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1. Introduction

In the last several years with the rapid development of nonlinear science, scientists and engineers have
been interested in the analytical asymptotic techniques for nonlinear problems such as solid state physics,
plasma physics, fluid mechanics and applied sciences. In many different fields of science and engineering, it is
important to obtain exact or numerical solution of the nonlinear partial differential equations (PDEs) [1,2].
Soliton solutions, which are normally localized in the time and space, are exact ones determined by
exponentially localized functions [3,4]. In contrast to soliton solutions, lump solutions are another kind of
important exact solutions of PDEs, which are localized in directions only in space, and they are, originated
from solving integrable equations in (2+1)-dimensions [5-7], and obtained from soliton theory by taking
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long wave limits [2,8,9]. In soliton theory the crucial step in finding lump solutions is to construct positive
quadratic function solutions to Hirota bilinear equations [5]. Then based on positive quadratic function
solutions, the logarithmic transformations yield lump solutions to nonlinear PDEs.

Through a depended variable transformation, a partial differential equation can be mapped into a Hirota
bilinear form. Suppose that P is a polynomial in z, y, and ¢. Then a Hirota bilinear differential equation in
(2+1)-dimensions can be defined by

P(Dz, Dy, Di)f - f =0, (1)
where D, D,, D, are the Hirota bilinear derivatives [5],
D;D;D;mf(l‘,y,t) 'g(:c,y,t)
0 0,0 0 0 0 D
= (% - %) (87y - a*y,)”(a - @)mf(x,y,t) 9@ Y ) e ma =y =t (2)

When f solves (2), N-soliton solutions in (241)-dimensions to the corresponding PDE are defined through
the transformation u = 2(Inf), or u = 2(Inf)., with the form as [10]

N
f= Z exp(zuifri-z:/h,ujaz‘j)a (3)

pn=0,1 i=1 i<j
where ZN:O | denotes the sum over all possibilities for pq,...,unx in 0,1, and
& = ki + Ly —wit + & 0, 1<i<N, )
o PRi—kjli—ljw;—w;) .
et = — P(ki+kj'ﬁli+l;’w;+wi)7 l<i<jsN,

with the wave numbers k;,[l; and the frequencies w;, 1 < ¢ < N satisfying the corresponding dispersion
relations
P(k’ulla_wz)zoa 1§ZSN7

but the phase shifts & ¢ being arbitrary.
As is well known, the KPI equation possesses lump solutions [11]: u = 2(Inf),., where

alag — alag + 2asas5ag

=(a1x + asy + t+ ayq)?
f (1 2Y a%_’_ag 4)
2a1a0a6 — a2as + asa? 3(a? + a?)3
+(asz + agy + 1262 225 E)(atJraS)QJr (aq 5) .
ai + ag (a1a6 — azas)

The condition ajag — asas # 0 guarantees the rational localization in all directions in the (z,y)-plane.

In the past few decades, many researchers have studied soliton solutions, lump solutions, and other
classes of solutions to integrable equations. The KPI equation has abundant lump solutions [11], and its
special lump solutions are constructed from its soliton solutions [12]. Other integrable equations which
possess lump solutions contain the three-dimensional three-wave resonant interaction [13], the Davey—
Stewartson II equation [8], the Ishimori-I equation [14], the BKP equation [15,16], and the KP equation
with a self-consistent source [17]. Furthermore, nonintegrable equations can possess lump solutions, among
which are a few generalized KP, BKP, KP-Boussinesq, Sawada—Kotera, Calogero-Bogoyavlenskii—Schiff and
Bogoyavlensky—Konopelchenko equations in (2+1)-dimensions [18-24]. It has seen that it is crucial in finding
lump solutions to construct quadratic function solutions to Hirota bilinear equations and determine the sign
of the resulting solutions [5].

In this paper, we would like to concern a nonlinear PDE combining with the third derivative of the time
variable D, D} in (2+1)-dimensions and determine its diverse lump solutions. This new term D, D} makes
the calculation more complicated. It is also reflected that the structure of the solution is more complex,
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and we pay more attention to deal with and analyze the dispersion relation of the solution. Adding three
new fourth-order derivative terms and all second-order derivative terms, we formulate a combined fourth-
order nonlinear partial differential equation, which possesses a Hirota bilinear form. Based on a bilinear
transformation, lump solutions are obtained through symbolic computation with Maple. By choosing special
values for the coefficients in equation, specific lump solutions to the equation in the corresponding cases are
given. Finally, We also exhibit three-dimensional plots and contour plots of the lump solutions and discuss
their dynamic behaviors. Some conclusions are given in the final section.

2. Bilinear form and lump solutions of a fourth-order PDE with a new term

In this section, we would like to consider the following nonlinear partial differential equation, which

contains three fourth-order terms and six second-order terms:
P(u) == Q[S(uzut)r + Uz:vrt] + B[S(uxuy)z + urxzy] + G(Uzttt + 3ututt
+ 3uztvtt) + Y1Uyt + VoUzx + V3ULt + VaUgy + V5 Uyy + YeUrt = 07

(5)

where v, = u, the coefficients o, 8 and @ satisfy a? + 52 +6% # 0, but v;,1 < i < 6, are arbitrary constants.
This (2+1)-dimensional nonlinear equation (5) possesses a Hirota bilinear form:

B(f) = (aD3Dy + BD3D,, + 0D, D} + v, D, D,
+ ’YQD?E -+ ’YgDth + ’Y4Dsz + ’YsDi + ’}/GD?)f . f = 0,

under the logarithmic transformation

(6)

u=2inf)a =2, v=2n) (7)

and we have the relation P(u) = (Bf({) )a-

If we get a solution to the Hirota bilinear form Eq. (6), we can generate the corresponding solution to the
nonlinear equation (5).

Eq. (6) with # = 0 has been studied in [21]. In comparison with the equation in [21], D, D} is a new term
and so in this paper we assume that 6 # 0. Because Eq. (5) has the bilinear form (6), we start to construct
the solution of the combined bilinear equation (6) in a positive quadratic form as follows:

f = (a17 + asy + ast + as)* + (asx + agy + ast + ag)? + ag, (8)

where a;,1 < i <9, are the real constant parameters to be determined, in order to generate lump solutions
to the combined fourth-order nonlinear equation (5).

We insert the formula (8) into Eq. (6) to obtain a system of algebraic equations on the parameters
a;, 1 < i <9, and try to solve them by Maple symbolic computation system except for some necessary
sorting and simplification of the results. In order to facilitate the calculation and expression of the results,
we need to make some setting for v;,1 < ¢ <6, in Eq. (6), or Eq. (5).

First, let v = 0. Eq. (6) becomes:

B(f) = (aD3D; + pD3D, + 60D, D} 4+ v, D, D,
+ Y2D2 +v3D, Dy + 74Dy Dy + 75Dg2,)f -f=0.

After some calculations, we obtain a set of solutions for the parameters:
by

a3 = —
3 (a271+0a173)%+(agv1+a573)?’
by
a7y = —
v (a271+a173)%+(agv1+a573)?’ (10)
as 3(a?+a2)(bgatbyB)+b50

" (a1a—azas)?[(a1v3+a2v1)?+(asv3+a671) 2] (Vi v2— V17374 +7575) ]
3
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and all the other a; are arbitrary. The above involved constants b;, 1 < i < 5, are defined as follows:

by = [(afas + 2a1a5a6 — azad)v2 + a1 (a3 + ad)ya + az(a3 + af)ys]m

+la1(af 4 a3)y2 + az(af + a2)ys + (a1a3 + 2a2a5a6 — a1a3)7Vs]73,

by = [(—afae + 2a1a2a5 + adag)y2 + as(a3 + ag)va + as(a3 + ad)vs]m
+las(af + a3)va + as(af + a2 )ys + (—a3as + 2a1a2a6 + a5ad)7ys)7s,

bs = (af + a2)(a1a2 + asae) (V172 + 7374) + (af + a2)(a3 + ag)yva
+(a2 + a2)?v2y3 + (a3 + a2)(aras + asag)y17s
[

+[(a1az + asag)® — (a1ag — azas)?y37s, (11)
by = —(a1as + asag)|(azm1 + a173)* + (agm + asy3)?;

bs = 3ci[csca(MV3ys + 272737475) + cacs(Y3V3Ys + 271727475) + cacs (17292 + V37472
+3c2[c3 (17374 + 127373) + E117a73] + 3c3[(333 + 3c6V3y37s) + ca(Besmiv2i
+3757374 + d3m193)] + 3E[(A3mvd + co7373) + caBesnvivs + 337 + esmE)]
+[3(at + a3)(a3 + ag) — 2(afa3 + a3ad)(atag + a3a3) + 4arazasag(4aias — 4aiag

+11larazasas — 4a3a? + 4a2a2)]yay372.

The parameters ¢;, 1 < i < 6, involved in b; are defined as follows:

1 = [3(araz + asag)? — (a1ag — azas)?),
¢y = [3(araz + asas)? + (a1a6 — azas)?],
c3 = (af + a3),

cy = (a1a2 + asag),

¢s = (a3 + a3),

Ce = [(alag + a5a6)2 — (a1a6 — a2a5)2].

Directly comparing our results with the context in [21], where 76 = 0, we have some new terms contained
with 6 in the denominator of ag.

Secondly, let v5 = 0. Eq. (6) becomes:

B(f) = (aD3D; + BD3D, + 0D, D} + 1D, D,

2 2 (13)
+ ’YQD:I: + /73-Da:Dt + 74D9:Dy + ’76Dt )f . f =0.
After some calculations, we obtain:
az = — o 75
(agzv1+a1v4)?+(a7v1+asvs)
ag = — 282 7
(agv1+a1va)?+(ary1+asv4) (14)
o — 3(a?+a2)(d3atdsf)+dso

T (ara7—azas)?(Viva—v1v374+7376)
4
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where all the other a; are arbitrary constants. The involved constants d;,1 < i < 5, are defined as follows:

dy = [(afas + 2a1a5a7 — azad)y2 + a1 (a3 + a?)vs + as(a3 + a?)ve]n
+a1(af 4 a2)v2 + as(af + a2)ys + (a103 + 2asasa7 — a103)76] 74,

dy = [(—afar + 2a1a3as + aZaz)y2 + as(a3 + a3)vys + a7 (a3 + a?)ve]m
+las(a? + a2)ye + ar(a? + a?)ys + (—adas + 2a1asar + asa?)ye)ya,

ds = —(a1as + asar)[(azy1 + a174)? + (a7ry1 + asy4)?],
(15)
ds = (a3 + a3)(aras + asaz)(ny2 + v374) + (af + a3)(a3 + a3)1ys
+(af + a2)*y2va + (a3 + aF)(aras + asar) 1176
+[(a1a3 + asar)? — (ara7 — azas)?]yaye,

ds = [3(a1az + asas)® — (a1as — azas)?|[(ar1a2 + asag)y1y2 + (a3 + ag)ys7ys)
+[3(araz + asae)® + (a1a6 — azas)?][(a3 + ag)y1va + (af + a3 )23
+3(a3 + ag)(a1az + asac)[(a3 + ag)1vs + (ai + a3)ysv4).

We find that ag and ag are consistent with earlier findings in paper [21]. Although there is a new term
D, D} in Eq. (5), the coefficient 0, as well as a and f3, the other coefficients of the fourth-order terms in the
nonlinear PDE (5), just appear in ag. So in each case, when ~4 or 75 is zero, the new term only affects ag,
the constant term of the positive quadratic form of solution (8).

To generate lump solutions for the case of v5 = 0, besides ag should be positive to guarantee the analyticity
of rational solutions, we require only one basic condition [11]:

a1ag — a2as5
_ (mar — agas)[(af + a) (1192 — y374) — (a3 + aF)nv6 — (aras + aw?)%%]
(azm + a1v4)? + (arm1 + asys)?

So it follows that ajag — agas # 0 if and only if

ara7 — agas # 0,77 + 75 # 0
(16)

(af + a2)(m72 — 1371) — (a3 + a)nve — (ar1as + asar)yavye # 0.
3. Two specific lump solutions and their profiles

In this section, we will take special sets of values for the coefficients in the combined fourth-order
nonlinear equation (5) to obtain the corresponding lump solutions and discuss the dynamic behaviors of
those solutions.

First, we take:

a=1,=00=1Lp=1ps=Ln=r=7="7%=0. (17)
Eq. (5) is reduced to:

3(Ugts)z + Uzzat + Ugter + BUslsr + Bzt Vst + Ut + Uyy = 0, (18)
which has a Hirota bilinear form:
(D3D; + Dy D} + DDy + D2)f - f = 0. (19)

Substitute the above values (17) into the resulting parameters (10). Then, take the free parameters as
follows :
a1:—1,a2=3,a4:4,a5:1,a6:—1,a8:—3, (20)
5
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Fig. 1. Profiles of uw; when ¢t = 0,25,50: 3d plots (top) and contour plots (bottom).

we get: ag = 7, ar = 1, ag = 468. Putting all the a;, 1 < i < 9, into the formula (8), we obtain the
corresponding positive quadratic form solution of Eq. (19)

fi=(—z+3y+Tt+4)*+ (z —y+t—3)% +468. (21)
By the logarithmic transformation: v = 2(Inf),, the lump solution of the special fourth-order nonlinear
equation (18) is generated as follows:

B 42z — 4y — 6t —7)
(x4 3y+Tt+ 42+ (x—y+t—3)2+468°

(22)

The three-dimensional plots and contour plots of this lump solutions (22) are shown in Fig. 1, which are
made via Maple plot tools.
Secondly, we take:
a=1,=10=lLu=y%=1Ln=r="7=7=0. (23)

to get another fourth-order nonlinear equation:
3(Uztt) e + Uzgat + 3(Uzly)z + Uszwy + Uzerr + 3ty + 3Ugt Vst + Ugy + u = 0. (24)
which has a Hirota bilinear form:
(D:D,+ DD, + D,D} + D,D,+ D})f - f =0. (25)

Substitute the above values (23) into the resulting parameters (14) and associated with the special value of
the free parameters:
a1 =3,a3 =—1,a4 = —5,a5 = —1,a7 = 1,ag = 5, (26)

we get: ag = —%, ag = %, ag = 450.

The corresponding f defined by (8) reads as follows:
1 3
f2:(3;v—5y—t—5)2+(—x+5y+t+5)2+450, (27)

which provides a lump solution of the special fourth-order nonlinear equation (25):

4(10z — 4t + 15)
(Br—Ly—t—52+(—z+3y+t+5)2+450

Ug =

Fig. 2 displays the three-dimensional plots and contour plots of the lump solution made by Maple.
6



L. Ding, W.-X. Ma, Q. Chen et al. Applied Mathematics Letters 112 (2021) 106809

N

Fig. 2. Profiles of us when t = 0,50, 100: 3d plots (top) and contour plots (bottom).

4. Conclusion

In this paper, we have concerned a new combined fourth-order nonlinear PDE. Under two special cases
v = 0 and 76 = 0, we obtained a class of lump solutions of the nonlinear equation (5) by Hirota
bilinear method. All the above results offer us abundant new exact solutions. It is important to remark
that the three nonlinear terms can be merged together into the considered nonlinear model. Through the
symbolic computations with the Maple, we have worked out abundant lump solutions and found out that
the coefficient of the new term just affects ag, the constant term of the positive quadratic form of solution
(8). Under the setting of v5 and -, we determined the other coefficients of Eq. (5) to obtain the related
specific lump solution and presented their profiles via the Maple plot tools. It is necessary to point out that
we made the smoother and more regular contour plots than the ones in [21] and [25].

This research has enriched the category of nonlinear PDEs that possess lump solutions, and tried to
figure out the relation between the lump solutions and the nonlinear terms contained in the new equation.
It is well known that interaction solutions between lump solutions and soliton solutions can describe more
nonlinear phenomena [21,26] and various studies have shown that the existence of interaction solutions
between lumps and other kinds of exact solutions to nonlinear integrable equations [23,27-30], even in
(341) dimension [31-33] and linear wave equations [34]. Since the interaction properties involve much more
complicated mathematical computations, the further research for interaction solutions to other generalized

bilinear differential equations is becoming more interesting and meaningful.
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