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a b s t r a c t

A nonlinear partial differential equation combining with a third-order derivative of
the time variable DxD3

t is studied. By adding a new fourth-order derivative term,
its lump solutions are explicitly constructed by the Hirota bilinear method and
symbolic computation. Furthermore, the effect of the new fourth-order derivative
term on the solution is discussed. The dynamical behaviors of two particular lump
solutions are analyzed with different choices of the parameters.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

In the last several years with the rapid development of nonlinear science, scientists and engineers have
been interested in the analytical asymptotic techniques for nonlinear problems such as solid state physics,
plasma physics, fluid mechanics and applied sciences. In many different fields of science and engineering, it is
important to obtain exact or numerical solution of the nonlinear partial differential equations (PDEs) [1,2].
Soliton solutions, which are normally localized in the time and space, are exact ones determined by
exponentially localized functions [3,4]. In contrast to soliton solutions, lump solutions are another kind of
important exact solutions of PDEs, which are localized in directions only in space, and they are, originated
from solving integrable equations in (2+1)-dimensions [5–7], and obtained from soliton theory by taking
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long wave limits [2,8,9]. In soliton theory the crucial step in finding lump solutions is to construct positive
quadratic function solutions to Hirota bilinear equations [5]. Then based on positive quadratic function
solutions, the logarithmic transformations yield lump solutions to nonlinear PDEs.

Through a depended variable transformation, a partial differential equation can be mapped into a Hirota
bilinear form. Suppose that P is a polynomial in x, y, and t. Then a Hirota bilinear differential equation in
2+1)-dimensions can be defined by

P (Dx, Dy, Dt)f · f = 0, (1)

here Dx, Dy, Dt are the Hirota bilinear derivatives [5],

Dl
xDn

y Dm
t f(x, y, t) · g(x, y, t)

= ( ∂

∂x
− ∂

∂x′ )l( ∂

∂y
− ∂

∂y′ )n( ∂

∂t
− ∂

∂t′ )mf(x, y, t) · g(x′, y′, t′)|x′=x,y′=y,t′=t. (2)

hen f solves (2), N-soliton solutions in (2+1)-dimensions to the corresponding PDE are defined through
the transformation u = 2(lnf)x or u = 2(lnf)xx with the form as [10]

f =
∑

µ=0,1
exp(

N∑
i=1

µiξi +
∑
i<j

µiµjaij), (3)

here
∑

µ=0,1 denotes the sum over all possibilities for µ1, . . . , µN in 0, 1, and{
ξi = kix + liy − ωit + ξi,0, 1 ≤ i ≤ N,

eaij = − P (ki−kj ,li−lj ,ωj−ωi)
P (ki+kj ,li+lj ,ωj+ωi) , 1 ≤ i < j ≤ N,

(4)

with the wave numbers ki, li and the frequencies ωi, 1 ≤ i ≤ N satisfying the corresponding dispersion
relations

P (ki, li, −ωi) = 0, 1 ≤ i ≤ N,

ut the phase shifts ξi,0 being arbitrary.
As is well known, the KPI equation possesses lump solutions [11]: u = 2(lnf)xx, where

f =(a1x + a2y + a1a2
2 − a1a2

6 + 2a2a5a6

a2
1 + a2

5
t + a4)2

+(a5x + a6y + 2a1a2a6 − a2
2a5 + a5a2

6
a2

1 + a2
5

t + a8)2 + 3(a2
1 + a2

5)3

(a1a6 − a2a5)2 .

he condition a1a6 − a2a5 ̸= 0 guarantees the rational localization in all directions in the (x, y)-plane.
In the past few decades, many researchers have studied soliton solutions, lump solutions, and other

lasses of solutions to integrable equations. The KPI equation has abundant lump solutions [11], and its
pecial lump solutions are constructed from its soliton solutions [12]. Other integrable equations which
ossess lump solutions contain the three-dimensional three-wave resonant interaction [13], the Davey–
tewartson II equation [8], the Ishimori-I equation [14], the BKP equation [15,16], and the KP equation
ith a self-consistent source [17]. Furthermore, nonintegrable equations can possess lump solutions, among
hich are a few generalized KP, BKP, KP-Boussinesq, Sawada–Kotera, Calogero–Bogoyavlenskii–Schiff and
ogoyavlensky–Konopelchenko equations in (2+1)-dimensions [18–24]. It has seen that it is crucial in finding

ump solutions to construct quadratic function solutions to Hirota bilinear equations and determine the sign
f the resulting solutions [5].

In this paper, we would like to concern a nonlinear PDE combining with the third derivative of the time
ariable DxD3

t in (2+1)-dimensions and determine its diverse lump solutions. This new term DxD3
t makes

he calculation more complicated. It is also reflected that the structure of the solution is more complex,
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and we pay more attention to deal with and analyze the dispersion relation of the solution. Adding three
new fourth-order derivative terms and all second-order derivative terms, we formulate a combined fourth-
order nonlinear partial differential equation, which possesses a Hirota bilinear form. Based on a bilinear
transformation, lump solutions are obtained through symbolic computation with Maple. By choosing special
values for the coefficients in equation, specific lump solutions to the equation in the corresponding cases are
given. Finally, We also exhibit three-dimensional plots and contour plots of the lump solutions and discuss
their dynamic behaviors. Some conclusions are given in the final section.

2. Bilinear form and lump solutions of a fourth-order PDE with a new term

In this section, we would like to consider the following nonlinear partial differential equation, which
contains three fourth-order terms and six second-order terms:

P (u) = α[3(uxut)x + uxxxt] + β[3(uxuy)x + uxxxy] + θ(uxttt + 3ututt

+ 3uxtvtt) + γ1uyt + γ2uxx + γ3uxt + γ4uxy + γ5uyy + γ6utt = 0,
(5)

where vx = u, the coefficients α, β and θ satisfy α2 + β2 + θ2 ̸= 0, but γi, 1 ≤ i ≤ 6, are arbitrary constants.
This (2+1)-dimensional nonlinear equation (5) possesses a Hirota bilinear form:

B(f) = (αD3
xDt + βD3

xDy + θDxD3
t + γ1DyDt

+ γ2D2
x + γ3DxDt + γ4DxDy + γ5D2

y + γ6D2
t )f · f = 0,

(6)

nder the logarithmic transformation

u = 2(lnf)x = 2fx

f
, v = 2(lnf), (7)

nd we have the relation P (u) = ( B(f)
f2 )x.

If we get a solution to the Hirota bilinear form Eq. (6), we can generate the corresponding solution to the
nonlinear equation (5).

Eq. (6) with θ = 0 has been studied in [21]. In comparison with the equation in [21], DxD3
t is a new term

nd so in this paper we assume that θ ̸= 0. Because Eq. (5) has the bilinear form (6), we start to construct
he solution of the combined bilinear equation (6) in a positive quadratic form as follows:

f = (a1x + a2y + a3t + a4)2 + (a5x + a6y + a7t + a8)2 + a9, (8)

here ai, 1 ≤ i ≤ 9, are the real constant parameters to be determined, in order to generate lump solutions
o the combined fourth-order nonlinear equation (5).

We insert the formula (8) into Eq. (6) to obtain a system of algebraic equations on the parameters
i, 1 ≤ i ≤ 9, and try to solve them by Maple symbolic computation system except for some necessary
orting and simplification of the results. In order to facilitate the calculation and expression of the results,
e need to make some setting for γi, 1 ≤ i ≤ 6, in Eq. (6), or Eq. (5).
First, let γ6 = 0. Eq. (6) becomes:

B(f) = (αD3
xDt + βD3

xDy + θDxD3
t + γ1DyDt

+ γ2D2
x + γ3DxDt + γ4DxDy + γ5D2

y)f · f = 0.
(9)

fter some calculations, we obtain a set of solutions for the parameters:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

a3 = − b1
(a2γ1+a1γ3)2+(a6γ1+a5γ3)2 ,

a7 = − b2
(a2γ1+a1γ3)2+(a6γ1+a5γ3)2 ,

a9 = 3(a2
1+a2

5)(b3α+b4β)+b5θ
2 2 2 2 2 ,

(10)
(a1a6−a2a5) [(a1γ3+a2γ1) +(a5γ3+a6γ1) ](γ1 γ2−γ1γ3γ4+γ3 γ5)

3



L. Ding, W.-X. Ma, Q. Chen et al. Applied Mathematics Letters 112 (2021) 106809
and all the other ai are arbitrary. The above involved constants bi, 1 ≤ i ≤ 5, are defined as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b1 = [(a2
1a2 + 2a1a5a6 − a2a2

5)γ2 + a1(a2
2 + a2

6)γ4 + a2(a2
2 + a2

6)γ5]γ1

+[a1(a2
1 + a2

5)γ2 + a2(a2
1 + a2

5)γ4 + (a1a2
2 + 2a2a5a6 − a1a2

6)γ5]γ3,

b2 = [(−a2
1a6 + 2a1a2a5 + a2

5a6)γ2 + a5(a2
2 + a2

6)γ4 + a6(a2
2 + a2

6)γ5]γ1

+[a5(a2
1 + a2

5)γ2 + a6(a2
1 + a2

5)γ4 + (−a2
2a5 + 2a1a2a6 + a5a2

6)γ5]γ3,

b3 = (a2
1 + a2

5)(a1a2 + a5a6)(γ1γ2 + γ3γ4) + (a2
1 + a2

5)(a2
2 + a2

6)γ1γ4

+(a2
1 + a2

5)2γ2γ3 + (a2
2 + a2

6)(a1a2 + a5a6)γ1γ5

+[(a1a2 + a5a6)2 − (a1a6 − a2a5)2]γ3γ5,

b4 = −(a1a2 + a5a6)[(a2γ1 + a1γ3)2 + (a6γ1 + a5γ3)2],

b5 = 3c1[c3c4(γ1γ2
2γ5 + 2γ2γ3γ4γ5) + c3c5(γ3γ2

4γ5 + 2γ1γ2γ4γ5) + c4c5(γ1γ2γ2
5 + γ3γ4γ2

5)]
+3c2[c2

3(γ1γ2
2γ4 + γ2γ3γ2

4) + c2
5γ1γ4γ2

5 ] + 3c2
3[(c2

3γ3
2γ3 + 3c6γ2

2γ3γ5) + c4(3c5γ1γ2γ2
4

+3γ2
2γ3γ4 + d3γ1γ3

2)] + 3c2
5[(c2

3γ1γ3
4 + c6γ3γ3

5) + c4(3c3γ1γ2
4γ5 + c2

3γ3γ3
4 + c5γ1γ3

5)]
+[3(a4

1 + a4
5)(a4

2 + a4
6) − 2(a2

1a2
2 + a2

5a2
6)(a2

1a2
6 + a2

2a2
5) + 4a1a2a5a6(4a2

1a2
2 − 4a2

1a2
6

+11a1a2a5a6 − 4a2
2a2

5 + 4a2
5a2

6)]γ2γ3γ2
5 .

(11)

The parameters ci, 1 ≤ i ≤ 6, involved in b5 are defined as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c1 = [3(a1a2 + a5a6)2 − (a1a6 − a2a5)2],

c2 = [3(a1a2 + a5a6)2 + (a1a6 − a2a5)2],

c3 = (a2
1 + a2

5),

c4 = (a1a2 + a5a6),

c5 = (a2
2 + a2

6),

c6 = [(a1a2 + a5a6)2 − (a1a6 − a2a5)2].

(12)

Directly comparing our results with the context in [21], where γ6 = 0, we have some new terms contained
with θ in the denominator of a9.

Secondly, let γ5 = 0. Eq. (6) becomes:

B(f) = (αD3
xDt + βD3

xDy + θDxD3
t + γ1DyDt

+ γ2D2
x + γ3DxDt + γ4DxDy + γ6D2

t )f · f = 0.
(13)

After some calculations, we obtain:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

a2 = − c1
(a3γ1+a1γ4)2+(a7γ1+a5γ4)2 ,

a6 = − c2
(a3γ1+a1γ4)2+(a7γ1+a5γ4)2 ,

a9 = 3(a2
1+a2

5)(d3α+d4β)+d5θ
2 2 2 ,

(14)
(a1a7−a3a5) (γ1 γ2−γ1γ3γ4+γ4 γ6)

4
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where all the other ai are arbitrary constants. The involved constants di, 1 ≤ i ≤ 5, are defined as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d1 = [(a2
1a3 + 2a1a5a7 − a3a2

5)γ2 + a1(a2
3 + a2

7)γ3 + a3(a2
3 + a2

7)γ6]γ1
+[a1(a2

1 + a2
5)γ2 + a3(a2

1 + a2
5)γ3 + (a1a2

3 + 2a3a5a7 − a1a2
7)γ6]γ4,

d2 = [(−a2
1a7 + 2a1a3a5 + a2

5a7)γ2 + a5(a2
3 + a2

7)γ3 + a7(a2
3 + a2

7)γ6]γ1
+[a5(a2

1 + a2
5)γ2 + a7(a2

1 + a2
5)γ3 + (−a2

3a5 + 2a1a3a7 + a5a2
7)γ6]γ4,

d3 = −(a1a3 + a5a7)[(a3γ1 + a1γ4)2 + (a7γ1 + a5γ4)2],

d4 = (a2
1 + a2

5)(a1a3 + a5a7)(γ1γ2 + γ3γ4) + (a2
1 + a2

5)(a2
3 + a2

7)γ1γ3
+(a2

1 + a2
5)2γ2γ4 + (a2

3 + a2
7)(a1a3 + a5a7)γ1γ6

+[(a1a3 + a5a7)2 − (a1a7 − a3a5)2]γ4γ6,

d5 = [3(a1a2 + a5a6)2 − (a1a6 − a2a5)2][(a1a2 + a5a6)γ1γ2 + (a2
2 + a2

6)γ3γ5]
+[3(a1a2 + a5a6)2 + (a1a6 − a2a5)2][(a2

2 + a2
6)γ1γ4 + (a2

1 + a2
5)γ2γ3]

+3(a2
2 + a2

6)(a1a2 + a5a6)[(a2
2 + a2

6)γ1γ5 + (a2
1 + a2

5)γ3γ4].

(15)

We find that a2 and a6 are consistent with earlier findings in paper [21]. Although there is a new term
DxD3

t in Eq. (5), the coefficient θ, as well as α and β, the other coefficients of the fourth-order terms in the
nonlinear PDE (5), just appear in a9. So in each case, when γ6 or γ5 is zero, the new term only affects a9,
the constant term of the positive quadratic form of solution (8).

To generate lump solutions for the case of γ5 = 0, besides a9 should be positive to guarantee the analyticity
of rational solutions, we require only one basic condition [11]:

a1a6 − a2a5

= (a1a7 − a3a5)[(a2
1 + a2

5)(γ1γ2 − γ3γ4) − (a2
3 + a2

7)γ1γ6 − (a1a3 + a5a7)γ4γ6]
(a3γ1 + a1γ4)2 + (a7γ1 + a5γ4)2 .

o it follows that a1a6 − a2a5 ̸= 0 if and only if⎧⎨⎩a1a7 − a3a5 ̸= 0, γ2
1 + γ2

4 ̸= 0

(a2
1 + a2

5)(γ1γ2 − γ3γ4) − (a2
3 + a2

7)γ1γ6 − (a1a3 + a5a7)γ4γ6 ̸= 0.
(16)

. Two specific lump solutions and their profiles

In this section, we will take special sets of values for the coefficients in the combined fourth-order
onlinear equation (5) to obtain the corresponding lump solutions and discuss the dynamic behaviors of
hose solutions.

First, we take:
α = 1, β = 0, θ = 1, γ3 = γ5 = 1, γ1 = γ2 = γ4 = γ6 = 0. (17)

q. (5) is reduced to:

3(uxut)x + uxxxt + uxttt + 3ututt + 3uxtvtt + uxt + uyy = 0, (18)

hich has a Hirota bilinear form:

(D3
xDt + DxD3

t + DxDt + D2
y)f · f = 0. (19)

Substitute the above values (17) into the resulting parameters (10). Then, take the free parameters as
ollows :
a1 = −1, a2 = 3, a4 = 4, a5 = 1, a6 = −1, a8 = −3, (20)
5
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Fig. 1. Profiles of u1 when t = 0, 25, 50: 3d plots (top) and contour plots (bottom).

we get: a3 = 7, a7 = 1, a9 = 468. Putting all the ai, 1 ≤ i ≤ 9, into the formula (8), we obtain the
orresponding positive quadratic form solution of Eq. (19)

f1 = (−x + 3y + 7t + 4)2 + (x − y + t − 3)2 + 468. (21)

By the logarithmic transformation: u = 2(lnf)x, the lump solution of the special fourth-order nonlinear
equation (18) is generated as follows:

u1 = 4(2x − 4y − 6t − 7)
(−x + 3y + 7t + 4)2 + (x − y + t − 3)2 + 468 . (22)

The three-dimensional plots and contour plots of this lump solutions (22) are shown in Fig. 1, which are
made via Maple plot tools.

Secondly, we take:
α = 1, β = 1, θ = 1, γ4 = γ6 = 1, γ1 = γ2 = γ3 = γ5 = 0. (23)

o get another fourth-order nonlinear equation:

3(uxut)x + uxxxt + 3(uxuy)x + uxxxy + uxttt + 3ututt + 3uxtvtt + uxy + utt = 0. (24)

hich has a Hirota bilinear form:

(D3
xDt + D3

xDy + DxD3
t + DxDy + D2

t )f · f = 0. (25)

ubstitute the above values (23) into the resulting parameters (14) and associated with the special value of
he free parameters:

a1 = 3, a3 = −1, a4 = −5, a5 = −1, a7 = 1, a8 = 5, (26)

e get: a2 = − 1
5 , a6 = 3

5 , a9 = 450.
The corresponding f defined by (8) reads as follows:

f2 = (3x − 1
5y − t − 5)2 + (−x + 3

5y + t + 5)2 + 450, (27)

hich provides a lump solution of the special fourth-order nonlinear equation (25):

u2 = 4(10x − 4t + 15)
(3x − 1

5 y − t − 5)2 + (−x + 3
5 y + t + 5)2 + 450

. (28)

Fig. 2 displays the three-dimensional plots and contour plots of the lump solution made by Maple.

6
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Fig. 2. Profiles of u2 when t = 0, 50, 100: 3d plots (top) and contour plots (bottom).

. Conclusion

In this paper, we have concerned a new combined fourth-order nonlinear PDE. Under two special cases
5 = 0 and γ6 = 0, we obtained a class of lump solutions of the nonlinear equation (5) by Hirota
ilinear method. All the above results offer us abundant new exact solutions. It is important to remark
hat the three nonlinear terms can be merged together into the considered nonlinear model. Through the
ymbolic computations with the Maple, we have worked out abundant lump solutions and found out that
he coefficient of the new term just affects a9, the constant term of the positive quadratic form of solution
8). Under the setting of γ5 and γ6, we determined the other coefficients of Eq. (5) to obtain the related
pecific lump solution and presented their profiles via the Maple plot tools. It is necessary to point out that
e made the smoother and more regular contour plots than the ones in [21] and [25].
This research has enriched the category of nonlinear PDEs that possess lump solutions, and tried to

gure out the relation between the lump solutions and the nonlinear terms contained in the new equation.
t is well known that interaction solutions between lump solutions and soliton solutions can describe more
onlinear phenomena [21,26] and various studies have shown that the existence of interaction solutions
etween lumps and other kinds of exact solutions to nonlinear integrable equations [23,27–30], even in
3+1) dimension [31–33] and linear wave equations [34]. Since the interaction properties involve much more
omplicated mathematical computations, the further research for interaction solutions to other generalized
ilinear differential equations is becoming more interesting and meaningful.
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