP equation by choosing f = 0,a = 1,
61 = 92 = 84 = d¢ = 0, and the Ito equation by taking a = 0,8 = dg = 1,02 =
04 = 05 = 0. Based on a bilinear transformation, the new equation enjoys a Hirota
bilinear form. Lump solutions can be worked out through symbolic computation
with Maple. Finally, three-dimensional plots and contour plots of these solutions
are exhibited and their dynamic behaviors are studied. Some conclusions are given
in the last section.

2. Bilinear Form and Lump Solutions

In this section, we will produce some classes of the lump solutions by utilizing the
Hirota bilinear method. We substitute the logarithmic transformation v = 2(In f)
and v = 2(In f), into (1.9), it is obvious that the generalized KP-Ito equation
possesses the following Hirota bilinear form:

(D} + BD2Dy + 81Dy Dy + 82D2 + 63D, Dy + 64D, D,
+ 05D + 66D7) f - f =0, (2.1)
equivalently,
a(2f fraze = 8fufroz +62p) + BU2S faonat — 2fuwaft — 6fu faat + 6 fuafut))
+ 60 (21 fyr = 20y ft) + 02(2f fow — 207) + 03(2f fur — 20 1)

+64(2ffwy - 2fa:fy> + 65(2ffyy - 215) + 66(2fftt - 2f152) =0. (2'2)

Therefore, if f solves the bilinear equation (2.2), then u = 2(In ), solves Eq. (1.9).
Since Eq. (1.9) has the bilinear form (2.1), it is critical to look for the quadratic
function solution. We suppose the quadratic solution f is expressed as

f=(a1x + asy + ast + a4)2 + (asx + agy + a7t + a8)2 + ag, (2.3)
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where a;,7 = 1,2,...,9, are arbitrary real constants to be determined. We plug (2.3)
into (2.2), and then a system of nonlinear algebraic equations on the parameters can
be solved by Maple symbolic computations. A set of solutions for the parameters
are exhibited as follows:

Case 1.
b ai1cs as04 + a7y
as = a3=——, agg=——"——
2 45501 ’ 3 C1 ’ 6 265 ’
12603 + aB)(acs + fea)
9 = — )
Cs

where b is a solution of the equation
b? 4 (16a1a5010205 — 8a1a5030405 + 8a1a7010305 — 16a1a7040506)b
— 64(a203 + dasardsds + 40ga3 — 4826605 — 63a7)(a2ds + asards + a2de)os
+ 16[(4010203 + 0304)as + (8520601 + 50361 + 483406 )ara?
+ (16610306 + 46402)aZas — a264(86206 — 203 )as
—01(80206a3 — 262a7 — 1202a2)az](asds + a761)02
—16(asds + a761)2[(0769 + 610304)a2 + 2a761 (6163 + 6456)as
+ 3026602 — a?(6265 — 610304 + 0306)]05 + 467 (as50s + a761)* = 0
and the above involved five constants ¢;, 1 = 1,2, 3,4, 5, are defined as follows:
c1 = as6104 — 2a56305 + a76? — 4ar0506,
e = 4a56205 — a507 — a76104 + 2a70305,
cz = (a2 + a?)ey, (2.4)
ca = aier + asazcy,
cs = c1(asce — arcy).
Therefore, besides ajag — asas # 0, the other condition assures that the non-

singularity of the lump solution is ¢1(asca — azcr) # 0, and it should also satisfy
the constraint condition ag > 0 to ensure that f is positive.

Case 2.

- a154 + 20,2(55 - b o asCo
a3 = — , a6 = y a7 = — )
01 dic1 1

e — 361(a? + a2)(acz + Bey)
9 — — )
Cs

where b needs to satisfy the equation
651)2 — (2&1&55%52 — 20,1(155%5354 + 2(110,5(515256 — 2&2@55%6355 + 40,2@551546566)()
—a3(a3dy — d5a3 — a202)69 — 03(2a302 — aiaxdy — 4aya3ds + asaidy)azd?

— [a‘ll525§ — (45266 + 25%)54&2&? - (8(525556043 - 53560,% + 55%55@%
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+466a265 — a28203)at + 88sa1a30405 + (1206a302 + 8320506a2

— 0306az — 20305a2)a3]d7 + (a164 + 2a205)[(46206 + 63)ai

— 6a1a20406 — 16060305 — a2 (40206 — 62)]03a10°

— (104 + 2a205)?[(40206 + 53)a? — 4a1a20406 — 12060305

— a2 (40906 — 02)]0607 4 8a10302(a14 + 2a205)361

— 45g(a154 + 2a255)4 =0
and the above involved five constants ¢;, 1 = 1,2, 3,4, 5, are defined as follows:
c1 = a10103 — 2a10466 + 263 — 4asd506,
co = 2a10109 — a10304 + a26104 — 2a20395,
c3 = 61(a? +a2)cy,
cy = 28506(a104 + 2a205) — 0105(a103 + azdy) — atdscr — aidyca,
cs = c1(a26265 — 2610304 + 26206 — 2a1a2016305

+4a1a2640506 — a36305 + 4a25256)

which needs to satisfy the conditions ¢5 # 0 and ag > 0, to make sure that the
corresponding solutions f are well defined and positive.

(2.5)

3. Two Specific Lump Solutions and Their Dynamic Behaviors

In this section, special choices of the involved parameters in the Hirota bilinear
equation (2.1) will be adopted to achieve the corresponding lump solutions, and
then the dynamic behaviors of the solutions be discussed.
First, by assuming
Oéil, ﬂil, 51:63:54:1, 52:65:56:0
and selecting a special choice for the parameters:
ai :17 as :33 a4:47 a5 = 17 CL7:—1, a8:3a

we get the value of other parameters: ay = —1, ag = —%, ag = 24. Substituting all
the parameters a;, 1 < i < 9, into the formula (2.3), we obtain a kind of positive
quadratic function solutions to Eq. (2.2)

2
flz(:c—y+3t+4)2+(mf%ft+3) + 24, (3.1)

Through the logarithmic transformation: v = 2(In f),., the resulting class of posi-
tive quadratic function solutions yields a class of lump solutions to the generalized
KP-Tto equation (1.9), which is generated as follows:

16

(@—y+3t+42+ (r—4—t+3)°+2
4(4x — 3y + 4t + 14)?
.
((x—y+3t+4)2+(x—g—t+3)2+24)

Uy =

2150437-6



Mod. Phys. Lett. B 2021.35. Downloaded from www.worldscientific.com

by UNIVERSITY OF CENTRAL FLORIDA on 02/04/22. Re-use and distribution is strictly not permitted, except for Open Access articles.

Lump solutions to a generalized KP—-Ito equation

Fig. 1. (Color online) Profiles of u; when ¢t = 0,15, 30: 3d plots (top) and contour plots (bottom).

The three-dimensional plots and contour plots of the above lump solutions (3.2)
are exhibited in Fig. 1, which are made via Maple plot tools.
Second, by taking

a=1, fB=1, 6=0h=0=1 03=0=06=0
and choosing suitable values for the parameters
ap=-1, as=-3, a4=6, as=-1, ag=-1, ag= -3,

g, a7 = %, ag = 12. In the same way, we can obtain the corresponding
positive quadratic solution as follows:

we have ag =

6 2 8 2
fg—(:z:+3y—5t—6) +<x+y—5t+3> + 12, (3.3)

which produces another class of lump solutions to the generalized KP-Ito equation:
16
(¢+3y—St—6)"+ (x+y— 5t +3)" +12

Ug =

2
16 (22 +4y — ¢ -3
- ( 2 ) 5 (3.4)

((x+3yfgt76)2+(:U+yf§t+3)2+12)

Then the lump solutions’ three-dimensional plots and contour plots are displayed
in Fig. 2, which are made via Maple plot tools.

2150437-7
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Fig. 2. (Color online) Profiles of uz when t = 0,15, 30: 3d plots (top) and contour plots (bottom).

4. Conclusions

In this paper, a generalized KP-Ito equation has been considered. We presented two
sets of complex lump solutions by using the Hirota bilinear method and symbolic
computation. Then, we obtained two kinds of simple lump solutions through select-
ing appropriate values of the parameters for the positive quadratic function. At the
same time, we used Maple to give some three-dimensional plots and contour plots
of two specific lump solutions in order to make it easy to understand the changes
of the lump solutions with time. All the above results provided us with abundant
new exact solutions. It is necessary to point out that only two specific solutions are
given in this paper, but there are many other more complex exact solutions such as
other kinds of lump solutions and lump-kink solutions that we have not presented
here. If someone is interested, you can also continue to discuss and research.

This study shows that the category of nonlinear partial differential equations
with lump solutions is very broad and rich. It also attempts to point out the re-
lation between the lump solutions and the nonlinear terms contained in the new
generalized equation. It is a common knowledge that many nonlinear phenomena
can be described by interaction solutions between lump solutions and soliton so-

30,34

lutions and a lot of different studies have shown the existence of interaction

solutions between lump solutions and lump-kink solutions and other kinds of exact

35 36-39 a5 well as

solutions to linear wave equations,”® nonlinear integrable equations
in (3+1)-dimensions.?**2 Since the interaction properties involve much more com-
plicated mathematical computations, the further research for interaction solutions
to other generalized bilinear differential equations is becoming more interesting and

meaningful.

2150437-8
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