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 a b s t r a c t

In this paper, the main work is to explore the nonlocal reverse-space multi-component higher-
order Chen-Lee-Liu system through nonlocal symmetry reductions of matrix spectral problems 
and construct its soliton solutions via inverse scattering transforms. A formulation for solving 
specific Riemann-Hilbert problems is presented, where the jump matrix is taken to be the identity 
matrix, enabling explicit computations of 𝑁-soliton solutions for the nonlocal reverse-space multi-
component higher-order Chen-Lee-Liu system under the non-zero boundary condition. Finally, 
the one- and two-soliton solutions are explicitly presented, and the dynamics of these solitons is 
further analyzed through visual verification.

1.  Introduction

Nonlocal integrable equations have garnered growing attention in recent years, categorized into reverse-space, reverse-time and 
reverse-spacetime types. Notably, a couple of scalar nonlocal nonlinear Schrödinger (NLS) equations and modified Korteweg-de Vires 
(mKdV) equations have been identified as significant models for characterizing nonlocal nonlinear physical phenomena [1,2]. On one 
hand, the inverse scattering technique has been successfully applied to solve those nonlocal nonlinear equations, under either zero 
or nonzero boundary conditions [3–5]. On the other hand, Darboux transformations [6–9] and the Hirota bilinear method [10,11] 
are shown to be powerful in constructing their 𝑁-soliton solutions. Some multi-component [5,12] and higher dimensional [13–15] 
generalizations of nonlocal integrable equations have also been proposed and studied. Such nonlocal nonlinear integrable equations 
share the PT symmetry [16,17] , i.e., invariance under the parity-time transformation (𝑥→ −𝑥, 𝑡→ −𝑡, 𝑖→ −𝑖).

Nonlinear effects in optical fibers have been the subject of extensive research, arising from the complex interplay of dispersion, 
self-phase modulation, self-steepening, self-frequency shift, and other related phenomena. The nonlinear Schrödinger (NLS) equation 
[18] serves as a fundamental lowest-order approximation to describe the nonlinear effects in optical fibers without the inclusion 
of loss and gain. Naturally, to gain a deeper understanding of higher-order nonlinear effects, it is essential to incorporate several 
additional higher-order terms, such as third-order dispersion and quintic nonlinear terms. Among the well-established equations 
is the derivative nonlinear Schrödinger (DNLS) equation [19]. This equation effectively describes the propagation of short optical 
pulses and is widely applied in nonlinear optics and other scientific fields, holding significant importance in the field of physics. The 

∗ Corresponding author.
 E-mail address: mdscience@sina.com (M. Duan).

https://doi.org/10.1016/j.cnsns.2025.109385
Received 1 July 2025; Received in revised form 26 August 2025; Accepted 28 September 2025

Commun Nonlinear Sci Numer Simulat 152 (2026) 109385 

Available online 14 October 2025 
1007-5704/© 2025 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies. 

https://www.elsevier.com/locate/cnsns
https://www.elsevier.com/locate/cnsns

$N$


$N$


$N$


$x \rightarrow -x$


$t \rightarrow -t$


$i \rightarrow -i$


\begin {equation}\label {d61} i q_{t}+q_{xx}-2 i(2 \beta -1) |q|^2 q_{x}- i(4 \beta -1) |q|^2 q^*_{x}+\beta (4 \beta -1) |q|^4 q=0,\end {equation}


$*$


$\beta =0$


\begin {equation*}iq_{t}+q_{xx}+2i |q|^2 q_{x}+i |q|^2 q^*_{x}=0,\end {equation*}


$\beta =\frac {1}{4}$


\begin {equation*}iq_{t}+q_{xx}+i |q|^2 q_{x}=0,\end {equation*}


$\beta =\frac {1}{2}$


\begin {equation*}iq_{t}+q_{xx}-i |q|^2 q^*_{x}+\frac {1}{2} |q|^4 q=0,\end {equation*}


\begin {equation*}q(x,t)=\breve {q}(x,t)\exp (\frac {i}{2}\int ^{x}_{-\infty }|\breve {q}(y,t)|^2 dy),\end {equation*}


$\breve {q}$


$\rightarrow $


$\rightarrow $


\begin {equation*}\begin {aligned} \boldsymbol {q}_{t}(x,t)= & -\boldsymbol {q}_{xxx}(x,t)-\frac {3}{2}\boldsymbol {q}(x,t) \Sigma ^{-1} \boldsymbol {q}^{\dag }(-x, t) \boldsymbol {q}_{xx}(x,t)-\frac {3}{2}\boldsymbol {q}_x(x,t) \Sigma ^{-1} \boldsymbol {q}^{\dag }(-x, t) \boldsymbol {q}_{x}(x,t)\\ & -\frac {3}{4}\boldsymbol {q}(x,t) \Sigma ^{-1} \boldsymbol {q}^{\dag }(-x, t)\boldsymbol {q}(x,t) \Sigma ^{-1} \boldsymbol {q}^{\dag }(-x, t) \boldsymbol {q}_{x}(x,t). \end {aligned}\end {equation*}


\begin {equation}\label {d62} q_{j,t_2}=-q_{j,xxx}-\frac {3}{2}i|\boldsymbol {q}|^2 q_{j,xx}-\frac {3}{2}i\boldsymbol {q}_x \boldsymbol {q}^* q_{j,x}+\frac {3}{4}|\boldsymbol {q}|^4 q_{j,x},\ \ \ 1 \leq j\leq n.\end {equation}


$\boldsymbol {q}=(q_1, q_2, \ldots , q_n), \boldsymbol {q}^*=(q^*_1, q^*_2, \ldots , q^*_n)^T$


$q^*_j=q^*_j(x,t),1\leq j \leq n$


$\dag $


$\Sigma $


\begin {equation}\label {d611} \varphi _{x}=U\varphi =U(\boldsymbol {u},\lambda )\varphi , \ U=(U_{jl})_{(n+1)\times (n+1)}= {\left [ \begin {array}{@{}ll@{}} -i \lambda ^2+\frac {i}{4} |\boldsymbol {q}|^2 & \lambda \boldsymbol {q} \\ \\ -\lambda \boldsymbol {q}^* & (i \lambda ^2-\frac {i}{4} \boldsymbol {q}^* \boldsymbol {q})I_n \end {array} \right ]},\end {equation}


$i$


$\varphi $


$m \times m$


$\lambda $


$\boldsymbol {u}$


$2n$


$\boldsymbol {u}={\big (\boldsymbol {q},\boldsymbol {q}^{*^T} \big )}^{T}$


$q_{j}=q^*_{j}=0, (2 \leq j \leq n)$


$W_{x}=[U,W]$


$W$


\begin {equation}\label {d613} W={\left [ \begin {array}{@{}ll@{}} a\ &\ \boldsymbol {b} \\ \\ \boldsymbol {c}\ &\ \boldsymbol {d} \end {array} \right ]},\end {equation}


$a$


$\boldsymbol {b}^T$


$\boldsymbol {c}$


$n$


$\boldsymbol {d}$


$n\times n$


\begin {equation}\label {d6133} \begin {aligned} &a_{x}=\lambda (\boldsymbol {q}\boldsymbol {c}+\boldsymbol {b}\boldsymbol {q}^*),\\ &\boldsymbol {b}_{x}=\lambda (\boldsymbol {q}\boldsymbol {d}-a\boldsymbol {q})-2 i\lambda ^2 \boldsymbol {b}+\frac {i}{4}(|\boldsymbol {q}|^2 \boldsymbol {b}+\boldsymbol {b}\boldsymbol {q}^* \boldsymbol {q}), \\ &\boldsymbol {c}_{x}=\lambda (\boldsymbol {d}\boldsymbol {q}^*-\boldsymbol {q}^* a)+2 i\lambda ^2 \boldsymbol {c}-\frac {i}{4}(\boldsymbol {c}|\boldsymbol {q}|^2 +\boldsymbol {q}^* \boldsymbol {q}\boldsymbol {c}), \\ &\boldsymbol {d}_{x}=-\lambda (\boldsymbol {q}^*\boldsymbol {b}+\boldsymbol {c}\boldsymbol {q})+\frac {i}{4}(\boldsymbol {d}\boldsymbol {q}^* \boldsymbol {q}-\boldsymbol {q}^* \boldsymbol {q}\boldsymbol {d}). \end {aligned}\end {equation}


$W$


\begin {equation}\label {d614} W={\left [ \begin {array}{@{}ll@{}} a\ &\ \boldsymbol {b} \\ \\ \boldsymbol {c}\ &\ \boldsymbol {d} \end {array} \right ]}= \sum ^{\infty }_{m=0}W_{m}\lambda ^{-m},\ \ \ \ \
W_{m}=W_{m}(\boldsymbol {u})={\left [ \begin {array}{@{}ll@{}} a^{[m]}\ &\ \boldsymbol {b}^{[m]} \\ \\ \boldsymbol {c}^{[m]}\ &\ \boldsymbol {d}^{[m]} \end {array} \right ]}, \ m\geq 0,\end {equation}


$\boldsymbol {b}^{[m]},\boldsymbol {c}^{[m]},\boldsymbol {d}^{[m]}$


\begin {equation}\label {d6144} \boldsymbol {b}^{[m]}=(b_{1}^{[m]},b_{2}^{[m]},\ldots ,b_{n}^{[m]}),\ \boldsymbol {c}^{[m]}=(c_{1}^{[m]},c_{2}^{[m]},\ldots ,c_{n}^{[m]})^{T},\ \boldsymbol {d}^{[m]}=(d_{ij}^{[m]})_{n \times n},\ m \geq 0.\end {equation}


\begin {equation}\label {d615} \begin {aligned} &a^{[2m+1]}=0, \ \boldsymbol {b}^{[2m]}=0, \ \boldsymbol {c}^{[2m]}=0, \ \boldsymbol {d}^{[2m+1]}=0, \
a_{x}^{[0]}=0, \ \boldsymbol {d}_{x}^{[0]}=0, \\ &a_{x}^{[2m]}=\boldsymbol {q}\boldsymbol {c}^{[2m+1]}+\boldsymbol {b}^{[2m+1]}\boldsymbol {q}^*,\\ &\boldsymbol {b}^{[2m+1]}=\frac {i}{2} (a^{[2m]}\boldsymbol {q}-\boldsymbol {q}\boldsymbol {d}^{[2m]}+\boldsymbol {b}_{x}^{[2m-1]}-\frac {i}{4}|\boldsymbol {q}|^2 \boldsymbol {b}^{[2m-1]}-\frac {i}{4}\boldsymbol {b}^{[2m-1]}\boldsymbol {q}^* \boldsymbol {q}),\\ &\boldsymbol {c}^{[2m+1]}=\frac {i}{2} (\boldsymbol {d}^{[2m]}\boldsymbol {q}^*-\boldsymbol {q}^* a^{[2m]}-\boldsymbol {c}_{x}^{[2m-1]}-\frac {i}{4}\boldsymbol {c}^{[2m-1]}|\boldsymbol {q}|^2 -\frac {i}{4}\boldsymbol {q}^* \boldsymbol {q}\boldsymbol {c}^{[2m-1]}), \\ &\boldsymbol {d}_{x}^{[2m]}=-\boldsymbol {c}^{[2m+1]}\boldsymbol {q}-\boldsymbol {q}^* \boldsymbol {b}^{[2m+1]}+\frac {i}{4}(\boldsymbol {d}^{[2m]}\boldsymbol {q}^* \boldsymbol {q}-\boldsymbol {q}^* \boldsymbol {q}\boldsymbol {d}^{[2m]}),\ \ m \geq 1. \end {aligned}\end {equation}


$a^{[2m]}$


$\boldsymbol {d}^{[2m]}$


\begin {equation}\begin {aligned} &a^{[2m]}=\frac {i}{2} \partial ^{-1} (-\boldsymbol {q}\boldsymbol {c}_{x}^{[2m-1]}+\boldsymbol {b}_{x}^{[2m-1]}\boldsymbol {q}^*-\frac {i}{2}\boldsymbol {q}\boldsymbol {q}^* \boldsymbol {q}\boldsymbol {c}^{[2m-1]}-\frac {i}{2}\boldsymbol {b}^{[2m-1]}\boldsymbol {q}^* \boldsymbol {q}\boldsymbol {q}^*),\\ &\boldsymbol {d}^{[2m]}=\frac {i}{2} \partial ^{-1} (\boldsymbol {c}_{x}^{[2m-1]}\boldsymbol {q}-\boldsymbol {q}^* \boldsymbol {b}_{x}^{[2m-1]}+\frac {i}{2}\boldsymbol {q}^* \boldsymbol {q}\boldsymbol {c}^{[2m-1]}\boldsymbol {q}+\frac {i}{2}\boldsymbol {q}^* \boldsymbol {q}\boldsymbol {q}^* \boldsymbol {b}^{[2m-1]}), \end {aligned} \label {Xeqn9-2.7}\end {equation}


$\partial ^{-1}$


$x$


$\partial ^{-1}=\int _{-\infty }^{x}dy$


$\partial ^{-1}=-\int _{x}^{\infty }dy$


\begin {equation}\label {d616} a^{[0]}=\alpha _{0},\ \boldsymbol {d}^{[0]}=\alpha _{1}I_{n},\ \boldsymbol {b}^{[1]}=\alpha _{2}\boldsymbol {q},\ \boldsymbol {c}^{[1]}=-\alpha _{2}\boldsymbol {q}^*,\end {equation}


$\alpha _{1}, \alpha _{2}$


$W_{m}(m\geq 0)$


\begin {equation}\label {d617} \begin {aligned} &a^{[2]}=\frac {\alpha _{2}}{2}i|\boldsymbol {q}|^2,\ d_{jl}^{[2]}=-\frac {\alpha _{2}}{2}iq_{j}^* q_{l},\\ &b_{l}^{[3]}=\frac {\alpha _{2}}{2}iq_{l,x}-\frac {\alpha _{2}}{4}|\boldsymbol {q}|^2q_{l},\ c_{j}^{[3]}=\frac {\alpha _{2}}{2}iq_{j,x}^*+\frac {\alpha _{2}}{4}q_{j}^*|\boldsymbol {q}|^2,\\ &a^{[4]}=\frac {\alpha _{2}}{8}i|\boldsymbol {q}|^4+\frac {\alpha _{2}}{4}(\boldsymbol {q}\boldsymbol {q}_{x}^*-\boldsymbol {q}_{x}\boldsymbol {q}^*),\ d_{jl}^{[4]}=-\frac {\alpha _{2}}{8}i(q_{j}^* q_{l})^2-\frac {\alpha _{2}}{4}(q_{j,x}^*q_{l}-q_{j}^*q_{l,x}),\\ &b_{l}^{[5]}=-\frac {\alpha _{2}}{4}q_{l,xx}+\frac {\alpha _{2}}{16}|\boldsymbol {q}|^4q_{l} +\frac {\alpha _{2}}{8}i\boldsymbol {q}\boldsymbol {q}_{x}^*q_{l}-\frac {3 \alpha _{2}}{16}i(\boldsymbol {q}_{x}\boldsymbol {q}^*q_{l}+\boldsymbol {q}\boldsymbol {q}^*q_{l,x}),\\ &c_{j}^{[5]}=\frac {\alpha _{2}}{4}q_{j,xx}^*-\frac {\alpha _{2}}{16}q_{j}^*|\boldsymbol {q}|^4 +\frac {\alpha _{2}}{8}iq_{j}^*\boldsymbol {q}_{x}\boldsymbol {q}^*-\frac {3 \alpha _{2}}{16}i(q_{j,x}^*\boldsymbol {q}\boldsymbol {q}^*+q_{j}^*\boldsymbol {q}\boldsymbol {q}_{x}^*), \end {aligned}\end {equation}


\begin {equation*}{\vdots }\end {equation*}


$1\leq j, l\leq n$


$\boldsymbol {b}^{[m]}$


$\boldsymbol {c}^{[m]}$


\begin {equation}\label {d618} \left [ \begin {array}{@{}l@{}} \boldsymbol {b}^{[2m+1]T} \\ \\ \boldsymbol {c}^{[2m+1]} \end {array} \right ]=\Psi \left [ \begin {array}{@{}l@{}} \boldsymbol {b}^{[2m-1]T} \\ \\ \boldsymbol {c}^{[2m-1]} \end {array} \right ],\ \ \ m\geq 1,\end {equation}


$\Psi =\Psi _{1}\Psi _{2}$


$2n\times 2n$


\begin {equation*}\Psi _{1}=\frac {1}{4}\left [ \begin {array}{@{}ll@{}} \boldsymbol {q}^{*} \partial ^{-1} \boldsymbol {q}+\sum ^{n}_{j=1}\boldsymbol {q}_{j}^{*}\partial ^{-1}\boldsymbol {q}_{j}-2 i I_{n} & \boldsymbol {q}^T \partial ^{-1} \boldsymbol {q}+(\boldsymbol {q}^T \partial ^{-1} \boldsymbol {q})^T \\ \\ -\boldsymbol {q}^* \partial ^{-1} \boldsymbol {q}^{*^T}-(\boldsymbol {q}^* \partial ^{-1} \boldsymbol {q}^{*^T})^T & -\boldsymbol {q}^T \partial ^{-1} \boldsymbol {q}^{*^T}-\sum ^{n}_{j=1}\boldsymbol {q}\partial ^{-1}\boldsymbol {q}_{j}^{*}-2 i I_{n} \end {array} \right ],\end {equation*}


\begin {equation*}\Psi _{2}=\left [ \begin {array}{@{}ll@{}} (-\partial +\frac {i}{4}|\boldsymbol {q}|^2)I_{n}+\frac {1}{4}\boldsymbol {q}^T \boldsymbol {q}^{*^T} & 0 \\ \\ 0 & (\partial +\frac {i}{4}|\boldsymbol {q}|^2)I_{n}+\frac {1}{4}\boldsymbol {q}^* \boldsymbol {q} \end {array} \right ].\end {equation*}


\begin {equation}\label {d6111} \varphi _{t}=V^{[r]}(\boldsymbol {u},\lambda )\varphi ,\ \ \ \ r\geq 0,\end {equation}


\begin {align}\label {d6112} V^{[r]}&={\big (V_{jl}^{[r]}\big )}_{(n+1)\times (n+1)}=(\lambda ^r W)_{+}+\Delta _{r} \\ &=\sum ^{r}_{m=0} \left [ \begin {array}{@{}ll@{}} \label {d61112} a^{[2m]}\lambda ^{2(r-m)+2} & \boldsymbol {b}^{[2m+1]}\lambda ^{2(r-m)+1} \\ \\ \boldsymbol {c}^{[2m+1]}\lambda ^{2(r-m)+1} & \boldsymbol {d}^{[2m]}\lambda ^{2(r-m)+2} \end {array} \right ] +\left [ \begin {array}{@{}ll@{}} \Delta _{r}^{1} & 0 \\ \\ 0 & \Delta _{r}^{2} \end {array} \right ],\ \ \ r\geq 0,\end {align}


$\Delta _{r}$


\begin {equation}\label {d6113} U_{t_r}-V_{x}^{[r]}+[U,V^{[r]}]=0,\ \ \ r\geq 0,\end {equation}


\begin {equation}\label {d6114} \begin {aligned} &\Delta _{r,x}^{1}=\frac {i}{4}(\boldsymbol {q}_{t}\boldsymbol {q}^*+\boldsymbol {q}_{t}^*\boldsymbol {q}),\\ &\Delta _{r,x}^{2}=-\frac {i}{4}(\boldsymbol {q}_{t}^*\boldsymbol {q}+\boldsymbol {q}^*\boldsymbol {q}_{t}),\\ &\boldsymbol {q}_{t_r}=\boldsymbol {b}_{x}^{[2r+1]}-\frac {i}{4}\boldsymbol {q}\boldsymbol {q}^*\boldsymbol {b}^{[2r+1]} -\frac {i}{4}\boldsymbol {b}^{[2r+1]}\boldsymbol {q}^*\boldsymbol {q}-\boldsymbol {q} \Delta _{r}^{2}+\Delta _{r}^{1}\boldsymbol {q},\\ &\boldsymbol {q}_{t_r}^*=-\boldsymbol {c}_{x}^{[2r+1]}-\frac {i}{4}\boldsymbol {q}^*\boldsymbol {q}\boldsymbol {c}^{[2r+1]} -\frac {i}{4}\boldsymbol {c}^{[2r+1]}\boldsymbol {q}\boldsymbol {q}^*+ \Delta _{r}^{2}\boldsymbol {q}^*-\boldsymbol {q}^*\Delta _{r}^{1}. \end {aligned}\end {equation}


\begin {equation}\Delta _{r}^{1}=\frac {1}{2}a^{[2(r+1)]},\ \ \ \Delta _{r}^{2}=\frac {1}{2}\boldsymbol {d}^{[2(r+1)]}, \ \ \ r\geq 0, \label {Xeqn16-2.16}\end {equation}


\begin {equation}\label {d6115} \left [ \begin {array}{@{}l@{}} \boldsymbol {q}^{T} \\ \\ \boldsymbol {q}^{*} \end {array} \right ]_{t_{r}}=\Psi _{3} \Psi _{2} \left [ \begin {array}{@{}l@{}} \boldsymbol {b}^{[2r+1]^T} \\ \\ \boldsymbol {c}^{[2r+1]} \end {array} \right ],\ \ \ r\geq 1,\end {equation}


\begin {equation*}\Psi _{3}=\left [ \begin {array}{@{}ll@{}} -\frac {i}{4}\boldsymbol {q}^T \partial ^{-1} \boldsymbol {q}^{*^T}-\frac {i}{4}\sum ^{n}_{j=1}\boldsymbol {q}_{j}\partial ^{-1}\boldsymbol {q}_{j}^*- I_{n} & -\frac {i}{4}\boldsymbol {q}^T \partial ^{-1} \boldsymbol {q}-\frac {i}{4}(\boldsymbol {q}^T \partial ^{-1} \boldsymbol {q})^T \\ \\ \frac {i}{4}\boldsymbol {q}^* \partial ^{-1} \boldsymbol {q}^{*^T}+\frac {i}{4}(\boldsymbol {q}^* \partial ^{-1} \boldsymbol {q}^{*^T})^T & \frac {i}{4}\boldsymbol {q}^* \partial ^{-1} \boldsymbol {q}+\frac {i}{4}\sum ^{n}_{j=1}\boldsymbol {q}^*_{j}\partial ^{-1}\boldsymbol {q}_{j}-I_{n} \end {array} \right ].\end {equation*}


\begin {equation}\label {d6117} \boldsymbol {u}_{t_{r}}= \left [ \begin {array}{@{}l@{}} \boldsymbol {q}^{T} \\ \\ \boldsymbol {q}^* \end {array} \right ]_{t_{r}}=K_{r}=\Psi _{3} \Psi _{2} \left [ \begin {array}{@{}l@{}} \boldsymbol {b}^{[2r+1]^T} \\ \\ \boldsymbol {c}^{[2r+1]} \end {array} \right ],\ \ \ r\geq 1.\end {equation}


$r=2$


\begin {equation}\label {d6118} q_{j,t_2}=-q_{j,xxx}-\frac {3}{2}i|\boldsymbol {q}|^2 q_{j,xx}-\frac {3}{2}i\boldsymbol {q}_x \boldsymbol {q}^* q_{j,x}+\frac {3}{4}|\boldsymbol {q}|^4 q_{j,x},\ \ \ 1 \leq j\leq n.\end {equation}


$U$


\begin {equation*}\begin {aligned} &\textrm {tr}\big (W\frac {\partial U}{\partial \lambda }\big )=(-2 i a+2 i \sum ^{n}_{j=1}d_{jj})\lambda +\boldsymbol {q}\boldsymbol {c}-\boldsymbol {b}\boldsymbol {q}^* ,\\ &\textrm {tr}\big (W\frac {\partial U}{\partial \boldsymbol {q}}\big )=\boldsymbol {c}\lambda -\frac {i}{4}\boldsymbol {d}\boldsymbol {q}^*+\frac {i}{4}a \boldsymbol {q}^*,\\ &\textrm {tr}\big (W\frac {\partial U}{\partial \boldsymbol {q}^*}\big )=-\boldsymbol {b}\lambda +\frac {i}{4}a\boldsymbol {q}-\frac {i}{4}\boldsymbol {d}\boldsymbol {q}, \end {aligned}\end {equation*}


\begin {equation*}\textrm {tr}\big (W\frac {\partial U}{\partial \boldsymbol {u}}\big )= \left [ \begin {array}{@{}l@{}} \boldsymbol {b}^{T} \\ \\ \boldsymbol {c} \end {array} \right ]= \left [ \begin {array}{@{}l@{}} -\boldsymbol {b}^{T} \lambda +\frac {i}{4}a\boldsymbol {q}^{T}-\frac {i}{4}\boldsymbol {d}\boldsymbol {q}^{T} \\ \\ \boldsymbol {c} \lambda +\frac {i}{4}a \boldsymbol {q}^*-\frac {i}{4}\boldsymbol {d}\boldsymbol {q}^* \end {array} \right ].\
\end {equation*}


\begin {equation}\label {d6119} \frac {\delta }{\delta \boldsymbol {u}}\int \left ((-2 i a+2 i \sum ^{n}_{j=1}d_{jj})\lambda +\boldsymbol {q}\boldsymbol {c}-\boldsymbol {b}\boldsymbol {q}^*\right )dx =\lambda ^{-\gamma }\frac {\partial }{\partial \lambda }\left (\lambda ^{\gamma } \left [ \begin {array}{@{}l@{}} -\boldsymbol {b}^{T} \lambda +\frac {i}{4}a\boldsymbol {q}^{T}-\frac {i}{4}\boldsymbol {d}\boldsymbol {q}^{T} \\ \\ \boldsymbol {c} \lambda +\frac {i}{4}a \boldsymbol {q}^*-\frac {i}{4}\boldsymbol {d}\boldsymbol {q}^* \end {array} \right ] \right ).\end {equation}


$a, \boldsymbol {b}, \boldsymbol {c}, \boldsymbol {d}$


\begin {equation}a=\sum _{r\geq 0}a^{[2r]}\lambda ^{-2r}, \ \ \boldsymbol {b}=\sum _{r\geq 0}\boldsymbol {b}^{[2r+1]}\lambda ^{-2r-1}, \ \ \boldsymbol {c}=\sum _{r\geq 0}\boldsymbol {c}^{[2r+1]}\lambda ^{-2r-1}, \ \ \boldsymbol {d}=\sum _{r\geq 0}\boldsymbol {d}^{[2r]}\lambda ^{-2r}, \label {Xeqn21-2.21}\end {equation}


\begin {equation*}\frac {\delta }{\delta \boldsymbol {u}}\int \Big (-2 i a^{[2 r+2]}+2 i \sum ^{n}_{j=1}d_{jj}^{[2 r+2]}+\boldsymbol {q}\boldsymbol {c}^{[2 r+1]}-\boldsymbol {b}^{[2 r+1]}\boldsymbol {q}^*\Big )dx =(-2 r-\gamma )G_{2 r+1},\end {equation*}


\begin {equation*}G_{2 r+1}= \left [ \begin {array}{@{}l@{}} -\boldsymbol {b}^{[2r+1]^T}+\frac {i}{4}a^{[2 r]} \boldsymbol {q}^{T}-\frac {i}{4}\boldsymbol {d}^{[2 r]}\boldsymbol {q}^{T} \\ \\ \boldsymbol {c}^{[2 r+1]}+\frac {i}{4}a^{[2 r]} \boldsymbol {q}^*-\frac {i}{4}\boldsymbol {d}^{[2 r]}\boldsymbol {q}^* \end {array} \right ].\
\end {equation*}


$r = 0$


$\gamma =0$


\begin {equation*}\frac {\delta \tilde {H}_{r}}{\delta \boldsymbol {u}}=G_{2 r+1},\end {equation*}


\begin {equation*}\tilde {H}_{r}=-\frac {1}{2 r}\int \Big (-2 i a^{[2 r+2]}+2 i \sum ^{n}_{j=1}d_{jj}^{[2 r+2]}+\boldsymbol {q}\boldsymbol {c}^{[2 r+1]}-\boldsymbol {b}^{[2 r+1]}\boldsymbol {q}^*\Big )dx, \ \ r \geq 1.\end {equation*}


\begin {equation}\label {d6120} \boldsymbol {u}_{t_{r}}= \left [ \begin {array}{@{}l@{}} \boldsymbol {q}^{T} \\ \\ \boldsymbol {q}^* \end {array} \right ]_{t_{r}}=K_{r}=J_{1}\frac {\delta \tilde {H}_{r}}{\delta \boldsymbol {u}}=J_{2}\frac {\delta \tilde {H}_{r-1}}{\delta \boldsymbol {u}},\ \ \ r\geq 1,\end {equation}


$(J_{1},J_{2})$


$J_{1}=\Psi _{3} \Psi _{2} \Psi _{3}^*,\ J_{2}=\Psi _{3} \Psi _{2} \Psi _{1} \Psi _{2} \Psi _{3}$


$\Psi _{3}^*$


$\Psi _{3}$


$J_{1}^{-1}J_{2}$


$n\geq 1$


$r$


\begin {align}&\varphi _{x}=U(\boldsymbol {u},\lambda )\varphi , \label {3.1a}\\ &\varphi _{t_{r}}=V^{[\tilde {r}]}(\boldsymbol {u},\lambda )\varphi , \label {3.1b}\end {align}


\begin {equation}\label {d621} U(\boldsymbol {u},\lambda )=i \lambda ^2 \Lambda +U_{1}(\boldsymbol {u},\lambda ),\ \ V^{[\tilde {r}]}(\boldsymbol {u},\lambda )=4 i \lambda ^{2 \tilde {r}} \Lambda +V_{1}^{[\tilde {r}]}(\boldsymbol {u},\lambda ),\end {equation}


$\Lambda =\textrm {diag}(-1,I_{n}), \tilde {r}=r+1$


\begin {equation}\label {d622} U_{1}(\boldsymbol {u},\lambda )=\lambda U_{2}+\frac {i}{4}\Lambda U_{2}^2,\ \
U_{2}=\left [ \begin {array}{@{}ll@{}} 0 & \boldsymbol {q} \\ \\ -\boldsymbol {q}^* & 0 \end {array} \right ],\end {equation}


\begin {equation}\label {d623} V_{1}^{[\tilde {r}]}(\boldsymbol {u},\lambda )=\left [ \begin {array}{@{}ll@{}} V_{11}^{[\tilde {r}]} & V_{12}^{[\tilde {r}]} \\ \\ V_{21}^{[\tilde {r}]} & V_{22}^{[\tilde {r}]} \end {array} \right ],\ \
\end {equation}


\begin {equation*}\begin {aligned} &V_{11}^{[\tilde {r}]}=\sum ^{\tilde {r}-1}_{m=1}a^{[2m]}\lambda ^{2(\tilde {r}-m)}+\frac {1}{2}a^{[2\tilde {r}]} ,\ \ \ V_{12}^{[\tilde {r}]}=\sum ^{\tilde {r}}_{m=1}\boldsymbol {b}^{[2m-1]}\lambda ^{2(\tilde {r}-m)+1},\\ &V_{21}^{[\tilde {r}]}=\sum ^{\tilde {r}}_{m=1}\boldsymbol {c}^{[2m-1]}\lambda ^{2(\tilde {r}-m)+1},\ \ \
V_{22}^{[\tilde {r}]}=\sum ^{\tilde {r}-1}_{m=1}\boldsymbol {d}^{[2m]}\lambda ^{2(\tilde {r}-m)}+\frac {1}{2}\boldsymbol {d}^{[2\tilde {r}]}. \end {aligned}\end {equation*}


$\boldsymbol {q}$


$\boldsymbol {q}^*$


$a^{[m]}, \boldsymbol {b}^{[m]}, \boldsymbol {c}^{[m]}, \boldsymbol {d}^{[m]}$


$U$


\begin {equation}\label {d624} U^{\dag }(-x, t, -i \lambda )= -CU(x, t, \lambda )C^{-1},\end {equation}


\begin {equation*}C=\left [ \begin {array}{@{}ll@{}} 1 \ \ &\ \ 0 \\ \\ 0 \ \ &\ \ \Sigma \end {array} \right ],\end {equation*}


$\Sigma ^{\dag }=\Sigma $


\begin {equation}\label {d625} U_{1}^{\dag }(-x, t, -i \lambda )= -CU_{1}(x, t,\lambda )C^{-1},\end {equation}


\begin {equation}\label {d626} U_{2}^{\dag }(-x, t)= -CU_{2}(x, t)C^{-1}.\end {equation}


\begin {equation}\label {d627} \boldsymbol {q}^*(x,t)=-i\, \Sigma ^{-1} \boldsymbol {q}^{\dag }(-x, t).\end {equation}


$\boldsymbol {c}$


\begin {equation}\label {d628} \boldsymbol {c}(x,t,\lambda )=\Sigma ^{-1} \boldsymbol {b}^{\dag }(-x, t, -i \lambda ),\end {equation}


\begin {equation*}a^{\ast }(-x, t, -i \lambda )= a(x, t, \lambda ),\ \ \
\boldsymbol {d}^{\dag }(-x, t, -i \lambda )= \Sigma \boldsymbol {d}(x, t, \lambda )\Sigma ^{-1},\end {equation*}


$a$


$\boldsymbol {d}$


\begin {equation*}\begin {aligned} {\big (a^{*}(-x, t, -i \lambda )\big )}_{x}&= -a^{*}_{x}(-x, t, -i \lambda ) \\ & = -i \lambda \Big [\boldsymbol {c}^{\dag }(-x, t, -i \lambda )\boldsymbol {q}^{\dag }(-x, t)+\boldsymbol {q}^{*^\dag }(-x, t)\boldsymbol {b}^{\dag }(-x, t, -i \lambda )\Big ] \\ & = -i \lambda \Big [\big (\boldsymbol {b}(x, t, \lambda )\Sigma ^{-1}\big ) \big ( i \Sigma \boldsymbol {q}^{*}(x, t) \big ) +\big ( i \boldsymbol {q}(x, t) \Sigma ^{-1} \big ) \big (\Sigma \boldsymbol {c}(x, t, \lambda )\big ) \Big ] \\ & = \lambda \Big [\boldsymbol {b}(x, t, \lambda ) \boldsymbol {q}^{*}(x, t)+ \boldsymbol {q}(x, t) \boldsymbol {c}(x, t, \lambda ) \Big ]\\ & = a_{x}(x, t, \lambda ). \end {aligned}\end {equation*}


\begin {equation*}\begin {cases} (a^{[m]})^{\ast }(-x,t)=(-1)^{m}a^{[m]}(x,t),\\ (\boldsymbol {b}^{[m]})^{\dag }(-x,t)=(-1)^{m+1}\Sigma \boldsymbol {c}^{[m]}(x,t),\\ (\boldsymbol {d}^{[m]})^{\dag }(-x,t)=(-1)^{m}\Sigma \boldsymbol {d}^{[m]}(x,t)\Sigma ^{-1}, \end {cases}\end {equation*}


$a^{[m]}, \boldsymbol {b}^{[m]}, \boldsymbol {c}^{[m]}$


$\boldsymbol {d}^{[m]}, m \geq 1$


\begin {equation}\label {d6210} (V^{[\tilde {r}]})^{\dag }(-x, t, -i \lambda )= CV^{[\tilde {r}]}(x, t, \lambda )C^{-1},\ \ \ (V_{1}^{[\tilde {r}]})^{\dag }(-x, t, -i \lambda )= CV_{1}^{[\tilde {r}]}(x, t, \lambda )C^{-1},\end {equation}


$V^{[r]}$


$V_{1}^{[\tilde {r}]}$


\begin {equation}\label {d6211} \begin {aligned} \boldsymbol {q}_{t}(x,t)= & -\boldsymbol {q}_{xxx}(x,t)-\frac {3}{2}\boldsymbol {q}(x,t) \Sigma ^{-1} \boldsymbol {q}^{\dag }(-x, t) \boldsymbol {q}_{xx}(x,t)-\frac {3}{2}\boldsymbol {q}_x(x,t) \Sigma ^{-1} \boldsymbol {q}^{\dag }(-x, t) \boldsymbol {q}_{x}(x,t)\\ & -\frac {3}{4}\boldsymbol {q}(x,t) \Sigma ^{-1} \boldsymbol {q}^{\dag }(-x, t)\boldsymbol {q}(x,t) \Sigma ^{-1} \boldsymbol {q}^{\dag }(-x, t) \boldsymbol {q}_{x}(x,t). \end {aligned}\end {equation}


\begin {equation}\label {d6212} \boldsymbol {q}_{t}= K_{r,1}|_{\boldsymbol {q}^*(x,t)=-i\, \Sigma ^{-1} \boldsymbol {q}^{\dag }(-x, t)},\end {equation}


$K_{r}=(K_{r,1}^\top , K_{r,2})$


$\boldsymbol {q}(x,t)$


$i \boldsymbol {q}^{*}(-x,t)$


$i \boldsymbol {q}(x,-t)$


$\alpha _{0}=-4 i,\alpha _{1}=4 i,\alpha _{2}=4$


$x\rightarrow \pm \infty $


$t\rightarrow \pm \infty $


\begin {equation*}\label {d631} \int ^{\infty }_{-\infty } \int ^{\infty }_{-\infty } |x|^{k}|t|^{l} \sum ^{n}_{j=1} |\boldsymbol {q}_{j}| dx dt<\infty ,\ 0\leq k,l\leq 1.\end {equation*}


$\varphi \sim e^{i\lambda ^2 \Lambda x+4i\lambda ^{2 \tilde {r}} \Lambda t }$


$x, t\rightarrow \pm \infty $


\begin {equation}\label {d632} \varphi =\hat {\phi } E_{g},\ \ E_{g}=e^{i\lambda ^2 \Lambda x+4i\lambda ^{2 \tilde {r}} \Lambda t_{\tilde {r}}},\end {equation}


$\hat {\phi }$


$\hat {\phi } \rightarrow I_{n+1}$


$x,t \rightarrow \pm \infty $


\begin {align}\label {d633} &\hat {\phi }_{x}=i\lambda ^2 [\Lambda ,\hat {\phi }]+U_{1}\hat {\phi },\\ \label {d634} &\hat {\phi }_{t_{\tilde {r}}}=4i\lambda ^{2\tilde {r}}[\Lambda ,\hat {\phi }]+V_{1}^{[\tilde {r}]}\hat {\phi }.\end {align}


$\lambda \rightarrow \infty $


\begin {equation}\label {d635} \hat {\phi }_{0}=\left [ \begin {array}{@{}ll@{}} \exp ( -\frac {1}{4}i \int ^{x}_{-\infty } | \boldsymbol {q}|^{2}(x^{'}, t) dx^{'}) \ \ &\ \ 0 \\ \\ 0 \ \ &\ \ M \end {array} \right ],\end {equation}


$M$


$n\times n$


\begin {equation*}M_{x}=\frac {1}{4}i \boldsymbol {q}^* \boldsymbol {q} M.\end {equation*}


\begin {equation}\label {dd636} \hat {\phi }(x,\lambda )=\hat {\phi }_{0}+\frac {\hat {\phi }_{1}}{\lambda }+\frac {\hat {\phi }_{2}}{\lambda ^2} +\frac {\hat {\phi }_{3}}{\lambda ^3}+O\left (\frac {1}{\lambda ^4}\right ),\end {equation}


$\hat {\phi }_{k}(k=0,1,2,3)$


$\lambda $


$\lambda $


\begin {equation}\label {d637} \begin {aligned} &O(1): \hat {\phi }_{0x}=i [\Lambda , \hat {\phi }_{2}]+U_{2} \hat {\phi }_{1}+\frac {1}{4}i \Lambda U_{2}^2 \hat {\phi }_{0},\\ &O(\lambda ): i [\Lambda , \hat {\phi }_{1}]+U_{2} \hat {\phi }_{0}=0,\\ &O(\lambda ^2): i [\Lambda , \hat {\phi }_{0}]=0, \end {aligned}\end {equation}


$\hat {\phi }_{0}$


\begin {equation}\label {d638} \hat {\phi }_{0x}=-\frac {1}{4}iU_{2}^2 \Lambda \hat {\phi }_{0}.\end {equation}


$\hat {\phi }_{0t}$


$r$


$\hat {\phi }_{0xt}=\hat {\phi }_{0tx}$


$\hat {\phi }_{0}=\exp (-\frac {1}{4}i \int ^{x}_{-\infty } U_{2}^2 \Lambda dx^{'})$


$\textrm {tr} (\hat {\phi }_{0})=0$


$x \rightarrow -\infty $


$\hat {\phi }_{0} \rightarrow I_{n+1}$


$\det \hat {\phi }_{0}=1$


$\phi =\hat {\phi }_{0}^{-1} \hat {\phi }$


\begin {align}\label {d639} &\phi _{x}=i\lambda ^2 [\Lambda ,\phi ]+\tilde {U}_{1}\phi ,\\ \label {d6310} &\phi _{t_{\tilde {r}}}=4i\lambda ^{2\tilde {r}}[\Lambda ,\phi ]+\tilde {V}_{1}^{[\tilde {r}]}\phi ,\end {align}


$\tilde {U}_{1}=\hat {\phi }_{0}^{-1} U_{1} \hat {\phi }_{0} - \hat {\phi }_{0}^{-1} \hat {\phi }_{0x},\ \tilde {V}_{1}^{[\tilde {r}]}=\hat {\phi }_{0}^{-1} V_{1}^{[\tilde {r}]} \hat {\phi }_{0} - \hat {\phi }_{0}^{-1} \hat {\phi }_{0t}$


\begin {equation}\label {d6311} \tilde {U}_{1}=\frac {1}{2}iU_{2}^2 \Lambda + \lambda \tilde {U}_{2},\end {equation}


\begin {equation}\label {d6312} \tilde {U}_{1}=\left [ \begin {array}{@{}ll@{}} \frac {1}{2}i | \boldsymbol {q}|^{2} \ \ &\ \ \lambda \exp (\frac {1}{4}i \int ^{x}_{-\infty } | \boldsymbol {q}|^{2}(x^{'}, t) dx^{'}) \boldsymbol {q} M \\ \\ -\lambda M^{-1} \boldsymbol {q}^* \exp (-\frac {1}{4}i \int ^{x}_{-\infty } | \boldsymbol {q}|^{2}(x^{'}, t) dx^{'}) \ \ &\ \ -\frac {1}{2}i \boldsymbol {q}^* \boldsymbol {q} \end {array} \right ],\end {equation}


\begin {equation}\label {d6313} \tilde {U}_{2}=\left [ \begin {array}{@{}ll@{}} 0 \ \ &\ \ \exp (\frac {1}{4}i \int ^{x}_{-\infty } | \boldsymbol {q}|^{2}(x^{'}, t) dx^{'}) \boldsymbol {q} M \\ \\ -M^{-1} \boldsymbol {q}^* \exp (-\frac {1}{4}i \int ^{x}_{-\infty } | \boldsymbol {q}|^{2}(x^{'}, t) dx^{'}) \ \ &\ \ 0 \end {array} \right ],\end {equation}


$\textrm {tr} (\tilde {U}_{1})= \textrm {tr} (\tilde {V}_{1}^{[\tilde {r}]})=0$


\begin {equation}\label {d6314} \det \phi =1.\end {equation}


\begin {equation}\label {d6315} \tilde {\varphi }_{x}=-\tilde {\varphi } U,\end {equation}


\begin {equation}\label {d6316} \tilde {\phi }_{x}=-i\lambda ^2 [\tilde {\phi }, \Lambda ]-\tilde {\phi } \tilde {U}_{1}.\end {equation}


$\phi (x,t,\lambda )$


$C\phi ^{-1}(x,t,\lambda )$


$\lambda $


\begin {equation*}\begin {aligned} {\big [\phi ^{\dag }(-x, t, -i \lambda )C \big ]}_{x}&= -(\phi _{x})^{\dag }(-x, t, -i \lambda ) \\ & = - \Big \{(-i)(-i\lambda )^2 \big [\phi ^{\dag }(-x, t, -i \lambda ), \Lambda \big ]-\phi ^{\dag }(-x, t, -i \lambda )\tilde {U}^{\dag }_{1}(-x,t) \Big \}C \\ & = - \Big \{i\lambda ^2 \big [\phi ^{\dag }(-x, t, -i \lambda )C, \Lambda \big ]-\phi ^{\dag }(-x, t, -i \lambda )CC^{-1}\tilde {U}^{\dag }_{1}(-x,t)C \Big \} \\ & = -i\lambda ^2 \big [\phi ^{\dag }(-x, t, -i \lambda )C, \Lambda \big ]-\phi ^{\dag }(-x, t, -i \lambda )C\tilde {U}_{1}(x,t), \end {aligned}\end {equation*}


\begin {equation}\label {d6317} \tilde {\phi }(x,t,\lambda ): = \phi ^{\dag }(-x, t, -i \lambda )C,\end {equation}


$\lambda $


$\phi ^{\dag }(-x, t, -i \lambda )C$


$\phi $


$x$


$t \rightarrow -\infty $


$+\infty $


$\phi \rightarrow I_{n+1}$


\begin {equation}\label {d6318} \phi ^{\dag }(-x, t, -i \lambda )= C \phi ^{-1}(x, t, \lambda )C^{-1}.\end {equation}


$\lambda $


$-i \lambda $


$\phi $


$x$


$\phi _{\pm }(x, \lambda )$


\begin {equation}\label {d6319} \phi _{\pm } \rightarrow I_{n+1},\ \ \ x \rightarrow \pm \infty ,\end {equation}


\begin {equation}\label {d6320} \det \phi _{\pm } =1,\end {equation}


$\lambda \in \mathbb {R}$


\begin {align}\label {d6321} &E(x, \lambda ) =\textrm {e}^{i \lambda ^2 \Lambda x},\\ \label {d6322} &\psi _{-}=\phi _{-}E,\ \ \ \psi _{+}=\phi _{+}E,\end {align}


$\psi _{-}(x, \lambda )$


$\psi _{+}(x, \lambda )$


\begin {equation}\label {d6323} \psi _{-}(x, \lambda )=\psi _{+}(x, \lambda ) S(\lambda ),\ \ \ \lambda \in \mathbb {R} \cup i\,\mathbb {R},\end {equation}


\begin {equation}\label {d6324} \phi _{-}E= \phi _{+}E S(\lambda ),\ \ \ \lambda \in \mathbb {R} \cup i\,\mathbb {R},\end {equation}


$S(\lambda )=(s_{jl})_{(n+1)\times (n+1)}$


$\det S(\lambda )=1$


$S(\lambda )$


$u$


$\phi _{\pm }(x, \lambda )$


$S(\lambda )$


$\lambda $


$\phi _{\pm }$


\begin {align}\label {d6325} &\phi _{-}(x, \lambda )=I_{n+1} + \int ^{x}_{-\infty }\textrm {e}^{i\lambda ^2 \Lambda (x-y)}\tilde {U}_{1}(y) \phi _{-}(y, \lambda ) \textrm {e}^{-i\lambda ^2 \Lambda (x-y)} dy,\\ \label {d6326} &\phi _{+}(x, \lambda )=I_{n+1} - \int ^{\infty }_{x}\textrm {e}^{i\lambda ^2 \Lambda (x-y)}\tilde {U}_{1}(y) \phi _{+}(y, \lambda ) \textrm {e}^{-i\lambda ^2 \Lambda (x-y)} dy.\end {align}


$\phi _{\pm }$


$\lambda \in \mathbb {R} \cup i\,\mathbb {R}$


$\phi _{\pm }$


$\phi _{-}$


$n$


$\phi _{+}$


$\lambda \in \Gamma _{+}=\{\lambda \in \mathbb {C}| \arg \lambda \in (0, \frac {\pi }{2}) \cup (\pi , \frac {3\pi }{2})\}$


$n$


$\phi _{-}$


$\phi _{+}$


$\lambda \in \Gamma _{-}=\{\lambda \in \mathbb {C}| \arg \lambda \in ( \frac {\pi }{2}, \pi ) \cup ( \frac {3\pi }{2}, 2 \pi )\}$


$\Lambda $


$U$


$\phi _{-}$


$\textrm {e}^{2 i\lambda ^2 (x-y)}$


$y<x$


$\lambda \in \Gamma _{+}$


$n$


$\phi _{+}$


$\textrm {e}^{-2 i\lambda ^2 (x-y)}$


$y>x$


$n+1$


$\phi _{-}$


$n$


$\phi _{+}$


$\lambda \in \Gamma _{+}$


$\Gamma _{0}=\{\mathbb {R} \cup i\,\mathbb {R}\}$


$n$


$\phi _{-}$


$\phi _{+}$


$\lambda \in \Gamma _{-}$


$\Gamma _{0}$


$\lambda $


$J_{+}(x, \lambda )$


$J_{-}(x, \lambda )$


$\Gamma _{+}$


$\Gamma _{-}$


$\Gamma _{0}$


\begin {equation*}\phi _{\pm }=(\phi _{\pm }^1, \phi _{\pm }^2,\ldots , \phi _{\pm }^{n+1}),\end {equation*}


$\phi _{\pm }^{j}( 1\leq j \leq n+1)$


$j$


$\phi _{\pm }$


$J_{+}(x, \lambda )$


\begin {equation}\label {d6328} J_{+}(x, \lambda )=(\phi _{-}^1, \phi _{+}^2,\ldots , \phi _{+}^{n+1})=\phi _{-} H_{1}+\phi _{+}H_{2},\end {equation}


$H_{1}$


$H_{2}$


\begin {equation*}H_{1}=\textrm {diag}(1, \underbrace {0,\ldots , 0}\limits _{n} ),\ \ \ H_{2}=\textrm {diag}(0, \underbrace {1,\ldots , 1}\limits _{n}).\end {equation*}


$J_{+}(x, \lambda )$


$\lambda \in \Gamma _{+}$


$\Gamma _{0}$


\begin {equation*}(\phi _{+}^1, \phi _{-}^2,\ldots , \phi _{-}^{n+1})=\phi _{+} H_{1}+\phi _{-}H_{2},\end {equation*}


$\lambda \in \Gamma _{-}$


$\Gamma _{0}$


$J_{+}$


\begin {equation}\label {d6331} J_{+}(x, \lambda )\to I_{n+1},\ \ \ \lambda \in \Gamma _{+}\rightarrow \infty ,\end {equation}


\begin {equation*}(\phi _{+}^1, \phi _{-}^2,\ldots , \phi _{-}^{n+1})\to I_{n+1},\ \ \ \lambda \in \Gamma _{-}\rightarrow \infty .\end {equation*}


$J_{-}$


$J_{+}$


$\Gamma _{-}$


$\varphi $


$\phi $


$\tilde {\varphi }_{\pm }(x, \lambda )=(\varphi _{\pm }(x, \lambda ))^{-1}$


$\tilde {\phi }_{\pm }(x, \lambda )=(\phi _{\pm }(x, \lambda ))^{-1}$


\begin {equation*}(\phi \phi ^{-1})_{x}=\phi _{x} \phi ^{-1}+\phi (\phi ^{-1})_{x}=0,\end {equation*}


\begin {equation}\label {d6332} (\phi ^{-1})_{x}=-i\lambda ^2 [\phi ^{-1}, \Lambda ]-\phi ^{-1} \tilde {U}_{1},\end {equation}


$(\phi _{\pm }(x, \lambda ))^{-1}$


$(\phi _{\pm })^{-1}$


\begin {equation*}\tilde {\phi }_{\pm }=(\tilde {\phi }_{\pm }^1, \tilde {\phi }_{\pm }^2,\ldots , \tilde {\phi }_{\pm }^{n+1}).\end {equation*}


$J_{-}$


\begin {equation}\label {d6334} J_{-}(x, \lambda )=(\tilde {\phi }_{-}^1, \tilde {\phi }_{+}^2,\ldots , \tilde {\phi }_{+}^{n+1})^{T}= H_{1} \tilde {\phi }_{-}+ H_{2} \tilde {\phi }_{+}=H_{1} (\phi _{-})^{-1}+ H_{2} (\phi _{+})^{-1}.\end {equation}


$J_{-}(x, \lambda )$


$\lambda \in \Gamma _{-}$


$\Gamma _{0}$


\begin {equation*}J_{-}(x, \lambda )\to I_{n+1},\ \ \ \lambda \in \Gamma _{-}\rightarrow \infty ,\end {equation*}


\begin {equation*}(\tilde {\phi }_{+}^1, \tilde {\phi }_{-}^2,\ldots , \tilde {\phi }_{-}^{n+1})\to I_{n+1},\ \ \ \lambda \in \Gamma _{+}\rightarrow \infty .\end {equation*}


$J_{+}$


$J_{-}$


\begin {equation}\label {d63361} J_{+}=\phi _{+}ES_{+}E^{-1}= \phi _{+}E \begin {bmatrix} s_{11} & 0 & \cdots & 0 \\ s_{21} & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ s_{n+1,1} & 0 & \cdots & 1 \end {bmatrix} E^{-1},\end {equation}


\begin {equation}\label {d63362} J_{-}=ES_{-}^{-1}E^{-1}(\phi _{+})^{-1}= E \begin {bmatrix} \hat {s}_{11} & \hat {s}_{12} & \cdots & \hat {s}_{1,n+1} \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end {bmatrix} E^{-1} (\phi _{+})^{-1},\end {equation}


$S^{-1}(\lambda )=(S(\lambda ))^{-1}=(\hat {s}_{ij})_{(n+1)\times (n+1)}$


$J_{\pm }(x, \lambda )$


$\lambda $


$\Gamma _{+}$


$\Gamma _{-}$


\begin {equation}\label {d6337} J_{+}(x, \lambda )=J_{-}(x, \lambda ) G_{0}(x, \lambda ),\ \ \ \lambda \in \Gamma _{0} ,\end {equation}


\begin {equation}\label {d6338} G_{0}(x, \lambda )=E(H_{1}+H_{2}S(\lambda ))(H_{1}+S^{-1}(\lambda )E^{-1}= E \begin {bmatrix} 1 & \hat {s}_{12} & \hat {s}_{13} & \cdots & \hat {s}_{1,n+1} \\ s_{21} & 1 & 0 & \cdots & 0 \\ s_{31} & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ s_{n+1,1} & 0 & 0 & \cdots & 1 \end {bmatrix} E^{-1}.\end {equation}


$\lambda \in \Gamma _{\pm }\rightarrow \infty $


\begin {equation}\label {d63381} J_{\pm }(x, \lambda ) \to I_{n+1},\end {equation}


$G_{0}$


$S(\lambda )$


$G_{0}$


\begin {equation}\label {d6339} G_{0}^{\dag }(-x, t, -i \lambda )= C G_{0}(x, t, \lambda )C^{-1}.\end {equation}


$\phi _{-}E= \phi _{+}E S(\lambda )$


\begin {equation}\label {dd1} S^{\dag }(-i \lambda )= S^{-1}(\lambda ).\end {equation}


\begin {equation*}\phi (-\lambda )= \sigma \phi (\lambda )\sigma ,\end {equation*}


$\sigma = \textrm {diag}(1, \underbrace {-1,\ldots , -1}\limits _{n} )$


\begin {equation}\label {dd2} S(-\lambda )= \sigma S(\lambda )\sigma ,\end {equation}


$s_{11}$


$\hat {s}_{11}$


\begin {equation}\label {dd3} s^{*}_{11}(-i \lambda )= \hat {s}_{11}(\lambda ),\end {equation}


\begin {equation}\label {dd4} s_{11}(\lambda )= s_{11}(-\lambda ).\end {equation}


$\lambda \in \Gamma _{+}$


$s_{11}$


$-\lambda $


$\hat {s}_{11}$


$\mp i \lambda $


$t$


$\phi _{\pm }$


$S(\lambda )$


\begin {equation}\label {d6340} S_{t_{r}}= 4 i \lambda ^{2 \tilde {r}}[\Lambda , S],\end {equation}


\begin {equation*}s_{1,j}=s_{1,j}(0, \lambda )\textrm {e}^{8 i\lambda ^{2 \tilde {r}} t_{\tilde {r}}},\ \ s_{j,1}=s_{j,1}(0, \lambda )\textrm {e}^{-8 i\lambda ^{2 \tilde {r}} t_{\tilde {r}}},\ \ 2\leq j\leq n+1,\end {equation*}


$t_{\tilde {r}}$


\begin {equation}\label {d6344} \det J_{+}(x, \lambda ) = s_{11}(\lambda ),\ \ \det J_{-}(x, \lambda ) = \hat {s}_{11}(\lambda ),\end {equation}


\begin {equation*}\hat {s}_{11} = (S^{-1})_{11}= \left | \begin {matrix} s_{22} & s_{23} & \cdots & s_{2,n+1} \\ s_{32} & s_{33} & \cdots & s_{3,n+1} \\ \vdots & \vdots & \ddots & \vdots \\ s_{n+1,2} & s_{n+1,3} & \cdots & s_{n+1,n+1} \end {matrix} \right |.\end {equation*}


$\det J_{+} = s_{11} \neq 0$


$\det J_{-} = \hat {s}_{11} \neq 0$


$J_{\pm }$


$J_{\pm }(x, \lambda ) \to I_{n+1}, \lambda \rightarrow \infty $


$J_{\pm }^{1}$


$J_{\pm }^{2}$


\begin {equation*}(J_{-}^{1})^{-1} J_{+}^{1}=(J_{-}^{2})^{-1}J_{+}^{2},\ \
J_{+}^{1}(J_{+}^{2})^{-1} =J_{-}^{1} (J_{-}^{2})^{-1},\ \ \lambda \in \mathbb {R} \cup i\mathbb {R}.\end {equation*}


$\det J_{\pm }^{1}$


$\det J_{\pm }^{2}$


$J_{+}^{1}(J_{+}^{2})^{-1}$


$J_{-}^{1} (J_{-}^{2})^{-1}$


$\Gamma _{+}$


$\Gamma _{-}$


$I_{n+1}$


$\lambda $


\begin {equation*}J_{+}^{1}(J_{+}^{2})^{-1} =J_{-}^{1} (J_{-}^{2})^{-1}=I_{n+1},\ \ \lambda \in \mathbb {C}.\end {equation*}


$J_{\pm }^{1}= J_{\pm }^{2}$


$\lambda \in \mathbb {R} \cup i\mathbb {R}$


\begin {equation}\label {d6342} \begin {cases} J_{+}(\lambda )-J_{-}(\lambda )=J_{-}(\lambda )J_{0}(\lambda ),\\ J_{\pm }(\lambda ) \rightarrow I_{n+1} ,\ \ \lambda \rightarrow \infty , \end {cases}\end {equation}


\begin {equation*}J_{0}(\lambda )=G_{0}(\lambda )-I_{n+1}= E \begin {bmatrix} 0 & \hat {s}_{12} & \hat {s}_{13} & \cdots & \hat {s}_{1,n+1} \\ s_{21} & 0 & 0 & \cdots & 0 \\ s_{31} & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ s_{n+1,1} & 0 & 0 & \cdots & 0 \end {bmatrix} E^{-1},\end {equation*}


$G_{0}(\lambda )$


\begin {equation}\label {d6343} (J_{+})^{-1}(\lambda )=I_{n+1}+\frac {1}{2 \pi i } \int ^{+\infty }_{-\infty } \frac {J_{0}(\xi ) (J_{+})^{-1}(\xi )}{\xi - \lambda } d\xi ,\ \ \lambda \in \Gamma _{+}.\end {equation}


$\det J_{+} = s_{11} = 0$


$\det J_{-} = \hat {s}_{11} = 0$


$\det J_{+} = s_{11} = 0,\ \det J_{-} = \hat {s}_{11} = 0$


$\det J_{\pm }=0$


$\Gamma _{\pm }$


$J_{\pm }$


$\det J_{\pm }=0$


$\det J_{+} = s_{11} = 0$


$\det J_{-} = \hat {s}_{11} = 0$


$s_{11}(\lambda )$


$2N$


$\{ \pm \lambda _{k} \in \Gamma _{+},\ 1\leq k \leq N\}$


$N$


$\hat {s}_{11}(\lambda )$


$2N$


$\{ \pm \hat {\lambda }_{k} \in \Gamma _{-},1\leq k \leq N \}$


$\ker J_{+}(\lambda _{k}),1\leq k \leq N$


$\boldsymbol {v}_{k}$


$\ker J_{-}(\hat {\lambda }_{k}),1\leq k \leq N$


$\boldsymbol {\hat {v}}_{k}$


\begin {equation}\label {d6345} J_{+}(\lambda _{k}) \boldsymbol {v}_{k}= 0,\ \ \boldsymbol {\hat {v}}_{k} J_{-}(\hat {\lambda }_{k}) = 0,\ \ 1\leq k \leq N.\end {equation}


$G_{0}$


$I_{n+1}$


$N$


$G_{0}=I_{n+1}$


$s_{j,1}=\hat {s}_{1,j}=0, 2\leq j \leq n+1$


\begin {equation}\label {d6346} J_{+}(x, \lambda )=I_{n+1}- \sum _{k,l=1}^{N} ( \frac {\boldsymbol {v}_{k}(M^{-1})_{kl}\boldsymbol {\hat {v}}_{l}}{\lambda - \hat {\lambda }_{l} }- \frac { \sigma \boldsymbol {v}_{k}(M^{-1})_{kl}\boldsymbol {\hat {v}}_{l} \sigma }{\lambda + \hat {\lambda }_{l} } ),\end {equation}


\begin {equation}\label {d6347} J_{-}(x, \lambda )=I_{n+1}- \sum _{k,l=1}^{N} ( \frac {\boldsymbol {v}^{\dag }_{l}(M^{-1})^{\dag }_{kl}\boldsymbol {\hat {v}}^{\dag }_{k}}{\lambda - \lambda _{l} }- \frac { \sigma \boldsymbol {v}^{\dag }_{l}(M^{-1})^{\dag }_{kl}\boldsymbol {\hat {v}}^{\dag }_{k} \sigma }{\lambda + \lambda _{l} } ),\end {equation}


$M=(m_{kl})_{N \times N}$


\begin {equation}\label {d6348} m_{kl}=\frac {\boldsymbol {\hat {v}}_{k} \boldsymbol {v}_{l}}{\lambda _{l} - \hat {\lambda }_{k} }-\frac {\boldsymbol {\hat {v}}_{k} \sigma \boldsymbol {v}_{l}}{\lambda _{l} + \hat {\lambda }_{k} },\ \ \lambda _{l} \neq \hat {\lambda }_{k}.\end {equation}


$\lambda _{k}$


$\hat {\lambda }_{k}$


$x$


$t$


$\boldsymbol {v}_{k}(x, t_{\tilde {r}})$


$\boldsymbol {\hat {v}}_{k}(x, t_{\tilde {r}}),\ 1\leq k \leq N$


$x$


\begin {equation}\label {d6349} J_{+}(x, \lambda _{k})\big (\frac {d\boldsymbol {v}_{k}}{dx}-i\lambda _{k}^2 \Lambda \boldsymbol {v}_{k} \big )=0,\ \ 1\leq k \leq N.\end {equation}


$1\leq k \leq N, \frac {d\boldsymbol {v}_{k}}{dx}-i\lambda _{k}^2 \Lambda \boldsymbol {v}_{k}$


$\ker J_{+}(x, \lambda _{k})$


$\boldsymbol {v}_{k}$


\begin {equation}\label {d6350} \frac {d\boldsymbol {v}_{k}}{dx}=i\lambda _{k}^2 \Lambda \boldsymbol {v}_{k},\ \ 1\leq k \leq N.\end {equation}


$\boldsymbol {v}_{k}$


$t$


\begin {equation}\label {d6351} \frac {d\boldsymbol {v}_{k}}{dt_{\tilde {r}}}=4 i\lambda _{k}^{2\tilde {r}} \Lambda \boldsymbol {v}_{k},\ \ 1\leq k \leq N.\end {equation}


$\boldsymbol {v}_{k}$


$x$


$t_{r}$


\begin {equation}\label {d6352} \boldsymbol {v}_{k}(x, t_{\tilde {r}})=\textrm {e}^{i\lambda _{k}^2 \Lambda x +4 i\lambda _{k}^{2\tilde {r}} \Lambda t_{\tilde {r}}} \boldsymbol {v}_{k_{0}},\ \ 1\leq k \leq N.\end {equation}


$\boldsymbol {\hat {v}}_{k}$


\begin {equation}\label {d6353} \boldsymbol {\hat {v}}_{k}(x, t_{\tilde {r}})= \boldsymbol {\hat {v}}_{k_{0}} \textrm {e}^{-i\hat {\lambda }_{k}^2 \Lambda x -4 i\hat {\lambda }_{k}^{2\tilde {r}} \Lambda t_{\tilde {r}}} ,\ \ 1\leq k \leq N.\end {equation}


$\boldsymbol {v}_{k_{0}}$


$\boldsymbol {\hat {v}}_{k_{0}}$


$J_{+}$


$\lambda $


\begin {equation}J_{+}(x,\lambda )=I_{n+1}+\frac {J_{+}^{1}(x)}{\lambda }+\frac {J_{+}^{2}(x)}{\lambda ^2} +O(\frac {1}{\lambda ^3}),\ \ \lambda \to \infty , \label {Xeqn86-5.18}\end {equation}


\begin {equation*}\tilde {U}_{2}=- i [\Lambda , J_{+}^{1}],\end {equation*}


$J_{+}^{1}=((J_{+}^{1})_{jl})_{(n+1)\times (n+1)}$


\begin {align}\label {d6354} &q_{j}=2 i \textrm {e}^{-\frac {1}{4}i \int ^{x}_{-\infty } | \boldsymbol {q}|^{2}(x^{'}, t) dx^{'}}(J_{+}^{1})_{1,j+1} ,\\ \label {d6355} & q_{j}^{*}=-2 i (J_{+}^{1})_{j+1,1} \textrm {e}^{\frac {1}{4}i \int ^{x}_{-\infty } | \boldsymbol {q}|^{2}(x^{'}, t) dx^{'}}.\end {align}


$J_{+}^{1}$


\begin {equation}\label {dd6353} (J_{+}^{1})^{\dag }(-x,t)=i C J_{+}^{1}(x,t)C^{-1},\end {equation}


$q_{j}$


$q_{j}^{*}(j=1,2,\ldots ,n)$


$\lambda $


\begin {equation}\label {d6356} J_{+}^{1}=- \sum _{k,l=1}^{N} ( \boldsymbol {v}_{k} (M^{-1})_{kl}\boldsymbol {\hat {v}}_{l}- \sigma \boldsymbol {v}_{k} (M^{-1})_{kl}\boldsymbol {\hat {v}}_{l} \sigma ),\end {equation}


\begin {equation}\label {d6357} q_{j}=- 2 i \textrm {e}^{-\frac {1}{4}i \int ^{x}_{-\infty } | \boldsymbol {q}|^{2}(x^{'}, t) dx^{'}} \sum _{k,l=1}^{N} ( \boldsymbol {v}_{k} (M^{-1})_{kl}\boldsymbol {\hat {v}}_{l}- \sigma \boldsymbol {v}_{k} (M^{-1})_{kl}\boldsymbol {\hat {v}}_{l} \sigma )_{1,j+1},\ \ 1\leq j\leq n,\end {equation}


$M$


$\boldsymbol {v}_{k}=(v_{k,1}, v_{k,2},\ldots ,v_{k,n+1} )^{T},\boldsymbol {\hat {v}}_{k}=(\hat {v}_{k,1}, \hat {v}_{k,2},\ldots ,\hat {v}_{k,n+1} ), 1\leq k \leq N$


$\det J_{-}(\lambda )= \hat {s}_{11}(\lambda )$


$2N$


$\hat {\lambda }_{k}= - i \lambda _{k} \in \Gamma _{-},1\leq k \leq N$


$\ker J_{-}(\lambda )$


\begin {equation}\label {d6358} \hat {\boldsymbol {v}}_{k}(x, t_{\tilde {r}})= \hat {\boldsymbol {v}}_{k}(x, t_{\tilde {r}},\hat {\lambda }_{k})= \boldsymbol {v}^{\dag }_{k}(-x, t_{\tilde {r}},-i\hat {\lambda }_{k}) C= \boldsymbol {v}^{\dag }_{k_{0}} \textrm {e}^{-i\hat {\lambda }_{k}^2 \Lambda x -4 i\hat {\lambda }_{k}^{2\tilde {r}} \Lambda t_{\tilde {r}}} C,\ \ 1\leq k \leq N,\end {equation}


$\boldsymbol {v}^{\dag }_{k_{0}}$


$N$


\begin {equation}\label {d6361} q_{j}=- 2 i \textrm {e}^{-\frac {1}{4}i \int ^{x}_{-\infty } | \boldsymbol {q}|^{2}(x^{'}, t) dx^{'}} \sum _{k,l=1}^{N} ( \boldsymbol {v}_{k} (M^{-1})_{kl}\boldsymbol {\hat {v}}_{l}- \sigma \boldsymbol {v}_{k} (M^{-1})_{kl}\boldsymbol {\hat {v}}_{l} \sigma )_{1,j+1} ,\ \ 1\leq j\leq n.\end {equation}


$\boldsymbol {v}_{k}=(v_{k,1}, v_{k,2},\ldots ,v_{k,n+1} )^{\top }$


$\boldsymbol {\hat {v}}_{k}=(\hat {v}_{k,1}, \hat {v}_{k,2},\ldots ,\hat {v}_{k,n+1} ), 1\leq k \leq N$


$\ker J_{-}(\lambda )$


\begin {equation}\label {d6359} (J_{+})^{\dag }(-x, t, -i\lambda )=C J_{+}(x, t, \lambda ) C^{-1},\end {equation}


$J_{+}^{1}$


$N$


$N =1, r=2$


$\theta _k=i\lambda _{k}^2 x +4 i\lambda _{k}^{6}t$


$\hat {\theta }_k=-i\hat {\lambda }_{k}^{2} x -4 i\hat {\lambda }_{k}^{6} t$


$\boldsymbol {v}_{1_{0}}=(c_{1,1}, c_{1,2},\ldots ,c_{1,n+1} )^\top $


$\boldsymbol {v}^{\dag }_{1_{0}}=(c^{*}_{1,1}, c^{*}_{1,2},\ldots ,c^{*}_{1,n+1} )$


\begin {equation}\label {d701} q_j = \frac {-2i(\lambda _1^2 - \hat {\lambda }_1^{2}) c_{1,1} {c}^{*}_{1,j+1} \textrm {e}^{\hat {\theta }_1 - \theta _1}}{\hat {\lambda }_1 |c_{1,1}|^2 \textrm {e}^{-(\hat {\theta }_1 + \theta _1)} + \lambda _1 \sum _{m=1}^n |c_{1,m+1}|^2 \textrm {e}^{\hat {\theta }_1 + \theta _1}} \exp \left ( -\frac {1}{4}i \int ^{x}_{-\infty } | \boldsymbol {q}|^{2}(x^{'}, t) dx^{'} \right ) \ 1 \leq j \leq n.\end {equation}


\begin {equation*}\lambda _1 = \xi _{1} + i\eta _{1}, \ c_{1,1} = \sqrt {n} \textrm {e}^{-2\eta _{1} x_0 + i\sigma _0}, \, c_{1,m+1} = 1, \ 1 \leq m \leq n,\end {equation*}


\begin {equation}\label {d702} q_j = \frac {8\xi _{1} \eta _{1} \exp ( -2i(\xi _{1}^2 - \eta _{1}^2)x - 8i \tau _{1}t+i \sigma _0 ) } {\sqrt {n}(\xi _{1} \cosh \tau _{2} + i \eta _{1} \sinh \tau _{2})} \exp \left ( -\frac {1}{4}i \int ^{x}_{-\infty } | \boldsymbol {q}|^{2}(x^{'}, t) dx^{'} \right ),\end {equation}


$x_0$


$\sigma _0$


\begin {equation*}\tau _{1}=\xi _{1}^6+\eta _{1}^6-9\xi _{1}^2 \eta _{1}^4+9\xi _{1}^4 \eta _{1}^2\end {equation*}


\begin {equation*}\tau _{2} = -4\xi _{1} \eta _{1} x -16 \xi _{1} \eta _{1} (3\xi _{1}^4+3 \eta _{1}^4-10\xi _{1}^2 \eta _{1}^2)t+8\eta _{1} x_0.\end {equation*}


$|q_j|$


$\frac {8\xi _{1} \eta _{1}}{\sqrt {n}}$


$-16 \xi _{1} \eta _{1} (3\xi _{1}^4+3 \eta _{1}^4-10\xi _{1}^2 \eta _{1}^2)$


$x$


$t$


$x_{0}$


$\sigma _{0}$


$n = 1$


$n = 2$


$|q_1|$


$n = 1, \lambda _1 = 0.5 - 0.5i, c_{1,1} = c_{1,2} = 1$


$n = 2, \lambda _1 = 0.5 - 0.5i,$


$c_{1,1} = c_{1,2} = c_{1,3} = 1$


$n = 2, \lambda _1 = 1 - 0.5i, c_{1,1} = c_{1,2} = c_{1,3} = 1$


$t = -2,0,2$


$n$


$N = 2$


\begin {equation}q_j = 4i\frac {\det \hat {M}}{\det M} \exp \left ( -\frac {1}{4}i \int ^{x}_{-\infty } | \boldsymbol {q}|^{2}(x^{'}, t) dx^{'} \right ),\ 1 \leq j \leq n, \label {Xeqn97-5.29}\end {equation}


\begin {equation*}\hat {M} = \left [ \begin {array}{@{}lll@{}} 0 \ \ &\ \ c_{1,1} \mathrm {e}^{-\theta _1} \ \ &\ \ c_{21} \mathrm {e}^{-\theta _2} \\ c_{1,j+1}^* \mathrm {e}^{\theta _1^*} \ \ &\ \ m_{11} \ \ &\ \ m_{12} \\ c_{2,j+1}^* \mathrm {e}^{\theta _2^*} \ \ &\ \ m_{21} \ \ &\ \ m_{22} \end {array} \right ],\end {equation*}


\begin {equation*}M = \left [ \begin {array}{@{}ll@{}} m_{11} \ \ &\ \ m_{12} \\ m_{21} \ \ &\ \ m_{22} \end {array} \right ],\end {equation*}


\begin {equation*}m_{kl} = \frac {2}{\lambda _l^2 - \hat {\lambda }_k^2} \left ( \lambda _l \sum _{m=1}^n \left ( c_{k, m+1}^* c_{l, m+1} \right ) \mathrm {e}^{\theta _k^* + \theta _l} + \hat {\lambda }_k c_{k, 1}^* c_{l, 1} \mathrm {e}^{-(\theta _k^* + \theta _l)} \right ),\ k, l = 1, 2.\end {equation*}


$M$


$3(\xi _1^2 - \eta _1^2)^2 - 4\xi _1^2\eta _1^2 \neq 3(\xi _2^2 - \eta _2^2)^2 - 4\xi _2^2\eta _2^2$


$3(\xi _1^2 - \eta _1^2)^2 - 4\xi _1^2\eta _1^2 = 3(\xi _2^2 - \eta _2^2)^2 - 4\xi _2^2\eta _2^2$


\begin {equation*}\lambda _1 = 1 + \frac {\sqrt {2}}{2}i, \ \lambda _2 = 1 - \frac {\sqrt {3100}}{100}i, \ c_{1,1} = c_{2,1} = c_{1,2} = c_{2,2} = 1,\end {equation*}


$|q|$


$\operatorname {Re}(\lambda _1^4) + 2\operatorname {Re}^2(\lambda _1^2) \neq \operatorname {Re}(\lambda _2^4) + 2\operatorname {Re}^2(\lambda _2^2)$


$\operatorname {Re}(\lambda _1^4) + 2\operatorname {Re}^2(\lambda _1^2) = \operatorname {Re}(\lambda _2^4) + 2\operatorname {Re}^2(\lambda _2^2)$


\begin {equation*}\lambda _1 = 1 + \sqrt {\frac {5}{3} - \frac {\sqrt {46}}{6}}i, \ \lambda _2 = 1.1 + \sqrt {\frac {121}{60} - \frac {\sqrt {47314}}{150}}i, \ c_{1,1} = c_{2,1} = c_{1,2} = c_{2,2} = 1,\end {equation*}


$|q|$


$n = 1$


$t \to \infty $


$N$


$N$


$\lambda _{k}$


$\hat {\lambda }_{k}$


$N$
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generalized derivative nonlinear Schrödinger equation can be expressed in the following form [20]:
𝑖𝑞𝑡 + 𝑞𝑥𝑥 − 2𝑖(2𝛽 − 1)|𝑞|2𝑞𝑥 − 𝑖(4𝛽 − 1)|𝑞|2𝑞∗𝑥 + 𝛽(4𝛽 − 1)|𝑞|4𝑞 = 0, (1.1)

where the superscript ∗ denotes the complex conjugate.
When 𝛽 = 0, Eq. (1.1) can be reduced to the first DNLS (DNLS I) equation, i.e., Kaup-Newll(KN) equation [21]:

𝑖𝑞𝑡 + 𝑞𝑥𝑥 + 2𝑖|𝑞|2𝑞𝑥 + 𝑖|𝑞|2𝑞∗𝑥 = 0,

which is a canonical dispersive equation derived from the Magneto-hydrodynamic equations in the presence of the Hall effect.
When 𝛽 = 1

4 , equation(1.1) is reduced to the second DNLS (DNLS II) equation, i.e., Chen-Lee-Liu(CLL) equation [22]:

𝑖𝑞𝑡 + 𝑞𝑥𝑥 + 𝑖|𝑞|2𝑞𝑥 = 0,

which appears in optical models of ultrashort pulses, where its final term represents the self-steepening effect in physics, arising from 
pulse propagation in a medium with intensity-dependent refractive index. In 2007, Moses et al. [23] experimentally demonstrated 
that pulse propagation involves self-steepening without self-phase modulation, providing the first experimental evidence for the CLL 
equation.

When 𝛽 = 1
2 , Eq. (1.1) is reduced to the third DNLS (DNLS III) equation, i.e., Gerdjikov-Ivanov(GI) equation [24]:

𝑖𝑞𝑡 + 𝑞𝑥𝑥 − 𝑖|𝑞|2𝑞∗𝑥 +
1
2
|𝑞|4𝑞 = 0,

which describes Alfvén wave propagation parallel to an ambient magnetic field in plasma physics, with behavior modulated by 
higher-order nonlinear effects. These three DNLS types are interconvertible via gauge transformations

𝑞(𝑥, 𝑡) = 𝑞(𝑥, 𝑡) exp( 𝑖
2 ∫

𝑥

−∞
|𝑞(𝑦, 𝑡)|2𝑑𝑦),

where 𝑞 denotes the potential function in the given equation, thus CLL → KN → GI. From a physical perspective, the first two types of 
DNLS equations exhibit similarities to the NLS equation with second-order dispersion and cubic nonlinearity, while the third type (GI) 
incorporates second-order dispersion and quintic nonlinearity. Mathematically, all these three equations possess distinct Lax pairs. 
Research on these equations has primarily focused on solution construction and long-time asymptotic analysis. Nevertheless, the 
increasing significance of higher-order nonlinear effects in nonlinear optics motivates the study of integrable models with third-order 
dispersion and quintic nonlinearity.

In this paper, we consider the nonlocal reverse-space multi-component higher-order Chen-Lee-Liu equation:

𝒒𝑡(𝑥, 𝑡) = − 𝒒𝑥𝑥𝑥(𝑥, 𝑡) −
3
2
𝒒(𝑥, 𝑡)Σ−1𝒒†(−𝑥, 𝑡)𝒒𝑥𝑥(𝑥, 𝑡) −

3
2
𝒒𝑥(𝑥, 𝑡)Σ−1𝒒†(−𝑥, 𝑡)𝒒𝑥(𝑥, 𝑡)

− 3
4
𝒒(𝑥, 𝑡)Σ−1𝒒†(−𝑥, 𝑡)𝒒(𝑥, 𝑡)Σ−1𝒒†(−𝑥, 𝑡)𝒒𝑥(𝑥, 𝑡).

Firstly, we consider the higher-order generalized CLL equation with third dispersion and quintic nonlinear term

𝑞𝑗,𝑡2 = −𝑞𝑗,𝑥𝑥𝑥 −
3
2
𝑖|𝒒|2𝑞𝑗,𝑥𝑥 −

3
2
𝑖𝒒𝑥𝒒∗𝑞𝑗,𝑥 +

3
4
|𝒒|4𝑞𝑗,𝑥, 1 ≤ 𝑗 ≤ 𝑛. (1.2)

where 𝒒 = (𝑞1, 𝑞2,… , 𝑞𝑛), 𝒒∗ = (𝑞∗1 , 𝑞
∗
2 ,… , 𝑞∗𝑛 )

𝑇 , 𝑞∗𝑗 = 𝑞∗𝑗 (𝑥, 𝑡), 1 ≤ 𝑗 ≤ 𝑛, † is the Hermitian transpose and Σ denotes an invertible constant 
Hermitian matrix. Soliton solutions are constructed from the specific Riemann-Hilbert problem.

2.  Multi-component higher-order Chen-Lee-Liu system

Here, we construct a multi-component higher-order CLL system and prove its integrability by deriving its bi-Hamiltonian structure.
Firstly, we generalize the scalar potential to a vector potential via a matrix spectral problem:

𝜑𝑥 = 𝑈𝜑 = 𝑈 (𝒖, 𝜆)𝜑, 𝑈 = (𝑈𝑗𝑙)(𝑛+1)×(𝑛+1) =

⎡

⎢

⎢

⎢

⎣

−𝑖𝜆2 + 𝑖
4 |𝒒|

2 𝜆𝒒

−𝜆𝒒∗ (𝑖𝜆2 − 𝑖
4𝒒

∗𝒒)𝐼𝑛

⎤

⎥

⎥

⎥

⎦

, (2.1)

where 𝑖 is the unit imaginary number, 𝜑 is a 𝑚 × 𝑚 matrix eigenfunction, 𝜆 is an eigenvalue, 𝒖 is a 2𝑛-dimensional matrices potential: 
𝒖 =

(

𝒒, 𝒒∗𝑇
)𝑇
. By reducing the matrix order, we observe that when 𝑞𝑗 = 𝑞∗𝑗 = 0, (2 ≤ 𝑗 ≤ 𝑛), (2.1) reduces to the standard CLL matrix 

spectral problem [25]. Thus, (2.1) is termed the multi-component higher-order CLL spectral problem, and the associated system is 
referred to as the multi-component higher-order CLL integrable system.

To derive the integrable system, we solve the zero-curvature equation 𝑊𝑥 = [𝑈,𝑊 ]. Let us consider a solution 𝑊  of the following 
forma

𝑊 =
⎡

⎢

⎢

⎣

𝑎 𝒃

𝒄 𝒅

⎤

⎥

⎥

⎦

, (2.2)
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where 𝑎 is a scalar, 𝒃𝑇  and 𝒄 are 𝑛-dimensional columns, and 𝒅 is a square matrix of size 𝑛 × 𝑛. Then we can directly calculate according 
to the stationary zero curvature equation to get

𝑎𝑥 = 𝜆(𝒒𝒄 + 𝒃𝒒∗),

𝒃𝑥 = 𝜆(𝒒𝒅 − 𝑎𝒒) − 2𝑖𝜆2𝒃 + 𝑖
4
(|𝒒|2𝒃 + 𝒃𝒒∗𝒒),

𝒄𝑥 = 𝜆(𝒅𝒒∗ − 𝒒∗𝑎) + 2𝑖𝜆2𝒄 − 𝑖
4
(𝒄|𝒒|2 + 𝒒∗𝒒𝒄),

𝒅𝑥 = −𝜆(𝒒∗𝒃 + 𝒄𝒒) + 𝑖
4
(𝒅𝒒∗𝒒 − 𝒒∗𝒒𝒅).

(2.3)

Then, we make an expansion for 𝑊  as follows

𝑊 =
⎡

⎢

⎢

⎣

𝑎 𝒃

𝒄 𝒅

⎤

⎥

⎥

⎦

=
∞
∑

𝑚=0
𝑊𝑚𝜆

−𝑚, 𝑊𝑚 = 𝑊𝑚(𝒖) =
⎡

⎢

⎢

⎣

𝑎[𝑚] 𝒃[𝑚]

𝒄[𝑚] 𝒅[𝑚]

⎤

⎥

⎥

⎦

, 𝑚 ≥ 0, (2.4)

where 𝒃[𝑚], 𝒄[𝑚],𝒅[𝑚] being defined by
𝒃[𝑚] = (𝑏[𝑚]1 , 𝑏[𝑚]2 ,… , 𝑏[𝑚]𝑛 ), 𝒄[𝑚] = (𝑐[𝑚]1 , 𝑐[𝑚]2 ,… , 𝑐[𝑚]𝑛 )𝑇 , 𝒅[𝑚] = (𝑑[𝑚]𝑖𝑗 )𝑛×𝑛, 𝑚 ≥ 0. (2.5)

It then follows that the system (2.3) precisely yields the following recursion relations
𝑎[2𝑚+1] = 0, 𝒃[2𝑚] = 0, 𝒄[2𝑚] = 0, 𝒅[2𝑚+1] = 0, 𝑎[0]𝑥 = 0, 𝒅[0]

𝑥 = 0,

𝑎[2𝑚]𝑥 = 𝒒𝒄[2𝑚+1] + 𝒃[2𝑚+1]𝒒∗,

𝒃[2𝑚+1] = 𝑖
2
(𝑎[2𝑚]𝒒 − 𝒒𝒅[2𝑚] + 𝒃[2𝑚−1]𝑥 − 𝑖

4
|𝒒|2𝒃[2𝑚−1] − 𝑖

4
𝒃[2𝑚−1]𝒒∗𝒒),

𝒄[2𝑚+1] = 𝑖
2
(𝒅[2𝑚]𝒒∗ − 𝒒∗𝑎[2𝑚] − 𝒄[2𝑚−1]𝑥 − 𝑖

4
𝒄[2𝑚−1]|𝒒|2 − 𝑖

4
𝒒∗𝒒𝒄[2𝑚−1]),

𝒅[2𝑚]
𝑥 = −𝒄[2𝑚+1]𝒒 − 𝒒∗𝒃[2𝑚+1] + 𝑖

4
(𝒅[2𝑚]𝒒∗𝒒 − 𝒒∗𝒒𝒅[2𝑚]), 𝑚 ≥ 1.

(2.6)

From above equations, it is easy to get 𝑎[2𝑚] and 𝒅[2𝑚]

𝑎[2𝑚] = 𝑖
2
𝜕−1(−𝒒𝒄[2𝑚−1]𝑥 + 𝒃[2𝑚−1]𝑥 𝒒∗ − 𝑖

2
𝒒𝒒∗𝒒𝒄[2𝑚−1] − 𝑖

2
𝒃[2𝑚−1]𝒒∗𝒒𝒒∗),

𝒅[2𝑚] = 𝑖
2
𝜕−1(𝒄[2𝑚−1]𝑥 𝒒 − 𝒒∗𝒃[2𝑚−1]𝑥 + 𝑖

2
𝒒∗𝒒𝒄[2𝑚−1]𝒒 + 𝑖

2
𝒒∗𝒒𝒒∗𝒃[2𝑚−1]),

(2.7)

where 𝜕−1 is an antiderivative in 𝑥 which can be taken as either 𝜕−1 = ∫ 𝑥−∞ 𝑑𝑦 or 𝜕−1 = − ∫ ∞
𝑥 𝑑𝑦. Besides, the integration constant is 

set to zero.
Next, without loss of generality, we take the initial values

𝑎[0] = 𝛼0, 𝒅[0] = 𝛼1𝐼𝑛, 𝒃[1] = 𝛼2𝒒, 𝒄[1] = −𝛼2𝒒∗, (2.8)

where 𝛼1, 𝛼2 are arbitrary real constants. According to this set of initial values, all matrices 𝑊𝑚(𝑚 ≥ 0) are uniquely determined 
through the recursion relations (2.6). The coefficients present that

𝑎[2] =
𝛼2
2
𝑖|𝒒|2, 𝑑[2]𝑗𝑙 = −

𝛼2
2
𝑖𝑞∗𝑗 𝑞𝑙 ,

𝑏[3]𝑙 =
𝛼2
2
𝑖𝑞𝑙,𝑥 −

𝛼2
4
|𝒒|2𝑞𝑙 , 𝑐

[3]
𝑗 =

𝛼2
2
𝑖𝑞∗𝑗,𝑥 +

𝛼2
4
𝑞∗𝑗 |𝒒|

2,

𝑎[4] =
𝛼2
8
𝑖|𝒒|4 +

𝛼2
4
(𝒒𝒒∗𝑥 − 𝒒𝑥𝒒∗), 𝑑

[4]
𝑗𝑙 = −

𝛼2
8
𝑖(𝑞∗𝑗 𝑞𝑙)

2 −
𝛼2
4
(𝑞∗𝑗,𝑥𝑞𝑙 − 𝑞

∗
𝑗 𝑞𝑙,𝑥),

𝑏[5]𝑙 = −
𝛼2
4
𝑞𝑙,𝑥𝑥 +

𝛼2
16

|𝒒|4𝑞𝑙 +
𝛼2
8
𝑖𝒒𝒒∗𝑥𝑞𝑙 −

3𝛼2
16

𝑖(𝒒𝑥𝒒∗𝑞𝑙 + 𝒒𝒒∗𝑞𝑙,𝑥),

𝑐[5]𝑗 =
𝛼2
4
𝑞∗𝑗,𝑥𝑥 −

𝛼2
16
𝑞∗𝑗 |𝒒|

4 +
𝛼2
8
𝑖𝑞∗𝑗 𝒒𝑥𝒒

∗ −
3𝛼2
16

𝑖(𝑞∗𝑗,𝑥𝒒𝒒
∗ + 𝑞∗𝑗 𝒒𝒒

∗
𝑥),

(2.9)

⋮

where 1 ≤ 𝑗, 𝑙 ≤ 𝑛. At the same time, we derive the recursion relation for 𝒃[𝑚] and 𝒄[𝑚]

⎡

⎢

⎢

⎣

𝒃[2𝑚+1]𝑇

𝒄[2𝑚+1]

⎤

⎥

⎥

⎦

= Ψ
⎡

⎢

⎢

⎣

𝒃[2𝑚−1]𝑇

𝒄[2𝑚−1]

⎤

⎥

⎥

⎦

, 𝑚 ≥ 1, (2.10)

where Ψ = Ψ1Ψ2 is a 2𝑛 × 2𝑛 matrix integro-differential operator and

Ψ1 =
1
4

⎡

⎢

⎢

⎢

⎣

𝒒∗𝜕−1𝒒 +
∑𝑛
𝑗=1 𝒒

∗
𝑗 𝜕

−1𝒒𝑗 − 2𝑖𝐼𝑛 𝒒𝑇 𝜕−1𝒒 + (𝒒𝑇 𝜕−1𝒒)𝑇

−𝒒∗𝜕−1𝒒∗𝑇 − (𝒒∗𝜕−1𝒒∗𝑇 )𝑇 −𝒒𝑇 𝜕−1𝒒∗𝑇 −
∑𝑛
𝑗=1 𝒒𝜕

−1𝒒∗𝑗 − 2𝑖𝐼𝑛

⎤

⎥

⎥

⎥

⎦

,
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Ψ2 =

⎡

⎢

⎢

⎢

⎣

(−𝜕 + 𝑖
4 |𝒒|

2)𝐼𝑛 +
1
4𝒒

𝑇 𝒒∗𝑇 0

0 (𝜕 + 𝑖
4 |𝒒|

2)𝐼𝑛 +
1
4𝒒

∗𝒒

⎤

⎥

⎥

⎥

⎦

.

Then, in order to obtain the multi-component higher-order CLL integrable hierarchies, we consider the temporal matrix spectral 
problems:

𝜑𝑡 = 𝑉 [𝑟](𝒖, 𝜆)𝜑, 𝑟 ≥ 0, (2.11)

where

𝑉 [𝑟] =
(

𝑉 [𝑟]
𝑗𝑙

)

(𝑛+1)×(𝑛+1)
= (𝜆𝑟𝑊 )+ + Δ𝑟 (2.12)

=
𝑟
∑

𝑚=0

⎡

⎢

⎢

⎣

𝑎[2𝑚]𝜆2(𝑟−𝑚)+2 𝒃[2𝑚+1]𝜆2(𝑟−𝑚)+1

𝒄[2𝑚+1]𝜆2(𝑟−𝑚)+1 𝒅[2𝑚]𝜆2(𝑟−𝑚)+2

⎤

⎥

⎥

⎦

+
⎡

⎢

⎢

⎣

Δ1
𝑟 0

0 Δ2
𝑟

⎤

⎥

⎥

⎦

, 𝑟 ≥ 0, (2.13)

and Δ𝑟 is the modification term. According to the compatibility conditions of (2.1) and (2.13)
𝑈𝑡𝑟 − 𝑉

[𝑟]
𝑥 + [𝑈, 𝑉 [𝑟]] = 0, 𝑟 ≥ 0, (2.14)

we have
Δ1
𝑟,𝑥 = 𝑖

4
(𝒒𝑡𝒒∗ + 𝒒∗𝑡 𝒒),

Δ2
𝑟,𝑥 = − 𝑖

4
(𝒒∗𝑡 𝒒 + 𝒒∗𝒒𝑡),

𝒒𝑡𝑟 = 𝒃[2𝑟+1]𝑥 − 𝑖
4
𝒒𝒒∗𝒃[2𝑟+1] − 𝑖

4
𝒃[2𝑟+1]𝒒∗𝒒 − 𝒒Δ2

𝑟 + Δ1
𝑟𝒒,

𝒒∗𝑡𝑟 = −𝒄[2𝑟+1]𝑥 − 𝑖
4
𝒒∗𝒒𝒄[2𝑟+1] − 𝑖

4
𝒄[2𝑟+1]𝒒𝒒∗ + Δ2

𝑟𝒒
∗ − 𝒒∗Δ1

𝑟 .

(2.15)

Based on (2.15), we obtain
Δ1
𝑟 =

1
2
𝑎[2(𝑟+1)], Δ2

𝑟 =
1
2
𝒅[2(𝑟+1)], 𝑟 ≥ 0, (2.16)

and

⎡

⎢

⎢

⎣

𝒒𝑇

𝒒∗

⎤

⎥

⎥

⎦𝑡𝑟

= Ψ3Ψ2

⎡

⎢

⎢

⎣

𝒃[2𝑟+1]𝑇

𝒄[2𝑟+1]

⎤

⎥

⎥

⎦

, 𝑟 ≥ 1, (2.17)

where

Ψ3 =

⎡

⎢

⎢

⎢

⎣

− 𝑖
4𝒒

𝑇 𝜕−1𝒒∗𝑇 − 𝑖
4
∑𝑛
𝑗=1 𝒒𝑗𝜕

−1𝒒∗𝑗 − 𝐼𝑛 − 𝑖
4𝒒

𝑇 𝜕−1𝒒 − 𝑖
4 (𝒒

𝑇 𝜕−1𝒒)𝑇

𝑖
4𝒒

∗𝜕−1𝒒∗𝑇 + 𝑖
4 (𝒒

∗𝜕−1𝒒∗𝑇 )𝑇 𝑖
4𝒒

∗𝜕−1𝒒 + 𝑖
4
∑𝑛
𝑗=1 𝒒

∗
𝑗 𝜕

−1𝒒𝑗 − 𝐼𝑛

⎤

⎥

⎥

⎥

⎦

.

In this way, the multi-component higher-order CLL integrable hierarchy can be presented in following form:

𝒖𝑡𝑟 =
⎡

⎢

⎢

⎣

𝒒𝑇

𝒒∗

⎤

⎥

⎥

⎦𝑡𝑟

= 𝐾𝑟 = Ψ3Ψ2

⎡

⎢

⎢

⎣

𝒃[2𝑟+1]𝑇

𝒄[2𝑟+1]

⎤

⎥

⎥

⎦

, 𝑟 ≥ 1. (2.18)

When 𝑟 = 2, we obtain the multi-component higher-order CLL equations:

𝑞𝑗,𝑡2 = −𝑞𝑗,𝑥𝑥𝑥 −
3
2
𝑖|𝒒|2𝑞𝑗,𝑥𝑥 −

3
2
𝑖𝒒𝑥𝒒∗𝑞𝑗,𝑥 +

3
4
|𝒒|4𝑞𝑗,𝑥, 1 ≤ 𝑗 ≤ 𝑛. (2.19)

Finally, the multi-component higher-order CLL integrable hierarchy possess bi-Hamiltonian structures, which can be presented by 
the trace identity or the variational identity [26–28]. We can gain from the matrix 𝑈

tr
(

𝑊 𝜕𝑈
𝜕𝜆

)

= (−2𝑖𝑎 + 2𝑖
𝑛
∑

𝑗=1
𝑑𝑗𝑗 )𝜆 + 𝒒𝒄 − 𝒃𝒒∗,

tr
(

𝑊 𝜕𝑈
𝜕𝒒

)

= 𝒄𝜆 − 𝑖
4
𝒅𝒒∗ + 𝑖

4
𝑎𝒒∗,

tr
(

𝑊 𝜕𝑈
𝜕𝒒∗

)

= −𝒃𝜆 + 𝑖
4
𝑎𝒒 − 𝑖

4
𝒅𝒒,

i.e.,

tr
(

𝑊 𝜕𝑈
𝜕𝒖

)

=
⎡

⎢

⎢

⎣

𝒃𝑇

𝒄

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

−𝒃𝑇 𝜆 + 𝑖
4𝑎𝒒

𝑇 − 𝑖
4𝒅𝒒

𝑇

𝒄𝜆 + 𝑖
4𝑎𝒒

∗ − 𝑖
4𝒅𝒒

∗

⎤

⎥

⎥

⎥

⎦

.
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Based on the trace identity, we have

𝛿
𝛿𝒖 ∫

(

(−2𝑖𝑎 + 2𝑖
𝑛
∑

𝑗=1
𝑑𝑗𝑗 )𝜆 + 𝒒𝒄 − 𝒃𝒒∗

)

𝑑𝑥 = 𝜆−𝛾 𝜕
𝜕𝜆

⎛

⎜

⎜

⎜

⎝

𝜆𝛾
⎡

⎢

⎢

⎢

⎣

−𝒃𝑇 𝜆 + 𝑖
4𝑎𝒒

𝑇 − 𝑖
4𝒅𝒒

𝑇

𝒄𝜆 + 𝑖
4𝑎𝒒

∗ − 𝑖
4𝒅𝒒

∗

⎤

⎥

⎥

⎥

⎦

⎞

⎟

⎟

⎟

⎠

. (2.20)

Plugging these 𝑎, 𝒃, 𝒄,𝒅
𝑎 =

∑

𝑟≥0
𝑎[2𝑟]𝜆−2𝑟, 𝒃 =

∑

𝑟≥0
𝒃[2𝑟+1]𝜆−2𝑟−1, 𝒄 =

∑

𝑟≥0
𝒄[2𝑟+1]𝜆−2𝑟−1, 𝒅 =

∑

𝑟≥0
𝒅[2𝑟]𝜆−2𝑟, (2.21)

into the trace identity (2.20), we obtain:
𝛿
𝛿𝒖 ∫

(

− 2𝑖𝑎[2𝑟+2] + 2𝑖
𝑛
∑

𝑗=1
𝑑[2𝑟+2]𝑗𝑗 + 𝒒𝒄[2𝑟+1] − 𝒃[2𝑟+1]𝒒∗

)

𝑑𝑥 = (−2𝑟 − 𝛾)𝐺2𝑟+1,

with

𝐺2𝑟+1 =

⎡

⎢

⎢

⎢

⎣

−𝒃[2𝑟+1]𝑇 + 𝑖
4𝑎

[2𝑟]𝒒𝑇 − 𝑖
4𝒅

[2𝑟]𝒒𝑇

𝒄[2𝑟+1] + 𝑖
4𝑎

[2𝑟]𝒒∗ − 𝑖
4𝒅

[2𝑟]𝒒∗

⎤

⎥

⎥

⎥

⎦

.

Setting 𝑟 = 0, it is easy to get 𝛾 = 0. Thus,
𝛿𝐻̃𝑟
𝛿𝒖

= 𝐺2𝑟+1,

and

𝐻̃𝑟 = − 1
2𝑟 ∫

(

− 2𝑖𝑎[2𝑟+2] + 2𝑖
𝑛
∑

𝑗=1
𝑑[2𝑟+2]𝑗𝑗 + 𝒒𝒄[2𝑟+1] − 𝒃[2𝑟+1]𝒒∗

)

𝑑𝑥, 𝑟 ≥ 1.

The bi-Hamiltonian structure for the multi-component higher-order CLL integrable hierarchy is presented as following:

𝒖𝑡𝑟 =
⎡

⎢

⎢

⎣

𝒒𝑇

𝒒∗

⎤

⎥

⎥

⎦𝑡𝑟

= 𝐾𝑟 = 𝐽1
𝛿𝐻̃𝑟
𝛿𝒖

= 𝐽2
𝛿𝐻̃𝑟−1
𝛿𝒖

, 𝑟 ≥ 1, (2.22)

where the Hamiltonian pairs (𝐽1, 𝐽2), 𝐽1 = Ψ3Ψ2Ψ∗
3 , 𝐽2 = Ψ3Ψ2Ψ1Ψ2Ψ3, and the symbol Ψ∗

3 denotes the complex conjugate of Ψ3.
Thus, each of the operators 𝐽−1

1 𝐽2 presents a recursion operator for every hierarchy with a fixed integer 𝑛 ≥ 1. Adjoint symme-
try constraints (or equivalently symmetry constraints) decompose each multi-component CLL system into two commuting finite-
dimensional Liouville integrable Hamiltonian systems [29].

3.  Nonlocal reverse-space multi-component higher-order Chen-Lee-Liu system

In this section, we construct the RiemannCHilbert problem of the nonlocal reverse-space multi-component higher-order multi-
component CLL system. According to the previous section, the 𝑟th flow of this integrable hierarchy can be presented in following 
form: 

𝜑𝑥 = 𝑈 (𝒖, 𝜆)𝜑, (3.1a)

𝜑𝑡𝑟 = 𝑉 [𝑟̃](𝒖, 𝜆)𝜑, (3.1b)

where

𝑈 (𝒖, 𝜆) = 𝑖𝜆2Λ + 𝑈1(𝒖, 𝜆), 𝑉 [𝑟̃](𝒖, 𝜆) = 4𝑖𝜆2𝑟̃Λ + 𝑉 [𝑟]
1 (𝒖, 𝜆), (3.2)

with Λ = diag(−1, 𝐼𝑛), 𝑟̃ = 𝑟 + 1, and

𝑈1(𝒖, 𝜆) = 𝜆𝑈2 +
𝑖
4
Λ𝑈2

2 , 𝑈2 =
⎡

⎢

⎢

⎣

0 𝒒

−𝒒∗ 0

⎤

⎥

⎥

⎦

, (3.3)

𝑉 [𝑟̃]
1 (𝒖, 𝜆) =

⎡

⎢

⎢

⎣

𝑉 [𝑟]
11 𝑉 [𝑟]

12

𝑉 [𝑟]
21 𝑉 [𝑟]

22

⎤

⎥

⎥

⎦

, (3.4)

𝑉 [𝑟̃]
11 =

𝑟−1
∑

𝑚=1
𝑎[2𝑚]𝜆2(𝑟̃−𝑚) + 1

2
𝑎[2𝑟], 𝑉 [𝑟̃]

12 =
𝑟
∑

𝑚=1
𝒃[2𝑚−1]𝜆2(𝑟−𝑚)+1,

𝑉 [𝑟̃]
21 =

𝑟
∑

𝑚=1
𝒄[2𝑚−1]𝜆2(𝑟−𝑚)+1, 𝑉 [𝑟]

22 =
𝑟̃−1
∑

𝑚=1
𝒅[2𝑚]𝜆2(𝑟−𝑚) + 1

2
𝒅[2𝑟̃].

Communications in Nonlinear Science and Numerical Simulation 152 (2026) 109385 

5 



L. Ding et al.

In addition, the definition of 𝒒, 𝒒∗ are the same as in the previous section, and 𝑎[𝑚], 𝒃[𝑚], 𝒄[𝑚],𝒅[𝑚] are defined by (2.5).
Motivated by the classical local reductions [30], we introduce a specific kind of nonlocal group reductions for the eigenvalue 

matrix 𝑈 :
𝑈†(−𝑥, 𝑡,−𝑖𝜆) = −𝐶𝑈 (𝑥, 𝑡, 𝜆)𝐶−1, (3.5)

where

𝐶 =
⎡

⎢

⎢

⎣

1 0

0 Σ

⎤

⎥

⎥

⎦

,

Σ† = Σ is an invertible constant Hermitian matrix. Equivalently, it leads to
𝑈†
1 (−𝑥, 𝑡,−𝑖𝜆) = −𝐶𝑈1(𝑥, 𝑡, 𝜆)𝐶−1, (3.6)

then, we have
𝑈†
2 (−𝑥, 𝑡) = −𝐶𝑈2(𝑥, 𝑡)𝐶−1. (3.7)

Thus, it is easy to obtain
𝒒∗(𝑥, 𝑡) = −𝑖Σ−1𝒒†(−𝑥, 𝑡). (3.8)

The vector function 𝒄 in (2.3) under such a kind of reductions may be taken as
𝒄(𝑥, 𝑡, 𝜆) = Σ−1𝒃†(−𝑥, 𝑡,−𝑖𝜆), (3.9)

and those non-local reduction relations guarantee that
𝑎∗(−𝑥, 𝑡,−𝑖𝜆) = 𝑎(𝑥, 𝑡, 𝜆), 𝒅†(−𝑥, 𝑡,−𝑖𝜆) = Σ𝒅(𝑥, 𝑡, 𝜆)Σ−1,

where 𝑎 and 𝒅 satisfy (2.3). For instance, under (3.8) and (3.9), we can compute that
(

𝑎∗(−𝑥, 𝑡,−𝑖𝜆)
)

𝑥 = −𝑎∗𝑥(−𝑥, 𝑡,−𝑖𝜆)

= −𝑖𝜆
[

𝒄†(−𝑥, 𝑡,−𝑖𝜆)𝒒†(−𝑥, 𝑡) + 𝒒∗† (−𝑥, 𝑡)𝒃†(−𝑥, 𝑡,−𝑖𝜆)
]

= −𝑖𝜆
[

(

𝒃(𝑥, 𝑡, 𝜆)Σ−1)(𝑖Σ𝒒∗(𝑥, 𝑡)
)

+
(

𝑖𝒒(𝑥, 𝑡)Σ−1)(Σ𝒄(𝑥, 𝑡, 𝜆)
)

]

= 𝜆
[

𝒃(𝑥, 𝑡, 𝜆)𝒒∗(𝑥, 𝑡) + 𝒒(𝑥, 𝑡)𝒄(𝑥, 𝑡, 𝜆)
]

= 𝑎𝑥(𝑥, 𝑡, 𝜆).

Therefore, we have
⎧

⎪

⎨

⎪

⎩

(𝑎[𝑚])∗(−𝑥, 𝑡) = (−1)𝑚𝑎[𝑚](𝑥, 𝑡),
(𝒃[𝑚])†(−𝑥, 𝑡) = (−1)𝑚+1Σ𝒄[𝑚](𝑥, 𝑡),
(𝒅[𝑚])†(−𝑥, 𝑡) = (−1)𝑚Σ𝒅[𝑚](𝑥, 𝑡)Σ−1,

where 𝑎[𝑚], 𝒃[𝑚], 𝒄[𝑚] and 𝒅[𝑚], 𝑚 ≥ 1 are defined the same as in the previous section. Then, we have
(𝑉 [𝑟̃])†(−𝑥, 𝑡,−𝑖𝜆) = 𝐶𝑉 [𝑟](𝑥, 𝑡, 𝜆)𝐶−1, (𝑉 [𝑟]

1 )†(−𝑥, 𝑡,−𝑖𝜆) = 𝐶𝑉 [𝑟̃]
1 (𝑥, 𝑡, 𝜆)𝐶−1, (3.10)

where 𝑉 [𝑟] and 𝑉 [𝑟]
1  are defined in (3.2) and (3.4), respectively.

The above analysis guarantees that the non-local reduction (3.6) does not require any new condition for the compatibility of the 
spatial and temporal matrix spectral problems. Therefore, under the nonlocal group reductions in (3.6), the multi-component higher-
order CLL equations in (2.19) are reduced to the following nonlocal reverse-space multi-component higher-order CLL equations:

𝒒𝑡(𝑥, 𝑡) = − 𝒒𝑥𝑥𝑥(𝑥, 𝑡) −
3
2
𝒒(𝑥, 𝑡)Σ−1𝒒†(−𝑥, 𝑡)𝒒𝑥𝑥(𝑥, 𝑡) −

3
2
𝒒𝑥(𝑥, 𝑡)Σ−1𝒒†(−𝑥, 𝑡)𝒒𝑥(𝑥, 𝑡)

− 3
4
𝒒(𝑥, 𝑡)Σ−1𝒒†(−𝑥, 𝑡)𝒒(𝑥, 𝑡)Σ−1𝒒†(−𝑥, 𝑡)𝒒𝑥(𝑥, 𝑡).

(3.11)

Obviously, the nonlocal reverse-space multi-component higher-order CLL systems can be expressed as:
𝒒𝑡 = 𝐾𝑟,1|𝒒∗(𝑥,𝑡)=−𝑖Σ−1𝒒†(−𝑥,𝑡), (3.12)

where 𝐾𝑟 = (𝐾⊤
𝑟,1, 𝐾𝑟,2). It is visible that if 𝒒(𝑥, 𝑡) is a solution to Eq. (3.11), 𝑖𝒒∗(−𝑥, 𝑡) and 𝑖𝒒(𝑥,−𝑡) are also solutions.

4.  The Riemann-Hilbert problem for multi-component higher-order Chen-Lee-Liu system

In this section, the RH problem of the nonlocal reverse-space multi-component higher-order CLL equation is constructed with the 
zero boundary condition.
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4.1.  Property of eigenfunctions

Without loss of generality, we set 𝛼0 = −4𝑖, 𝛼1 = 4𝑖, 𝛼2 = 4. Assume that each potential rapidly vanishes as 𝑥→ ±∞ or 𝑡→ ±∞ and 
satisfy the integrable conditions:

∫

∞

−∞ ∫

∞

−∞
|𝑥|𝑘|𝑡|𝑙

𝑛
∑

𝑗=1
|𝒒𝑗 |𝑑𝑥𝑑𝑡 < ∞, 0 ≤ 𝑘, 𝑙 ≤ 1.

Property 4.1. Potential functions have the asymptotic behavior: 𝜑 ∼ 𝑒𝑖𝜆2Λ𝑥+4𝑖𝜆2𝑟Λ𝑡, as 𝑥, 𝑡 → ±∞. 
Property 4.2. If one takes the transformation

𝜑 = 𝜙̂𝐸𝑔 , 𝐸𝑔 = 𝑒𝑖𝜆
2Λ𝑥+4𝑖𝜆2𝑟Λ𝑡𝑟 , (4.1)

one can obtain the canonical normalization condition 𝜙̂: 𝜙̂ → 𝐼𝑛+1, as 𝑥, 𝑡 → ±∞.
Substituting (4.1) into the matrix spectral problems in (3.1a)–(3.1b), it is easy to obtain the equivalent pair of matrix spectral 

problems

𝜙̂𝑥 = 𝑖𝜆2[Λ, 𝜙̂] + 𝑈1𝜙̂, (4.2)

𝜙̂𝑡𝑟 = 4𝑖𝜆2𝑟[Λ, 𝜙̂] + 𝑉 [𝑟]
1 𝜙̂. (4.3)

In order to satisfy the regularization condition of the corresponding RH problem, that is, the spectral problem tends to the identity 
matrix as 𝜆 → ∞. To achieve this condition, we need to introduce a transformation to guarantees asymptotics. From this, we can 
naturally define:

𝜙̂0 =
⎡

⎢

⎢

⎣

exp(− 1
4 𝑖 ∫

𝑥
−∞ |𝒒|2(𝑥′ , 𝑡)𝑑𝑥′ ) 0

0 𝑀

⎤

⎥

⎥

⎦

, (4.4)

where 𝑀 is an 𝑛 × 𝑛 matrix, satisfying:

𝑀𝑥 = 1
4
𝑖𝒒∗𝒒𝑀.

In fact, we consider expanding the solution of the spectral problem (4.2)–(4.3) in the following form:

𝜙̂(𝑥, 𝜆) = 𝜙̂0 +
𝜙̂1
𝜆

+
𝜙̂2

𝜆2
+
𝜙̂3

𝜆3
+ 𝑂

(

1
𝜆4

)

, (4.5)

where 𝜙̂𝑘(𝑘 = 0, 1, 2, 3) are independent of the spectral parameter 𝜆. Substituting Eq. (4.5) into Eqs. (4.2)–(4.3) and comparing the 
same order of 𝜆, it is easy to obtain

𝑂(1) ∶ 𝜙̂0𝑥 = 𝑖[Λ, 𝜙̂2] + 𝑈2𝜙̂1 +
1
4
𝑖Λ𝑈2

2 𝜙̂0,

𝑂(𝜆) ∶ 𝑖[Λ, 𝜙̂1] + 𝑈2𝜙̂0 = 0,

𝑂(𝜆2) ∶ 𝑖[Λ, 𝜙̂0] = 0,

(4.6)

it is easy to know that 𝜙̂0 is diagonal and satisfies

𝜙̂0𝑥 = −1
4
𝑖𝑈2

2Λ𝜙̂0. (4.7)

Similarly, the expression of 𝜙̂0𝑡 can also be obtained in the same way. According to the conservation law of the 𝑟th flow in a multi-
component high-order CLL system, it is easy to get 𝜙̂0𝑥𝑡 = 𝜙̂0𝑡𝑥. Hence the 𝜙̂0 = exp(− 1

4 𝑖 ∫
𝑥
−∞ 𝑈2

2Λ𝑑𝑥
′ ). Noticed that tr(𝜙̂0) = 0, as 

𝑥 → −∞, we gain that 𝜙̂0 → 𝐼𝑛+1. According to the Abel formula, it can be derived that det 𝜙̂0 = 1.
In the following we introduce the gauge transformation 𝜙 = 𝜙̂−1

0 𝜙̂ and, by direct calculation, the matrix spectral problem 
(4.2)–(4.3) is equivalent to

𝜙𝑥 = 𝑖𝜆2[Λ, 𝜙] + 𝑈̃1𝜙, (4.8)

𝜙𝑡𝑟 = 4𝑖𝜆2𝑟[Λ, 𝜙] + 𝑉 [𝑟]
1 𝜙, (4.9)

where 𝑈̃1 = 𝜙̂−1
0 𝑈1𝜙̂0 − 𝜙̂−1

0 𝜙̂0𝑥, 𝑉
[𝑟̃]
1 = 𝜙̂−1

0 𝑉 [𝑟]
1 𝜙̂0 − 𝜙̂−1

0 𝜙̂0𝑡, we have

𝑈̃1 =
1
2
𝑖𝑈2

2Λ + 𝜆𝑈̃2, (4.10)

𝑈̃1 =

⎡

⎢

⎢

⎢

⎣

1
2 𝑖|𝒒|

2 𝜆 exp( 14 𝑖 ∫
𝑥
−∞ |𝒒|2(𝑥′ , 𝑡)𝑑𝑥′ )𝒒𝑀

−𝜆𝑀−1𝒒∗ exp(− 1
4 𝑖 ∫

𝑥
−∞ |𝒒|2(𝑥′ , 𝑡)𝑑𝑥′ ) − 1

2 𝑖𝒒
∗𝒒

⎤

⎥

⎥

⎥

⎦

, (4.11)
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𝑈̃2 =

⎡

⎢

⎢

⎢

⎣

0 exp( 14 𝑖 ∫
𝑥
−∞ |𝒒|2(𝑥′ , 𝑡)𝑑𝑥′ )𝒒𝑀

−𝑀−1𝒒∗ exp(− 1
4 𝑖 ∫

𝑥
−∞ |𝒒|2(𝑥′ , 𝑡)𝑑𝑥′ ) 0

⎤

⎥

⎥

⎥

⎦

, (4.12)

since tr(𝑈̃1) = tr(𝑉
[𝑟]
1 ) = 0. Based on a generalized Liouville’s formula [31] one can obtain:

det 𝜙 = 1. (4.13)

To develop associated Riemann-Hilbert problems, we consider the following adjoint equation of the (2.1) and (4.8)
𝜑̃𝑥 = −𝜑̃𝑈, (4.14)

and

𝜙̃𝑥 = −𝑖𝜆2[𝜙̃,Λ] − 𝜙̃𝑈̃1. (4.15)

Property 4.3. If 𝜙(𝑥, 𝑡, 𝜆) is a solution to the spatial eigenvalue problem (4.8), obviously, 𝐶𝜙−1(𝑥, 𝑡, 𝜆) is a matrix adjoint eigenfunction 
and is associated with the given eigenvalue 𝜆.

In fact, calculate directly
[

𝜙†(−𝑥, 𝑡,−𝑖𝜆)𝐶
]

𝑥 = −(𝜙𝑥)†(−𝑥, 𝑡,−𝑖𝜆)

= −
{

(−𝑖)(−𝑖𝜆)2
[

𝜙†(−𝑥, 𝑡,−𝑖𝜆),Λ
]

− 𝜙†(−𝑥, 𝑡,−𝑖𝜆)𝑈̃†
1 (−𝑥, 𝑡)

}

𝐶

= −
{

𝑖𝜆2
[

𝜙†(−𝑥, 𝑡,−𝑖𝜆)𝐶,Λ
]

− 𝜙†(−𝑥, 𝑡,−𝑖𝜆)𝐶𝐶−1𝑈̃†
1 (−𝑥, 𝑡)𝐶

}

= −𝑖𝜆2
[

𝜙†(−𝑥, 𝑡,−𝑖𝜆)𝐶,Λ
]

− 𝜙†(−𝑥, 𝑡,−𝑖𝜆)𝐶𝑈̃1(𝑥, 𝑡),

and thus,
𝜙̃(𝑥, 𝑡, 𝜆) ∶= 𝜙†(−𝑥, 𝑡,−𝑖𝜆)𝐶, (4.16)

represents another matrix adjoint eigenfunction associated with the original eigenvalue 𝜆, which means that 𝜙†(−𝑥, 𝑡,−𝑖𝜆)𝐶 solves 
the adjoint matrix spectrum problem (4.15). 
Property 4.4. From the asymptotic property and the uniqueness of the solution of 𝜙, it can be known that if 𝑥 or 𝑡 → −∞ or +∞, 
𝜙 → 𝐼𝑛+1, then

𝜙†(−𝑥, 𝑡,−𝑖𝜆) = 𝐶𝜙−1(𝑥, 𝑡, 𝜆)𝐶−1. (4.17)

It follows that if 𝜆 is an eigenvalue of (4.8) or (4.15), then −𝑖𝜆 is another eigenvalue of (4.8) or (4.15), and the corresponding 
eigenfunction 𝜙 satisfies the Eq. (4.17).

4.2.  Riemann-Hilbert problems

Let us now formulate a class of associated Riemann-Hilbert problems with the space variable 𝑥. In the direct scattering problem, 
we first consider the two matrix eigenfunctions 𝜙±(𝑥, 𝜆) of (4.8) with the asymptotic conditions

𝜙± → 𝐼𝑛+1, 𝑥 → ±∞, (4.18)

respectively. From (4.13), we can readily find that
det 𝜙± = 1, (4.19)

for all 𝜆 ∈ ℝ.
In the following we denote

𝐸(𝑥, 𝜆) = e𝑖𝜆2Λ𝑥, (4.20)

𝜓− = 𝜙−𝐸, 𝜓+ = 𝜙+𝐸, (4.21)

since 𝜓−(𝑥, 𝜆) and 𝜓+(𝑥, 𝜆) are both matrix eigenfunctions of the spectral problems (4.8), they must be linearly dependent, and 
accordingly, we have

𝜓−(𝑥, 𝜆) = 𝜓+(𝑥, 𝜆)𝑆(𝜆), 𝜆 ∈ ℝ ∪ 𝑖ℝ, (4.22)

that is
𝜙−𝐸 = 𝜙+𝐸𝑆(𝜆), 𝜆 ∈ ℝ ∪ 𝑖ℝ, (4.23)

where 𝑆(𝜆) = (𝑠𝑗𝑙)(𝑛+1)×(𝑛+1) is traditionally called the scattering matrix and satisfies det 𝑆(𝜆) = 1.
The scattering matrix 𝑆(𝜆) contains important scattering data from which we can reconstruct the potential function 𝑢. This recon-

struction largely depends on the analytical properties of the matrix characteristic function 𝜙±(𝑥, 𝜆) and the scattering matrix 𝑆(𝜆) in 
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Fig. 1. The jump contour in the complex 𝜆-plane.

the complex plane of 𝜆. Therefore, we first study these analytical properties. Applying the method of variation of parameters as well 
as the boundary conditions (4.18), we can transform Eq. (4.8) into the following Volterra integral equations for 𝜙±:

𝜙−(𝑥, 𝜆) = 𝐼𝑛+1 + ∫

𝑥

−∞
e𝑖𝜆2Λ(𝑥−𝑦)𝑈̃1(𝑦)𝜙−(𝑦, 𝜆)e−𝑖𝜆

2Λ(𝑥−𝑦)𝑑𝑦, (4.24)

𝜙+(𝑥, 𝜆) = 𝐼𝑛+1 − ∫

∞

𝑥
e𝑖𝜆2Λ(𝑥−𝑦)𝑈̃1(𝑦)𝜙+(𝑦, 𝜆)e−𝑖𝜆

2Λ(𝑥−𝑦)𝑑𝑦. (4.25)

Thus, the two eigenfunctions 𝜙± exist, and allow analytical continuations off the real axis 𝜆 ∈ ℝ ∪ 𝑖ℝ as long as the both integrals on 
their right hand sides converge.
Lemma 4.1.  The analytical property of 𝜙±
(1) the first column of 𝜙− and the last 𝑛 columns of 𝜙+ are analytical with respect to 𝜆 ∈ Γ+ = {𝜆 ∈ ℂ| arg 𝜆 ∈ (0, 𝜋2 ) ∪ (𝜋, 3𝜋2 )};
(2) the last 𝑛 columns of 𝜙− and the first column of 𝜙+ are analytical with respect to 𝜆 ∈ Γ− = {𝜆 ∈ ℂ| arg 𝜆 ∈ ( 𝜋2 , 𝜋) ∪ ( 3𝜋2 , 2𝜋)}.

Proof.  According to the diagonal form of Λ and the structure of 𝑈 , we can observe that the integral equation for the first column 
of 𝜙− contains only the exponential factor e2𝑖𝜆

2(𝑥−𝑦), which also decays exponentially because of 𝑦 < 𝑥 in the integral, when 𝜆 ∈ Γ+, 
and the integral equation for the last 𝑛 columns of 𝜙+ contains only the exponential factor e−2𝑖𝜆

2(𝑥−𝑦), which decays exponentially 
because of 𝑦 > 𝑥 in the integral. It thus follows that those 𝑛 + 1 (i.e., the first column of 𝜙− and the last 𝑛 columns of 𝜙+) columns are 
analytical in the upper half-plane 𝜆 ∈ Γ+ and allow for analytical continuations to Γ0 = {ℝ ∪ 𝑖ℝ}. Similarly, we can see that the last 
𝑛 columns of 𝜙− and the first column of 𝜙+ are analytical in the lower half-plane 𝜆 ∈ Γ− and analytically extended to Γ0 (Fig. 1).

 ∎
First, in order to determine two generalized Jost solutions, denoted by 𝐽+(𝑥, 𝜆) and 𝐽−(𝑥, 𝜆), which are analytic in Γ+ and Γ− (the 

upper and lower half-planes) and continuous in Γ0, respectively, we express
𝜙± = (𝜙1

±, 𝜙
2
±,… , 𝜙𝑛+1± ),

where 𝜙𝑗±(1 ≤ 𝑗 ≤ 𝑛 + 1) denotes the 𝑗th column of 𝜙±. Then, we take the generalized matrix Jost solution 𝐽+(𝑥, 𝜆) as
𝐽+(𝑥, 𝜆) = (𝜙1

−, 𝜙
2
+,… , 𝜙𝑛+1+ ) = 𝜙−𝐻1 + 𝜙+𝐻2, (4.26)

Here we denote 𝐻1 and 𝐻2 as
𝐻1 = diag(1, 0,… , 0

⏟⏟⏟
𝑛

), 𝐻2 = diag(0, 1,… , 1
⏟⏟⏟

𝑛

).

Then, according to Lemma 4.1
Theorem 4.1. 𝐽+(𝑥, 𝜆) is analytic in 𝜆 ∈ Γ+ and continuous in Γ0. The other generalized matrix Jost eigenfunction

(𝜙1
+, 𝜙

2
−,… , 𝜙𝑛+1− ) = 𝜙+𝐻1 + 𝜙−𝐻2,

is analytic in 𝜆 ∈ Γ− and continuous in Γ0.
In addition, from the Volterra integral Eqs. (4.24) and (4.25), we see that 𝐽+ generate the canonical normalization conditions:

𝐽+(𝑥, 𝜆) → 𝐼𝑛+1, 𝜆 ∈ Γ+ → ∞, (4.27)

and

(𝜙1
+, 𝜙

2
−,… , 𝜙𝑛+1− ) → 𝐼𝑛+1, 𝜆 ∈ Γ− → ∞.
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Second, to determine the other generalized Jost solution 𝐽−, i.e., the analytic counterpart of 𝐽+ in the lower half-plane Γ−, we 
adopt the adjoint matrix spectral problems. Notice that if 𝜑 and 𝜙 are solutions to the matrix spectrum problem, than the inverse 
matrices 𝜑̃±(𝑥, 𝜆) = (𝜑±(𝑥, 𝜆))−1 and 𝜙̃±(𝑥, 𝜆) = (𝜙±(𝑥, 𝜆))−1 solve those two adjoint equations, respectively. in fact, by (4.15) as well

(𝜙𝜙−1)𝑥 = 𝜙𝑥𝜙
−1 + 𝜙(𝜙−1)𝑥 = 0,

we have
(𝜙−1)𝑥 = −𝑖𝜆2[𝜙−1,Λ] − 𝜙−1𝑈̃1, (4.28)

that is (𝜙±(𝑥, 𝜆))−1 satisfies the adjoint matrix spectrum problem (4.15). Similarly, (𝜙±)−1 can be denoted as
𝜙̃± = (𝜙̃1

±, 𝜙̃
2
±,… , 𝜙̃𝑛+1± ).

Then, the corresponding matrix Jost eigenfunction 𝐽− can be expressed as
𝐽−(𝑥, 𝜆) = (𝜙̃1

−, 𝜙̃
2
+,… , 𝜙̃𝑛+1+ )𝑇 = 𝐻1𝜙̃− +𝐻2𝜙̃+ = 𝐻1(𝜙−)−1 +𝐻2(𝜙+)−1. (4.29)

Obviously, we can obtain
Theorem 4.2. 𝐽−(𝑥, 𝜆) is analytic in 𝜆 ∈ Γ− and continuous in Γ0, and

𝐽−(𝑥, 𝜆) → 𝐼𝑛+1, 𝜆 ∈ Γ− → ∞,

(𝜙̃1
+, 𝜙̃

2
−,… , 𝜙̃𝑛+1− ) → 𝐼𝑛+1, 𝜆 ∈ Γ+ → ∞.

Substituting 𝐽+ and 𝐽− into Eq. (4.23), it is equivalent to

𝐽+ = 𝜙+𝐸𝑆+𝐸
−1 = 𝜙+𝐸

⎡

⎢

⎢

⎢

⎢

⎣

𝑠11 0 ⋯ 0
𝑠21 1 ⋯ 0
⋮ ⋮ ⋱ ⋮

𝑠𝑛+1,1 0 ⋯ 1

⎤

⎥

⎥

⎥

⎥

⎦

𝐸−1, (4.30)

and

𝐽− = 𝐸𝑆−1
− 𝐸−1(𝜙+)−1 = 𝐸

⎡

⎢

⎢

⎢

⎢

⎣

𝑠̂11 𝑠̂12 ⋯ 𝑠̂1,𝑛+1
0 1 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 1

⎤

⎥

⎥

⎥

⎥

⎦

𝐸−1(𝜙+)−1, (4.31)

where 𝑆−1(𝜆) = (𝑆(𝜆))−1 = (𝑠̂𝑖𝑗 )(𝑛+1)×(𝑛+1).
Since the Jost eigenfunction 𝐽±(𝑥, 𝜆) of the two matrices are analytic with relation to 𝜆 in Γ+ and Γ−, respectively, combined with 

(4.23), (4.26) and (4.29), it is easy to obtain:
𝐽+(𝑥, 𝜆) = 𝐽−(𝑥, 𝜆)𝐺0(𝑥, 𝜆), 𝜆 ∈ Γ0, (4.32)

in which the jump matrix

𝐺0(𝑥, 𝜆) = 𝐸(𝐻1 +𝐻2𝑆(𝜆))(𝐻1 + 𝑆−1(𝜆)𝐸−1 = 𝐸

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1 𝑠̂12 𝑠̂13 ⋯ 𝑠̂1,𝑛+1
𝑠21 1 0 ⋯ 0
𝑠31 0 1 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮

𝑠𝑛+1,1 0 0 ⋯ 1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

𝐸−1. (4.33)

Thus, (4.32) and (4.33) establish an RH problem for nonlocal reverse-space multi-component higher-order CLL systems. When 𝜆 ∈
Γ± → ∞, the asymptotic property

𝐽±(𝑥, 𝜆) → 𝐼𝑛+1, (4.34)

generates canonical normalization conditions for the above RH problem. The jump matrix 𝐺0 carries the basic scattering data from 
the scattering matrix 𝑆(𝜆), and then by the relationship of (4.17), 𝐺0 satisfies

𝐺†
0(−𝑥, 𝑡,−𝑖𝜆) = 𝐶𝐺0(𝑥, 𝑡, 𝜆)𝐶−1. (4.35)

5.  Solutions for the Riemann-Hilbert problem

5.1.  Evolution of the scattering data

We first develop the evolution laws for the scattering data to formulate the inverse scattering transforms. According to the relation 
𝜙−𝐸 = 𝜙+𝐸𝑆(𝜆), combined with the involution properties given in Property 4.3 and Property 4.4, we obtain the involution property 
of the scattering matrix

𝑆†(−𝑖𝜆) = 𝑆−1(𝜆). (5.1)
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Furthermore, the similar analysis shows that the Jost solutions satisfy another symmetry relation
𝜙(−𝜆) = 𝜎𝜙(𝜆)𝜎,

where 𝜎 = diag(1,−1,… ,−1
⏟⏞⏞⏞⏟⏞⏞⏞⏟

𝑛

). Then, we can easily get

𝑆(−𝜆) = 𝜎𝑆(𝜆)𝜎, (5.2)

Next, we study the property of 𝑠11 and 𝑠̂11, which play an important role in later analysis. From Eqs. (5.1) and (5.2), we obtain the 
relations

𝑠∗11(−𝑖𝜆) = 𝑠̂11(𝜆), (5.3)

and

𝑠11(𝜆) = 𝑠11(−𝜆). (5.4)

Suppose that 𝜆 ∈ Γ+ is a zero of 𝑠11, then −𝜆 is a zero as well by means of Eq. (5.4). From the relation Eq. (5.3), we obtain that 𝑠̂11
has two zeros, namely ∓𝑖𝜆.

Next, we complete the direct scattering transform. Take the derivative of (4.23) with respect to the temporal variable 𝑡 and utilize 
the temporal matrix spectral problems for 𝜙±. This way, it follows that the scattering matrix 𝑆(𝜆) obeys an evolution law:

𝑆𝑡𝑟 = 4𝑖𝜆2𝑟[Λ, 𝑆], (5.5)

This precisely yields that the time-dependent scattering coefficients obey the following evolution laws:

𝑠1,𝑗 = 𝑠1,𝑗 (0, 𝜆)e8𝑖𝜆
2𝑟𝑡𝑟 , 𝑠𝑗,1 = 𝑠𝑗,1(0, 𝜆)e−8𝑖𝜆

2𝑟𝑡𝑟 , 2 ≤ 𝑗 ≤ 𝑛 + 1,

and all other scattering coefficients do not depend on the time variable 𝑡𝑟.

5.2.  Solutions for the Riemann-Hilbert problem

In this section, we use the RH method to obtain the solutions to the nonlocal reverse-space multi-component higher-order CLL 
system. There are two cases of the RH problems: One is the regular RH problem; the other is the non-regular RH problem.

Firstly, recall(4.30) and (4.31), we have
det 𝐽+(𝑥, 𝜆) = 𝑠11(𝜆), det 𝐽−(𝑥, 𝜆) = 𝑠̂11(𝜆), (5.6)

which

𝑠̂11 = (𝑆−1)11 =

|

|

|

|

|

|

|

|

|

𝑠22 𝑠23 ⋯ 𝑠2,𝑛+1
𝑠32 𝑠33 ⋯ 𝑠3,𝑛+1
⋮ ⋮ ⋱ ⋮

𝑠𝑛+1,2 𝑠𝑛+1,3 ⋯ 𝑠𝑛+1,𝑛+1

|

|

|

|

|

|

|

|

|

.

Case 1.  the RH problem is regular: i.e., det 𝐽+ = 𝑠11 ≠ 0 and det 𝐽− = 𝑠̂11 ≠ 0.

Lemma 5.1. If 𝐽± satisfy the canonical normalization conditions: 𝐽±(𝑥, 𝜆) → 𝐼𝑛+1, 𝜆 → ∞, thus, the solution to the regular RH problem is 
unique.

Proof.  In fact, we assume that both 𝐽 1
± and 𝐽 2

± are solutions to (4.32), then

(𝐽 1
−)

−1𝐽 1
+ = (𝐽 2

−)
−1𝐽 2

+, 𝐽 1
+(𝐽

2
+)

−1 = 𝐽 1
−(𝐽

2
−)

−1, 𝜆 ∈ ℝ ∪ 𝑖ℝ.

Since the RH problem is regular, neither det 𝐽 1
± nor det 𝐽 2

± is zero. Thus, 𝐽 1
+(𝐽

2
+)

−1 and 𝐽 1
−(𝐽

2
−)

−1 are analytic in Γ+ and Γ−, respectively. 
Obviously, they define a matrix function that is analytic on the entire plane. It follows from the boundary conditions that the matrix 
function tends to the identity matrix 𝐼𝑛+1 as 𝜆 tends to infinity. In complex analysis, Liouville’s theorem tells that if a function is 
analytic and bounded in the entire complex plane, then this function must be a constant. Then, based on this theorem, it can be 
obtained:

𝐽 1
+(𝐽

2
+)

−1 = 𝐽 1
−(𝐽

2
−)

−1 = 𝐼𝑛+1, 𝜆 ∈ ℂ.

so 𝐽 1
± = 𝐽 2

±, which means that the solution to the RH problem is unique. ∎
In fact, the unique solution of this regular matrix RH problem does not have an explicit expression, but its formal solution can 

be expressed by the Plemelj formula. Without loss of generality, we rewrite the boundary conditions of this RH problem. When 
𝜆 ∈ ℝ ∪ 𝑖ℝ

{

𝐽+(𝜆) − 𝐽−(𝜆) = 𝐽−(𝜆)𝐽0(𝜆),
𝐽±(𝜆) → 𝐼𝑛+1, 𝜆 → ∞,

(5.7)
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where

𝐽0(𝜆) = 𝐺0(𝜆) − 𝐼𝑛+1 = 𝐸

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0 𝑠̂12 𝑠̂13 ⋯ 𝑠̂1,𝑛+1
𝑠21 0 0 ⋯ 0
𝑠31 0 0 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮

𝑠𝑛+1,1 0 0 ⋯ 0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

𝐸−1,

𝐺0(𝜆) is the jump matrix. According to (4.32) and the Plemelj formula, the formal solution of the regular matrix RH problem can be 
obtained:

(𝐽+)−1(𝜆) = 𝐼𝑛+1 +
1
2𝜋𝑖 ∫

+∞

−∞

𝐽0(𝜉)(𝐽+)−1(𝜉)
𝜉 − 𝜆

𝑑𝜉, 𝜆 ∈ Γ+. (5.8)

However, in many cases, the RH problem (4.32) is non-regular.
Case 2.  the RH problem is non-regular: i.e., det 𝐽+ = 𝑠11 = 0 and det 𝐽− = 𝑠̂11 = 0.

Lemma 5.2. If det 𝐽+ = 𝑠11 = 0, det 𝐽− = 𝑠̂11 = 0, and det 𝐽± = 0 in Γ±, than the expression for 𝐽± at det 𝐽± = 0 is determined.
Proof.  If det 𝐽+ = 𝑠11 = 0 and det 𝐽− = 𝑠̂11 = 0, then the uniqueness of solutions for each associated RH problem fails. In general, 
suppose that 𝑠11(𝜆) has 2𝑁 zeros {±𝜆𝑘 ∈ Γ+, 1 ≤ 𝑘 ≤ 𝑁} (where 𝑁 is another arbitrarily given natural number), 𝑠̂11(𝜆) has 2𝑁 zeros 
{±𝜆̂𝑘 ∈ Γ−, 1 ≤ 𝑘 ≤ 𝑁}. In this case, each of ker 𝐽+(𝜆𝑘), 1 ≤ 𝑘 ≤ 𝑁 only contain a single basis column vector, which is denoted by 𝒗𝑘; 
each of ker 𝐽−(𝜆̂𝑘), 1 ≤ 𝑘 ≤ 𝑁 only contain a single basis row vector, which is denoted by 𝒗̂𝑘. Then, it is easy to know that

𝐽+(𝜆𝑘)𝒗𝑘 = 0, 𝒗̂𝑘𝐽−(𝜆̂𝑘) = 0, 1 ≤ 𝑘 ≤ 𝑁. (5.9)

It is known that under the standard normalization condition (4.34) and the special zero construction condition (5.9), we can obtain 
an explicit solution to the RH problem (4.32) [19]. If we take the jump matrix 𝐺0 as the identity matrix 𝐼𝑛+1, we can obtain the 𝑁-
soliton solution of the RH problem. In this case, we can clearly see that 𝐺0 = 𝐼𝑛+1 can be achieved as long as 𝑠𝑗,1 = 𝑠̂1,𝑗 = 0, 2 ≤ 𝑗 ≤ 𝑛 + 1, 
which also means that there is no reflection (the reflection coefficient is zero) in the scattering problem. From this, the solution to 
the special RH problem (4.32) is obtained

𝐽+(𝑥, 𝜆) = 𝐼𝑛+1 −
𝑁
∑

𝑘,𝑙=1
(
𝒗𝑘(𝑀−1)𝑘𝑙𝒗̂𝑙

𝜆 − 𝜆̂𝑙
−
𝜎𝒗𝑘(𝑀−1)𝑘𝑙𝒗̂𝑙𝜎

𝜆 + 𝜆̂𝑙
), (5.10)

𝐽−(𝑥, 𝜆) = 𝐼𝑛+1 −
𝑁
∑

𝑘,𝑙=1
(
𝒗†𝑙 (𝑀

−1)†𝑘𝑙𝒗̂
†
𝑘

𝜆 − 𝜆𝑙
−
𝜎𝒗†𝑙 (𝑀

−1)†𝑘𝑙𝒗̂
†
𝑘𝜎

𝜆 + 𝜆𝑙
), (5.11)

where 𝑀 = (𝑚𝑘𝑙)𝑁×𝑁  is a square matrix whose entries are determined by

𝑚𝑘𝑙 =
𝒗̂𝑘𝒗𝑙
𝜆𝑙 − 𝜆̂𝑘

−
𝒗̂𝑘𝜎𝒗𝑙
𝜆𝑙 + 𝜆̂𝑘

, 𝜆𝑙 ≠ 𝜆̂𝑘. (5.12)

 ∎
Since both 𝜆𝑘 and 𝜆̂𝑘 are constants, they are independent of space 𝑥 and time 𝑡. Furthermore, the evolution of 𝒗𝑘(𝑥, 𝑡𝑟) and 

𝒗̂𝑘(𝑥, 𝑡𝑟), 1 ≤ 𝑘 ≤ 𝑁 with respect to space and time can be obtained. For example, by taking the derivative of the first equation of 
(5.9) with respect to 𝑥 and combining it with the Eq. (4.8), we can obtain

𝐽+(𝑥, 𝜆𝑘)
(𝑑𝒗𝑘
𝑑𝑥

− 𝑖𝜆2𝑘Λ𝒗𝑘
)

= 0, 1 ≤ 𝑘 ≤ 𝑁. (5.13)

It can be seen that for each 1 ≤ 𝑘 ≤ 𝑁, 𝑑𝒗𝑘𝑑𝑥 − 𝑖𝜆2𝑘Λ𝒗𝑘 is an element of ker 𝐽+(𝑥, 𝜆𝑘), combined with the relation of (5.9), it is not difficult 
to find that 𝒗𝑘 is linearly dependent. Without loss of generality, we denote it as a simple linear relationship

𝑑𝒗𝑘
𝑑𝑥

= 𝑖𝜆2𝑘Λ𝒗𝑘, 1 ≤ 𝑘 ≤ 𝑁. (5.14)

Similarly, we can also obtain the correlation of 𝒗𝑘 with respect to time 𝑡
𝑑𝒗𝑘
𝑑𝑡𝑟

= 4𝑖𝜆2𝑟𝑘 Λ𝒗𝑘, 1 ≤ 𝑘 ≤ 𝑁. (5.15)

Then, combining (5.14) and (5.15) we can obtain the correlation of 𝒗𝑘 with respect to space 𝑥 and time 𝑡𝑟
𝒗𝑘(𝑥, 𝑡𝑟) = e

𝑖𝜆2𝑘Λ𝑥+4𝑖𝜆
2𝑟
𝑘 Λ𝑡𝑟̃𝒗𝑘0 , 1 ≤ 𝑘 ≤ 𝑁. (5.16)

Similarly, we can also obtain the correlation of 𝒗̂𝑘 with respect to space and time

𝒗̂𝑘(𝑥, 𝑡𝑟) = 𝒗̂𝑘0e
−𝑖𝜆̂2𝑘Λ𝑥−4𝑖𝜆̂

2𝑟
𝑘 Λ𝑡𝑟̃ , 1 ≤ 𝑘 ≤ 𝑁. (5.17)

where 𝒗𝑘0  and 𝒗̂𝑘0  are arbitrary constant column and row vectors, respectively.
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Finally, 𝐽+ is expanded at 𝜆 as

𝐽+(𝑥, 𝜆) = 𝐼𝑛+1 +
𝐽 1
+(𝑥)
𝜆

+
𝐽 2
+(𝑥)
𝜆2

+ 𝑂( 1
𝜆3

), 𝜆 → ∞, (5.18)

Substituting the above formula into (4.8)-(4.9), it is easy to obtain
𝑈̃2 = −𝑖[Λ, 𝐽 1

+],

where 𝐽 1
+ = ((𝐽 1

+)𝑗𝑙)(𝑛+1)×(𝑛+1). Equivalently,

𝑞𝑗 = 2𝑖e−
1
4 𝑖 ∫

𝑥
−∞ |𝒒|2(𝑥′ ,𝑡)𝑑𝑥′ (𝐽 1

+)1,𝑗+1, (5.19)

𝑞∗𝑗 = −2𝑖(𝐽 1
+)𝑗+1,1e

1
4 𝑖 ∫

𝑥
−∞ |𝒒|2(𝑥′ ,𝑡)𝑑𝑥′ . (5.20)

Meanwhile, we can also obtain the involution property of 𝐽 1
+:

(𝐽 1
+)

†(−𝑥, 𝑡) = 𝑖𝐶𝐽 1
+(𝑥, 𝑡)𝐶

−1, (5.21)

Thus, 𝑞𝑗 and 𝑞∗𝑗 (𝑗 = 1, 2,… , 𝑛) can be used to determine the solution of the nonlocal reverse-space multi-component higher-order CLL 
Eq. (3.11). There is the following theorem
Theorem 5.1. Given that the solution in (5.10)-(5.11) is associated with 𝜆, then

𝐽 1
+ = −

𝑁
∑

𝑘,𝑙=1
(𝒗𝑘(𝑀−1)𝑘𝑙𝒗̂𝑙 − 𝜎𝒗𝑘(𝑀−1)𝑘𝑙𝒗̂𝑙𝜎), (5.22)

substitute it into (5.19)-(5.20), solutions of the multi-component high-order CLL equation can be obtained

𝑞𝑗 = −2𝑖e−
1
4 𝑖 ∫

𝑥
−∞ |𝒒|2(𝑥′ ,𝑡)𝑑𝑥′

𝑁
∑

𝑘,𝑙=1
(𝒗𝑘(𝑀−1)𝑘𝑙𝒗̂𝑙 − 𝜎𝒗𝑘(𝑀−1)𝑘𝑙𝒗̂𝑙𝜎)1,𝑗+1, 1 ≤ 𝑗 ≤ 𝑛, (5.23)

where matrices 𝑀 are defined as before (5.12), vectors 𝒗𝑘 = (𝑣𝑘,1, 𝑣𝑘,2,… , 𝑣𝑘,𝑛+1)𝑇 , 𝒗̂𝑘 = (𝑣̂𝑘,1, 𝑣̂𝑘,2,… , 𝑣̂𝑘,𝑛+1), 1 ≤ 𝑘 ≤ 𝑁 .

5.3.  Nonlocal reverse-space multi-component higher-order Chen-Lee-Liu system N-soliton solutions

To obtain soliton solutions for the nonlocal reverse-space multi-component higher-order CLL Eq. (3.11), which we summarize as 
follows.

Theorem 5.2. Assume that det 𝐽−(𝜆) = 𝑠̂11(𝜆) has 2𝑁 zeros, note 𝜆̂𝑘 = −𝑖𝜆𝑘 ∈ Γ−, 1 ≤ 𝑘 ≤ 𝑁 . Then the elements of ker 𝐽−(𝜆) can be repre-
sented as

𝒗̂𝑘(𝑥, 𝑡𝑟) = 𝒗̂𝑘(𝑥, 𝑡𝑟, 𝜆̂𝑘) = 𝒗†𝑘(−𝑥, 𝑡𝑟̃,−𝑖𝜆̂𝑘)𝐶 = 𝒗†𝑘0e
−𝑖𝜆̂2𝑘Λ𝑥−4𝑖𝜆̂

2𝑟
𝑘 Λ𝑡𝑟𝐶, 1 ≤ 𝑘 ≤ 𝑁, (5.24)

where 𝒗†𝑘0  is an arbitrary constant sequence vector. And then, we have the 𝑁-soliton solution of the nonlocal reverse-space multi-component 
higher-order CLL equation

𝑞𝑗 = −2𝑖e−
1
4 𝑖 ∫

𝑥
−∞ |𝒒|2(𝑥′ ,𝑡)𝑑𝑥′

𝑁
∑

𝑘,𝑙=1
(𝒗𝑘(𝑀−1)𝑘𝑙𝒗̂𝑙 − 𝜎𝒗𝑘(𝑀−1)𝑘𝑙𝒗̂𝑙𝜎)1,𝑗+1, 1 ≤ 𝑗 ≤ 𝑛. (5.25)

where 𝒗𝑘 = (𝑣𝑘,1, 𝑣𝑘,2,… , 𝑣𝑘,𝑛+1)⊤ and 𝒗̂𝑘 = (𝑣̂𝑘,1, 𝑣̂𝑘,2,… , 𝑣̂𝑘,𝑛+1), 1 ≤ 𝑘 ≤ 𝑁 are defined in (5.16) and (5.24), respectively.
Proof.  Based on the elements (5.24) of ker 𝐽−(𝜆), we can easily see that the solutions of the special RH problem determined by (5.10) 
and (5.11) satisfies (4.35), that is,

(𝐽+)†(−𝑥, 𝑡,−𝑖𝜆) = 𝐶𝐽+(𝑥, 𝑡, 𝜆)𝐶−1, (5.26)

This indicates that 𝐽 1
+ satisfies the involution property (5.21). Combined with Theorem 5.1, the 𝑁-soliton solution (5.25) of the 

nonlocal reverse-space multi-component higher-order CLL equation can be obtained. ∎
Finally, we present one and two-soliton solutions for the nonlocal reverse-space multi-component higher-order CLL equation, and 

analyze the properties and characteristics of their dynamics through plotting graphs.
One-soliton solution To obtain one-soliton solution, we set 𝑁 = 1, 𝑟 = 2, For simplicity, we let 𝜃𝑘 = 𝑖𝜆2𝑘𝑥 + 4𝑖𝜆6𝑘𝑡 and 𝜃̂𝑘 = −𝑖𝜆̂2𝑘𝑥 −

4𝑖𝜆̂6𝑘𝑡, denote 𝒗10 = (𝑐1,1, 𝑐1,2,… , 𝑐1,𝑛+1)⊤ and 𝒗†10 = (𝑐∗1,1, 𝑐
∗
1,2,… , 𝑐∗1,𝑛+1). Through direct calculation, the explicit expression of one-soliton 

solution can be derived

𝑞𝑗 =
−2𝑖(𝜆21 − 𝜆̂

2
1)𝑐1,1𝑐

∗
1,𝑗+1e

𝜃̂1−𝜃1

𝜆̂1|𝑐1,1|2e−(𝜃̂1+𝜃1) + 𝜆1
∑𝑛
𝑚=1 |𝑐1,𝑚+1|2e𝜃̂1+𝜃1

exp
(

−1
4
𝑖∫

𝑥

−∞
|𝒒|2(𝑥′ , 𝑡)𝑑𝑥′

)

1 ≤ 𝑗 ≤ 𝑛. (5.27)

Letting

𝜆1 = 𝜉1 + 𝑖𝜂1, 𝑐1,1 =
√

𝑛e−2𝜂1𝑥0+𝑖𝜎0 , 𝑐1,𝑚+1 = 1, 1 ≤ 𝑚 ≤ 𝑛,
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Fig. 2. One-soliton solutions |𝑞1| : (a) 𝑛 = 1, 𝜆1 = 0.5 − 0.5𝑖, 𝑐1,1 = 𝑐1,2 = 1; (b) 𝑛 = 2, 𝜆1 = 0.5 − 0.5𝑖, 𝑐1,1 = 𝑐1,2 = 𝑐1,3 = 1; (c) 𝑛 = 2, 𝜆1 = 1 − 0.5𝑖, 𝑐1,1 =
𝑐1,2 = 𝑐1,3 = 1; (d) when 𝑡 = −2, 0, 2 (under the condition of (c)).

we can rewrite (5.27) as

𝑞𝑗 =
8𝜉1𝜂1 exp(−2𝑖(𝜉21 − 𝜂

2
1 )𝑥 − 8𝑖𝜏1𝑡 + 𝑖𝜎0)

√

𝑛(𝜉1 cosh 𝜏2 + 𝑖𝜂1 sinh 𝜏2)
exp

(

−1
4
𝑖∫

𝑥

−∞
|𝒒|2(𝑥′ , 𝑡)𝑑𝑥′

)

, (5.28)

where 𝑥0 and 𝜎0 are real parameters,
𝜏1 = 𝜉61 + 𝜂

6
1 − 9𝜉21𝜂

4
1 + 9𝜉41𝜂

2
1

𝜏2 = −4𝜉1𝜂1𝑥 − 16𝜉1𝜂1(3𝜉41 + 3𝜂41 − 10𝜉21𝜂
2
1 )𝑡 + 8𝜂1𝑥0.

This solution is a solitary wave in the multi-component CLL equation. Its amplitude function |𝑞𝑗 | has the shape of a hyperbolic secant 
with peak amplitude 8𝜉1𝜂1√

𝑛
, and its velocity is −16𝜉1𝜂1(3𝜉41 + 3𝜂41 − 10𝜉21𝜂

2
1 ). The phase of this solution depends linearly on both space 

𝑥 and time 𝑡. The spatial gradient of the phase is proportional to the speed of the wave. Parameters 𝑥0 and 𝜎0 are the initial location 
and phase of this solitary wave. We present the one-soliton solutions for 𝑛 = 1 and 𝑛 = 2 in Fig. 2. We can see that the amplitude of 
the solitary wave decreases as 𝑛 increases.

Two-soliton solution When 𝑁 = 2, the solution (5.25) is

𝑞𝑗 = 4𝑖 det 𝑀̂
det𝑀

exp
(

−1
4
𝑖∫

𝑥

−∞
|𝒒|2(𝑥′ , 𝑡)𝑑𝑥′

)

, 1 ≤ 𝑗 ≤ 𝑛, (5.29)

where

𝑀̂ =

⎡

⎢

⎢

⎢

⎣

0 𝑐1,1e−𝜃1 𝑐21e−𝜃2
𝑐∗1,𝑗+1e

𝜃∗1 𝑚11 𝑚12

𝑐∗2,𝑗+1e
𝜃∗2 𝑚21 𝑚22

⎤

⎥

⎥

⎥

⎦

,

and

𝑀 =
[

𝑚11 𝑚12
𝑚21 𝑚22

]

,

with

𝑚𝑘𝑙 =
2

𝜆2𝑙 − 𝜆̂
2
𝑘

(

𝜆𝑙
𝑛
∑

𝑚=1

(

𝑐∗𝑘,𝑚+1𝑐𝑙,𝑚+1
)

e𝜃
∗
𝑘+𝜃𝑙 + 𝜆̂𝑘𝑐∗𝑘,1𝑐𝑙,1e

−(𝜃∗𝑘+𝜃𝑙)

)

, 𝑘, 𝑙 = 1, 2.

According to the factor of the exponential function in 𝑀 , we can know that there are two different states of the two-soliton solution. 
One is 3(𝜉21 − 𝜂21 )2 − 4𝜉21𝜂

2
1 ≠ 3(𝜉22 − 𝜂

2
2 )

2 − 4𝜉22𝜂
2
2 , the other one is 3(𝜉21 − 𝜂21 )2 − 4𝜉21𝜂

2
1 = 3(𝜉22 − 𝜂

2
2 )

2 − 4𝜉22𝜂
2
2 . Without loss of generality, 

we take

𝜆1 = 1 +

√

2
2
𝑖, 𝜆2 = 1 −

√

3100
100

𝑖, 𝑐1,1 = 𝑐2,1 = 𝑐1,2 = 𝑐2,2 = 1,

which makes the two-soliton solution elastically collide as shown in Fig. 3 (a). Similarly, when we take

𝜆1 = 1 +

√

5
3
−

√

46
6

𝑖, 𝜆2 = 1.1 +

√

121
60

−

√

47314
150

𝑖, 𝑐1,1 = 𝑐2,1 = 𝑐1,2 = 𝑐2,2 = 1,

the two-soliton solution appears in the bound state shown in Fig. 3 (b). Note that we only provide the figures for |𝑞| with 𝑛 = 1.
In this case, the two right-travelling solitons pass through each other and keep each amplitude and velocity. In the first case, 

Fig. 3 (a) describes an analytic regular two-soliton interaction, which are far apart and moving toward each other. However, these 
solitons reappear from the interaction without any change of shape and velocity as 𝑡 → ∞, and there is no energy radiation emitted 
to the far field. Thus the interaction of these solitons is elastic. This elastic interaction is a remarkable property which signals that 
the multi-component higer-order CLL system is integrable. There is still some trace of the interaction however. Indeed, after the 
interaction, each soliton acquires a position shift and a phase shift. The position of each soliton is always shifted forward, as if the 
soliton accelerates during interactions.
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Fig. 3. Two-soliton solutions |𝑞| : (a) collision, where Re(𝜆41) + 2Re2(𝜆21) ≠ Re(𝜆42) + 2Re2(𝜆22); (b) bound state, where Re(𝜆41) + 2Re2(𝜆21) = Re(𝜆42) +
2Re2(𝜆22).

6.  Conclusions

In this paper, we mainly focused on the nonlocal multi-component reverse-space CLL equation with the zero boundary condition, 
and the 𝑁-soliton solutions to the equation have been derived. By formulating a specific Riemann-Hilbert problem from the corre-
sponding spectral problem, we show that the 𝑁-soliton solutions can be expressed via the solution to this Riemann-Hilbert problem 
under reflectionless conditions. Compared with the local case, the nonlocal reverse-space CLL equation exhibits distinct symmetry 
relations, leading to independent scattering data 𝜆𝑘 and 𝜆̂𝑘. This independence gives rise to novel types of 𝑁-soliton solutions, as dif-
ferent nonlocal reductions generate varying symmetry structures. Compared with the zero boundary condition, the Riemann-Hilbert 
problem with non-zero boundary becomes more complex, especially for multi-component systems. The main reason is that the spec-
tral distribution becomes more complex under the non-zero boundary condition, and the forms of solutions corresponding to spectral 
points become more diversified. The periodic wave solutions are constructed when the Riemann-Hilbert problem is non-regular. Con-
versely, when the Riemann-Hilbert problem is regular, we can analyze the asymptotic of the solutions. At present, some authors have 
studied the long-time asymptotic behavior for the nonlocal equations. Following this idea, the long-time asymptotic of the nonlocal 
multi-component higher-order CLL equation will be studied in future work.
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