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Abstract
Nonlinear wave models have been widely researched in several relevant scientific disci-
plines, including theoretical physics, applied mathematics, and plasma physics, over the 
last 60 years. This research article focuses on deriving several analytical solutions and 
introduces newly constructed solitonic forms for a nonlinear (3+1)-dimensional evolution 
equation. The Generalized Exponential Rational Integral Function (GERIF) method is a 
recently advanced method to investigate exponential, trigonometric, hyperbolic, logarith-
mic, and inverse function solutions. We visualize these solutions through 3-dimensional 
(3D), contour, and contour plots to enhance their comprehensibility. These graphical rep-
resentations show soliton-form solutions, including lumps, peakons, solitons, periodic 
lumps, periodic peakons, periodic solitons, solitonic wave-patterns, cone shapes, etc. 
These applications significantly enhance the quality and significance of our work, show-
casing the utility of the newly introduced GERIF method. By bridging the gap between 
theoretical physics, plasma physics, and physical applications, this work presents an en-
tirely new point of view on the evolving multi-soliton and multi-peakon patterns. These 
findings open the door for future developments in plasma waves and wave propagation 
while deepening our understanding of complex systems. The obtained forms of graphi-
cal representations have not been thoroughly studied in soliton theory up to this point. 
This research is the first ever to investigate the dynamics of newly generated solutions in 
plasma physics, nonlinear dynamics, and theoretical physics, incorporating multi-solitons, 
multi-peakons, and other solitons.

Keywords  Mathematical methods · Closed-form solutions · Nonlinear evolution model · 
Solitons

1  Introduction

During the past six decades, nonlinear wave models have been investigated extensively 
in theoretical physics, plasma physics, applied mathematics, and other relevant scientific 
domains [1–3]. Soliton theory, a fundamental concept in mathematical physics, plays a 
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pivotal role in understanding wave phenomena. Its remarkable applications extend to the 
(3+1)-dimensional evolution equation, where solitons serves as unique solutions, maintain-
ing their shape and energy while propagating through a medium.

In this article, the focus of our study is on the (3+1)-dimensional nonlinear evolution 
equation, expressed as: [4, 5]:

	
∂2R

∂y ∂t
+ c1

(
3 ∂2R

∂x ∂x

ˆ
∂R

∂y
dx + ∂4R

∂x ∂x ∂x ∂y
+ 3R

∂2R

∂x ∂y
+ 6∂R

∂x

∂R

∂y

)
+ c2

∂2R

∂y ∂y
+ c3

∂2R

∂z ∂z
= 0,� (1)

where c1, c2, and c3 are the real parameters that govern the balance between nonlinearity 
and dispersion in different spatial directions. This equation is characterized by its intricate 
structure, involving various partial derivatives and coefficients, reflecting the complexity of 
wave dynamics in three spatial dimensions. evolution equation plays a significant role in 
nonlinear wave theory, soliton theory, and various fields of mathematics and physics, where 
it appears as a key equation that governs the behavior of certain waves and wave-like phe-
nomena. Its solutions provide insights into the complex dynamics of these systems and can 
have applications in diverse areas such as fluid dynamics, nonlinear optics, and plasma phys-
ics. Theoretical analysis of soliton solutions for nonlinear partial differential equations holds 
significant importance due to its wide-ranging applications. Various effective techniques 
have been applied to tackle these equations, including the exp-function method [6], Painlevé 
test [7, 8], Riccati projective equation method [9], the homotopy perturbation method [10], 
the Adomain decomposition method [11], the inverse (G′/G)-expansion method [12], Lie 
symmetry method [13], Kudryashov method [14, 15], Hirota bilinear transformation tech-
nique [16], the Chamani method [17], the evolution method [18, 19], Lie symmetry method 
[20], the Galerkin method [21] etc. These methods collectively contribute to a comprehen-
sive toolkit for solving and understanding nonlinear partial differential equations.

We have recently dealt with a few nonlinear evolution problems utilizing a multivariate 
generalized exponential rational integral function technique [22]. Building on this foun-
dation, we now aim to explore the (3+1)-dimensional evolution equation. This extension 
provides a more comprehensive understanding of the equation’s behavior in higher dimen-
sions. In recent years, various methods have been employed by researchers to investigate 
the evolution equation, leading to significant advancements in the field. Hosseini et.al [5] 
examine how dispersive waves behave in the (3+1)-D evolution equation. They employed 
the Bäcklund transformation and the evolution form, using the truncated Painleve expansion 
method to extract solutions for this equation. Gunhan and Yasar [23] applied the Painlave 
integrability concept by utilizing the WTC-Kruskal method and Lie point symmetries to the 
3D evolution equation. Additionally, they discussed the conservation law for the consider 
problem. Ismael et al. [24] adopted the evolution approach along with a long-wave method 
to investigate various aspects of the 3D evolution equation. They explored multiple M-lump 
waves, breather waves and its interaction with one soliton.

This article is divided into several sections, each focusing on the Generalized exponential 
rational integral function method’s application to the evolution equation and the resulting 
outcomes. Section 1 explored the historical origins of the evolution equation, furnishing 
crucial context to underscore its relevance in the field of nonlinear partial differential equa-
tions. In Section 2, we outline the essential steps of the newly introduce “Generalized expo-
nential rational integral function method,” presenting a detailed, step-by-step procedure for 
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obtaining exact solutions to the NLPDE. In Section 3, we applied the Generalized exponen-
tial rational integral function method to solve the evolution equation. This approach led us 
to discover novel solutions to the core problem. To gain a deeper understanding, we visually 
represented these solutions through graphs, making it possible to identify their relevance in 
practical scenarios. Furthermore, in Section 4, we visually depict how our solutions behave 
when different parameters are chosen within an acceptable range. This visual analysis helps 
us better understand the complexities of nonlinear wave phenomena. In Section 5, we con-
clude our research study by summarizing the key findings. We emphasize the significant 
contribution made through the application of the generalized exponential rational function 
method to the evolution equation. In the last part of our article, we provide a summary of the 
main points related to future research directions in Section 5.

2  Methodology

Our objective of this section is to highlight the key steps of the Generalized exponential 
rational integral function (GERIF) method. The GERIF metod’s significance lies in its 
unique ability to provide novel analytic solutions to the nonlinear partial differential Eqs. 
(NLPDEs). This method is the extension of the already existing method known as gener-
alized exponential rational function (GERF) [25] method and the multiple exp-function 
method [26].

	● A general NLPDEs is 

	
F

(
R,

∂R

∂x
,

∂R

∂y
,

∂R

∂z
,

∂R

∂t
,

∂2R

∂x2 ,
∂2R

∂x∂t
, ...

)
= 0,� (2)

 where R = R(x, y, z, t) is a solution of (2).

	● For the reduction of the (2), we are using the transformation 

	 R(x, y, z, t) = S(η), η = ω1x + ω2y + ω3z + ω4t + ω5,� (3)

 where ω1, ω2, ω3, ω4 and ω5 are arbitrary constants. Then the reduced equation can be 
represent as 

	 P (S(η), S′(η), S′′(η), ...) = 0.� (4)

	● To simplify the above (4), we are assuming a new trial solution of the form 

	
S(η) = T0 +

N∑
i=1

Ti

(ˆ
U(η) dη

)i

+
N∑

i=1

Ki

(ˆ
U(η) dη

)−i

.� (5)

 Here, U(η) is defined as an exponential rational function 
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U(η) = a1 exp(b1η) + a2 exp(b2η)

a3 exp(b3η) + a4 exp(b4η)
.� (6)

	● To ensure that (1) holds true, it is essential to identify suitable values for various param-
eters like aj , bj , (1 ≤ j ≤ 4), T0, Ti and Ki (1 ≤ i ≤ N). These parameters must be 
carefully chosen to ensure that (1) is satisfied perfectly.

	● The order of the method depends on N, which can be determined by using the balancing 
principle to both the nonlinear term and the highest order derivative term in the NLODE 
(4).

	● We substitute the expression from (5) into (4) along with (6), yielding an algebraic equa-
tion of the form Q(Θ1, Θ2, Θ3, Θ4) = 0, where, each Θj = exp(bjη), for 1 ≤ j ≤ 4. 
Subsequently, we will equate each coefficient of the function Q to zero.

	● After using software like Mathematica for mathematical simplifications, we can find the 
exact values of the involved variables. Substituting these values into (5) and (6) yields 
precise exact soliton solutions for (4).

3  Applications of GERIF Method

Here, we utilize the GERIF method to find analytic wave solutions, which include exponen-
tial, trigonometric, hyperbolic, logarithmic, and inverse functions, for the evolution equa-
tion. Firstly, we employing a wave translation for the (1) in such a way

	 R(x, y, z, t) = S(η), with η = ω1x + ω2y + ω3z + ω4t + ω5.� (7)

which reduced the main (1) into the ODE,

	 c1ω2ω3
1S(4)(η) +

(
c2ω2

2 + c3ω2
3 + ω4ω2

)
S′′(η) + 6c1ω2ω1S(η)S′′(η) + 6c1ω2ω1S′(η)2 = 0.� (8)

By balancing the terms S(η)(4) and S(η)S′′(η) in (8), we determine that N = 2. Therefore, 
the trial solution takes the form

	
S(η) = T0 + T1

ˆ
U(η) dη + T2

(ˆ
U(η) dη

)2

+ K1´
U(η) dη

+ K2

(
´

U(η) dη)2 .� (9)

Substituting (9) into (8) and utilizing the GERIF technique via computational software, such 
as Mathematica, yields following sets of solutions along with constraint condition for the 
evolution equation:

3.1  Exponential Function Form

When the parameters are set as [a1, a2, a3, a4] = [2i, 2i, 2i, 2i] and [b1, b2, b3, b4] = [2, 2, 0, 0], 
(6) simplifies to the standard exponential function form

	 U(η) = exp(2η).� (10)
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Incorporating the (10) into (9) yields the following form of S(η):

	
S(η) = 1

2
exp(2η)T1 + 1

4
exp(4η)T2 + 2 exp(−2η)K1 + 4 exp(−4η)K2 + T0.� (11)

Case 3.1.1 	
T1 ̸= 0; K1 = 0; T2 = 0; K2 = 0; c1 = 0; ω4 = −c2ω2

2 − c3ω2
3

ω2
.

A combination of the newly acquired set of constants from the previous (11), solution for 
(8) recast as

	
S(η) = 1

2
exp(2η)T1 + T0.� (12)

We found an exact solution for the evolution (1) by utilizing (12) and (7) as

	
R(x, y, z, t) = 1

2
T1 exp (2 (ω1x + ω2y + ω3z + ω4t + ω5)) + T0.� (13)

Case 3.1.2 	
T0 ̸= 0; T1 ̸= 0; K1 ̸= 0; T2 ̸= 0; K2 ̸= 0; ω1 = 0, ω4 = −c2ω2

2 − c3ω2
3

ω2
.

A combination of the newly acquired set of constants from the previous (11), solution for 
(8) recast as

	
S(η) = 1

2
e2ηT1 + 1

4
e4ηT2 + T0 + 2e−2ηK1 + 4e−4ηK2.� (14)

We found an exact solution for the evolution (1) by utilizing (14) and (7) as

	

R(x, y, z, t) = T0 + 1
2

T1 exp

(
2

(
t
(
−c2ω2

2 − c3ω2
3
)

ω2
+ yω2 + ω5 + ω3z

))

+ 1
4

T2 exp

(
4

(
t
(
−c2ω2

2 − c3ω2
3
)

ω2
+ yω2 + ω5 + ω3z

))

+ 2K1 exp

(
−2

(
t
(
−c2ω2

2 − c3ω2
3
)

ω2
+ yω2 + ω5 + ω3z

))

+ 4K2 exp

(
−4

(
t
(
−c2ω2

2 − c3ω2
3
)

ω2
+ yω2 + ω5 + ω3z

))
.

� (15)

Case 3.1.3 	  T1 ̸= 0; K1 ̸= 0; T2 = 0; K2 = 0; ω2 = 0.

A combination of the newly acquired set of constants from the previous (11), solution for 
(8) recast as
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S(η) = 1

2
e2ηT1 + T0 + 2e−2ηK1.� (16)

We found an exact solution for the evolution (1) by utilizing (16) and (7) as

	
R(x, y, z, t) = 1

2
T1e2(tω4+xω1+ω5+ω3z) + T0 + 2K1e−2(tω4+xω1+ω5+ω3z). � (17)

3.2  Sine Function Form

When the parameters are set as [a1, a2, a3, a4] = [3/4, −3/4, i, i] and 
[b1, b2, b3, b4] = [i, −i, 0, 0], (6) simplifies to the standard sine function form

	
U(η) = 3

4
sin(η).� (18)

After substituting (18) into (9), we can determine the form of S(η):

	
S(η) = 9

16
T2 cos2(η) − 3

4
T1 cos(η) + T0 + 16

9
K2 sec2(η) − 4

3
K1 sec(η).� (19)

Case 3.2.1 	
T0 ̸= 0; T1 ̸= 0; K1 ̸= 0; T2 ̸= 0; K2 ̸= 0; ω1 = 0, ω4 = −c2ω2

2 − c3ω2
3

ω2
.

Plugging these constants into (19), we have following solution of ODE (8) as

	
S(η) = 9

16
T2 cos2(η) − 3

4
T1 cos(η) + T0 + 16

9
K2 sec2(η) − 4

3
K1 sec(η).� (20)

Thus, by using (20) within the expression (7), we discover the precise solution to the evolu-
tion equation as

	

R(x, y, z, t) = 9
16

T2 cos2

(
t
(
−c2ω2

2 − c3ω2
3
)

ω2
+ yω2 + ω5 + ω3z

)

− 3
4

T1 cos

(
t
(
−c2ω2

2 − c3ω2
3
)

ω2
+ yω2 + ω5 + ω3z

)

+ 16
9

K2 sec2

(
t
(
−c2ω2

2 − c3ω2
3
)

ω2
+ yω2 + ω5 + ω3z

)

− 4
3

K1 sec

(
t
(
−c2ω2

2 − c3ω2
3
)

ω2
+ yω2 + ω5 + ω3z

)
+ T0.

� (21)

Case 3.2.2 	  T0 ̸= 0; T1 ̸= 0; K1 = 0; T2 ̸= 0; K2 ̸= 0; c3 = 0; ω2 = 0.
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Plugging these constants into (19), we have following solution of ODE (8) as

	
S(η) = 9

16
T2 cos2(η) − 3

4
T1 cos(η) + T0 + 16

9
K2 sec2(η).� (22)

Thus, by using (22) within the expression (7), we discover the precise solution to the evolu-
tion equation as

	

R(x, y, z, t) = T0 + 9
16

T2 cos2 (tω4 + xω1 + ω5 + ω3z) − 3
4

T1 cos (tω4 + xω1 + ω5 + ω3z)

+ 16
9

K2 sec2 (tω4 + xω1 + ω5 + ω3z) .
� (23)

Case 3.2.3 	
T0 ̸= 0; T1 ̸= 0; K1 ̸= 0; T2 ̸= 0; K2 ̸= 0; c1 = 0; ω4 = −c2ω2

2 − c3ω2
3

ω2
.

Plugging these constants into (19), we have following solution of ODE (8) as

	
S(η) = 9

16
T2 cos2(η) − 3

4
T1 cos(η) + T0 + 16

9
K2 sec2(η) − 4

3
K1 sec(η).� (24)

Thus, by using (24) within the expression (7), we discover the precise solution to the evolu-
tion equation as

	

R(x, y, z, t) = 9
16

T2 cos2 (ω1x + ω2y + ω3z + ω4t + ω5) − 3
4

T1 cos (ω1x + ω2y + ω3z + ω4t + ω5)

+ 16
9

K2 sec2 (ω1x + ω2y + ω3z + ω4t + ω5) − 4
3

K1 sec (ω1x + ω2y + ω3z + ω4t + ω5) + T0.
� (25)

3.3  Cosine Function Form

When the parameters are set as [a1, a2, a3, a4] = [i, i, i, i] and [b1, b2, b3, b4] = [i, −i, 0, 0], 
(6) simplifies to the standard cosine function form

	 U(η) = cos(η).� (26)

When we insert (26) into (9), we can express S(η) as follows:

	 S(η) = T2 sin2(η) + T1 sin(η) + T0 + K2 csc2(η) + K1 csc(η).� (27)

Case 3.3.1 	
T0 ̸= 0; T1 ̸= 0; K1 = 0; T2 ̸= 0; K2 ̸= 0; ω1 = 0; ω4 = −c2ω2

2 − c3ω2
3

ω2
.

With the above-mentioned constants applied to (27), the solution for (8) is provided as 
follows:

	 S(η) = T2 sin2(η) + T1 sin(η) + T0 + K2 csc2(η) + K1 csc(η).� (28)

1 3

Page 7 of 24  316



International Journal of Theoretical Physics (2025) 64:316

Hence, from (28) in the context of expression (7), we arrive at the following solution for the 
evolution equation

	

R(x, y, z, t) = T2 sin2

(
t
(
−c2ω2

2 − c3ω2
3
)

ω2
+ yω2 + ω5 + ω3z

)
+ T1 sin

(
t
(
−c2ω2

2 − c3ω2
3
)

ω2
+ yω2 + ω5 + ω3z

)

+ K2 csc2

(
t
(
−c2ω2

2 − c3ω2
3
)

ω2
+ yω2 + ω5 + ω3z

)
+ K1 csc

(
t
(
−c2ω2

2 − c3ω2
3
)

ω2
+ yω2 + ω5 + ω3z

)
+ T0.

� (29)

Case 3.3.2 	  T0 ̸= 0; T1 ̸= 0; K1 = 0; T2 ̸= 0; K2 ̸= 0; c3 = 0; ω2 = 0.

With the above-mentioned constants applied to (27), the solution for (8) is provided as 
follows:

	 S(η) = T2 sin2(η) + T1 sin(η) + T0 + K2 csc2(η).� (30)

Hence, from (30) in the context of expression (7), we arrive at the following solution for the 
evolution equation

	

R(x, y, z, t) = T2 sin2 (tω4 + xω1 + ω5 + ω3z) + T1 sin (tω4 + xω1 + ω5 + ω3z) + T0

+ K2 csc2 (tω4 + xω1 + ω5 + ω3z) .
� (31)

Case 3.3.3 	
T0 ̸= 0; T1 ̸= 0; K1 ̸= 0; T2 ̸= 0; K2 ̸= 0; c1 = 0; ω4 = −c2ω2

2 − c3ω2
3

ω2
.

With the above-mentioned constants applied to (27), the solution for (8) is provided as 
follows:

	 S(η) = T2 sin2(η) + T1 sin(η) + T0 + K2 csc2(η) + K1 csc(η).� (32)

Hence, from (32) in the context of expression (7), we arrive at the following solution for the 
evolution equation

	
R(x, y, z, t) = T2 sin2 (ω1x + ω2y + ω3z + ω4t + ω5) + T1 sin (ω1x + ω2y + ω3z + ω4t + ω5)

+ K2 csc2 (ω1x + ω2y + ω3z + ω4t + ω5) + K1 csc (ω1x + ω2y + ω3z + ω4t + ω5) + T0.
� (33)

3.4  Tangent Function Form

When the parameters are set as [a1, a2, a3, a4] = [1, −1, i, i] and [b1, b2, b3, b4] = [i, −i, i, −i], 
(6) simplifies to the standard tangent function form

	 U(η) = tan(η).� (34)

With the above tangent function into (9), we have following form for S(η):

	
S(η) = T2 log2(cos(η)) − T1 log(cos(η)) + T0 + K2

log2(cos(η))
− K1

log(cos(η))
.� (35)
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Case 3.4.1 	
T0 ̸= 0; T1 ̸= 0; K1 = 0; T2 = 0; K2 = 0; c1 = 0; ω4 = −c2ω2

2 − c3ω2
3

ω2
.

By substituting the provided constants into (35), we arrive at solution for (8) as follows:

	 S(η) = T0 − T1 log(cos(η)).� (36)

Under the (36) and (7), we get

	 R(x, y, z, t) = T0 − T1 log (cos (ω1x + ω2y + ω3z + ω4t + ω5)) .� (37)

Case 3.4.2 	
T0 ̸= 0; T1 ̸= 0; T2 ̸= 0; K1 ̸= 0; K2 = 0; ω1 = 0; ω4 = −c2ω2

2 − c3ω2
3

ω2
.

By substituting the provided constants into (35), we arrive at solution for (8) as follows:

	
S(η) = T0 + T2 log2(cos(η)) − T1 log(cos(η)) − K1

log(cos(η))
.� (38)

Under the (38) and (7), we have

	

R(x, y, z, t) = T2 log2
(

cos
(

ω2 (y − c2t) − c3tω2
3

ω2
+ ω5 + ω3z

))

− T1 log
(

cos
(

ω2 (y − c2t) − c3tω2
3

ω2
+ ω5 + ω3z

))

− K1

log
(

cos
(

ω2 (y − c2t) − c3tω2
3

ω2
+ ω5 + ω3z

)) + T0.

� (39)

Case 3.4.3 	  T0 ̸= 0; T1 ̸= 0; K1 ̸= 0; T2 ̸= 0; K2 ̸= 0; c3 = 0; ω2 = 0.

By substituting the provided constants into (35), we arrive at solution for (8) as follows:

	
S(η) = T2 log2(cos(η)) − T1 log(cos(η)) + T0 + K2

log2(cos(η))
− K1

log(cos(η))
.� (40)

Under the (40) and (7), we have

	

R(x, y, z, t) = T2 log2 (cos (tω4 + xω1 + ω5 + ω3z)) − T1 log (cos (tω4 + xω1 + ω5 + ω3z)) + T0

+ K2

log2 (cos (tω4 + xω1 + ω5 + ω3z))
− K1

log (cos (tω4 + xω1 + ω5 + ω3z))
.

� (41)

3.5  Hyperbolic Sine Function Form

When the parameters are set as [a1, a2, a3, a4] = [4i, −4i, 4i, 4i] and 
[b1, b2, b3, b4] = [2, −2, 0, 0], (6) simplifies to the standard hyperbolic sine function form
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	 U(η) = sinh(2η).� (42)

When we place (42) in (9), we can define S(η) as:

	
S(η) = 1

4
T2 cosh2(2η) + 1

2
T1 cosh(2η) + T0 + 4K2sech2(2η) + 2K1sech(2η).� (43)

Case 3.5.1 	
T0 ̸= 0; T1 ̸= 0; K1 = 0; T2 ̸= 0; K2 ̸= 0; ω1 = 0; ω4 = −c2ω2

2 − c3ω2
3

ω2
.

With the constant values outlined in (59), the solution for (8) is

	
S(η) = 1

4
T2 cosh2(2η) + 1

2
T1 cosh(2η) + T0 + 4K2sech2(2η).� (44)

Equations (44) and (7) lead us to the following solution:

	

R(x, y, z, t) = T0 + 1
4

T2 cosh2

(
2

(
t
(
−c2ω2

2 − c3ω2
3
)

ω2
+ yω2 + ω5 + ω3z

))

+ 1
2

T1 cosh

(
2

(
t
(
−c2ω2

2 − c3ω2
3
)

ω2
+ yω2 + ω5 + ω3z

))

+ 4K2sech2

(
2

(
t
(
−c2ω2

2 − c3ω2
3
)

ω2
+ yω2 + ω5 + ω3z

))
.

� (45)

Case 3.5.2 	 T0 ̸= 0; T1 ̸= 0; K1 = 0; T2 ̸= 0; K2 ̸= 0; c3 = 0; ω2 = 0.

With the constant values outlined in (59), the solution for (8) is

	
S(η) = 1

4
T2 cosh2(2η) + 1

2
T1 cosh(2η) + T0 + 4K2sech2(2η).� (46)

Equations (46) and (7) lead us to the following solution

	

R(x, y, z, t) = 1
4

T2 cosh2 (2 (tω4 + xω1 + ω5 + ω3z)) + 1
2

T1 cosh (2 (tω4 + xω1 + ω5 + ω3z)) + T0

+ 4K2sech2 (2 (tω4 + xω1 + ω5 + ω3z)) .
� (47)

Case 3.5.3 	
T0 ̸= 0; T1 ̸= 0; K1 ̸= 0; T2 ̸= 0; K2 ̸= 0; c1 = 0; ω4 = −c2ω2

2 − c3ω2
3

ω2
.

With the constant values outlined in (59), the solution for (8) is

	
S(η) = 1

4
T2 cosh2(2η) + 1

2
T1 cosh(2η) + T0 + 4K2sech2(2η) + 2K1sech(2η).� (48)
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Equations (48) and (7) lead us to the following solution

	

R(x, y, z, t) = 1
4

T2 cosh2 (2 (ω1x + ω2y + ω3z + ω4t + ω5)) + 1
2

T1 cosh (2 (ω1x + ω2y + ω3z + ω4t + ω5))

+ 4K2sech2 (2 (ω1x + ω2y + ω3z + ω4t + ω5)) + 2K1sech (2 (ω1x + ω2y + ω3z + ω4t + ω5)) + T0.
� (49)

3.6  Hyperbolic Cosecant Function Form

When the parameters are set as [a1, a2, a3, a4] = [i, i, −i, i] and [b1, b2, b3, b4] = [0, 0, −1, 1], 
(6) simplifies to the standard hyperbolic cosecant function form

	 U(η) = csch(η).� (50)

After introducing (50) into (9), we arrive at the expression of S(η) as:

	

S(η) = T2

(
log

(
sinh

(η

2

))
− log

(
cosh

(η

2

)))2
+ T1

(
log

(
sinh

(η

2

))
− log

(
cosh

(η

2

)))
+ T0

+ K2(
log

(
sinh

(
η
2
))

− log
(
cosh

(
η
2
)))2 + K1

log
(
sinh

(
η
2
))

− log
(
cosh

(
η
2
)) .

� (51)

Case 3.6.1 	
T0 ̸= 0; T1 ̸= 0; T2 = 0; K1 = 0; K2 = 0; c1 = 0, ω4 = −c2ω2

2 − c3ω2
3

ω2
.

Plugging these constants into (51), then we get the following solution

	
S(η) = T1

(
log

(
sinh

(η

2

))
− log

(
cosh

(η

2

)))
+ T0.� (52)

Accordingly, the evolution equation has the following exact solution

	

R(x, y, z, t) = T1 log
(

sinh
(

1
2

(ω1x + ω2y + ω3z + ω4t + ω5)
))

− T1 log
(

cosh
(

1
2

(ω1x + ω2y + ω3z + ω4t + ω5)
))

+ T0.

� (53)

Case 3.6.2 	
T0 ̸= 0; T1 ̸= 0; T2 ̸= 0; K1 ̸= 0; K2 ̸= 0; ω1 = 0; ω4 = −c2ω2

2 − c3ω2
3

ω2
.

Plugging these constants into (51), then we get the following solution

	

S(η) = T2

(
log

(
sinh

(η

2

))
− log

(
cosh

(η

2

)))2
+ T1

(
log

(
sinh

(η

2

))
− log

(
cosh

(η

2

)))
+ T0

+ K2(
log

(
sinh

(
η
2
))

− log
(
cosh

(
η
2
)))2 + K1

log
(
sinh

(
η
2
))

− log
(
cosh

(
η
2
)) .

� (54)

Accordingly, the evolution equation has the following exact solution
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R(x, y, z, t) = T2 log2
(

sinh
(

1
2

(tω4 + yω2 + ω5 + ω3z)
))

+ T1 log
(

sinh
(

1
2

(tω4 + yω2 + ω5 + ω3z)
))

+ T2 log2
(

cosh
(

1
2

(tω4 + yω2 + ω5 + ω3z)
))

− T1 log
(

cosh
(

1
2

(tω4 + yω2 + ω5 + ω3z)
))

− 2T2 log
(

sinh
(

1
2

(tω4 + yω2 + ω5 + ω3z)
))

log
(

cosh
(

1
2

(tω4 + yω2 + ω5 + ω3z)
))

+ K1

log
(
sinh

( 1
2 (tω4 + yω2 + ω5 + ω3z)

))
− log

(
cosh

( 1
2 (tω4 + yω2 + ω5 + ω3z)

))

+ K2(
log

(
sinh

( 1
2 (tω4 + yω2 + ω5 + ω3z)

))
− log

(
cosh

( 1
2 (tω4 + yω2 + ω5 + ω3z)

)))
2

+ T0.

� (55)

Case 3.6.3 	
T0 ̸= 0; T1 ̸= 0; K1 ̸= 0; T2 ̸= 0; K2 ̸= 0; c1 = 0; ω4 = −c2ω2

2 − c3ω2
3

ω2
.

Plugging these constants into (51), then we get the following solution

	

S(η) = T2

(
log

(
sinh

(η

2

))
− log

(
cosh

(η

2

)))2
+ T1

(
log

(
sinh

(η

2

))
− log

(
cosh

(η

2

)))
+ T0

+ K2(
log

(
sinh

(
η
2
))

− log
(
cosh

(
η
2
)))2 + K1

log
(
sinh

(
η
2
))

− log
(
cosh

(
η
2
)) .

� (56)

Accordingly, the evolution equation has the following exact solution

	

R(x, y, z, t) = T2 log2
(

sinh
(

1
2

(ω1x + ω2y + ω3z + ω4t + ω5)
))

+ T1 log
(

sinh
(

1
2

(ω1x + ω2y + ω3z + ω4t + ω5)
))

+ T2 log2
(

cosh
(

1
2

(ω1x + ω2y + ω3z + ω4t + ω5)
))

− T1 log
(

cosh
(

1
2

(ω1x + ω2y + ω3z + ω4t + ω5)
))

− 2T2 log
(

sinh
(

1
2

(ω1x + ω2y + ω3z + ω4t + ω5)
))

log
(

cosh
(

1
2

(ω1x + ω2y + ω3z + ω4t + ω5)
))

+ T0

+ K1

log
(
sinh

( 1
2 (ω1x + ω2y + ω3z + ω4t + ω5)

))
− log

(
cosh

( 1
2 (ω1x + ω2y + ω3z + ω4t + ω5)

))

+ K2(
log

(
cosh

( 1
2 (ω1x + ω2y + ω3z + ω4t + ω5)

))
− log

(
sinh

( 1
2 (ω1x + ω2y + ω3z + ω4t + ω5)

)))2 .

� (57)

3.7  Hyperbolic Secant Function Form:

When the parameters are set as [a1, a2, a3, a4] = [2, 2, 2, 2] and [b1, b2, b3, b4] = [0, 0, 1, −1], 
(6) simplifies to the standard hyperbolic secant function form

	 U(η) = sech(η).� (58)

Above secant hyperbolic function along with (9) establish the following form for S(η):

	
S(η) = 4T2 tan−1

(
tanh

(η

2

))2
+ 2T1 tan−1

(
tanh

(η

2

))
+ T0 + K1

2 tan−1 (
tanh

(
η
2
)) + K2

4 tan−1 (
tanh

(
η
2
))2 .� (59)
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Case 3.7.1: 	
T0 ̸= 0; T1 ̸= 0; K1 = 0; T2 = 0; K2 = 0; c1 = 0; ω4 = −c2ω2

2 − c3ω2
3

ω2
.

With the constant values outlined in (59), the solution for (8) is

	
S(η) = 2T1 tan−1

(
tanh

(η

2

))
+ T0.� (60)

Hence, (60) and (7) provide us a soliton solution of evolution equation as

	
R(x, y, z, t) = 2T1 tan−1

(
tanh

(
1
2

(ω1x + ω2y + ω3z + ω4t + ω5)
))

+ T0.� (61)

Case 3.7.2 	
T0 ̸= 0; T1 ̸= 0; K1 ̸= 0; T2 ̸= 0; K2 ̸= 0; ω1 = 0; ω4 = −c2ω2

2 − c3ω2
3

ω2
.

With the constant values outlined in (59), the solution for (8) is

	
S(η) = T0 + 4T2 tan−1

(
tanh

(η

2

))2
+ 2T1 tan−1

(
tanh

(η

2

))
+ K1

2 tan−1 (
tanh

(
η
2
)) + K2

4 tan−1 (
tanh

(
η
2
))2 .� (62)

Hence, (62) and (7) provide us a soliton solution of evolution equation as

	

R(x, y, z, t) = 4T2 tan−1
(

tanh
(

1
2

(tω4 + yω2 + ω5 + ω3z)
))

2 + 2T1 tan−1
(

tanh
(

1
2

(tω4 + yω2 + ω5 + ω3z)
))

+ K1

2 tan−1 (
tanh

( 1
2 (tω4 + yω2 + ω5 + ω3z)

)) + K2

4 tan−1 (
tanh

( 1
2 (tω4 + yω2 + ω5 + ω3z)

))
2

+ T0.
� (63)

Case 3.7.3 	
T0 ̸= 0; T1 ̸= 0; K1 ̸= 0; T2 ̸= 0; K2 ̸= 0; c1 = 0; ω4 = −c2ω2

2 − c3ω2
3

ω2
.

With the constant values outlined in (59), the solution for (8) is

	
S(η) = 4T2 tan−1

(
tanh

(η

2

))2
+ 2T1 tan−1

(
tanh

(η

2

))
+ T0 + K1

2 tan−1 (
tanh

(
η
2
)) + K2

4 tan−1 (
tanh

(
η
2
))2 .� (64)

Hence, (64) and (7) provide us a soliton solution of evolution equation as

	

R(x, y, z, t) = 4T2 tan−1
(

tanh
(

1
2

(ω1x + ω2y + ω3z + ω4t + ω5)
))2

+ T0

+ 2T1 tan−1
(

tanh
(

1
2

(ω1x + ω2y + ω3z + ω4t + ω5)
))

+ K1

2 tan−1 (
tanh

( 1
2 (ω1x + ω2y + ω3z + ω4t + ω5)

))

+ K2

4 tan−1 (
tanh

( 1
2 (ω1x + ω2y + ω3z + ω4t + ω5)

))2 .

� (65)
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3.8  Hyperbolic Tangent Function Form

When the parameters are set as [a1, a2, a3, a4] = [1, −1, 1, 1] and 
[b1, b2, b3, b4] = [1, −1, 1, −1], (6) simplifies to the standard hyperbolic  tangent function 
form

	 U(η) = tanh(η).� (66)

The following expression for S(η) is attained by inserting (66) into (9):

	
S(η) = T2 log2(cosh(η)) + T1 log(cosh(η)) + T0 + K2

log2(cosh(η))
+ K1

log(cosh(η))
.� (67)

Case 3.8.1 	
T0 ̸= 0; T1 ̸= 0; K1 = 0; T2 = 0; K2 = 0; c1 = 0; ω4 = −c2ω2

2 − c3ω2
3

ω2
.

Thus, these constants provide us the following solution to the ODE (8),

	 S(η) = T1 log(cosh(η)) + T0.� (68)

The above solution of ODE under the transformation (7) gives us the following solution of 
evolution equation

	 R(x, y, z, t) = T1 log (cosh (ω1x + ω2y + ω3z + ω4t + ω5)) + T0.� (69)

Case 3.8.2 	
T0 ̸= 0; T1 ̸= 0; T2 ̸= 0; K1 ̸= 0; K2 ̸= 0; ω1 = 0; ω4 = −c2ω2

2 − c3ω2
3

ω2
.

Thus, these constants provide us the following solution to the ODE (8),

	
S(η) = T2 log2(cosh(η)) + T1 log(cosh(η)) + T0 + K2

log2(cosh(η))
+ K1

log(cosh(η))
.� (70)

The above solution of ODE under the transformation (7) gives us the following solution of 
evolution equation

	

R(x, y, z, t) = T2 log2 (cosh (tω4 + yω2 + ω5 + ω3z)) + T1 log (cosh (tω4 + yω2 + ω5 + ω3z))

+ K2

log2 (cosh (tω4 + yω2 + ω5 + ω3z))
+ K1

log (cosh (tω4 + yω2 + ω5 + ω3z))
+ T0.

� (71)

Case 3.8.3 	 T0 ̸= 0; T1 ̸= 0; K1 = 0; T2 ̸= 0; K2 = 0; c3 = 0; ω2 = 0.

Thus, these constants provide us the following solution to the ODE (8),

	 S(η) = T2 log2(cosh(η)) + T1 log(cosh(η)) + T0.� (72)
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The above solution of ODE under the transformation (7) gives us the following solution of 
evolution equation

	 R(x, y, z, t) = T2 log2 (cosh (tω4 + xω1 + ω5 + ω3z)) + T1 log (cosh (tω4 + xω1 + ω5 + ω3z)) + T0. � (73)

3.9  Hyperbolic Cotangent Function Form

When the parameters are set as [a1, a2, a3, a4] = [1, 1, 1, −1] and 
[b1, b2, b3, b4] = [1, −1, 1, −1], (6) simplifies to the standard hyperbolic cotangent function 
form

	 U(η) = coth(η).� (74)

Placing above expression of U(η) into (9), then the form of S(η) is given by

	
S(η) = T2 log2(sinh(η)) + T1 log(sinh(η)) + T0 + K2

log2(sinh(η))
+ K1

log(sinh(η))
.� (75)

Case 3.9.1 	
T0 ̸= 0; T1 ̸= 0; K1 = 0; T2 = 0; K2 = 0; c1 = 0; ω4 = −c2ω2

2 − c3ω2
3

ω2
.

With these constants incorporated into (75), a solution for the ODE (8) can be established as

	 S(η) = T1 log(sinh(η)) + T0.� (76)

Use of (76) and (7) provide us the following solution

	 R(x, y, z, t) = T1 log (sinh (ω1x + ω2y + ω3z + ω4t + ω5)) + T0.� (77)

Case 3.9.2 	 T0 ̸= 0; T1 ̸= 0; K1 = 0; T2 ̸= 0; K2 = 0; c3 = 0; ω2 = 0.

With these constants incorporated into (75), a solution for the ODE (8) can be established as

	 S(η) = T2 log2(sinh(η)) + T1 log(sinh(η)) + T0.� (78)

Use of (78) and (7) provide us the following solution

	 R(x, y, z, t) = T2 log2 (sinh (tω4 + xω1 + ω5 + ω3z)) + T1 log (sinh (tω4 + xω1 + ω5 + ω3z)) + T0. � (79)

Case 3.9.3 	
T0 ̸= 0; T1 ̸= 0; T2 ̸= 0; K1 ̸= 0; K2 ̸= 0; ω1 = 0; ω4 = −c2ω2

2 − c3ω2
3

ω2
.

With these constants incorporated into (75), a solution for the ODE (8) can be established as

	
S(η) = T2 log2(sinh(η)) + T1 log(sinh(η)) + T0 + K2

log2(sinh(η))
+ K1

log(sinh(η))
.� (80)
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Use of (80) and (7) provide us the following solution

	

R(x, y, z, t) = T2 log2 (sinh (tω4 + yω2 + ω5 + ω3z)) + T1 log (sinh (tω4 + yω2 + ω5 + ω3z))

+ K2

log2 (sinh (tω4 + yω2 + ω5 + ω3z))
+ K1

log (sinh (tω4 + yω2 + ω5 + ω3z))
+ T0.

� (81)

4  Graphical Discussion 

	● Figure 1 provides a visual representation of peakons, lumps and solitons for the solu-
tion (25). Here (a) 3D plot of the real part, illustrating the spatial distribution and am-
plitude peaks for ω1 = 1, ω2 = 5i, ω3 = i, ω5 = 0, T0 = 1, T1 = 0, T2 = 1, K1 = 2, 
K2 = 1, with time and spatial coordinates set to t = 0.1, z = 0.02. The plot covers a 
specified range of values, with x ∈ [−4, 3] and y ∈ [0.3, 0.3], (b) 3D plot of the im-
aginary part, showing the variation and amplitude peaks in the imaginary component 
for ω1 = 1, ω2 = 5i, ω3 = i, ω5 = 0, T0 = 1, T1 = 0, T2 = 1, K1 = 1, K2 = 1, with 
time and spatial coordinates set to t = 0.01, z = 0.02 within the bounds of x ∈ [−4, 3] 
and y ∈ [0.3, 0.3], (c) 3D plot of the magnitude, depicting the combined amplitude of 
real and imaginary parts for ω1 = 2, ω2 = 5i, ω3 = i, ω5 = 0, T0 = 1, T1 = 0, T2 = 0, 
K1 = 2, K2 = 0, with time and spatial coordinates set to t = 0.1, z = −0.02 within the 
bounds of x ∈ [−3.5, 2.6] and y ∈ [−0.5, 0.5], subgraphs (d) highlighting the intricate 
pattern and symmetry in the real component, (e) showcasing the detailed structure and 
distribution in the imaginary component and (f) illustrating the overall amplitude pat-
terns and their spatial arrangement.

	● Figure 2 showcases the behavior of periodic-soliton, lumps and solitons in the con-
text of the solution (25). (a) 3D plot of the real part, showcasing the spatial distribu-
tion and amplitude variations with distinct peaks for ω1 = 2, ω2 = 2i, ω3 = i, ω5 = 0, 
T0 = 0, T1 = 0.01, T2 = 1, K1 = 2, K2 = 1, with time and spatial coordinates set to 

Fig. 1  Visual illustrations, incorporating 3D and contour graphs, of the real, imaginary, and magnitude 
components of (25) representing the peakons, lumps and solitons
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t = 0.01, z = 0.04 within the bounds of x ∈ [−12, 4] and y ∈ [−1, 1], (b) illustrating the 
variation and notable peaks in the imaginary component for ω1 = 2, ω2 = 2i, ω3 = i, 
ω5 = 0, T0 = 0, T1 = 0.01, T2 = 1, K1 = 2, K2 = 1, with time and spatial coordinates 
set to t = 0.01, z = 0.04 within the bounds of x ∈ [−3.2, 3.1] and y ∈ [−1, 1], (c) de-
picting the combined amplitude of the real and imaginary parts with prominent peaks 
for ω1 = 2, ω2 = 2i, ω3 = i, ω5 = 0, T0 = 0, T1 = 0.01, T2 = 1, K1 = 2, K2 = 1, with 
time and spatial coordinates set to t = 0.01, z = 0.03 within the bounds of x ∈ [−8, 8] 
and y ∈ [−1, 1], subgraphs (d), (e) and (f) depict the associated contour plots.

	● Figure 3 provides a visual representation of lumps, and multi-solitons in the solution (33). 
(a) The surface appears to have several peaks and valleys, indicating regions of positive 
and negative values of Re (R) for ω1 = 2, ω2 = 5i, ω3 = i, ω5 = 0, T0 = 1, T1 = 0, 

Fig. 2  Visual illustrations, incorporating 3D and contour graphs, of the real, imaginary, and magnitude 
components of (25) which describes the symmetric behavior

 

Fig. 3  Visualization of (33): real and imaginary parts reveal oscillatory behavior, while the magnitude 
indicates localized intensity distributions
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T2 = 0, K1 = 2, K2 = 0, with time and spatial coordinates set to t = 0.1, z = −0.02 
within the bounds of x ∈ [−2, 3] and y ∈ [−1, 1], (b) The surface has distinct peaks and 
troughs, suggesting varying imaginary values across the xy-plane for ω1 = 2, ω2 = 5i, 
ω3 = i, ω5 = 0, T0 = 1, T1 = 0, T2 = 0, K1 = 2, K2 = 0, with time and spatial coor-
dinates set to t = 0.1, z = −0.02 within the bounds of x ∈ [−2, 3] and y ∈ [−1, 1], (c) 
The surface has sharp peaks, indicating regions where |R| is significantly large. Here, 
ω1 = 2, ω2 = 5i, ω3 = i, ω5 = 0, T0 = 1, T1 = 0, T2 = 0, K1 = 2, K2 = 0, with time 
and spatial coordinates set to t = 0.1, z = −0.02 within the bounds of x ∈ [−4.4, 3] and 
y ∈ [−1, 1], subgraphs (d), (e) and (f) depict the associated contour plots, peaks in the 
magnitude are represented by closed contours.

	● Figure 4 illustrates the presence of peakons, lumps and solitons described by (49), under 
specific parametric values: (a) ω1 = 1, ω2 = i, ω3 = 0.2i, ω5 = 0.2, T0 = 0, T1 = 0, 
T2 = 0, K1 = 2, K2 = 3, with time and spatial coordinates set to t = 0.01, z = 0.01 
within the bounds of x ∈ [−1.5, 1.3] and y ∈ [−2, 2], (b) ω1 = 1, ω2 = i, ω3 = 2i, 
ω5 = 0.2, T0 = 0, T1 = 0, T2 = 0, K1 = 2, K2 = 3, with time and spatial coordinates 
set to t = 0.01, z = 0.02 within the bounds of x ∈ [−1.5, 1.3] and y ∈ [−1.8, 2], (c) 
ω1 = 1, ω2 = i, ω3 = 2i, ω5 = 0.2, T0 = 0, T1 = 0, T2 = 0, K1 = 2, K2 = 3, with time 
and spatial coordinates set to t = 0.01, z = 0.02 within the bounds of x ∈ [−1.5, 1.3] 
and y ∈ [−1.8, 2], subgraphs (d), (e) and (f) depict the associated contour plots.

	● Figure 5 shows the variation in the behavior of of the solution (61), based on specified 
choice of parameters. (a) showing a smooth surface with subtle peaks and valleys for 
ω1 = 2, ω2 = 7i, ω3 = i, ω5 = 0, T0 = 1, T1 = 0.01, with time and spatial coordinates 
set to t = 0.001, z = 0.002 within the bounds of x ∈ [−1, 1] and y ∈ [−0.2, 0.2], (b) 
presenting a similar smooth surface with minor variations for ω1 = 1.7, ω2 = 5i, ω3 = i, 
ω5 = 0, T0 = 1, T1 = 0.01, with time and spatial coordinates set to t = 0.01, z = 0.02 
within the bounds of x ∈ [−2, 2] and y ∈ [−0.2, 0.2], (c) highlighting distinct peaks 
on the surface for ω1 = 1.7, ω2 = 5i, ω3 = i, ω5 = 0, T0 = 0.1, T1 = 0.01, with time 
and spatial coordinates set to t = 0.02, z = 0.02 within the bounds of x ∈ [−1, 1] and 

Fig. 4  Real, imaginary, and magnitude components of (49), highlighting the emergence of localized peaks 
and oscillatory symmetry
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y ∈ [−0.94, 0.94], subgraphs (d) showing symmetrical oval patterns, (e) displaying lay-
ered, symmetrical curves and (f) contour plot of the magnitude of R with distinct sym-
metrical shapes indicating magnitude distribution.

	● Within the context of solution (65), the graphical representation in Figure 6 demon-
strates the various visual representations. The 3D plot in (a) shows the real part of the 
complex function R. The plot illustrates how Re(R) varies across the x and y axes, dis-
playing a sharp peak at the origin, indicating a significant variation in the real component 
in the region for ω1 = 2, ω2 = 5i, ω3 = i, ω5 = 0, T0 = 1, T1 = 0, T2 = 0, K1 = 2, 
K2 = 0, with time and spatial coordinates set to t = 0.01, z = 0.02 within the bounds 
of x ∈ [−0.5, 0.4] and y ∈ [−0.2, 0.2], The 3D plot in (b) shows a peak at the origin, 
suggesting a high concentration of imaginary values at this point for ω1 = 2, ω2 = 5i, 

Fig. 5  Visual illustrations, incorporating 3D and contour graphs, of the real, imaginary, and magnitude 
components of (61)

 

Fig. 6  Real, imaginary, and magnitude parts of (65), showing sharp localized peaks with oscillatory con-
tour patterns that highlight symmetry in the solution
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ω3 = i, ω5 = 0, T0 = 1, T1 = 0, T2 = 0, K1 = 2, K2 = 0, with time and spatial coordi-
nates set to t = 0.01, z = 0.02 within the bounds of x ∈ [−0.4, 0.4] and y ∈ [−0.2, 0.2], 
The 3D plot in (c) represents the absolute value of the complex function, highlighting 
regions where the function’s overall value is significant. The peak at the origin indicates 
a high magnitude at this point for ω1 = 2, ω2 = 5i, ω3 = i, ω5 = 0, T0 = 1, T1 = 0, 
T2 = 0, K1 = 2, K2 = 0, with time and spatial coordinates set to t = 0.1, z = −0.02 
within the bounds of x ∈ [−3.5, 2.6] and y ∈ [−0.5, 0.5], while the contour plots (d), (e) 
and (f) offer a detailed view of these variations in two-dimensional planes.

	● Figure 7, presents a set of graphical representations of the solution (69), including 3D 
surface plots, contour plots, and spherical plots, illustrating the real part and magni-
tude of a complex function R. The 3D surface plot in (a) shows the real part of the 
function R. This plot highlights the variation of Re(R) over the x and y axes, featuring 
a distinct depression near the origin, which indicates a region where the real part of 
the function reaches a minimum value for ω1 = 2, ω2 = 2i, ω3 = i, ω5 = 0, T0 = 0, 
T1 = 0.01, with time and spatial coordinates set to t = 0.2, z = 0.2 within the bounds 
of x ∈ [−1, 0.2] and y ∈ [−1.2, 0]. The contour plot in (b) illustrates the real part Re(R) 
across the x and y planes. The concentric rings with varying colors represent differ-
ent levels of Re(R), with the origin marked by a notable variation in color, indicating 
the minimum observed in the 3D plot for ω1 = 2, ω2 = 2i, ω3 = i, ω5 = 0.3i, T0 = 0, 
T1 = 0.001, with time and spatial coordinates set to t = 1, z = 1 within the bounds of 
x ∈ [−1, 0.2] and y ∈ [−1.4, 0.17]. The spherical plot in (c) represents the real part 
Re(R) of the function R in spherical coordinates. This plot provides a three-dimensional 
visualization of how the real component of R varies in all directions from the origin, 
showing a symmetric pattern for ω1 = 2, ω2 = 2i, ω3 = i, ω5 = 0, T0 = 0, T1 = 0.01, 
with time and spatial coordinates set to t = 0, z = 0 within the bounds of x ∈ [0, 2π] 
and y ∈ [0, 2π], plot (d) demonstrates how R varies across the x and y axes, with notable 
peaks away from the origin, suggesting areas of significant magnitude in the function 

Fig. 7  Real and absolute components of (69), illustrating oscillatory distributions in 3D/contour form and 
spherical symmetry in intensity patterns
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for ω1 = 2, ω2 = 2i, ω3 = i, ω5 = 0, T0 = 0, T1 = 0.01, with time and spatial coordi-
nates set to t = 0, z = 0 within the bounds of x ∈ [−1.5, 1.5] and y ∈ [−1.5, 1.5], The 
plot (e) indicates higher magnitudes away from the origin for ω1 = 2, ω2 = 2i, ω3 = i, 
ω5 = 0, T0 = 0, T1 = 0.01, with time and spatial coordinates set to t = 0, z = 0 within 
the bounds of x ∈ [−2, 2] and y ∈ [−1.5, 1.5], plot (f) provides a 3-dimensional view 
of the magnitude variation in all directions, highlighting areas with significant values 
ω1 = 2, ω2 = 2i, ω3 = i, ω5 = 0, T0 = 0, T1 = 0.01, with time and spatial coordi-
nates set to t = 0, z = 0 within the bounds of x ∈ [0, 2π] and y ∈ [0, 2π]. The obtained 
solitonic structures, such as cone-shaped and apple-like profiles, have important impli-
cations in plasma physics and theoretical physics. Cone-shaped waveforms can be used 
to model localized plasma wave packets and nonlinear excitations that propagate stably 
without distortion in three spatial directions. Similarly, apple-like or spherical profiles 
can represent three-dimensional localized energy concentrations, which are relevant 
to plasma confinement, nonlinear optics, and fluid dynamics. These shapes resemble 
the propagation of multi-soliton and multi-peakon waves in magnetized plasma and 
can also provide insight into energy localization phenomena in nonlinear media. Such 
graphical solutions not only enrich the theoretical framework of soliton theory but also 
suggest potential applications in areas such as plasma wave modeling, nonlinear com-
munication channels, and wave interactions in high-energy physics.

5  Conclusion

In conclusion, we extracted a wide range of solutions to a nonlinear (3+1)-D evolution equa-
tion using the newly proposed “generalized exponential rational integral function method," 
which has proven to be a powerful and innovative tool for extracting closed-form analytical 
solutions for highly nonlinear evolution equations. We obtained a wide range of solutions 
using GERIF, including exponential, trigonometric, hyperbolic, logarithmic, and inverse 
functions. These solutions had never been reported before. To provide a better understand-
ing of these solutions, we have employed various visualizations, including 3D plots, con-
tour plots, and spherical plots. These visualizations have shed light on the intricate patterns 
that emerge, such as lumps, peakons, solitons, periodic-lumps, periodic-peakons, symmetric 
patterns, periodic-solitons, and unique shapes like oval patterns, cone-shaped structures, 
and apple-like structures. These solutions can be applied in many areas, including light 
wave propagation in theoretical physics, wave behavior in fluids and plasmas, and various 
other fields.

5.1  Future scope

In this work, we constructed various solution sets to the (3+1)-D evolution equation, there 
are several future pathways for future research. Firstly, further exploration can be conducted 
to investigate the dynamic behavior and interactions of the identified solutions, such as 
lumps, peakons, solitons, periodic-lumps, periodic-peakons, periodic solitons, and symmet-
ric patterns. Additionally, extending this method to tackle more complex nonlinear equations 
or higher dimensional systems could yield valuable insights into a broader range of math-
ematical and physical phenomena. Lastly, exploring potential applications in fields beyond 
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applied mathematics, such as plasma physics, engineering, or even data sciences, could 
open up new perspectives for the practical utilization of the discovered solutions. Overall, 
this work presents a promising foundation for future research endeavors with the potential 
to advance our understanding of nonlinear dynamics and their real-world implications.
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