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Abstract

Nonlinear wave models have been widely researched in several relevant scientific disci-
plines, including theoretical physics, applied mathematics, and plasma physics, over the
last 60 years. This research article focuses on deriving several analytical solutions and
introduces newly constructed solitonic forms for a nonlinear (3+1)-dimensional evolution
equation. The Generalized Exponential Rational Integral Function (GERIF) method is a
recently advanced method to investigate exponential, trigonometric, hyperbolic, logarith-
mic, and inverse function solutions. We visualize these solutions through 3-dimensional
(3D), contour, and contour plots to enhance their comprehensibility. These graphical rep-
resentations show soliton-form solutions, including lumps, peakons, solitons, periodic
lumps, periodic peakons, periodic solitons, solitonic wave-patterns, cone shapes, etc.
These applications significantly enhance the quality and significance of our work, show-
casing the utility of the newly introduced GERIF method. By bridging the gap between
theoretical physics, plasma physics, and physical applications, this work presents an en-
tirely new point of view on the evolving multi-soliton and multi-peakon patterns. These
findings open the door for future developments in plasma waves and wave propagation
while deepening our understanding of complex systems. The obtained forms of graphi-
cal representations have not been thoroughly studied in soliton theory up to this point.
This research is the first ever to investigate the dynamics of newly generated solutions in
plasma physics, nonlinear dynamics, and theoretical physics, incorporating multi-solitons,
multi-peakons, and other solitons.

Keywords Mathematical methods - Closed-form solutions - Nonlinear evolution model -
Solitons

1 Introduction

During the past six decades, nonlinear wave models have been investigated extensively

in theoretical physics, plasma physics, applied mathematics, and other relevant scientific
domains [1-3]. Soliton theory, a fundamental concept in mathematical physics, plays a
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pivotal role in understanding wave phenomena. Its remarkable applications extend to the
(3+1)-dimensional evolution equation, where solitons serves as unique solutions, maintain-
ing their shape and energy while propagating through a medium.

In this article, the focus of our study is on the (3+1)-dimensional nonlinear evolution
equation, expressed as: [4, 5]:

0’R 0’R 67]? - 0*R 0’R OR OR 0’R 9’R
Ox0x | Oy .

0y6t+cl 8x8$610y+3R61:0y+ bz Oy 626y8y+0302é92:0’ )

where ¢y, co, and c3 are the real parameters that govern the balance between nonlinearity
and dispersion in different spatial directions. This equation is characterized by its intricate
structure, involving various partial derivatives and coefficients, reflecting the complexity of
wave dynamics in three spatial dimensions. evolution equation plays a significant role in
nonlinear wave theory, soliton theory, and various fields of mathematics and physics, where
it appears as a key equation that governs the behavior of certain waves and wave-like phe-
nomena. Its solutions provide insights into the complex dynamics of these systems and can
have applications in diverse areas such as fluid dynamics, nonlinear optics, and plasma phys-
ics. Theoretical analysis of soliton solutions for nonlinear partial differential equations holds
significant importance due to its wide-ranging applications. Various effective techniques
have been applied to tackle these equations, including the exp-function method [6], Painlevé
test [7, 8], Riccati projective equation method [9], the homotopy perturbation method [10],
the Adomain decomposition method [11], the inverse (G’ /G)-expansion method [12], Lie
symmetry method [13], Kudryashov method [14, 15], Hirota bilinear transformation tech-
nique [16], the Chamani method [17], the evolution method [18, 19], Lie symmetry method
[20], the Galerkin method [21] etc. These methods collectively contribute to a comprehen-
sive toolkit for solving and understanding nonlinear partial differential equations.

We have recently dealt with a few nonlinear evolution problems utilizing a multivariate
generalized exponential rational integral function technique [22]. Building on this foun-
dation, we now aim to explore the (3+1)-dimensional evolution equation. This extension
provides a more comprehensive understanding of the equation’s behavior in higher dimen-
sions. In recent years, various methods have been employed by researchers to investigate
the evolution equation, leading to significant advancements in the field. Hosseini et.al [5]
examine how dispersive waves behave in the (3+1)-D evolution equation. They employed
the Bécklund transformation and the evolution form, using the truncated Painleve expansion
method to extract solutions for this equation. Gunhan and Yasar [23] applied the Painlave
integrability concept by utilizing the WTC-Kruskal method and Lie point symmetries to the
3D evolution equation. Additionally, they discussed the conservation law for the consider
problem. Ismael et al. [24] adopted the evolution approach along with a long-wave method
to investigate various aspects of the 3D evolution equation. They explored multiple M-lump
waves, breather waves and its interaction with one soliton.

This article is divided into several sections, each focusing on the Generalized exponential
rational integral function method’s application to the evolution equation and the resulting
outcomes. Section 1 explored the historical origins of the evolution equation, furnishing
crucial context to underscore its relevance in the field of nonlinear partial differential equa-
tions. In Section 2, we outline the essential steps of the newly introduce “Generalized expo-
nential rational integral function method,” presenting a detailed, step-by-step procedure for
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obtaining exact solutions to the NLPDE. In Section 3, we applied the Generalized exponen-
tial rational integral function method to solve the evolution equation. This approach led us
to discover novel solutions to the core problem. To gain a deeper understanding, we visually
represented these solutions through graphs, making it possible to identify their relevance in
practical scenarios. Furthermore, in Section 4, we visually depict how our solutions behave
when different parameters are chosen within an acceptable range. This visual analysis helps
us better understand the complexities of nonlinear wave phenomena. In Section 5, we con-
clude our research study by summarizing the key findings. We emphasize the significant
contribution made through the application of the generalized exponential rational function
method to the evolution equation. In the last part of our article, we provide a summary of the
main points related to future research directions in Section 5.

2 Methodology

Our objective of this section is to highlight the key steps of the Generalized exponential
rational integral function (GERIF) method. The GERIF metod’s significance lies in its
unique ability to provide novel analytic solutions to the nonlinear partial differential Eqs.
(NLPDEs). This method is the extension of the already existing method known as gener-
alized exponential rational function (GERF) [25] method and the multiple exp-function
method [26].

e A general NLPDE:s is

F(R,aR,aR,aR,aR,azR, aZR,...) =0, 2
Ox’ Oy’ 0z’ Ot Ox?’ dxot
where R = R(z,y, z,t) is a solution of (2).
e For the reduction of the (2), we are using the transformation
R(z,y,2,t) = S(n), 1= w1z +way + w3z + wat + ws, 3)

where wi,ws,ws,ws and ws are arbitrary constants. Then the reduced equation can be
represent as

P(S(n), 8" (), §"(n),..) = 0. 4)

e To simplify the above (4), we are assuming a new trial solution of the form

N i N —1
S =To+ T (/U(n)dn) +> Ki (/U(n)dn) : (5)

Here, U(n) is defined as an exponential rational function
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ay exp(bin) + az exp(ban)

Un) = as exp(bsn) 4 ayg exp(ban)’

(6)

e To ensure that (1) holds true, it is essential to identify suitable values for various param-
eters like aj,b;, (1 < j <4), To, T; and K; (1 <4 < N). These parameters must be
carefully chosen to ensure that (1) is satisfied perfectly.

e The order of the method depends on N, which can be determined by using the balancing
principle to both the nonlinear term and the highest order derivative term in the NLODE
4).

e We substitute the expression from (5) into (4) along with (6), yielding an algebraic equa-
tion of the form Q(©1, O, 03,04) = 0, where, each ©; = exp(b;n), for 1 < j < 4.
Subsequently, we will equate each coefficient of the function Q to zero.

e After using software like Mathematica for mathematical simplifications, we can find the
exact values of the involved variables. Substituting these values into (5) and (6) yields
precise exact soliton solutions for (4).

3 Applications of GERIF Method

Here, we utilize the GERIF method to find analytic wave solutions, which include exponen-
tial, trigonometric, hyperbolic, logarithmic, and inverse functions, for the evolution equa-
tion. Firstly, we employing a wave translation for the (1) in such a way

R(z,y,z,t) = S(n), with 1 =wiz + way + w3z + wat + ws. 7)

which reduced the main (1) into the ODE,

crwawiSW () + (Cng + caw? + w4w2) S"(n) + 6crwawr S(7)S” () + 6crwawr S ()2 = 0. (8)

By balancing the terms S(17)®*) and S(1)S” (n) in (8), we determine that N = 2. Therefore,
the trial solution takes the form

K1 ICo

Uydn * O

5(77):76+7'1/U(77)d77+7'2 (/U(n)dn>2+f

Substituting (9) into (8) and utilizing the GERIF technique via computational software, such
as Mathematica, yields following sets of solutions along with constraint condition for the
evolution equation:

3.1 Exponential Function Form

Whentheparametersaresetas|ay, as, as, a4] = [2i, 24, 24, 2i]and [b1, ba, b3, bs] = [2, 2,0, 0],
(6) simplifies to the standard exponential function form

U(n) = exp(2n). (10)
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Incorporating the (10) into (9) yields the following form of S(7):

1 1
S(n) = 5 exp(2n)Ty + 7 exp(An) To + 2exp(=2n)K1 + dexp(—4n)Ly + To. - (11)

2 2
T2 0K =0T = 0Kz = 0 = 0wy = 202 B%5
Case 3.1.1 w2

A combination of the newly acquired set of constants from the previous (11), solution for
(8) recast as

S(n) = 5 xp(20)Ti + . (12

We found an exact solution for the evolution (1) by utilizing (12) and (7) as
1
R(z,y,z,t) = 57'1 exp (2 (w1 + way + w3z + wyt + ws)) + To. (13)

—CQUJ%*CgUJ?’
To#0; TL #0; Ky #0; T2 #0; Ko #0; wy =0,wy = ———=.
Case 3.1.2 @)

A combination of the newly acquired set of constants from the previous (11), solution for
(8) recast as

1 1
S(n) = 5e?”’rl + Ze4777'2 +To + 2e 21K + de 4LC,. (14)

We found an exact solution for the evolution (1) by utilizing (14) and (7) as

2

1 t (—cow? — cw
R(x7yvzvt) :76+§718Xp (2 <<2233) +yw2+w5 +w3z>>

w2
1 t (—cow? — caw?
+*7—26Xp (4 <(2233)+yWQ+W5+W3Z>>
4 Wa
(15)
t(*ngg 703w§)
+2’C1€Xp —2 w—+yw2 + w5 + w3z
2
t (—cow? — c3w?
+ 4K5 exp <—4 <(25J33) + yws + ws +w3z>> :
2
Case 3.1.3 Ty #0; K1 #0; Ta=0; Ky =0; wa =0.

A combination of the newly acquired set of constants from the previous (11), solution for
(8) recast as
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1
S(n) = 562777'1 + To + 272K (16)

We found an exact solution for the evolution (1) by utilizing (16) and (7) as

1 ) i
R(ﬂl‘, v, z, t) _ 57162(tw4+1w1+W5+W3Z) + 76 + 2K16—2(tw4+1w1+w5+w3z). (17)

3.2 Sine Function Form

When the parameters are set as [a1,a2,a3,a4] = [3/4,—-3/4,4,i] and
[b1,ba, b, ba] = [, —1,0, 0], (6) simplifies to the standard sine function form

U(n) = - sin(n). (18)

After substituting (18) into (9), we can determine the form of S(n):

9 3 16 4
S(n) = 1—67'2 cos?(n) — 17'1 cos(n) + To + ?’CQ sec?(n) — glCl sec(n). (19)

—CQUJ%*ngg
To#0; TL #0; Ky #0; To #0; Ko #0; wy =0,wy = ————=.
Case 3.2.1 @)

Plugging these constants into (19), we have following solution of ODE (8) as

9 3 16 4
S(n) = 1—67'2 cos?(n) — 17'1 cos(n) + To + ?’CQ sec?(n) — glCl sec(n). (20)

Thus, by using (20) within the expression (7), we discover the precise solution to the evolu-
tion equation as
_CZWS - c;;w%)

9 t
R(x,y,z2,t) = T6T2 cos? ( ( + ywa + ws +wsz>

w2
2

3 t (—cow? — csw
3 s <(2i33)+yw2+w5+wgz>
2

@n

16 t (—cow? — c3w?
+ ?ICQ sec? <(2233) + yws + w5 + w3z
w2

4 t 7020.)2 - 03w2
- glCl sec <(Z3) + yws +ws +wszz | + To.
2

Case322 To#0; T1#0; K1 =0; T2 #0; K3 #0; c3 =0;w =0.
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Plugging these constants into (19), we have following solution of ODE (8) as

9 3 16
S(n) = E7—2 cos®(n) — 17'1 cos(n) + To + §K2 sec?(n). (22)

Thus, by using (22) within the expression (7), we discover the precise solution to the evolu-
tion equation as

9 3
R(z,y,z,t) =To+ TGTQ cos? (twy + xw) + ws + wsz) — 17‘1 cos (twy + Twy + w5 + wsz)
16 , 23)
+ E’CQ sec” (twy + zwi + w5 + w3z) .

To#0; To #0; Ky #0; To #0; Ko #0 0 eah — cw
Case 3.2.3 0 y /1 I 1 sy 12 3 2 ;G y W4 Wo

Plugging these constants into (19), we have following solution of ODE (8) as

9 3 16 4
S(n) = 1—67'2 cos?(n) — 17'1 cos(n) + To + ?’CQ sec?(n) — glCl sec(n). (24)

Thus, by using (24) within the expression (7), we discover the precise solution to the evolu-
tion equation as

9 3
R(z,y, z,t) = 1—675 cos? (1@ + woy + w3z + wat 4 ws) — ZTI cos (w1 + way + w3z + wyt + ws)
25)
16 - 4 (
+ ?ICQ sec? (w12 + woy + w3z 4 wat + ws) — glCl sec (w12 + woy + w3z + wat + ws) + To.

3.3 Cosine Function Form

When the parameters are set as [a1, aa, a3, a4] = [i, 1, 1,4] and [by, ba, b3, bs] = [i, —1,0, 0],
(6) simplifies to the standard cosine function form

U(n) = cos(n). (26)
When we insert (26) into (9), we can express S(7) as follows:

S(n) = Tasin®*(n) + Tisin(n) + To + Kz csc®(n) + Ky esc(n). (27

To#0; T £0; Ky =0; Tz #0; Ky #0 0 ZCow5 — ey
M . = M M LW = W, = .
Case 3.3.1 0 ) 1 ) 1 ) 2 ; 2 ) 1 ) 4 wo

With the above-mentioned constants applied to (27), the solution for (8) is provided as
follows:

S(n) = Tasin®*(n) + Tisin(n) + To + Kz csc®(n) + Ky esc(n). (28)
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Hence, from (28) in the context of expression (7), we arrive at the following solution for the
evolution equation

t (—cow? — cqw? t 7(22’»3 — C3w§
Z\ e s Z\ T2 )

w2 w2

R(z,y,z,t) = Tasin? ( + ywa + ws + w;;z) + 71 sin < + ywo + wp + o.a;z)

29

W w2

+ Ky esc? (Merwz + ws +w3z> + Ky csc (M + yws +w5+w3z> +To.
Case332 To#0; 1 #0; K1 =0; T2 #0; K2 #0; c3 = 0;w2 = 0.

With the above-mentioned constants applied to (27), the solution for (8) is provided as
follows:

S(n) = Tzsin?(n) + Ti sin(n) + To + K2 esc?(n). (30)

Hence, from (30) in the context of expression (7), we arrive at the following solution for the
evolution equation

R(z,y,2,t) = Tasin® (twy + xw; + ws + wsz) + Ti sin (tws + 2w + ws + wsz) + To

2 (€2))
+ Kg csc” (twy + zw1 + ws + w3z) .

To£0; Ti £0; Ky £0; To #0; Ko #0 0 —Cau5 — e}
) . ) ) e = 00wy — .
Case 3.3.3 0 ) 1 ) 1 y 12 ’ 2 y C1 3 4 Wo

With the above-mentioned constants applied to (27), the solution for (8) is provided as
follows:

S(n) = Tasin®*(n) + Tisin(n) + To + Kz csc®(n) + Ky esc(n). (32)

Hence, from (32) in the context of expression (7), we arrive at the following solution for the
evolution equation

R(z,y,2,t) = Tasin? (w1x + woy + waz + wat 4+ ws) + T1 sin (w12 + woy + w3z + wat + ws)

33
+ Ka esc? (w1 + way + w3z 4+ wat + ws) + Kq esc (w1 + way + w3z 4+ wat + ws) + To. (33)

3.4 Tangent Function Form

Whentheparametersaresetas|ay, az, as, as] = [1, —1,4,i]and[by, ba, b3, ba] = [i, —, %, —i],
(6) simplifies to the standard zangent function form

U(n) = tan(n). (34)

With the above tangent function into (9), we have following form for S(7):

ICQ . ICI
log?(cos(n))  log(cos(n))

S(n) = Tzlog?(cos(n)) — Ti log(cos(n)) + To + 35)
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—epw? — caw?
To#0 L0 Ki=0; To=0; Ka=0; c1 = 0; wy = — 2553,
Case 3.4.1 wo

By substituting the provided constants into (35), we arrive at solution for (8) as follows:
S(n) = To — Ty log(cos(n)). (36)
Under the (36) and (7), we get
R(z,y,z,t) = To — T1 log (cos (w1 + way + wsz + wat + ws)) . 37)

To £ 0 To £ 0; To £0; Ky £ 05 Ko 0; wn = 0; oy — —298 — 38
Case 3.4.2 0 ’ 1 s 12 ) 1 3 2 =Y, 1 =Y 4 — Wo .

By substituting the provided constants into (35), we arrive at solution for (8) as follows:

_ 2(os(m)) — () K
S(0) = To + T log*(cos(n) = T log(cos(n) — it (38)
Under the (38) and (7), we have
2 catw?
R(z,y,z,t) = Talog” ( cos | wa (y — cat) — - + w5 + w3z
2
T py _ Catws
— Tilog ( cos | wa (y — cat) — o + ws + w3z (39)

K
— 1 +76.

log (cos (wg (y — cat) — % + ws + CU3Z))

Case343 To#0; Ti #0; K1 #0; T2 #0; Ko #0; ¢3=0;w2 =0.
By substituting the provided constants into (35), we arrive at solution for (8) as follows:

Ka Ky

S(’I]) = 7—2 logQ(COS(n)) - 7—1 IOg(COS(n)) + 7—0 + IOgQ (COS(’I])) - IOg(COb(’ﬂ)) .

(40)

Under the (40) and (7), we have

R(z,y, 2, t) = Tz log? (cos (twy + zw; 4 ws + w32)) — T1 log (cos (twy + 2w + ws + w32)) + To
. Ka _ K1 (41)
log? (cos (twy + 2wy + ws +wsz))  log (cos (twy + zwi + ws + w32))’

3.5 Hyperbolic Sine Function Form

When the parameters are set as  [a1,aq,as3,a4] = [4i,—47,4i,4i]  and
[b1, ba, b3, ba] = [2,—2,0, 0], (6) simplifies to the standard hyperbolic sine function form
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U(n) = sinh(27). (42)

When we place (42) in (9), we can define S(n) as:
1 1
S(n) = 17—2 cosh?(2n) + 571 cosh(2n) + To + 4Kasech?(2n) + 2K sech(2n).  (43)

—CgUJ%*C3w§
To#0; 1 #0; K1 =0; T2 #0; Ko #0; w1 =0; wg = ————=.
Case 3.5.1 w2

With the constant values outlined in (59), the solution for (8) is

1 1
S(n) = 175, cosh2(2n) + 57'1 cosh(2n) + To + 4’C286Ch2(2’)7). (44)

Equations (44) and (7) lead us to the following solution:

1 t (—cow? — c3w?
R(z,y,2,t) =To+ ;T2 cosh® (2 <(2253> + yws + ws + wgz>>

w2
1 t (—cow? — caw?
+ 57‘1 cosh (2 <(2233) + ywy + ws + wy;)) (45)

w2

t (—cow? — caw?
+ 4KCosech? (2 <(2233) + yws + ws + wdz>> .

w2

Case3.52 To#0; Te #0; Ky =0; T2 #0; Kz #0; ¢3=0; wy =0.

With the constant values outlined in (59), the solution for (8) is

1 1
S(n) = Z'E cosh?(2n) + 57'1 cosh(2n) + To + 4KCasech?(2n). (46)

Equations (46) and (7) lead us to the following solution

1 1
R(z,y,z,t) = 17'2 cosh? (2 (twy + zw; + ws + w3z)) + 57-1 cosh (2 (twg + w1 + ws +w32)) + To (47)

+ 4Kgsech? (2 (twy + Twi + ws + wsz)) .

—ngg — C3w§
To#0; Ti #0; K1 #0; T2 #0; Ko #0; ¢1 =05 wg = ——.
Case 3.5.3 w2

With the constant values outlined in (59), the solution for (8) is

1 1
S(n) = 17—2 cosh?(2n) + 57'1 cosh(2n) + To + 4Kasech?(2n) + 2K sech(2n).  (48)
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Equations (48) and (7) lead us to the following solution

1 1
R(z,y,2,t) = Z772 cosh? (2 (w12 + way + waz + wat +ws)) + 57'1 cosh (2 (w1 + way + w3z + wat + ws)) (49)
+ 4KCasech? (2 (w1 + woy + waz 4 wat + ws)) + 2K1sech (2 (w1 + way + waz + wat + ws)) + To.

3.6 Hyperbolic Cosecant Function Form

When the parameters are setas [a1, as, as, a4] = [i, i, —%, 1) and [by, be, b3, bs] = [0,0, —1, 1],
(6) simplifies to the standard Ahyperbolic cosecant function form

U(n) = csch(n). (50)

After introducing (50) into (9), we arrive at the expression of S(7) as:

S =T (log (sinh (g)) —log (cosh (g)))2 +T (log (sinh (g)) “log (cosh (g))) +T0

Ko K1 (51

+ (log (sinh (2)) — log (cosh (%)))2 * log (sinh (%)) — log (cosh (%))

_ 2 _ 2
To A0 TL£0; To=0; K1 =0; Ky =0; ¢ =0,y = — 22545
Case 3.6.1 w2

Plugging these constants into (51), then we get the following solution

S(n) =T (log (sinh (g)) —log (cosh (g))) +7To. (52)
Accordingly, the evolution equation has the following exact solution

1
R(z,y,z,t) = T log (sinh (2 (W1 + woy + w3z + wat + w;,)))
. (53)
—Tilog (Cosh (2 (W1 + woy + w3z + wat + w5))> +7To.

762(4)% — ngg
To#0, T1 #0; Ta #£0; K1 #0; Ko #0; wy =0; wy = ———=.
Case 3.6.2 wa

Plugging these constants into (51), then we get the following solution

S =T (log (sinh (g)) —log (cosh (g)))2 +T (log (sinh (g)) “log (cosh (g))) +T0

. Ks N K (54)
(log (sinh (2)) — log (cosh (%)))2 log (sinh (%)) — log (cosh (%)) '

Accordingly, the evolution equation has the following exact solution
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1 1
R(z,y,z,t) =T log? (sinh (5 (twq + ywa + ws + W3Z>)) + 71 log (sinh <§ (tws + ywo + ws + w;;z)))
2 1 1
+ T2 log” | cosh 3 (tws + ywa + ws + w32) — T1log ( cosh 3 (tws + ywo + w5 + w32)

— 2T log (sinh (% (twq + ywo + ws + mz))) log (cosh (% (twq + ywo + ws + wgz)>> (55)
+ &
log (sinh (§ (tws + yw2 + ws + ws2))) — log (cosh (3 (tws + yws + w5 + w32)))
Ko
+
(log (sinh (5 (tws + yws + ws + ws2))) — log (cosh (3 (tws + ywz + ws + w32)))) 2

+ To.

—ngg — ngg
To7#0; i 705 K1 #0; Ta 7 0; Ko 705 1 =05 wy = —————.
Case 3.6.3 w2

Plugging these constants into (51), then we get the following solution

S =T (log <sinh (g)) —log (cosh (g)))2 +T (log (sinh (g)) “log (cosh (g))) +T0

. Ks N K (56)
(log (sinh (2)) — log (cosh (g)))z log (sinh (%)) — log (cosh (%)) '

Accordingly, the evolution equation has the following exact solution

1
R(z,y,z,t) = Ty log? (sinh (5 (W1 + way + w2 + wat + w5)>>
. 1
+ T1 log (smh (5 (w1 + woy + w3z + wat + W5)>>
. 1
+ T3 log” | cosh 5 (W12 + way + w32z + wyt + ws)

1
— T1 log <cosh <§ (Wi + way + wsz + wat + ws)))

! 57
— 273 log <sinh <§ (w12 + woy + w3z + wat + w5)>>

1
log <cosh (5 (W1 + woy + w3z +w4t+w:,)>> +7To

Ky
+ log (sinh (% (w12 4+ woy + w3z + wat + (/J5))) —log (cosh (% (w12 4+ woy + w3z + wat + w5)))
Ko
(log ((:osh (% (w1 + woy + w3z + wat + w5))) — log (sinh (% (w1 4+ woy + w3z + wat + ws))))z .

3.7 Hyperbolic Secant Function Form:

When the parameters are setas a1, a2, a3, a4 = [2,2,2, 2] and [by, be, b3, bs] = [0,0, 1, —1],
(6) simplifies to the standard Ayperbolic secant function form

U(n) = sech(n). (58)

Above secant hyperbolic function along with (9) establish the following form for S():

Ky n Ko
(tanh (%)) 4tan™t (tanh (g))l (59)

S(n) = 4Tz tan™! (tanh (g))z +27; tan™! (tanh (g)) + 70+ Ztan-T
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—eow? — caw?
To#0 Ti0 Ki=0 To=0; Ka=0; ¢ = 0; wy = — 253,
Case 3.7.1: w2

With the constant values outlined in (59), the solution for (8) is

S(n) = 27; tan™! (tanh (g)) + To. (60)

Hence, (60) and (7) provide us a soliton solution of evolution equation as
1
R(z,y,z,t) =271 tan ™! (tanh (2 (W1 + woy + w3z + wat + w5)>> +7o. (61)

7020.)% - C3w§
To#0; T1 #0; K1 #0; T2 #0; Ko #0; w1 =0; wg = ————=.
Case 3.7.2 W2

With the constant values outlined in (59), the solution for (8) is

_ -1 AN - 7 K1 s
S(n) = To + 47 tan (tanh (2)> + 27; tan (tanh (2)) + pyP— (tanh (%)) + Py (tanh (g))l (62)

Hence, (62) and (7) provide us a soliton solution of evolution equation as

1 5 1
R(z,y,2,t) = 4Ty tan* (tanh (5 (tws + ywo + w5 + mz))) 2 4+ 27 tan~! <tzmh <§ (twq + ywo + ws + mz)))

Ky Ks
* 2tan~" (tanh (§ (fws + yws + ws + ws2))) + 4tan~! (tanh (5 (tws + yws + ws + w3z))) 2

(63)

+ To.

*ng% — 030.)%
To#0; i #0; K1 #0; Ta#0; Ko #0; ¢1 =0; wy = ———=.
Case 3.7.3 wa

With the constant values outlined in (59), the solution for (8) is

K1 n Ky
2tan~! (tanh (%)) Atan~?t (tanh (g))l (64)

S(n) = 4Tz tan™? (tanh (g))z +27; tan™! (tanh (g)) +To +

Hence, (64) and (7) provide us a soliton solution of evolution equation as

2
1
R(z,y,z2,t) = 4T3 tan™! (tanh (5 (w12 + way + wyz + wat + w5))) +To

K1
2tan~! (tanh (% (W1 + way + w32z + wat + w;))) (65)

1
+ 277 tan™! <tanh (5 (w1 + way + w3z + wat + w;,))) +

Ka
4tan~! (tanh (% (W1 + way + w3z + wat + wg)))2 .
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3.8 Hyperbolic Tangent Function Form

When  the  parameters are set as  [a1,ae,a3,a4] =[1,—1,1,1]  and
[b1,be,bs,b4] = [1,—1,1,—1], (6) simplifies to the standard hyperbolic tangent function
form

U(n) = tanh(n). (66)

The following expression for S(7) is attained by inserting (66) into (9):

Ko K1

S(n) = Tz2log”(cosh(n)) + T1 log(cosh(n)) + To + logz(cosh(n)) + log(cosh(n))

- (67)

_ 2 2
To A0 TL#0; Ky =0; To=0; Ky =0; ¢ =0; wy = —202 595
Case 3.8.1 wa

Thus, these constants provide us the following solution to the ODE (8),

S(n) = T1log(cosh(n)) + To- (68)

The above solution of ODE under the transformation (7) gives us the following solution of
evolution equation

R(z,y,z,t) = T1 log (cosh (w1 + way + w3z + wat + ws)) + To. (69)

To £ 0 Ti £ 0; To £0; Ky £ 0; Ky # 05 wn = 0; oy — —298 — €38
Case 3.8.2 0 ) 1 ) 2 9 1 3 2 9 1 9 4 Wo .

Thus, these constants provide us the following solution to the ODE (8),

/Cz + ’Cl
log?(cosh(n))  log(cosh(n))

S(n) = T3 log?(cosh(n)) + 71 log(cosh(n)) + To + - (70)

The above solution of ODE under the transformation (7) gives us the following solution of
evolution equation

R(z,y,2,t) = Tz log? (cosh (tws + yws + ws + wyz)) + T; log (cosh (twy + yws + ws + w32))

+i L ¥ s T ()
log? (cosh (twg + yws + ws +wzz))  log (cosh (twy + ywa + ws + wsz))
Case383 To#0; T1#0; K1 =0; T2 #0; K3 =0; 3 =0; wy =0.
Thus, these constants provide us the following solution to the ODE (8),
S(n) = Tz log?(cosh(n)) + Ti log(cosh(n)) + To. (72)
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The above solution of ODE under the transformation (7) gives us the following solution of
evolution equation

R(z,y,2,t) = Tz log? (cosh (twy + zw1 + ws + wzz)) + T; log (cosh (twy + zwi 4 ws + wz2)) + To- (73)

3.9 Hyperbolic Cotangent Function Form

When  the  parameters are set as  [a1,ae,a3,a4] =[1,1,1,—1]  and
[b1,be, b3, bs] = [1,—1,1,—1], (6) simplifies to the standard hyperbolic cotangent function
form

U(n) = coth(n). (74)

Placing above expression of U (n) into (9), then the form of S(n) is given by

ICQ + ICI
log?(sinh(n))  log(sinh(n))

S(n) = Tzlog?(sinh(n)) + 71 log(sinh(n)) + 7o + - (75)

_ 2 _ 2
To# 0 Ti A0 Ki=0: To =05 Ko =0 e = 0; wy = ———2 5,
Case 3.9.1 w2

With these constants incorporated into (75), a solution for the ODE (8) can be established as

S(n) = T1log(sinh(n)) + To. (76)

Use of (76) and (7) provide us the following solution
R(z,y,z,t) = T1 log (sinh (w12 + woy + w3z + wat + ws)) + To. 77

Case3.92 To#0; Ti #0; Ky =0; To #0; Ky =05 3 =0; wp =0.

With these constants incorporated into (75), a solution for the ODE (8) can be established as
S(n) = T2 log* (sinh(n)) + 71 log(sinh(n)) + To. (78)

Use of (78) and (7) provide us the following solution
R(z,y,2,t) = Tz log? (sinh (fwy + 2w + ws + wz2)) + 71 log (sinh (twy + 2w + ws + w3z)) + To. (79)

—CzUJ% - C3w?2)
To#0; T1 #0; T2 #0; K1 #0; Ko #0; wy =0; wy = ————=.
Case 3.9.3 @)

With these constants incorporated into (75), a solution for the ODE (8) can be established as

Ko Ky

S(n) = Tz log”(sinh(n)) + 71 log(sinh(n)) + To + og? (sinh(n)) + Tog(simh (7))’ (80)

@ Springer



316 Page 16 of 24 International Journal of Theoretical Physics (2025) 64:316

Use of (80) and (7) provide us the following solution

R(z,y, z,t) = T3 log? (sinh (twy 4 ywa + ws + w32)) + T1 log (sinh (tws + yws + ws + wsz))

K K
TR 2 " . 1
log? (sinh (tws + yws + ws + w3z))  log (sinh (twy + yws + ws + w32))

+To. @1)

4 Graphical Discussion

300 1\ o
200 t
0 -500Im(R) 073
\/ -4 o
0.0 70 -2 02
v 2 00

Figure 1 provides a visual representation of peakons, lumps and solitons for the solu-
tion (25). Here (a) 3D plot of the real part, illustrating the spatial distribution and am-
plitude peaks for w1 = 1, Wo = 52, w3 = i, Wy = 0, 76 = 1, 7-1 = 0, 75 = 1, K:l = 2,
Ko = 1, with time and spatial coordinates set to t = 0.1, z = 0.02. The plot covers a
specified range of values, with 2 € [—4,3] and y € [0.3,0.3], (b) 3D plot of the im-
aginary part, showing the variation and amplitude peaks in the imaginary component
forwl:1,w2:5i,w3:i,w5:0,76:1,7—1:0,7521,IC1:1,/C2:1,With
time and spatial coordinates set to ¢ = 0.01, z = 0.02 within the bounds of z € [—4, 3]
and y € [0.3,0.3], (c) 3D plot of the magnitude, depicting the combined amplitude of
real and imaginary parts for w; = 2, ws = 5i, w3 =4, w5 =0, Tp=1,71 =0,7T2 =0,
K1 = 2, K9 = 0, with time and spatial coordinates set to ¢ = 0.1, z = —0.02 within the
bounds of x € [—3.5,2.6] and y € [—0.5, 0.5], subgraphs (d) highlighting the intricate
pattern and symmetry in the real component, (¢) showcasing the detailed structure and
distribution in the imaginary component and (f) illustrating the overall amplitude pat-
terns and their spatial arrangement.

Figure 2 showcases the behavior of periodic-soliton, lumps and solitons in the con-
text of the solution (25). (a) 3D plot of the real part, showcasing the spatial distribu-
tion and amplitude variations with distinct peaks for wy = 2, wy = 24, w3 =1, w5 =0,
To=0,7T1 =0.01, T2 =1, K1 =2, Ko = 1, with time and spatial coordinates set to

2 x )
-02 x 2 02 y
-

(a)

N

() ||

(d) Re(R)

Fig. 1 Visual illustrations, incorporating 3D and contour graphs, of the real, imaginary, and magnitude
components of (25) representing the peakons, lumps and solitons
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(d) Re(R) (e) Im(R () IR|

Fig. 2 Visual illustrations, incorporating 3D and contour graphs, of the real, imaginary, and magnitude
components of (25) which describes the symmetric behavior

t = 0.01, z = 0.04 within the bounds of z € [—12,4] and y € [—1, 1], (b) illustrating the
variation and notable peaks in the imaginary component for w; = 2, we = 2, w3 =1,
ws =0,79=0,71 =0.01, 75 =1, Ky = 2, Ks = 1, with time and spatial coordinates
setto t = 0.01, z = 0.04 within the bounds of z € [—3.2,3.1] and y € [—1, 1], (¢) de-
picting the combined amplitude of the real and imaginary parts with prominent peaks
forwl = 2,&}2 = 2i,W3 = i,W5 = 0,7—0 = 0,7-1 = 001,7-2 = 1,IC1 = Q’ICQ = 1,W1th
time and spatial coordinates set to ¢ = 0.01, z = 0.03 within the bounds of z € [—8, §]
and y € [—1, 1], subgraphs (d), (e) and (f) depict the associated contour plots.

e Figure 3 provides a visual representation of lumps, and multi-solitons in the solution (33).
(a) The surface appears to have several peaks and valleys, indicating regions of positive
and negative values of Re (R) for wy =2, we =51, wg =14, w5 =0, To =1, T =0,

oo

-2 A o 1 2 E El o 1 4 3 2 a4 0o 1 2 3

(d) Re(R) (¢) Im(R) () |R|

Fig. 3 Visualization of (33): real and imaginary parts reveal oscillatory behavior, while the magnitude
indicates localized intensity distributions
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T2 =0, K1 =2, Ky = 0, with time and spatial coordinates set to ¢ = 0.1,z = —0.02
within the bounds of z € [—2, 3] and y € [—1, 1], (b) The surface has distinct peaks and
troughs, suggesting varying imaginary values across the xy-plane for w; = 2, wa = 51,
ws=14,ws=0,To=1,71=0,T2=0,K; =2, Ky =0, with time and spatial coor-
dinates set to ¢ = 0.1, z = —0.02 within the bounds of z € [—2,3] and y € [—1, 1], (¢)
The surface has sharp peaks, indicating regions where |R| is significantly large. Here,
w1 :Q,WQ:5Z‘,M3:’L.,LU5:0,7?):1,7~1 :0,7-2:0,’(:1 :2,/C2:O,Withtime
and spatial coordinates set to ¢ = 0.1, z = —0.02 within the bounds of z € [—4.4, 3] and
€ [—1, 1], subgraphs (d), (¢) and (f) depict the associated contour plots, peaks in the
magnitude are represented by closed contours.
Figure 4 illustrates the presence of peakons, lumps and solitons described by (49), under
specific parametric values: (a) w1 = 1, wy =4, w3 = 0.24, ws = 0.2, To =0, T3 =0,
T2 =0, K1 =2, Ky = 3, with time and spatial coordinates set to ¢ = 0.01, z = 0.01
within the bounds of x € [-1.5,1.3] and y € [-2,2], (b) w1 =1, we =i, wy = 2,
ws =02,70=0,7T1=0,72 =0, K1 =2, Ky = 3, with time and spatial coordinates
set to ¢ = 0.01, z = 0.02 within the bounds of = € [-1.5,1.3] and y € [—1.8,2], (¢)
w1 = 1,(.4.)2 = i,W3 = Qi,w5 = 02,76 = 0,7-1 = 0,7—2 = O,K:l = 2,’(:2 = 3,W1tht1me
and spatial coordinates set to ¢ = 0.01, z = 0.02 within the bounds of = € [-1.5,1.3]
and y € [—1.8, 2], subgraphs (d), (¢) and (f) depict the associated contour plots.
Figure 5 shows the variation in the behavior of of the solution (61), based on specified
choice of parameters. (a) showing a smooth surface with subtle peaks and valleys for
w1 =2,ws = Ti, w3 =1, ws =0, Top = 1, T = 0.01, with time and spatial coordinates
set to t = 0.001, z = 0.002 within the bounds of z € [—1,1] and y € [—0.2,0.2], (b)
presenting a similar smooth surface with minor variations forwy = 1.7, ws = 5, w3 = 1,
ws =0, Tp =1, 71 = 0.01, with time and spatial coordinates set to ¢ = 0.01, z = 0.02
within the bounds of = € [—2,2] and y € [-0.2,0.2], (c) highlighting distinct peaks
on the surface for w; = 1.7, wo = 54, w3 = i, ws = 0, 7o = 0.1, 71 = 0.01, with time
and spatial coordinates set to ¢ = 0.02, z = 0.02 within the bounds of z € [—1,1] and

2000
1000

]

-1000 IM(R)
2000

2000

1000 | R)

O

45 0 05 00 05 10 -5 -0 05 00 05 10 45 -0 05 00 05 10

(d) Re(R) (e) Im(R) (f) |R|

Fig.4 Real, imaginary, and magnitude components of (49), highlighting the emergence of localized peaks
and oscillatory symmetry
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-6 04 02 00 02 04 06

(d) Re(R) (e) Im(R) () IR|

Fig. 5 Visual illustrations, incorporating 3D and contour graphs, of the real, imaginary, and magnitude
components of (61)

y € [—0.94,0.94], subgraphs (d) showing symmetrical oval patterns, (¢) displaying lay-
ered, symmetrical curves and (f) contour plot of the magnitude of R with distinct sym-
metrical shapes indicating magnitude distribution.

e Within the context of solution (65), the graphical representation in Figure 6 demon-
strates the various visual representations. The 3D plot in (a) shows the real part of the
complex function R. The plot illustrates how Re(R) varies across the x and y axes, dis-
playing a sharp peak at the origin, indicating a significant variation in the real component
in the region for w1 =2, wo =5i, w3 =4, w5 =0,To=1,T1=0,T2 =0, K1 =2,
Ko = 0, with time and spatial coordinates set to ¢ = 0.01, z = 0.02 within the bounds
of z € [-0.5,0.4] and y € [—0.2,0.2], The 3D plot in (b) shows a peak at the origin,
suggesting a high concentration of imaginary values at this point for wy = 2, wa = 51,

(d) Re(R) (e) Im(R) () |R|

Fig. 6 Real, imaginary, and magnitude parts of (65), showing sharp localized peaks with oscillatory con-
tour patterns that highlight symmetry in the solution
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w3 =1,ws=0,79=1,7T1 =0,T2 =0,K; =2, Ky = 0, with time and spatial coordi-
nates setto ¢t = 0.01, z = 0.02 within the bounds of € [-0.4,0.4] andy € [—0.2,0.2],
The 3D plot in (c) represents the absolute value of the complex function, highlighting
regions where the function’s overall value is significant. The peak at the origin indicates
a high magnitude at this point for w; =2, we = 51, wy =14, w5 =0, To =1, T =0,
T2 =0, K1 =2, Ky = 0, with time and spatial coordinates set to ¢ = 0.1,z = —0.02
within the bounds of z € [—3.5,2.6] and y € [—0.5, 0.5], while the contour plots (d), ()
and (f) offer a detailed view of these variations in two-dimensional planes.

Figure 7, presents a set of graphical representations of the solution (69), including 3D
surface plots, contour plots, and spherical plots, illustrating the real part and magni-
tude of a complex function R. The 3D surface plot in (a) shows the real part of the
function R. This plot highlights the variation of Re(R) over the x and y axes, featuring
a distinct depression near the origin, which indicates a region where the real part of
the function reaches a minimum value for wy = 2, wy = 24, w3 =14, ws =0, Tg =0,
71 = 0.01, with time and spatial coordinates set to ¢ = 0.2, z = 0.2 within the bounds
ofz € [-1,0.2] and y € [—1.2,0]. The contour plot in (b) illustrates the real part Re(R)
across the x and y planes. The concentric rings with varying colors represent differ-
ent levels of Re(R), with the origin marked by a notable variation in color, indicating
the minimum observed in the 3D plot for wy = 2, wy = 2i, w3 = 4, ws = 0.37, Tp = 0,
71 = 0.001, with time and spatial coordinates set to t = 1, z = 1 within the bounds of
z € [-1,0.2] and y € [—-1.4,0.17]. The spherical plot in (c) represents the real part
Re(R) of the function R in spherical coordinates. This plot provides a three-dimensional
visualization of how the real component of R varies in all directions from the origin,
showing a symmetric pattern for wy = 2, wy = 2i, wy =4, ws = 0, Ty = 0, 71 = 0.01,
with time and spatial coordinates set to ¢ = 0, z = 0 within the bounds of z € [0, 27]
and y € [0, 27], plot (d) demonstrates how R varies across the x and y axes, with notable
peaks away from the origin, suggesting areas of significant magnitude in the function

x
-0-10-0.05 0.00 0.05 o0.10

I-0.01Re(R)
1-0.02

P o
y oG  x

(d) (e) |R| () Spherical plot-|R|

Fig.7 Real and absolute components of (69), illustrating oscillatory distributions in 3D/contour form and
spherical symmetry in intensity patterns
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for w; =2, wy = 2i, w3 =14, ws =0, Tp =0, 71 = 0.01, with time and spatial coordi-
nates set to ¢t = 0, z = 0 within the bounds of € [—1.5,1.5] and y € [-1.5,1.5], The
plot (e) indicates higher magnitudes away from the origin for w; = 2, we = 2%, w3 =1,
ws = 0, 7o = 0, 73 = 0.01, with time and spatial coordinates set to ¢ = 0, z = 0 within
the bounds of z € [—2,2] and y € [—1.5, 1.5], plot (f) provides a 3-dimensional view
of the magnitude variation in all directions, highlighting areas with significant values
w) =2, we =21, wg =1, ws =0, To =0, 71 =0.01, with time and spatial coordi-
nates set to ¢ = 0, z = 0 within the bounds of z € [0, 27] and y € [0, 27]. The obtained
solitonic structures, such as cone-shaped and apple-like profiles, have important impli-
cations in plasma physics and theoretical physics. Cone-shaped waveforms can be used
to model localized plasma wave packets and nonlinear excitations that propagate stably
without distortion in three spatial directions. Similarly, apple-like or spherical profiles
can represent three-dimensional localized energy concentrations, which are relevant
to plasma confinement, nonlinear optics, and fluid dynamics. These shapes resemble
the propagation of multi-soliton and multi-peakon waves in magnetized plasma and
can also provide insight into energy localization phenomena in nonlinear media. Such
graphical solutions not only enrich the theoretical framework of soliton theory but also
suggest potential applications in areas such as plasma wave modeling, nonlinear com-
munication channels, and wave interactions in high-energy physics.

5 Conclusion

In conclusion, we extracted a wide range of solutions to a nonlinear (3+1)-D evolution equa-
tion using the newly proposed “generalized exponential rational integral function method,"
which has proven to be a powerful and innovative tool for extracting closed-form analytical
solutions for highly nonlinear evolution equations. We obtained a wide range of solutions
using GERIF, including exponential, trigonometric, hyperbolic, logarithmic, and inverse
functions. These solutions had never been reported before. To provide a better understand-
ing of these solutions, we have employed various visualizations, including 3D plots, con-
tour plots, and spherical plots. These visualizations have shed light on the intricate patterns
that emerge, such as lumps, peakons, solitons, periodic-lumps, periodic-peakons, symmetric
patterns, periodic-solitons, and unique shapes like oval patterns, cone-shaped structures,
and apple-like structures. These solutions can be applied in many areas, including light
wave propagation in theoretical physics, wave behavior in fluids and plasmas, and various
other fields.

5.1 Future scope

In this work, we constructed various solution sets to the (3+1)-D evolution equation, there
are several future pathways for future research. Firstly, further exploration can be conducted
to investigate the dynamic behavior and interactions of the identified solutions, such as
Iumps, peakons, solitons, periodic-lumps, periodic-peakons, periodic solitons, and symmet-
ric patterns. Additionally, extending this method to tackle more complex nonlinear equations
or higher dimensional systems could yield valuable insights into a broader range of math-
ematical and physical phenomena. Lastly, exploring potential applications in fields beyond

@ Springer



316 Page 22 of 24 International Journal of Theoretical Physics (2025) 64:316

applied mathematics, such as plasma physics, engineering, or even data sciences, could
open up new perspectives for the practical utilization of the discovered solutions. Overall,
this work presents a promising foundation for future research endeavors with the potential
to advance our understanding of nonlinear dynamics and their real-world implications.
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