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ABSTRACT

The main topic of the paper is to investigate the generalized (2 + 1)-dimensional Date-Jimbo-Kashiwara-Miwa (DJKM) and Korteweg-de Vries
(KdV) equations, which are widely used in many physical areas, especially in fluids. A new Wronskian formulation is presented for these two
equations associated with the bilinear Backlund transformation. Based on Wronskian identities of the bilinear Kadomtsev—Petviashvili (KP)
hierarchy, the Wronskian determinant solution is verified by a direct and concise calculation. The newly introduced Wronskian formulation
provides a comprehensive way for building rational solutions. A few rational Wronskian solutions of lower order are computed for the generalized
(2 + 1)-dimensional DJKM equation. Our work can show that the extended (2 + 1)-dimensional KdV equation possesses the similar rational
Wronskian solutions through the corresponding logarithmic transformation.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0179572

. INTRODUCTION has been introduced in earlier studies. When ¢ = t3, the third member
Nonlinear evolution equations (NLEEs), especially nonlinear of this KP hierarchy is just the normal Kadomtsev-Petviashvili I (KPI)

.14
integrable equations, have wide applications in fields such as biology, equation,

. N . . . T7 (ur + 6uLy + Uyyey), — 3y, = 0. (1.2)
chemical engineering, fluid mechanics, and plasmas physics. x »
Studying on NLEE.S helps us gain a deeper unde.rstan(.hng of the phe- The fourth Eq. (1.1d) can be written as the (2+ 1)-dimensional
nomena they descrll?e. In tbe past decades, noplmear 1ntfegrable equa- Date-Jimbo-Kashiwara-Miwa (DJKM) equation, * '*
tions have become increasingly important owing to their remarkable

properties, such as Lax pairs, bilinear Backlund transformations, N- Prxxxy T 4Py P + 20k Py + 60,0 — Py, — 20, = 0, (1.3)
soliton solutions, and infinite symmetries.” "' In the soliton theory, the

commuting Kadomtsev—Petviashvili (KP) hierarchy of equations'” by taking the transformations u = ¢, and t; = 4 1.

also known as the integrable positive KP hierarchy,” In nonlinear science, the KP and DJKM equations act as mathe-

matical models for the propagation of 2D nonlinear solitary waves in

62¢:12:02 202 18qwiedsq 20

Uy = U, (11a) fluid mechanics, plasma physics, ocean dynamics, nonlinear optics,

Uy, = —2uy, (1.1b) and so on. These two equations are important integrable systems,

Uy, = —6Uitly — thye + 30, 11y, (1.1¢) whic.h. have many interesting cha.racteristics in physicall science, sluch

. > as bilinear Backlund transformations, Lax representations, and infi-

ey, = 12(2u0, "ty = O, "ty + Uy + dussy), (1.1d) nitely many conservation laws.”” " As well known, through the
Phys. Fluids 36, 017116 (2024); doi: 10.1063/5.0179572 36, 017116-1
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logarithmic transformation u = 2(In f)
lowing Hirota bilinear form:

the KPI Eq. (1.2) has the fol-

xx>

(D} + DD, +30°D3)f - f =0, o =1 (1.4)

with D,, D,, and D, being Hirota’s bilinear differential operators.z”
However, the (2 + 1)-dimensional DJKM Eq. (1.3) does not possess a
direct bilinear form like the KP Eq. (1.2), and it has a trilinear
representation, 1516

DA{(DDy —3D:Dy)f - f} - f?
+%Dy{(D;§ +30°D))f - f}-fP =0, o =-1, (1.5)

by the dependent variable transformation ¢ = 2(Inf),. To our knowl-
edge, the KPI Eq. (1.4) and the DJKM Eq. (1.5) possess abundant exact
solutions, including N-soliton solutions, lump solutions with different
kinds of rational dispersion relations,”’ ** and determinant-type solu-
tions with a Wronskian structure.'******

Recent studies show that there exist an extension of the (2 + 1)-
dimensional DJKM Eq. (1.3),”>* expressed as follows:
b(l//xxxxy + 4vlwbxxyl//x + zyl//xxxlpy + 6}”//xxl//xy + 5lwbyyy) + Cl//xxt =0,

(1.6)

where 7, d, b, and c are all arbitrary non-zero real constants. Under the
logarithmic transformation

Y= f (Inf),, (17)

the extended form (1.5) has the following trilinear form:

b frcey — feweddy + ey — Mfifecy + 4ifrcly
=22y — Ay + Hifry + Of fypy + 201) — 39fffyy)
+ f ot — i — 2cffiufur + 2cf2fi = 0, (1.8)

which is equivalent to
3
D, { (bDiDy + ECDXD,) f - f] f?
b .
+5Dy[<Dj‘c+3()D§)f-f] =0 (1.9)

In addition, by combining the third member (1.1¢) and fourth member
(1.1d) in the positive KP hierarchy, a novel (2 + 1)-dimensional inte-
grable Korteweg-de Vries (KdV) equation,

up = a(6uily + U — 3Wy) + bWty — 2, + 1y, + 4un), (L10)
Uy = Wy, Uy = Zxx, '

26

has been systematically investigated by Lou.”” The directly written Lax
pairs and Painlevé property show that a linear combination in a soliton
hierarchy is still integrable.”*””

This motivates us to explore an extended (2 + 1)-dimensional
KdV equation, written as follows:

A(6Y Uty + Uy +300xy) + bty + 29U, + 4puns, + 00y
Feu =0, v =1uy, (1.11)

where the constants 7, §, b, and c satisfy ydbc # 0, but the constant a
is arbitrary. Through the transformation

ARTICLE pubs.aip.org/aip/pof
uz%(lnf)xx7 v:%(lnf)y, (1.12)

this equation is transformed into

3a

4 2 2
D [ (Dx + 35Dy)f -f] f
+ D, { <bD§;Dy + chth>f -f} -f?
b 4 2 2
+§Dy[ (Dx + 35Dy>f ‘f] =0, (1.13)
which equivalently reads

“(fzfxxxxx + 2ffferr — Hfifroox — 6fxzxﬁc
+ 8feuefy + 30ffgy — 30fifyy
— 60ffyfay + 60Lf;) + b(f* ey
— fewedly + 2Ufefrry — Hficfrxry
+ 4fxﬁcxxfy - fozxfy - 4fxxfxfxy + 4fx2fxxy
+0f fyyy + 201 — 30fhfyy)
+ ¢ fext — Cffufi — 2¢ffufur + 2¢f2fi = 0. (1.14)

Note that Eq. (1.13) becomes the trilinear form (1.9) of the general-
ized (2 + 1)-dimensional DJKM equation when a = 0. Recent work
on integrability and exact solutions of Eq. (1.11) can be found in
Refs. 28 and 29.

The investigation of exact solutions plays a significant role in
revealing the physical mechanism of various natural phenomena char-
acterized by integrable equations in the real world. As a type of exact
solutions, rational solutions are attracting growing attention of numer-
ous scholars due to their extensive applications in many fields.”"***’
For instance, a variety of wave behaviors found in the deep ocean, fluid
dynamics, optical fibers, and Bose-Einstein condensates can be mod-
eled by nonsingular rational solutions.’"** Consequently, an important
fundamental work is how to explore rational solutions of integrable
equations.

The Wronskian structure is a normal characteristic of integrable
equations, which provides a useful tool for obtaining different kinds of
exact solutions to integrable equations, such as rational solutions, soli-
tons, negatons, complexitons, and interaction solutions.”” " The merit
of this technique is that solutions can be verified via a direct substitu-
tion. In recent years, Nimmo and Zhao™® put forward the partition
notation for derivatives of the Wronskian determinant and presented
the Wronskian-type determinant identities they satisfy. On this basis,
we will provide a more concise and direct way to the Wronskian for-
mulation by utilizing Wronskian identities of the bilinear KP hierarchy
and properties of Hirota operators,”” thereby greatly simplifying the
verification process of the solution. In particular, the resulting
Wronskian formulation paves a way for constructing abundant ratio-
nal solutions.

Very recently, by introducing an auxiliary independent variable
and applying the Wronskian identity of the bilinear KP equation, a set
of sufficient conditions for Wronskian solutions was constructed for
the extended (2 + 1)-dimensional KdV Eq. (1.11), and the resulting N-
soliton solution is essentially of (1 + 1)-dimension due to the dimen-
sional reduction.”’ However, rational solutions have not been given via
the presented Wronskian formulation. In this paper, we aim to discuss
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a new Wronskian formulation for solutions of Egs. (1.6) and (1.11),
which particularly presents rational solutions to Eqs. (1.6) and (1.11).
Our results will also demonstrate the trilinear Egs. (1.9) and (1.13)
have the same sufficient conditions for Wronskian solutions.

The following is the structure of the paper. In Sec. 1], by means of
the bilinear Backlund transformation, a new Wronskian formulation,
different from the ones in Refs. 18, 23, and 39, is constructed to the tri-
linear Eqgs. (1.9) and (1.13). Then, the Wronskian determinant solution
is verified by a direct and concise substitution. In Sec. 111, rational solu-
tions are furnished by taking special cases in the resulting Wronskian
formulation. Our conclusion and remarks will be given at the end.

1Il. ANEW WRONSKIAN FORMULATION

In this section, we first give the bilinear Backlund transformation
of Eq. (1.13) obtained in Ref. 28. If fand f” are two different solutions
of Eq. (1.13), then

(0D, + D2)f - f' =0, (2.1a)
aD} + bD2D, — 3a6 DD, — boD’ + CD,} Fof =, (21b)

where 3° =& and / is an arbitrary constant, which is a bilinear
Bécklund transformation between fand f'. Next, setting f' = 1 as the
seed solution in the system (2.1), corresponding to the zero solution
u=0 of (1.11), we have the following system:

Of, + fux = 0, (2.2a)
fis + Uy — 3adfy — bOf,y + ofs = I, (2.2b)
which is equivalent to
Of, + fx = 0, (2.3a)
4afxxx — %bfxx +cf=2f. (2.3b)

When the constant A # 0, the above-mentioned system (2.3) can be
rewritten as follows:

- 2b
5]3/ +fxx - 07 4afxxx = /Lf7 _gf;cxxx + Cft = Oa (2-4)

which helps us to give a new Wronskian formulation, different from
the ones in Refs. 18, 28, and 39 for the trilinear Egs. (1.9) and (1.13).

Let us now adopt the compact Freeman and Nimmo’s
notation*"’

¢y ¢ o Y
¢, ¢y o Y

W = W(¢17¢27 "'1¢N)

OV RRRI
=0,1,..N—1]=|N—1|, (2.5

where ¢,(]) = %ﬁ ,i,j > 1. We would like to furnish a set of sufficient
conditions, which guarantee that the Wronskian determinant solves
the trilinear Eqgs. (1.9) and (1.13).

Theorem 2.1. Assume that a group of functions

¢; = ¢i(x,,1),1 < i <N, meets the following linear conditions:

pubs.aip.org/aip/pof
N
¢i,xxx = Z /Ll]qsﬁ (263)
j=1
by === i (2:6b)
(/)i,t = %_b ¢i,xxxx> (26C)
oc

where 3" = & and the coefficient matrix A = (Zj),<;;<y is an arbi-
trary real constant matrix. Then, the Wronskian determinant f = fy
= |N — 1] defined in Eq. (2.5) solves the trilinear DJKM Eq. (1.9) and
the trilinear KAV Eq. (1.13).

As known to all, the first two numbers of the KP hierarchy’11 have
the following Hirota bilinear forms:

(D} — 4D, D3 + 3D3)f - f = 0, (2.72)
[(D} +2D3)D, — 3D\ Dy f - f =0, (2.7b)
where f denotes a function related to variables x;, j = 1,2,3, ..., and

Dj = D, Before providing a simple and clean proof of Theorem 2.1,
we first describe two useful lemmas associated with Wronskian identi-
ties of the bilinear KP hierarchy.

Lemma 2.1. Assume that a group of functions ¢; = ¢;(x1, x2, x3,
...), (1 <i < N), satisfies the linear partial differential equations,
do.

a)(f¢i = ajt )
Then, the Wronskian determinant f = fy = |N — 1| defined by (2.5)
solves the bilinear forms (2.7a) and (2.7b).

The proof of Lemma 2.1 can be found in Refs. 20 and 43. This
lemma also shows that the bilinear forms (2.7) yield the Pliicker rela-
tions for determinants if the function f is written as the Wronskian
determinant.”* Namely, the Hirota bilinear Egs. (2.7a) and (2.7b)
become the following Wronskian identities:

i=1,2,3,... (2.8)

(D! —4D,D; +3D3)[N—1|-|[N—1| = 24([N— 1||[N=3,N,N + 1|
—IN=2,N|[IN=3,N—I,N+1|+|[N=2,N+1]
x [N=3,N—1,N|)=0
(2.92)
and
[(D} +2D3)D, — 3D, D] IN— 1| - [N — 1]
=12(N—1|[IN=3,N,N+2|— [N—2,N|[N—3,N—1,N +2|
+|N=2,N+2|[N—3,N—1,N|)
~12(N—1|[N—4,N—2,N,N+1]|
—IN“4,N—2,N—1,N+1|[N=2,N|
+|N=4,N—2,N—1,N|[N=2,N+1|) =0,
(2.9b)

respectively. The first identity (2.92) is nothing but a Pliicker relation,
and the second identity (2.9b) is a linear combination of two Pliicker
relations.
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Lemma 2.2. Suppose the Wronskian entries ¢; = ¢;(x,y,t), 1
<i <N, in the Wronskian determinant (2.5) satisfy the expressions
(2.8) and

N
Z j'lJ¢J = f'ax3 ¢i = r¢i7xxx7 (2.10)
j=1

where r is an arbitrary constant and the coefficient matrix
A= (Jij)i< jon isan arbitrary real constant matrix. Then, we have

DyDsf -f =0, k=1,23,..., (2.11)

where the function f is expressed by the Wronskian determinant (2.5)
and Dy = Dy,. Here, the Hirota’s bilinear operators Dy, are Hirota’s
bilinear differential operators.

The proof of Lemma 2.2 can also be found in Ref. 23. It is gener-
ally known that the first member (2.7a) in the KP hierarchy, that is,
the bilinear KP equation, is reduced to the following bilinear
Boussinesq equation without velocity term,

(D} +3D3)f -f =0, (2.12)
under the condition D5 = 0 ‘which is regarded as the “3-reduction” of
the bilinear KP equation.” Obviously, if the Wronskian entries
¢;,1 <i <N, in the Wronskian determinant (2.5) meet the condi-
tions (2.8) and (2.10), then a direct calculation yields

(D! 4+ 3D3)N—1|-IN—1]|
= [(D! —4D,D; 4 3D%) + 4D, D;]IN— 1| - [IN— 1| = 0,
(2.13)

by utilizing the above-mentioned two lemmas. Thus, the Wronskian
determinant f = [N — 1| defined by (2.5) is a solution of the bilinear
Boussinesq Eq. (2.12). Similarly, the application of Lemmas 1.1 and 1.2
also leads to the Wronskian determinant f = IN—1| defined by (2.5)
that solves the bilinear equation,

(DD, — 3D, Dy)f - f =0, (2.14)

if both the conditions (2.8) and (2.10) hold.

Proof of Theorem 2.1. By using the conditions (2.6b) and (2.6¢),
the derivatives of the Wronskian determinant f = fy = |N — 1] with
respect to the variables x, y, and ¢ can be expressed as follows:

Dif -f = Dif -, D;=1D§f-f,
DiDf -f = *~D3D2f f (2.15)

Now, by making use of the condition (2.6a) and Lemma 2.2, we can

easily get
(De+30D)f - f = (D} +3D3)f -f =0

and

(bD3D +3cD Dt)f f= (—%D D2+35bD1D4)f f

—= (DD, — 3D, D,)f - f = 0.

@ﬂl >

(2.16)

pubs.aip.org/aip/pof

It follows then that

. 3 _ _— .,
D.| (bD}D, +5eD.D; | IN=1[ - N=1[| - [N = 1]

b S o 2
+5Dy[<Dﬁ+35D§)\N71|-|N71\]-|N71| =0 (217)
and

3 L
;Dx[<Dﬁ+35D;>|N7 1[N = 1\] JNTZ1P
3 _ _ _
DbeDiDy—i-icDxD,) IN=1]-IN— 1|} N1

b L
+5Dy[<Dj§+35D§)|N— 1|-\N—1|} JNZ1f =o.

(2.18)
This shows that f = |[N — 1] solves the trilinear DJKM Eq. (1.9) and
the trilinear KdV Eq. (1.13). The proof is finished.

lll. WRONSKIAN RATIONAL SOLUTIONS

In this section, we would like to construct rational solutions to
the generalized (2 + 1)-dimensional DJKM Eq. (1.6) via the presented
Wronskian formulation. Since similar transformations of the coeffi-
cient matrix A may lead to the same Wronskian solutions to soliton
equations, to construct rational solutions for Eq. (1.6), we only need to
focus on the following case of the coefficient matrix A:

0 0
1 0

A= (/lij)lgitjgN = 1 .0 . . (3.1)
0 1 0

NxN

Let us consider the sequence of polynomials ¢;,i > 1, deter-
mined by

1
¢Lxxx = 07 ¢i+1.xxx = d)iv ¢i,y = 73¢i,xx7

2b )
‘j’i‘r = ~_¢i,xxxx7 1 2 17
oc

which follows from the hypothesis for A in (3.1). For each k > 1, cor-
responding to the following Jordan block:

(3.2)

0 0
1 0
0 1 0

a normal Wronskian solution

v :faxln Wy, s, .. be)

is named as a rational Wronskian solution of order k — 1.”* Assume
that the three linearly independent solutions of ¢, are ¢ ;, ¢, ;, and
¢5.1- Then, two other general rational Wronskian solutions,

2
V= ;&c In W((rbl‘,lv ¢1,27 ceey (bl,kl% (:bz,l: (152‘,27 sy ¢21k2)7

2
W= ;ax In W(¢1,17 ¢1‘27 ) ¢1,k1’7¢2‘13 (152‘27 EE) (bz‘kz;
([)3‘17 ¢3,27 ceey ¢3,k3)7
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where ¢, 1, ¢;,, ..., $; ., 1 < i < 3, are three groups of functions cor-
responding to three Jordan blocks of the above type, are called the
rational Wronskian solutions of orders (k; —1,k; —1) and
(ki — 1,ky — 1,k3 — 1),”* respectively. In what follows, we will pre-
sent a few rational Wronskian solutions of lower order for the general-
ized (2 + 1)-dimensional DJKM Egq. (1.6).

Case 1 zero order: Let us consider ¢p; = ¢ + cx + 3 ( x* — % y).
Thus, we have the following Wronskian determinant and the resulting
rational Wronskian solution of zero order:

f=W(@)=¢ =0 +sz+C3(x2 f§y>,
2(c2 + 2¢3x) (3.3)

5 .
y{cl+c2x+c3(x2—g )}

In particular, choosing ¢, = x* — £, we obtain

w:%axlnwwl):

45x

S — 34
J(ox — 29) G

Case 2 first order: Setting ¢, =1, a direct calculation leads to
¢y =1x — %xy. Therefore, the corresponding Wronskian determi-
nant and rational Wronskian solution of first order may be written as

follows:
1, 1
f= W(y, b,) :Ex *3)’7
~ (3.5)
2 40x
Y =-0:InW(dy, ;) = —=——,
v (#1,92) P(0x2 — 2y)
which are the same as the zero-order solutions (3.4) above.
We choose ¢, = x, a direct expansion yields ¢, = 55 x* — %xzy

+3502 + g—i’ t. Then, the corresponding Wronskian determinant and
rational Wronskian solution of first order are

1 1 1 2b
=W(d,,p,) ==x* ——=x’y——y* —=t,
f (h1,92) 3 %5 JAREY: 3e o
2 80cx(dx> —2 '
Y==0InW(¢,,,) =—= : (O ~%) o
Y P(0dcx* —4dcx?y —40cy? — 160bt)
In addition, setting ¢, = ;%% — Iy, we get ¢, = 35x° — Lx'y

+35x2 + %—bxt. Further, the corresponding Wronskian determinant
and rational Wronskian solution of first order can be expressed as
follows:

1 1
—w S A 20
f (¢17¢2) 80x 85x}’+45 Y
b, . 2b
Pt ——y
5c 2 o

2
Y= ;ax InW(¢,,¢,)
B 1265¢x® — 80cx®y + 800 cxy* — 320bdxt
P(0cx® — 108cxty + 200 cx?y? — 800bx>t — 40cy® — 1600 byt)
(3.7)

Case 3 second order: If setting ¢, = x, we can compute that

1, 1, 1, 2b
= — - == = ~_t
by =5% SRR Y VAR
and
1 , 1 5 1 5, b 5, 1 4 2b
=—X ——=Xy+ <Xy +=Xt——=xy — —x)t.
5= 5040 1200 7 12877 T35, 605 5

A direct computation gives rise to the associated Wronskian
determinant and rational Wronskian solution of second order as
follows:

f: W(¢17¢27¢3)

1 9 1 7 1 5,2 b 5

=X ——=X'y——=X)y ———=xt
2240 1406 Y 400 J 105¢
1 o, 1 , 2b , 4V ,
— ——xyt == t— —xt
06" TV T e
2 2p
:78x1nW ) ) = ) (38)
V= SO W Gy barhs) =

where

P =90°x® — 11205° xSy — 280> 2x*y? — 1120052 betx*
456002 xty? — 5600c2y* — 44800 0bcy’t — 89605°b*t2,
g = 82x® —1600°Axy — 5602 Axy? — 22405 bext
+11282xy? — 5600c2y* — 44800 bcy>t — 896057 b>t2.

Case 4 (L1)-order: Let us now assume ¢, =1,¢,, = éx"’ — %xy
and ¢,; =x,¢,, = ix‘l — erzy + iyz +2b¢ in this case. Then,
v ! 5 20 20 o¢ R
the associated Wronskian determinant and rational Wronskian solu-

tion of (1,1)-order are presented by

1 1
f=W(P11, 125 Po1s b22) = 75){2 B 3}/,

45x
y(5x2 +2y) ’

2 (3.9)
V= ;&c In W((/’1,17 ¢1‘,27 ¢2,1> ¢z,2) =

If we take (/)1,1 =1, ¢1,2 = éx3 - %xy and ¢,, = %xz _%)’7 ¢2,2

1,5 1,3, 1 .2 2 : : .
=% — g5 X'y +35%° +352xt, the associated Wronskian determi

nant and rational Wronskian solution of (1,1)-order become

f = W(¢1.15¢1,27¢2,17¢2,2)
1, 1, 1, 2b
=—=—X" ——=Xxy+—y —=t,
8¢ 2577 T2 TS

2
V= ;ax InW(ey1, 15 bats P22)

8dcx(dx> + 2)

S - . . (3.10)
p(d0cx* + 4dcx?y — 4dcy* + 160bt)

_ _ b
Let us choose ¢y = x, ¢y, = 5;x* — =x?y +55° + 2t and ¢,
1.2 1 1 5 1.3 1 2 2b s
=X = 5Y, by =X — 55Xy +35Xy° +52xt. A direct computa-
tion shows that the associated Wronskian determinant and rational

Wronskian solution of (1,1)-order are
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f: W(¢1,15¢1,23¢2,17¢272)
1 ¢ 1 4 1 ,, b, 1 5 2b
——X ==Xy =Xy —=xt——==y +-)t,
80" T8 ) 4 T s o

V= %&c In W(¢1,17 ¢1,27 $a1s ¢272)

_ 1200¢x® 4 803cx>y + 800 cxy? + 320bdxt
9(8cxS 4+ 105cxty 4+ 200cx2y? + 800bx>t + 40cy® — 1605byt)
(3.11)

Remark 1. When b =y = 1,0 = —1, ¢ = —2, the above-mentioned
rational Wronskian solutions reduce to the solutions of the (2 4+ 1)-
dimensional DJKM Egq. (1.3). Note that these rational solutions only
yield complex-valued solutions due to 6 = *i.

Remark 2. According to Theorem 2.1, the above-mentioned
Wronskian determinants lead to rational Wronskian solutions of the
extended (2 + 1)-dimensional KdV Eq. (1.11) through the transforma-
tion (1.12).

IV. CONCLUDING REMARKS

In summary, based on the bilinear Backlund transformation, we
have constructed a new Wronskian formulation for the trilinear Eqs.
(1.9) and (1.13), which involves fourth-order linear partial differential
equations. By means of two useful lemmas associated with Wronskian
identities of the bilinear KP hierarchy, the Wronskian determinant
solution has been verified by a direct calculation. The newly presented
Wronskian formulation provides us with a powerful way to construct
all kinds of exact solutions, particularly rational solutions. Therefore,
for the generalized DJKM Eq. (1.6) and the extended KdV Eq. (1.11)
in (2+ 1)-dimensions, a few general rational Wronskian solutions
have been determined by choosing the special coefficient matrix in the
resulting Wronskian formulation. The presented results in this paper
not only enrich the solution space of the considered equations, but also
provide a direct and valuable method for verifying Wronskian suffi-
cient conditions. The obtained solutions are expected to be widely
applied in the field of science.

We point out that the extended (2 + 1)-dimensional KdV Eq.
(1.11) can also be generalized to the following form: ™

a(6yutty + Uy + 300yy) + bty + 271,05
+yuu, + Ovyy) + cuyp + duge +huy, =0, vy =u,, (41)

where the constants a, b, ¢, 7, and § satisfy ydc(a® + b?) # 0, but the
constants d and h are arbitrary. Under the logarithmic derivative
transformation

2 2
u=-(Inf),,, v=-(Inf), (4.2)
v 7
this equation possesses a trilinear form,
D, [(SaDjt +9adD? + 2bD3D,
+3¢D,D; + 3dD? + 3hD, D, )f - f} f?
+D, [ (bDjt + 3b5D§)f -f] f2=0. (4.3)

We can similarly determine that a set of functions ¢; = ¢;(x1,
X2,%3,...) (1 < i < N) satisfies the following conditions:

ARTICLE pubs.aip.org/aip/pof
N
P = Z ;Liqujv (4.4a)
j=1
by === i (4.4b)
2b h d
¢i,t = E d)i,xxxx + E d)i,xx - E ¢i7x7 (4~4C)

where 3° = & and the coefficient matrix A = (4ij)1<ij<n is an arbi-
trary real constant matrix. Then, the Wronskian determinant
f =fyv =|N—1| defined in (2.5) is a solution to the trilinear Eq.
(4.3). The proof of the Wronskian conditions (4.4) is similar to
Theorem 2.1. In addition, recent studies show that abundant exact sol-
utions, such as lump waves, lump-soliton interaction solutions, and
analytical solutions, exist in nonlinear (24 1)-dimensional equa-
tions* "’ and (3 + 1)-dimension equations.”’ Interestingly, it is
expected that such interaction solutions could be discussed to Egs.
(1.6) and (1.11) through the Wronskian technique.
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