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ABSTRACT

The main topic of the paper is to investigate the generalized (2þ 1)-dimensional Date–Jimbo–Kashiwara–Miwa (DJKM) and Korteweg–de Vries
(KdV) equations, which are widely used in many physical areas, especially in fluids. A new Wronskian formulation is presented for these two
equations associated with the bilinear B€acklund transformation. Based on Wronskian identities of the bilinear Kadomtsev–Petviashvili (KP)
hierarchy, the Wronskian determinant solution is verified by a direct and concise calculation. The newly introduced Wronskian formulation
provides a comprehensive way for building rational solutions. A few rational Wronskian solutions of lower order are computed for the generalized
(2þ 1)-dimensional DJKM equation. Our work can show that the extended (2þ 1)-dimensional KdV equation possesses the similar rational
Wronskian solutions through the corresponding logarithmic transformation.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0179572

I. INTRODUCTION

Nonlinear evolution equations (NLEEs), especially nonlinear
integrable equations, have wide applications in fields such as biology,
chemical engineering, fluid mechanics, and plasmas physics.1–7

Studying on NLEEs helps us gain a deeper understanding of the phe-
nomena they describe. In the past decades, nonlinear integrable equa-
tions have become increasingly important owing to their remarkable
properties, such as Lax pairs, bilinear B€acklund transformations, N-
soliton solutions, and infinite symmetries.8–11 In the soliton theory, the
commuting Kadomtsev–Petviashvili (KP) hierarchy of equations12

also known as the integrable positive KP hierarchy,13

ut1 ¼ ux; (1.1a)

ut2 ¼ �2uy; (1.1b)

ut3 ¼ �6uux � uxxx þ 3@�1
x uyy; (1.1c)

ut4 ¼ 12ð2ux@�1
x uy � @�2

x uyyy þ uxxy þ 4uuyÞ; (1.1d)

has been introduced in earlier studies. When t¼ t3, the third member
of this KP hierarchy is just the normal Kadomtsev–Petviashvili I (KPI)
equation,14

ðut þ 6uux þ uxxxÞx � 3uyy ¼ 0: (1.2)

The fourth Eq. (1.1d) can be written as the (2þ 1)-dimensional
Date–Jimbo–Kashiwara–Miwa (DJKM) equation,15–18

uxxxxy þ 4uxxyux þ 2uxxxuy þ 6uxyuxx � uyyy � 2uxxt ¼ 0; (1.3)

by taking the transformations u ¼ ux and t4 ¼ 1
24 t.

In nonlinear science, the KP and DJKM equations act as mathe-
matical models for the propagation of 2D nonlinear solitary waves in
fluid mechanics, plasma physics, ocean dynamics, nonlinear optics,
and so on. These two equations are important integrable systems,
which have many interesting characteristics in physical science, such
as bilinear B€acklund transformations, Lax representations, and infi-
nitely many conservation laws.15–19 As well known, through the
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logarithmic transformation u ¼ 2ðln f Þxx, the KPI Eq. (1.2) has the fol-
lowing Hirota bilinear form:

ðD4
x þ DxDt þ 3r2D2

yÞf � f ¼ 0; r2 ¼ �1 (1.4)

with Dx, Dy, and Dt being Hirota’s bilinear differential operators.20

However, the (2þ 1)-dimensional DJKM Eq. (1.3) does not possess a
direct bilinear form like the KP Eq. (1.2), and it has a trilinear
representation,15,16

DxfðD3
xDy � 3DxDtÞf � f g � f 2

þ 1
2
DyfðD4

x þ 3r2D2
yÞf � f g � f 2 ¼ 0; r2 ¼ �1; (1.5)

by the dependent variable transformation u ¼ 2ðln f Þx . To our knowl-
edge, the KPI Eq. (1.4) and the DJKM Eq. (1.5) possess abundant exact
solutions, including N-soliton solutions, lump solutions with different
kinds of rational dispersion relations,20–22 and determinant-type solu-
tions with a Wronskian structure.18,20,23,24

Recent studies show that there exist an extension of the (2þ 1)-
dimensional DJKM Eq. (1.3),23,25 expressed as follows:

bðwxxxxy þ 4cwxxywx þ 2cwxxxwy þ 6cwxxwxy þ dwyyyÞ þ cwxxt ¼ 0;

(1.6)

where c; d; b, and c are all arbitrary non-zero real constants. Under the
logarithmic transformation

w ¼ 2
c
ðln f Þx; (1.7)

the extended form (1.5) has the following trilinear form:

bðf 2fxxxxy � ffxxxxfy þ 2ffxxfxxy � 4ffxfxxxy þ 4fxfxxxfy
� 2f 2xxfy � 4fxxfxfxy þ 4f 2x fxxy þ df 2fyyy þ 2df 3y � 3dffyfyyÞ
þ c f 2fxxt � c ffxxft � 2c ffxfxt þ 2c f 2x ft ¼ 0; (1.8)

which is equivalent to

Dx bD3
xDy þ 3

2
cDxDt

� �
f � f

� �
� f 2

þ b
2
Dy D4

x þ 3dD2
y

� �
f � f

h i
� f 2 ¼ 0: (1.9)

In addition, by combining the third member (1.1c) and fourth member
(1.1d) in the positive KP hierarchy, a novel (2þ 1)-dimensional inte-
grable Korteweg-de Vries (KdV) equation,

ut ¼ að6uux þ uxxx � 3wyÞ þ bð2wux � zy þ uxxy þ 4uuyÞ;
uy ¼ wx; uyy ¼ zxx;

(1.10)

has been systematically investigated by Lou.26 The directly written Lax
pairs and Painlev�e property show that a linear combination in a soliton
hierarchy is still integrable.26,27

This motivates us to explore an extended (2þ 1)-dimensional
KdV equation, written as follows:

að6cuuxþuxxxþ3dvxyÞþbðuxxyþ2cuxvxþ4cuuyþdvyyÞ
þ cut ¼ 0; vxx ¼ uy; (1.11)

where the constants c; d; b, and c satisfy cdbc 6¼ 0, but the constant a
is arbitrary. Through the transformation

u ¼ 2
c
ðln f Þxx; v ¼ 2

c
ðln f Þy; (1.12)

this equation is transformed into

3a
2
Dx D4

x þ 3dD2
y

� �
f � f

h i
� f 2

þ Dx bD3
xDy þ 3

2
cDxDt

� �
f � f

� �
� f 2

þ b
2
Dy D4

x þ 3dD2
y

� �
f � f

h i
� f 2 ¼ 0; (1.13)

which equivalently reads

aðf 2fxxxxx þ 2ffxxfxxx � 5ffxfxxxx � 6f 2xxfx
þ 8fxxxf

2
x þ 3df 2fxyy � 3dffxfyy

� 6dffyfxy þ 6dfxf
2
y Þ þ bðf 2fxxxxy

� ffxxxxfy þ 2ffxxfxxy � 4ffxfxxxy
þ 4fxfxxxfy � 2f 2xxfy � 4fxxfxfxy þ 4f 2x fxxy
þ df 2fyyy þ 2df 3y � 3dffyfyyÞ
þ cf 2fxxt � c ffxxft � 2cffxfxt þ 2cf 2x ft ¼ 0: (1.14)

Note that Eq. (1.13) becomes the trilinear form (1.9) of the general-
ized (2þ 1)-dimensional DJKM equation when a¼ 0. Recent work
on integrability and exact solutions of Eq. (1.11) can be found in
Refs. 28 and 29.

The investigation of exact solutions plays a significant role in
revealing the physical mechanism of various natural phenomena char-
acterized by integrable equations in the real world. As a type of exact
solutions, rational solutions are attracting growing attention of numer-
ous scholars due to their extensive applications in many fields.21,22,30

For instance, a variety of wave behaviors found in the deep ocean, fluid
dynamics, optical fibers, and Bose–Einstein condensates can be mod-
eled by nonsingular rational solutions.31,32 Consequently, an important
fundamental work is how to explore rational solutions of integrable
equations.

The Wronskian structure is a normal characteristic of integrable
equations, which provides a useful tool for obtaining different kinds of
exact solutions to integrable equations, such as rational solutions, soli-
tons, negatons, complexitons, and interaction solutions.33–37 The merit
of this technique is that solutions can be verified via a direct substitu-
tion. In recent years, Nimmo and Zhao38 put forward the partition
notation for derivatives of the Wronskian determinant and presented
the Wronskian-type determinant identities they satisfy. On this basis,
we will provide a more concise and direct way to the Wronskian for-
mulation by utilizing Wronskian identities of the bilinear KP hierarchy
and properties of Hirota operators,23,39 thereby greatly simplifying the
verification process of the solution. In particular, the resulting
Wronskian formulation paves a way for constructing abundant ratio-
nal solutions.

Very recently, by introducing an auxiliary independent variable
and applying the Wronskian identity of the bilinear KP equation, a set
of sufficient conditions for Wronskian solutions was constructed for
the extended (2þ 1)-dimensional KdV Eq. (1.11), and the resulting N-
soliton solution is essentially of (1þ 1)-dimension due to the dimen-
sional reduction.23 However, rational solutions have not been given via
the presented Wronskian formulation. In this paper, we aim to discuss
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a new Wronskian formulation for solutions of Eqs. (1.6) and (1.11),
which particularly presents rational solutions to Eqs. (1.6) and (1.11).
Our results will also demonstrate the trilinear Eqs. (1.9) and (1.13)
have the same sufficient conditions for Wronskian solutions.

The following is the structure of the paper. In Sec. II, by means of
the bilinear B€acklund transformation, a new Wronskian formulation,
different from the ones in Refs. 18, 23, and 39, is constructed to the tri-
linear Eqs. (1.9) and (1.13). Then, the Wronskian determinant solution
is verified by a direct and concise substitution. In Sec. III, rational solu-
tions are furnished by taking special cases in the resulting Wronskian
formulation. Our conclusion and remarks will be given at the end.

II. A NEWWRONSKIAN FORMULATION

In this section, we first give the bilinear B€acklund transformation
of Eq. (1.13) obtained in Ref. 28. If f and f 0 are two different solutions
of Eq. (1.13), then

ð~dDy þ D2
xÞf � f 0 ¼ 0; (2.1a)

aD3
x þ bD2

xDy � 3a~dDxDy � b~dD2
y þ cDt

h i
f � f 0 ¼ kff 0; (2.1b)

where ~d
2 ¼ d and k is an arbitrary constant, which is a bilinear

B€acklund transformation between f and f 0. Next, setting f 0 ¼ 1 as the
seed solution in the system (2.1), corresponding to the zero solution
u¼ 0 of (1.11), we have the following system:

~dfy þ fxx ¼ 0; (2.2a)

afxxx þ bfxxy � 3a~dfxy � b~dfyy þ cft ¼ kf ; (2.2b)

which is equivalent to

~dfy þ fxx ¼ 0; (2.3a)

4afxxx � 2b
~d
fxxxx þ cft ¼ kf : (2.3b)

When the constant k 6¼ 0, the above-mentioned system (2.3) can be
rewritten as follows:

~dfy þ fxx ¼ 0; 4afxxx ¼ kf ; � 2b
~d
fxxxx þ cft ¼ 0; (2.4)

which helps us to give a new Wronskian formulation, different from
the ones in Refs. 18, 28, and 39 for the trilinear Eqs. (1.9) and (1.13).

Let us now adopt the compact Freeman and Nimmo’s
notation40,41

W ¼ Wð/1;/2;…;/NÞ ¼

/1 /ð1Þ
1 � � � /ðN�1Þ

1

/2 /ð1Þ
2 � � � /ðN�1Þ

2

..

. ..
. ..

. ..
.

/N /ð1Þ
N � � � /ðN�1Þ

N

�����������

�����������
¼ j0; 1;…;N � 1j ¼ j dN� 1j; (2.5)

where /ðjÞ
i ¼ @ j/i

@xj ; i; j � 1. We would like to furnish a set of sufficient
conditions, which guarantee that the Wronskian determinant solves
the trilinear Eqs. (1.9) and (1.13).

Theorem 2.1. Assume that a group of functions
/i ¼ /iðx; y; tÞ; 1 � i � N;meets the following linear conditions:

/i;xxx ¼
XN
j¼1

kij/j; (2.6a)

/i;y ¼ � 1
~d
/i;xx; (2.6b)

/i;t ¼
2b
~dc

/i;xxxx; (2.6c)

where ~d
2 ¼ d and the coefficient matrix A ¼ ðkijÞ1�i;j�N is an arbi-

trary real constant matrix. Then, the Wronskian determinant f ¼ fN
¼ j dN� 1j defined in Eq. (2.5) solves the trilinear DJKM Eq. (1.9) and
the trilinear KdV Eq. (1.13).

As known to all, the first two numbers of the KP hierarchy42 have
the following Hirota bilinear forms:

ðD4
1 � 4D1D3 þ 3D2

2Þf � f ¼ 0; (2.7a)

ðD3
1 þ 2D3ÞD2 � 3D1D4

	 

f � f ¼ 0; (2.7b)

where f denotes a function related to variables xj; j ¼ 1; 2; 3;…; and
Dj � Dxj . Before providing a simple and clean proof of Theorem 2.1,
we first describe two useful lemmas associated with Wronskian identi-
ties of the bilinear KP hierarchy.

Lemma 2.1. Assume that a group of functions /i ¼ /iðx1; x2; x3;
…Þ; ð1 � i � NÞ, satisfies the linear partial differential equations,

@xj/i ¼
@j/i

@xj
; j ¼ 1; 2; 3;… (2.8)

Then, the Wronskian determinant f ¼ fN ¼ j dN� 1j defined by (2.5)
solves the bilinear forms (2.7a) and (2.7b).

The proof of Lemma 2.1 can be found in Refs. 20 and 43. This
lemma also shows that the bilinear forms (2.7) yield the Pl€ucker rela-
tions for determinants if the function f is written as the Wronskian
determinant.44 Namely, the Hirota bilinear Eqs. (2.7a) and (2.7b)
become the followingWronskian identities:

ðD4
1 � 4D1D3 þ 3D2

2Þj dN� 1j � j dN� 1j ¼ 24ðj dN� 1jj dN� 3;N;N þ 1j
� j dN� 2;Njj dN� 3;N � 1;N þ 1j þ j dN� 2;N þ 1j
� j dN� 3;N � 1;NjÞ � 0

(2.9a)

and

ðD3
1 þ 2D3ÞD2 � 3D1D4

	 
j dN� 1j � j dN� 1j
¼ 12ðj dN� 1jj dN� 3;N;N þ 2j � j dN� 2;Njj dN� 3;N � 1;N þ 2j
þ j dN� 2;N þ 2jj dN� 3;N � 1;NjÞ
� 12ðj dN� 1jj dN� 4;N � 2;N;N þ 1j
� j dN� 4;N � 2;N � 1;N þ 1jj dN� 2;Nj
þ j dN� 4;N � 2;N � 1;Njj dN� 2;N þ 1jÞ � 0;

(2.9b)

respectively. The first identity (2.9a) is nothing but a Pl€ucker relation,
and the second identity (2.9b) is a linear combination of two Pl€ucker
relations.
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Lemma 2.2. Suppose the Wronskian entries /i ¼ /iðx; y; tÞ; 1
� i � N; in the Wronskian determinant (2.5) satisfy the expressions
(2.8) and

XN
j¼1

kij/j ¼ r@x3/i ¼ r/i;xxx; (2.10)

where r is an arbitrary constant and the coefficient matrix
A ¼ ðkijÞ1�i;j�N is an arbitrary real constant matrix. Then, we have

rDkD3f � f ¼ 0; k ¼ 1; 2; 3;…; (2.11)

where the function f is expressed by the Wronskian determinant (2.5)
and Dk ¼ Dxk . Here, the Hirota’s bilinear operators Dxk are Hirota’s
bilinear differential operators.

The proof of Lemma 2.2 can also be found in Ref. 23. It is gener-
ally known that the first member (2.7a) in the KP hierarchy, that is,
the bilinear KP equation, is reduced to the following bilinear
Boussinesq equation without velocity term,

ðD4
1 þ 3D2

2Þf � f ¼ 0; (2.12)

under the condition D3 ¼ 0, which is regarded as the “3-reduction” of
the bilinear KP equation.45 Obviously, if the Wronskian entries
/i; 1 � i � N; in the Wronskian determinant (2.5) meet the condi-
tions (2.8) and (2.10), then a direct calculation yields

ðD4
1 þ 3D2

2Þj dN� 1j � j dN� 1j
¼ ðD4

1 � 4D1D3 þ 3D2
2Þ þ 4D1D3

	 
j dN� 1j � j dN� 1j ¼ 0;

(2.13)

by utilizing the above-mentioned two lemmas. Thus, the Wronskian
determinant f ¼ j dN� 1j defined by (2.5) is a solution of the bilinear
Boussinesq Eq. (2.12). Similarly, the application of Lemmas 1.1 and 1.2
also leads to the Wronskian determinant f ¼ j dN� 1j defined by (2.5)
that solves the bilinear equation,

ðD3
1D2 � 3D1D4Þf � f ¼ 0; (2.14)

if both the conditions (2.8) and (2.10) hold.
Proof of Theorem 2.1. By using the conditions (2.6b) and (2.6c),

the derivatives of the Wronskian determinant f ¼ fN ¼ j dN� 1j with
respect to the variables x, y, and t can be expressed as follows:

D4
xf � f ¼ D4

1f � f ; D2
y ¼

1
d
D2
2f � f ;

D3
xDyf � f ¼ � 1

~d
D3
1D2f � f ;

DxDtf � f ¼ 2b
~dc

D1D4f � f :

(2.15)

Now, by making use of the condition (2.6a) and Lemma 2.2, we can
easily get

ðD4
x þ 3dD2

yÞf � f ¼ ðD4
1 þ 3D2

2Þf � f ¼ 0

and

bD3
xDy þ 3

2
cDxDt

� �
f � f ¼ � b

~d
D3

1D2 þ 3b
~d
D1D4

� �
f � f

¼ � b
~d
ðD3

1D2 � 3D1D4Þf � f ¼ 0:

(2.16)

It follows then that

Dx bD3
xDy þ 3

2
cDxDt

� �
j dN� 1j � j dN� 1j

� �
� j dN� 1j2

þ b
2
Dy D4

x þ 3dD2
y

� �
j dN� 1j � j dN� 1j

h i
� j dN� 1j2 ¼ 0 (2.17)

and
3a
2
Dx D4

x þ 3dD2
y

� �
j dN� 1j � j dN� 1j

h i
� j dN� 1j2

þ Dx bD3
xDy þ 3

2
cDxDt

� �
j dN� 1j � j dN� 1j

� �
� j dN� 1j2

þ b
2
Dy D4

x þ 3dD2
y

� �
j dN� 1j � j dN� 1j

h i
� j dN� 1j2 ¼ 0:

(2.18)
This shows that f ¼ j dN� 1j solves the trilinear DJKM Eq. (1.9) and
the trilinear KdV Eq. (1.13). The proof is finished.

III. WRONSKIAN RATIONAL SOLUTIONS

In this section, we would like to construct rational solutions to
the generalized (2þ 1)-dimensional DJKM Eq. (1.6) via the presented
Wronskian formulation. Since similar transformations of the coeffi-
cient matrix A may lead to the same Wronskian solutions to soliton
equations, to construct rational solutions for Eq. (1.6), we only need to
focus on the following case of the coefficient matrix A:

A ¼ ðkijÞ1�i;j�N ¼

0 0
1 0

1 0
. .
. . .

.

0 1 0

0
BBBBB@

1
CCCCCA

N�N

: (3.1)

Let us consider the sequence of polynomials /i; i � 1; deter-
mined by

/1;xxx ¼ 0; /iþ1;xxx ¼ /i; /i;y ¼ � 1
~d
/i;xx;

/i;t ¼
2b
~dc

/i;xxxx; i � 1;
(3.2)

which follows from the hypothesis for A in (3.1). For each k � 1, cor-
responding to the following Jordan block:

0 0
1 0

. .
. . .

.

0 1 0

0
BBB@

1
CCCA

k�k

;

a normal Wronskian solution

w ¼ 2
c
@x lnWð/1;/2;…;/kÞ

is named as a rational Wronskian solution of order k � 1.34 Assume
that the three linearly independent solutions of /1 are /1;1;/2;1, and
/3;1. Then, two other general rational Wronskian solutions,

w ¼ 2
c
@x lnWð/1;1;/1;2;…;/1;k1 ;/2;1;/2;2;…;/2;k2Þ;

w ¼ 2
c
@x lnWð/1;1;/1;2;…;/1;k1 ;/2;1;/2;2;…;/2;k2 ;

/3;1;/3;2;…;/3;k3Þ;
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where /i;1;/i;2;…;/i;ki ; 1 � i � 3; are three groups of functions cor-
responding to three Jordan blocks of the above type, are called the
rational Wronskian solutions of orders ðk1 � 1; k2 � 1Þ and
ðk1 � 1; k2 � 1; k3 � 1Þ,34 respectively. In what follows, we will pre-
sent a few rational Wronskian solutions of lower order for the general-
ized (2þ 1)-dimensional DJKM Eq. (1.6).

Case 1 zero order: Let us consider /1 ¼ c1 þ c2x þ c3 x2 � 2
~d
y

� �
.

Thus, we have the following Wronskian determinant and the resulting
rational Wronskian solution of zero order:

f ¼ Wð/1Þ ¼ /1 ¼ c1 þ c2x þ c3 x2 � 2
~d
y

� �
;

w ¼ 2
c
@x lnWð/1Þ ¼

2ðc2 þ 2c3xÞ
c c1 þ c2x þ c3 x2 � 2

~d
y

� �� � : (3.3)

In particular, choosing /1 ¼ x2 � 2
~d
y, we obtain

w ¼ 4~dx

cð~dx2 � 2yÞ : (3.4)

Case 2 first order: Setting /1 ¼ 1, a direct calculation leads to
/2 ¼ 1

6 x
3 � 1

~d
xy. Therefore, the corresponding Wronskian determi-

nant and rational Wronskian solution of first order may be written as
follows:

f ¼ Wð/1;/2Þ ¼
1
2
x2 � 1

~d
y;

w ¼ 2
c
@x lnWð/1;/2Þ ¼

4~dx

cð~dx2 � 2yÞ ;
(3.5)

which are the same as the zero-order solutions (3.4) above.
We choose /1 ¼ x, a direct expansion yields /2 ¼ 1

24 x
4 � 1

2~d
x2y

þ 1
2d y

2 þ 2b
~dc
t. Then, the corresponding Wronskian determinant and

rational Wronskian solution of first order are

f ¼Wð/1;/2Þ¼
1
8
x4� 1

2~d
x2y� 1

2d
y2�2b

~dc
t;

w¼2
c
@x lnWð/1;/2Þ¼

8dcxð~dx2�2yÞ
cð~ddcx4�4dcx2y�4~dcy2�16dbtÞ:

(3.6)

In addition, setting /1 ¼ 1
2 x

2 � 1
~d
y, we get /2 ¼ 1

120 x
5 � 1

6~d
x3y

þ 1
2d xy

2 þ 2b
~dc
xt. Further, the corresponding Wronskian determinant

and rational Wronskian solution of first order can be expressed as
follows:

f ¼Wð/1;/2Þ¼
1
80

x6� 1

8~d
x4yþ 1

4d
x2y2

� b
~dc

x2t� 1

2~dd
y3�2b

dc
yt;

w¼ 2
c
@x lnWð/1;/2Þ

¼ 12~ddcx5�80dcx3yþ80~dcxy2�320bdxt

cð~ddcx6�10dcx4yþ20~dcx2y2�80dbx2t�40cy3�160~dbytÞ :

(3.7)

Case 3 second order: If setting /1 ¼ x, we can compute that

/2 ¼
1
24

x4 � 1

2~d
x2y þ 1

2d
y2 þ 2b

~dc
t

and

/3 ¼
1

5040
x7 � 1

120~d
x5y þ 1

12d
x3y2 þ b

3~dc
x3t � 1

6d~d
xy3 � 2b

dc
xyt:

A direct computation gives rise to the associated Wronskian
determinant and rational Wronskian solution of second order as
follows:

f ¼ Wð/1;/2;/3Þ

¼ 1
2240

x9 � 1

140~d
x7y � 1

40d
x5y2 � b

10~dc
x5t

þ 1
20d

x5y2 � 1

4d2
xy4 � 2b

~ddc
xy2t � 4b2

dc2
xt2;

w ¼ 2
c
@x lnWð/1;/2;/3Þ ¼

2p
cxq

; (3.8)

where

p ¼ 9d3c2x8 � 112~dd2c2x6y � 280d2c2x4y2 � 1120~dd2bctx4

þ560d2c2x4y2 � 560dc2y4 � 4480~ddbcy2t � 8960d2b2t2;

q ¼ d3c2x8 � 16~dd2c2x6y � 56d2c2x4y2 � 224~dd2bcx4t

þ112d2c2x4y2 � 560dc2y4 � 4480~ddbcy2t � 8960d2b2t2:

Case 4 (1,1)-order: Let us now assume /1;1 ¼ 1;/1;2 ¼ 1
6 x

3 � 1
~d
xy

and /2;1 ¼ x;/2;2 ¼ 1
24 x

4 � 1
2~d
x2y þ 1

2d y
2 þ 2b

~dc
t in this case. Then,

the associated Wronskian determinant and rational Wronskian solu-
tion of (1,1)-order are presented by

f ¼ Wð/1;1;/1;2;/2;1;/2;2Þ ¼ � 1
2
x2 � 1

~d
y;

w ¼ 2
c
@x lnWð/1;1;/1;2;/2;1;/2;2Þ ¼

4~dx

cð~dx2 þ 2yÞ :
(3.9)

If we take /1;1 ¼ 1;/1;2 ¼ 1
6 x

3 � 1
~d
xy and /2;1 ¼ 1

2 x
2 � 1

~d
y;/2;2

¼ 1
120 x

5 � 1
6~d
x3y þ 1

2d xy
2 þ 2b

~dc
xt, the associated Wronskian determi-

nant and rational Wronskian solution of (1,1)-order become

f ¼ Wð/1;1;/1;2;/2;1;/2;2Þ

¼ � 1
8
x4 � 1

2~d
x2y þ 1

2d
y2 � 2b

~dc
t;

w ¼ 2
c
@x lnWð/1;1;/1;2;/2;1;/2;2Þ

¼ 8dcxð~dx2 þ 2yÞ
cð~ddcx4 þ 4dcx2y � 4~dcy2 þ 16dbtÞ : (3.10)

Let us choose /1;1 ¼ x;/1;2 ¼ 1
24 x

4 � 1
2~d
x2y þ 1

2d y
2 þ 2b

~dc
t and /2;1

¼ 1
2 x

2 � 1
~d
y;/2;2 ¼ 1

120 x
5 � 1

6~d
x3y þ 1

2d xy
2 þ 2b

~dc
xt. A direct computa-

tion shows that the associated Wronskian determinant and rational
Wronskian solution of (1,1)-order are
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f ¼Wð/1;1;/1;2;/2;1;/2;2Þ
¼ � 1

80
x6 � 1

8~d
x4y� 1

4d
x2y2 � b

~dc
x2t� 1

2~dd
y3 þ 2b

dc
yt;

w¼ 2
c
@x lnWð/1;1;/1;2;/2;1;/2;2Þ

¼ 12~ddcx5 þ 80dcx3yþ 80~dcxy2 þ 320bdxt

cð~ddcx6 þ 10dcx4yþ 20~dcx2y2 þ 80dbx2tþ 40cy3 � 160~dbytÞ :

(3.11)

Remark 1. When b ¼ c ¼ 1; d ¼ �1; c ¼ �2, the above-mentioned
rational Wronskian solutions reduce to the solutions of the (2þ 1)-
dimensional DJKM Eq. (1.3). Note that these rational solutions only
yield complex-valued solutions due to ~d ¼ 6i.

Remark 2. According to Theorem 2.1, the above-mentioned
Wronskian determinants lead to rational Wronskian solutions of the
extended (2þ 1)-dimensional KdV Eq. (1.11) through the transforma-
tion (1.12).

IV. CONCLUDING REMARKS

In summary, based on the bilinear B€acklund transformation, we
have constructed a new Wronskian formulation for the trilinear Eqs.
(1.9) and (1.13), which involves fourth-order linear partial differential
equations. By means of two useful lemmas associated with Wronskian
identities of the bilinear KP hierarchy, the Wronskian determinant
solution has been verified by a direct calculation. The newly presented
Wronskian formulation provides us with a powerful way to construct
all kinds of exact solutions, particularly rational solutions. Therefore,
for the generalized DJKM Eq. (1.6) and the extended KdV Eq. (1.11)
in (2þ 1)-dimensions, a few general rational Wronskian solutions
have been determined by choosing the special coefficient matrix in the
resulting Wronskian formulation. The presented results in this paper
not only enrich the solution space of the considered equations, but also
provide a direct and valuable method for verifying Wronskian suffi-
cient conditions. The obtained solutions are expected to be widely
applied in the field of science.

We point out that the extended (2þ 1)-dimensional KdV Eq.
(1.11) can also be generalized to the following form:39

að6cuux þ uxxx þ 3dvxyÞ þ bðuxxy þ 2cuxvx
þ4cuuy þ dvyyÞ þ cut þ dux þ huy ¼ 0; vxx ¼ uy; (4.1)

where the constants a; b; c; c, and d satisfy cdcða2 þ b2Þ 6¼ 0, but the
constants d and h are arbitrary. Under the logarithmic derivative
transformation

u ¼ 2
c
ðln f Þxx; v ¼ 2

c
ðln f Þy; (4.2)

this equation possesses a trilinear form,

Dx 3aD4
x þ 9adD2

y þ 2bD3
xDy

�h
þ3cDxDt þ 3dD2

x þ 3hDxDy
�
f � f

i
� f 2

þ Dy bD4
x þ 3bdD2

y

� �
f � f

h i
� f 2 ¼ 0: (4.3)

We can similarly determine that a set of functions /i ¼ /iðx1;
x2; x3;…Þ ð1 � i � NÞ satisfies the following conditions:

/i;xxx ¼
XN
j¼1

kij/j; (4.4a)

/i;y ¼ � 1
~d
/i;xx; (4.4b)

/i;t ¼
2b
~dc

/i;xxxx þ
h
~dc

/i;xx �
d
c
/i;x; (4.4c)

where ~d
2 ¼ d and the coefficient matrix A ¼ ðkijÞ1�i;j�N is an arbi-

trary real constant matrix. Then, the Wronskian determinant
f ¼ fN ¼ j dN� 1j defined in (2.5) is a solution to the trilinear Eq.
(4.3). The proof of the Wronskian conditions (4.4) is similar to
Theorem 2.1. In addition, recent studies show that abundant exact sol-
utions, such as lump waves, lump–soliton interaction solutions, and
analytical solutions, exist in nonlinear (2þ 1)-dimensional equa-
tions46–49 and (3þ 1)-dimension equations.50 Interestingly, it is
expected that such interaction solutions could be discussed to Eqs.
(1.6) and (1.11) through the Wronskian technique.
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