

RESEARCH ARTICLE | JANUARY 17 2024

Wronskian rational solutions to the generalized (2 + 1)-dimensional Date–Jimbo–Kashiwara–Miwa equation in fluid dynamics

Li Cheng (程丽) ; Yi Zhang (张翼) ; Wen-Xiu Ma (马文秀) ; Ying-Wu Hu (胡英武)

 Check for updates

Physics of Fluids 36, 017116 (2024)

<https://doi.org/10.1063/5.0179572>

View
Online

Export
Citation

Articles You May Be Interested In

Second and fourth Painlevé hierarchies and Jimbo–Miwa linear problems

J. Math. Phys. (July 2006)

Wronskian solutions and Pfaffianization for a (3 + 1)-dimensional generalized variable-coefficient Kadomtsev–Petviashvili equation in a fluid or plasma

Physics of Fluids (March 2023)

Wronskian solutions and linear superposition of rational solutions to B-type Kadomtsev–Petviashvili equation

Physics of Fluids (October 2023)

Wronskian rational solutions to the generalized (2 + 1)-dimensional Date–Jimbo–Kashiwara–Miwa equation in fluid dynamics

Cite as: Phys. Fluids **36**, 017116 (2024); doi: [10.1063/5.0179572](https://doi.org/10.1063/5.0179572)

Submitted: 3 October 2023 · Accepted: 16 December 2023 ·

Published Online: 17 January 2024

Li Cheng (程丽), ^{1,2,a)} Yi Zhang (张翼), ³ Wen-Xiu Ma (马文秀), ^{3,4,5,6} and Ying-Wu Hu (胡英武)¹

AFFILIATIONS

¹Normal School, Jinhua Polytechnic, Jinhua, Zhejiang 321007, China

²Key Laboratory of Crop Harvesting Equipment Technology, Jinhua Polytechnic, Jinhua, Zhejiang 321007, China

³Department of Mathematics, Zhejiang Normal University, Jinhua, Zhejiang 321004, China

⁴Department of Mathematics, King Abdulaziz University, Jeddah 21589, Saudi Arabia

⁵Department of Mathematics and Statistics, University of South Florida, Tampa, Florida 33620, USA

⁶Material Science Innovation and Modelling, Department of Mathematical Sciences, North-West University, Mafikeng Campus, Mmabatho 2735, South Africa

^{a)}Author to whom correspondence should be addressed: jhchengli@126.com

ABSTRACT

The main topic of the paper is to investigate the generalized (2 + 1)-dimensional Date–Jimbo–Kashiwara–Miwa (DJKM) and Korteweg–de Vries (KdV) equations, which are widely used in many physical areas, especially in fluids. A new Wronskian formulation is presented for these two equations associated with the bilinear Bäcklund transformation. Based on Wronskian identities of the bilinear Kadomtsev–Petviashvili (KP) hierarchy, the Wronskian determinant solution is verified by a direct and concise calculation. The newly introduced Wronskian formulation provides a comprehensive way for building rational solutions. A few rational Wronskian solutions of lower order are computed for the generalized (2 + 1)-dimensional DJKM equation. Our work can show that the extended (2 + 1)-dimensional KdV equation possesses the similar rational Wronskian solutions through the corresponding logarithmic transformation.

Published under an exclusive license by AIP Publishing. <https://doi.org/10.1063/5.0179572>

I. INTRODUCTION

Nonlinear evolution equations (NLEEs), especially nonlinear integrable equations, have wide applications in fields such as biology, chemical engineering, fluid mechanics, and plasmas physics.^{1–7} Studying on NLEEs helps us gain a deeper understanding of the phenomena they describe. In the past decades, nonlinear integrable equations have become increasingly important owing to their remarkable properties, such as Lax pairs, bilinear Bäcklund transformations, N -soliton solutions, and infinite symmetries.^{8–11} In the soliton theory, the commuting Kadomtsev–Petviashvili (KP) hierarchy of equations¹² also known as the integrable positive KP hierarchy,¹³

$$u_{t_1} = u_x, \quad (1.1a)$$

$$u_{t_2} = -2u_y, \quad (1.1b)$$

$$u_{t_3} = -6uu_x - u_{xxx} + 3\partial_x^{-1}u_{yy}, \quad (1.1c)$$

$$u_{t_4} = 12(2u_x\partial_x^{-1}u_y - \partial_x^{-2}u_{yyy} + u_{xxy} + 4uu_y), \quad (1.1d)$$

has been introduced in earlier studies. When $t = t_3$, the third member of this KP hierarchy is just the normal Kadomtsev–Petviashvili I (KPI) equation,¹⁴

$$(u_t + 6uu_x + u_{xxx})_x - 3u_{yy} = 0. \quad (1.2)$$

The fourth Eq. (1.1d) can be written as the (2 + 1)-dimensional Date–Jimbo–Kashiwara–Miwa (DJKM) equation,^{15–18}

$$\varphi_{xxxx} + 4\varphi_{xxy}\varphi_x + 2\varphi_{xxx}\varphi_y + 6\varphi_{xy}\varphi_{xx} - \varphi_{yyy} - 2\varphi_{xxt} = 0, \quad (1.3)$$

by taking the transformations $u = \varphi_x$ and $t_4 = \frac{1}{24}t$.

In nonlinear science, the KP and DJKM equations act as mathematical models for the propagation of 2D nonlinear solitary waves in fluid mechanics, plasma physics, ocean dynamics, nonlinear optics, and so on. These two equations are important integrable systems, which have many interesting characteristics in physical science, such as bilinear Bäcklund transformations, Lax representations, and infinitely many conservation laws.^{15–19} As well known, through the

logarithmic transformation $u = 2(\ln f)_{xx}$, the KPI Eq. (1.2) has the following Hirota bilinear form:

$$(D_x^4 + D_x D_t + 3\sigma^2 D_y^2) f \cdot f = 0, \quad \sigma^2 = -1 \quad (1.4)$$

with D_x , D_y , and D_t being Hirota's bilinear differential operators.²⁰ However, the (2 + 1)-dimensional DJKM Eq. (1.3) does not possess a direct bilinear form like the KP Eq. (1.2), and it has a trilinear representation,^{15,16}

$$D_x \{ (D_x^3 D_y - 3D_x D_t) f \cdot f \} \cdot f^2 + \frac{1}{2} D_y \{ (D_x^4 + 3\sigma^2 D_y^2) f \cdot f \} \cdot f^2 = 0, \quad \sigma^2 = -1, \quad (1.5)$$

by the dependent variable transformation $\varphi = 2(\ln f)_x$. To our knowledge, the KPI Eq. (1.4) and the DJKM Eq. (1.5) possess abundant exact solutions, including N -soliton solutions, lump solutions with different kinds of rational dispersion relations,^{20–22} and determinant-type solutions with a Wronskian structure.^{18,20,23,24}

Recent studies show that there exist an extension of the (2 + 1)-dimensional DJKM Eq. (1.3),^{23,25} expressed as follows:

$$b(\psi_{xxxx} + 4\gamma\psi_{xxy}\psi_x + 2\gamma\psi_{xxx}\psi_y + 6\gamma\psi_{xx}\psi_{xy} + \delta\psi_{yyy}) + c\psi_{xxt} = 0, \quad (1.6)$$

where γ , δ , b , and c are all arbitrary non-zero real constants. Under the logarithmic transformation

$$\psi = \frac{2}{\gamma}(\ln f)_x, \quad (1.7)$$

the extended form (1.5) has the following trilinear form:

$$b(f^2 f_{xxxx} - ff_{xxxx}f_y + 2ff_{xx}f_{xy} - 4ff_x f_{xxy} + 4f_x f_{xxx}f_y - 2f_{xx}^2 f_y - 4f_{xx}f_{xy} + 4f_x^2 f_{xy} + \delta f^2 f_{yyy} + 2\delta f_y^3 - 3\delta ff_y f_{yy}) + cf^2 f_{xxt} - cff_{xx}f_{xt} - 2cff_x f_{xt} + 2cf_x^2 f_t = 0, \quad (1.8)$$

which is equivalent to

$$D_x \left[\left(bD_x^3 D_y + \frac{3}{2} c D_x D_t \right) f \cdot f \right] \cdot f^2 + \frac{b}{2} D_y \left[\left(D_x^4 + 3\delta D_y^2 \right) f \cdot f \right] \cdot f^2 = 0. \quad (1.9)$$

In addition, by combining the third member (1.1c) and fourth member (1.1d) in the positive KP hierarchy, a novel (2 + 1)-dimensional integrable Korteweg-de Vries (KdV) equation,

$$u_t = a(6uu_x + u_{xxx} - 3w_y) + b(2wu_x - z_y + u_{xxy} + 4uu_y), \quad (1.10) \\ u_y = w_x, \quad u_{yy} = z_{xx},$$

has been systematically investigated by Lou.²⁶ The directly written Lax pairs and Painlevé property show that a linear combination in a soliton hierarchy is still integrable.^{26,27}

This motivates us to explore an extended (2 + 1)-dimensional KdV equation, written as follows:

$$a(6\gamma uu_x + u_{xxx} + 3\delta v_{xy}) + b(u_{xxy} + 2\gamma u_x v_x + 4\gamma uu_y + \delta v_{yy}) + cu_t = 0, \quad v_{xx} = u_y, \quad (1.11)$$

where the constants γ , δ , b , and c satisfy $\gamma\delta bc \neq 0$, but the constant a is arbitrary. Through the transformation

$$u = \frac{2}{\gamma}(\ln f)_{xx}, \quad v = \frac{2}{\gamma}(\ln f)_y, \quad (1.12)$$

this equation is transformed into

$$\frac{3a}{2} D_x \left[\left(D_x^4 + 3\delta D_y^2 \right) f \cdot f \right] \cdot f^2 + D_x \left[\left(bD_x^3 D_y + \frac{3}{2} c D_x D_t \right) f \cdot f \right] \cdot f^2 + \frac{b}{2} D_y \left[\left(D_x^4 + 3\delta D_y^2 \right) f \cdot f \right] \cdot f^2 = 0, \quad (1.13)$$

which equivalently reads

$$a(f^2 f_{xxxx} + 2ff_{xx}f_{xxx} - 5ff_x f_{xxxx} - 6f_{xx}^2 f_x \\ + 8f_{xxx}f_x^2 + 3\delta f^2 f_{xy} - 3\delta ff_x f_{yy} \\ - 6\delta ff_y f_{xy} + 6\delta f_x f_y^2) + b(f^2 f_{xxxxy} \\ - ff_{xxxx}f_y + 2ff_{xx}f_{xy} - 4ff_x f_{xxy} \\ + 4f_x f_{xxx}f_y - 2f_{xx}^2 f_y - 4f_{xx}f_x f_{xy} + 4f_x^2 f_{xy} \\ + \delta f^2 f_{yyy} + 2\delta f_y^3 - 3\delta ff_y f_{yy}) \\ + cf^2 f_{xxt} - cff_{xx}f_{xt} - 2cff_x f_{xt} + 2cf_x^2 f_t = 0. \quad (1.14)$$

Note that Eq. (1.13) becomes the trilinear form (1.9) of the generalized (2 + 1)-dimensional DJKM equation when $a = 0$. Recent work on integrability and exact solutions of Eq. (1.11) can be found in Refs. 28 and 29.

The investigation of exact solutions plays a significant role in revealing the physical mechanism of various natural phenomena characterized by integrable equations in the real world. As a type of exact solutions, rational solutions are attracting growing attention of numerous scholars due to their extensive applications in many fields.^{21,22,30} For instance, a variety of wave behaviors found in the deep ocean, fluid dynamics, optical fibers, and Bose-Einstein condensates can be modeled by nonsingular rational solutions.^{31,32} Consequently, an important fundamental work is how to explore rational solutions of integrable equations.

The Wronskian structure is a normal characteristic of integrable equations, which provides a useful tool for obtaining different kinds of exact solutions to integrable equations, such as rational solutions, solitons, negatons, complexitons, and interaction solutions.^{33–37} The merit of this technique is that solutions can be verified via a direct substitution. In recent years, Nimmo and Zhao³⁸ put forward the partition notation for derivatives of the Wronskian determinant and presented the Wronskian-type determinant identities they satisfy. On this basis, we will provide a more concise and direct way to the Wronskian formulation by utilizing Wronskian identities of the bilinear KP hierarchy and properties of Hirota operators,^{23,39} thereby greatly simplifying the verification process of the solution. In particular, the resulting Wronskian formulation paves a way for constructing abundant rational solutions.

Very recently, by introducing an auxiliary independent variable and applying the Wronskian identity of the bilinear KP equation, a set of sufficient conditions for Wronskian solutions was constructed for the extended (2 + 1)-dimensional KdV Eq. (1.11), and the resulting N -soliton solution is essentially of (1 + 1)-dimension due to the dimensional reduction.²³ However, rational solutions have not been given via the presented Wronskian formulation. In this paper, we aim to discuss

a new Wronskian formulation for solutions of Eqs. (1.6) and (1.11), which particularly presents rational solutions to Eqs. (1.6) and (1.11). Our results will also demonstrate the trilinear Eqs. (1.9) and (1.13) have the same sufficient conditions for Wronskian solutions.

The following is the structure of the paper. In Sec. II, by means of the bilinear Bäcklund transformation, a new Wronskian formulation, different from the ones in Refs. 18, 23, and 39, is constructed to the trilinear Eqs. (1.9) and (1.13). Then, the Wronskian determinant solution is verified by a direct and concise substitution. In Sec. III, rational solutions are furnished by taking special cases in the resulting Wronskian formulation. Our conclusion and remarks will be given at the end.

II. A NEW WRONSKIAN FORMULATION

In this section, we first give the bilinear Bäcklund transformation of Eq. (1.13) obtained in Ref. 28. If f and f' are two different solutions of Eq. (1.13), then

$$(\tilde{\delta}D_y + D_x^2)f \cdot f' = 0, \quad (2.1a)$$

$$[aD_x^3 + bD_x^2D_y - 3a\tilde{\delta}D_xD_y - b\tilde{\delta}D_y^2 + cD_t]f \cdot f' = \lambda f f', \quad (2.1b)$$

where $\tilde{\delta}^2 = \delta$ and λ is an arbitrary constant, which is a bilinear Bäcklund transformation between f and f' . Next, setting $f' = 1$ as the seed solution in the system (2.1), corresponding to the zero solution $u = 0$ of (1.11), we have the following system:

$$\tilde{\delta}f_y + f_{xx} = 0, \quad (2.2a)$$

$$af_{xxx} + bf_{xxy} - 3a\tilde{\delta}f_{xy} - b\tilde{\delta}f_{yy} + cf_t = \lambda f, \quad (2.2b)$$

which is equivalent to

$$\tilde{\delta}f_y + f_{xx} = 0, \quad (2.3a)$$

$$4af_{xxx} - \frac{2b}{\tilde{\delta}}f_{xxxx} + cf_t = \lambda f. \quad (2.3b)$$

When the constant $\lambda \neq 0$, the above-mentioned system (2.3) can be rewritten as follows:

$$\tilde{\delta}f_y + f_{xx} = 0, \quad 4af_{xxx} = \lambda f, \quad -\frac{2b}{\tilde{\delta}}f_{xxxx} + cf_t = 0, \quad (2.4)$$

which helps us to give a new Wronskian formulation, different from the ones in Refs. 18, 28, and 39 for the trilinear Eqs. (1.9) and (1.13).

Let us now adopt the compact Freeman and Nimmo's notation^{40,41}

$$W = W(\phi_1, \phi_2, \dots, \phi_N) = \begin{vmatrix} \phi_1 & \phi_1^{(1)} & \cdots & \phi_1^{(N-1)} \\ \phi_2 & \phi_2^{(1)} & \cdots & \phi_2^{(N-1)} \\ \vdots & \vdots & \ddots & \vdots \\ \phi_N & \phi_N^{(1)} & \cdots & \phi_N^{(N-1)} \end{vmatrix} = |0, 1, \dots, N-1| = |\widehat{N-1}|, \quad (2.5)$$

where $\phi_i^{(j)} = \frac{\partial^j \phi_i}{\partial x^j}$, $i, j \geq 1$. We would like to furnish a set of sufficient conditions, which guarantee that the Wronskian determinant solves the trilinear Eqs. (1.9) and (1.13).

Theorem 2.1. Assume that a group of functions $\phi_i = \phi_i(x, y, t)$, $1 \leq i \leq N$, meets the following linear conditions:

$$\phi_{i,xxx} = \sum_{j=1}^N \lambda_{ij} \phi_j, \quad (2.6a)$$

$$\phi_{i,y} = -\frac{1}{\tilde{\delta}} \phi_{i,xx}, \quad (2.6b)$$

$$\phi_{i,t} = \frac{2b}{\tilde{\delta}c} \phi_{i,xxxx}, \quad (2.6c)$$

where $\tilde{\delta}^2 = \delta$ and the coefficient matrix $A = (\lambda_{ij})_{1 \leq i, j \leq N}$ is an arbitrary real constant matrix. Then, the Wronskian determinant $f = f_N = |\widehat{N-1}|$ defined in Eq. (2.5) solves the trilinear DJKM Eq. (1.9) and the trilinear KdV Eq. (1.13).

As known to all, the first two numbers of the KP hierarchy⁴² have the following Hirota bilinear forms:

$$(D_1^4 - 4D_1D_3 + 3D_2^2)f \cdot f = 0, \quad (2.7a)$$

$$[(D_1^3 + 2D_3)D_2 - 3D_1D_4]f \cdot f = 0, \quad (2.7b)$$

where f denotes a function related to variables x_j , $j = 1, 2, 3, \dots$, and $D_j \equiv D_{x_j}$. Before providing a simple and clean proof of Theorem 2.1, we first describe two useful lemmas associated with Wronskian identities of the bilinear KP hierarchy.

Lemma 2.1. Assume that a group of functions $\phi_i = \phi_i(x_1, x_2, x_3, \dots)$, $(1 \leq i \leq N)$, satisfies the linear partial differential equations,

$$\partial_{x_j} \phi_i = \frac{\partial^j \phi_i}{\partial x^j}, \quad j = 1, 2, 3, \dots \quad (2.8)$$

Then, the Wronskian determinant $f = f_N = |\widehat{N-1}|$ defined by (2.5) solves the bilinear forms (2.7a) and (2.7b).

The proof of Lemma 2.1 can be found in Refs. 20 and 43. This lemma also shows that the bilinear forms (2.7) yield the Plücker relations for determinants if the function f is written as the Wronskian determinant.⁴⁴ Namely, the Hirota bilinear Eqs. (2.7a) and (2.7b) become the following Wronskian identities:

$$(D_1^4 - 4D_1D_3 + 3D_2^2)|\widehat{N-1}| \cdot |\widehat{N-1}| = 24(|\widehat{N-1}||\widehat{N-3}, N, N+1| - |\widehat{N-2}, N||\widehat{N-3}, N-1, N+1| + |\widehat{N-2}, N+1| \times |\widehat{N-3}, N-1, N|) \equiv 0 \quad (2.9a)$$

and

$$\begin{aligned} & [(D_1^3 + 2D_3)D_2 - 3D_1D_4]|\widehat{N-1}| \cdot |\widehat{N-1}| \\ &= 12(|\widehat{N-1}||\widehat{N-3}, N, N+2| - |\widehat{N-2}, N||\widehat{N-3}, N-1, N+2| \\ &+ |\widehat{N-2}, N+2||\widehat{N-3}, N-1, N|) \\ &- 12(|\widehat{N-1}||\widehat{N-4}, N-2, N, N+1| - |\widehat{N-4}, N-2, N-1, N+1||\widehat{N-2}, N| \\ &+ |\widehat{N-4}, N-2, N-1, N||\widehat{N-2}, N+1|) \equiv 0, \end{aligned} \quad (2.9b)$$

respectively. The first identity (2.9a) is nothing but a Plücker relation, and the second identity (2.9b) is a linear combination of two Plücker relations.

Lemma 2.2. Suppose the Wronskian entries $\phi_i = \phi_i(x, y, t)$, $1 \leq i \leq N$, in the Wronskian determinant (2.5) satisfy the expressions (2.8) and

$$\sum_{j=1}^N \lambda_{ij} \phi_j = r \partial_{x_3} \phi_i = r \phi_{i,xxx}, \quad (2.10)$$

where r is an arbitrary constant and the coefficient matrix $A = (\lambda_{ij})_{1 \leq i,j \leq N}$ is an arbitrary real constant matrix. Then, we have

$$r D_k D_3 f \cdot f = 0, \quad k = 1, 2, 3, \dots, \quad (2.11)$$

where the function f is expressed by the Wronskian determinant (2.5) and $D_k = D_{x_k}$. Here, the Hirota's bilinear operators D_{x_k} are Hirota's bilinear differential operators.

The proof of Lemma 2.2 can also be found in Ref. 23. It is generally known that the first member (2.7a) in the KP hierarchy, that is, the bilinear KP equation, is reduced to the following bilinear Boussinesq equation without velocity term,

$$(D_1^4 + 3D_2^2)f \cdot f = 0, \quad (2.12)$$

under the condition $D_3 = 0$, which is regarded as the “3-reduction” of the bilinear KP equation.⁴⁵ Obviously, if the Wronskian entries ϕ_i , $1 \leq i \leq N$, in the Wronskian determinant (2.5) meet the conditions (2.8) and (2.10), then a direct calculation yields

$$\begin{aligned} & (D_1^4 + 3D_2^2)|\widehat{N-1}| \cdot |\widehat{N-1}| \\ &= [(D_1^4 - 4D_1 D_3 + 3D_2^2) + 4D_1 D_3]|\widehat{N-1}| \cdot |\widehat{N-1}| = 0, \end{aligned} \quad (2.13)$$

by utilizing the above-mentioned two lemmas. Thus, the Wronskian determinant $f = |\widehat{N-1}|$ defined by (2.5) is a solution of the bilinear Boussinesq Eq. (2.12). Similarly, the application of Lemmas 1.1 and 1.2 also leads to the Wronskian determinant $f = |\widehat{N-1}|$ defined by (2.5) that solves the bilinear equation,

$$(D_1^3 D_2 - 3D_1 D_4)f \cdot f = 0, \quad (2.14)$$

if both the conditions (2.8) and (2.10) hold.

Proof of Theorem 2.1. By using the conditions (2.6b) and (2.6c), the derivatives of the Wronskian determinant $f = f_N = |\widehat{N-1}|$ with respect to the variables x , y , and t can be expressed as follows:

$$\begin{aligned} D_x^4 f \cdot f &= D_1^4 f \cdot f, \quad D_y^2 f \cdot f = \frac{1}{\delta} D_2^2 f \cdot f, \\ D_x^3 D_y f \cdot f &= -\frac{1}{\delta} D_1^3 D_2 f \cdot f, \\ D_x D_t f \cdot f &= \frac{2b}{\delta c} D_1 D_4 f \cdot f. \end{aligned} \quad (2.15)$$

Now, by making use of the condition (2.6a) and Lemma 2.2, we can easily get

$$(D_x^4 + 3\delta D_y^2)f \cdot f = (D_1^4 + 3D_2^2)f \cdot f = 0$$

and

$$\begin{aligned} \left(b D_x^3 D_y + \frac{3}{2} c D_x D_t \right) f \cdot f &= \left(-\frac{b}{\delta} D_1^3 D_2 + \frac{3b}{\delta} D_1 D_4 \right) f \cdot f \\ &= -\frac{b}{\delta} (D_1^3 D_2 - 3D_1 D_4) f \cdot f = 0. \end{aligned} \quad (2.16)$$

It follows then that

$$\begin{aligned} & D_x \left[\left(b D_x^3 D_y + \frac{3}{2} c D_x D_t \right) |\widehat{N-1}| \cdot |\widehat{N-1}| \right] \cdot |\widehat{N-1}|^2 \\ &+ \frac{b}{2} D_y \left[\left(D_x^4 + 3\delta D_y^2 \right) |\widehat{N-1}| \cdot |\widehat{N-1}| \right] \cdot |\widehat{N-1}|^2 = 0 \end{aligned} \quad (2.17)$$

and

$$\begin{aligned} & \frac{3a}{2} D_x \left[\left(D_x^4 + 3\delta D_y^2 \right) |\widehat{N-1}| \cdot |\widehat{N-1}| \right] \cdot |\widehat{N-1}|^2 \\ &+ D_x \left[\left(b D_x^3 D_y + \frac{3}{2} c D_x D_t \right) |\widehat{N-1}| \cdot |\widehat{N-1}| \right] \cdot |\widehat{N-1}|^2 \\ &+ \frac{b}{2} D_y \left[\left(D_x^4 + 3\delta D_y^2 \right) |\widehat{N-1}| \cdot |\widehat{N-1}| \right] \cdot |\widehat{N-1}|^2 = 0. \end{aligned} \quad (2.18)$$

This shows that $f = |\widehat{N-1}|$ solves the trilinear DJKM Eq. (1.9) and the trilinear KdV Eq. (1.13). The proof is finished.

III. WRONSKIAN RATIONAL SOLUTIONS

In this section, we would like to construct rational solutions to the generalized $(2+1)$ -dimensional DJKM Eq. (1.6) via the presented Wronskian formulation. Since similar transformations of the coefficient matrix A may lead to the same Wronskian solutions to soliton equations, to construct rational solutions for Eq. (1.6), we only need to focus on the following case of the coefficient matrix A :

$$A = (\lambda_{ij})_{1 \leq i,j \leq N} = \begin{pmatrix} 0 & & & & 0 \\ 1 & 0 & & & \\ & 1 & 0 & & \\ & & \ddots & \ddots & \\ 0 & & & 1 & 0 \end{pmatrix}_{N \times N}. \quad (3.1)$$

Let us consider the sequence of polynomials ϕ_i , $i \geq 1$, determined by

$$\begin{aligned} \phi_{1,xxx} &= 0, \quad \phi_{i+1,xxx} = \phi_i, \quad \phi_{i,y} = -\frac{1}{\delta} \phi_{i,xx}, \\ \phi_{i,t} &= \frac{2b}{\delta c} \phi_{i,xxxx}, \quad i \geq 1, \end{aligned} \quad (3.2)$$

which follows from the hypothesis for A in (3.1). For each $k \geq 1$, corresponding to the following Jordan block:

$$\begin{pmatrix} 0 & & & 0 \\ 1 & 0 & & \\ & \ddots & \ddots & \\ 0 & & 1 & 0 \end{pmatrix}_{k \times k},$$

a normal Wronskian solution

$$\psi = \frac{2}{\gamma} \partial_x \ln W(\phi_1, \phi_2, \dots, \phi_k)$$

is named as a rational Wronskian solution of order $k-1$.³⁴ Assume that the three linearly independent solutions of ϕ_1 are $\phi_{1,1}, \phi_{2,1}$, and $\phi_{3,1}$. Then, two other general rational Wronskian solutions,

$$\begin{aligned} \psi &= \frac{2}{\gamma} \partial_x \ln W(\phi_{1,1}, \phi_{1,2}, \dots, \phi_{1,k_1}; \phi_{2,1}, \phi_{2,2}, \dots, \phi_{2,k_2}), \\ \psi &= \frac{2}{\gamma} \partial_x \ln W(\phi_{1,1}, \phi_{1,2}, \dots, \phi_{1,k_1}; \phi_{2,1}, \phi_{2,2}, \dots, \phi_{2,k_2}; \\ & \quad \phi_{3,1}, \phi_{3,2}, \dots, \phi_{3,k_3}), \end{aligned}$$

where $\phi_{i,1}, \phi_{i,2}, \dots, \phi_{i,k_i}$, $1 \leq i \leq 3$, are three groups of functions corresponding to three Jordan blocks of the above type, are called the rational Wronskian solutions of orders $(k_1 - 1, k_2 - 1)$ and $(k_1 - 1, k_2 - 1, k_3 - 1)$,³⁴ respectively. In what follows, we will present a few rational Wronskian solutions of lower order for the generalized $(2+1)$ -dimensional DJKM Eq. (1.6).

Case 1 zero order: Let us consider $\phi_1 = c_1 + c_2x + c_3\left(x^2 - \frac{2}{\delta}y\right)$. Thus, we have the following Wronskian determinant and the resulting rational Wronskian solution of zero order:

$$f = W(\phi_1) = \phi_1 = c_1 + c_2x + c_3\left(x^2 - \frac{2}{\delta}y\right),$$

$$\psi = \frac{2}{\gamma} \partial_x \ln W(\phi_1) = \frac{2(c_2 + 2c_3x)}{\gamma \left[c_1 + c_2x + c_3\left(x^2 - \frac{2}{\delta}y\right) \right]}. \quad (3.3)$$

In particular, choosing $\phi_1 = x^2 - \frac{2}{\delta}y$, we obtain

$$\psi = \frac{4\tilde{\delta}x}{\gamma(\tilde{\delta}x^2 - 2y)}. \quad (3.4)$$

Case 2 first order: Setting $\phi_1 = 1$, a direct calculation leads to $\phi_2 = \frac{1}{6}x^3 - \frac{1}{\delta}xy$. Therefore, the corresponding Wronskian determinant and rational Wronskian solution of first order may be written as follows:

$$f = W(\phi_1, \phi_2) = \frac{1}{2}x^2 - \frac{1}{\delta}y,$$

$$\psi = \frac{2}{\gamma} \partial_x \ln W(\phi_1, \phi_2) = \frac{4\tilde{\delta}x}{\gamma(\tilde{\delta}x^2 - 2y)}, \quad (3.5)$$

which are the same as the zero-order solutions (3.4) above.

We choose $\phi_1 = x$, a direct expansion yields $\phi_2 = \frac{1}{24}x^4 - \frac{1}{2\delta}x^2y + \frac{1}{2\delta}y^2 + \frac{2b}{\delta}t$. Then, the corresponding Wronskian determinant and rational Wronskian solution of first order are

$$f = W(\phi_1, \phi_2) = \frac{1}{8}x^4 - \frac{1}{2\delta}x^2y - \frac{1}{2\delta}y^2 - \frac{2b}{\delta}t,$$

$$\psi = \frac{2}{\gamma} \partial_x \ln W(\phi_1, \phi_2) = \frac{8\delta cx(\tilde{\delta}x^2 - 2y)}{\gamma(\tilde{\delta}\delta cx^4 - 4\delta cx^2y - 4\tilde{\delta}cy^2 - 16\delta bt)}. \quad (3.6)$$

In addition, setting $\phi_1 = \frac{1}{2}x^2 - \frac{1}{\delta}y$, we get $\phi_2 = \frac{1}{120}x^5 - \frac{1}{6\delta}x^3y + \frac{1}{2\delta}xy^2 + \frac{2b}{\delta}xt$. Further, the corresponding Wronskian determinant and rational Wronskian solution of first order can be expressed as follows:

$$f = W(\phi_1, \phi_2) = \frac{1}{80}x^6 - \frac{1}{8\delta}x^4y + \frac{1}{4\delta}x^2y^2 - \frac{b}{\delta}x^2t - \frac{1}{2\delta}y^3 - \frac{2b}{\delta}yt,$$

$$\psi = \frac{2}{\gamma} \partial_x \ln W(\phi_1, \phi_2) = \frac{12\tilde{\delta}\delta cx^5 - 80\delta cx^3y + 80\tilde{\delta}cxy^2 - 320b\delta xt}{\gamma(\tilde{\delta}\delta cx^6 - 10\delta cx^4y + 20\tilde{\delta}cx^2y^2 - 80\delta bx^2t - 40cy^3 - 160\tilde{\delta}byt)}. \quad (3.7)$$

Case 3 second order: If setting $\phi_1 = x$, we can compute that

$$\phi_2 = \frac{1}{24}x^4 - \frac{1}{2\tilde{\delta}}x^2y + \frac{1}{2\delta}y^2 + \frac{2b}{\delta}t$$

and

$$\phi_3 = \frac{1}{5040}x^7 - \frac{1}{120\tilde{\delta}}x^5y + \frac{1}{12\delta}x^3y^2 + \frac{b}{3\tilde{\delta}c}x^3t - \frac{1}{6\delta\tilde{\delta}}xy^3 - \frac{2b}{\delta c}xyt.$$

A direct computation gives rise to the associated Wronskian determinant and rational Wronskian solution of second order as follows:

$$f = W(\phi_1, \phi_2, \phi_3) = \frac{1}{2240}x^9 - \frac{1}{140\tilde{\delta}}x^7y - \frac{1}{40\delta}x^5y^2 - \frac{b}{10\tilde{\delta}c}x^5t$$

$$+ \frac{1}{20\delta}x^5y^2 - \frac{1}{4\delta^2}xy^4 - \frac{2b}{\delta\tilde{\delta}c}xy^2t - \frac{4b^2}{\delta c^2}xt^2,$$

$$\psi = \frac{2}{\gamma} \partial_x \ln W(\phi_1, \phi_2, \phi_3) = \frac{2p}{\gamma xq}, \quad (3.8)$$

where

$$p = 9\delta^3c^2x^8 - 112\tilde{\delta}\delta^2c^2x^6y - 280\delta^2c^2x^4y^2 - 1120\tilde{\delta}\delta^2bctx^4 + 560\delta^2c^2x^4y^2 - 560\delta c^2y^4 - 4480\tilde{\delta}\delta bcy^2t - 8960\delta^2b^2t^2,$$

$$q = \delta^3c^2x^8 - 16\tilde{\delta}\delta^2c^2x^6y - 56\delta^2c^2x^4y^2 - 224\tilde{\delta}\delta^2bcx^4t + 112\delta^2c^2x^4y^2 - 560\delta c^2y^4 - 4480\tilde{\delta}\delta bcy^2t - 8960\delta^2b^2t^2.$$

Case 4 (1,1)-order: Let us now assume $\phi_{1,1} = 1, \phi_{1,2} = \frac{1}{6}x^3 - \frac{1}{\delta}xy$ and $\phi_{2,1} = x, \phi_{2,2} = \frac{1}{24}x^4 - \frac{1}{2\delta}x^2y + \frac{1}{2\delta}y^2 + \frac{2b}{\delta}t$ in this case. Then, the associated Wronskian determinant and rational Wronskian solution of (1,1)-order are presented by

$$f = W(\phi_{1,1}, \phi_{1,2}, \phi_{2,1}, \phi_{2,2}) = -\frac{1}{2}x^2 - \frac{1}{\delta}y,$$

$$\psi = \frac{2}{\gamma} \partial_x \ln W(\phi_{1,1}, \phi_{1,2}, \phi_{2,1}, \phi_{2,2}) = \frac{4\tilde{\delta}x}{\gamma(\tilde{\delta}x^2 + 2y)}. \quad (3.9)$$

If we take $\phi_{1,1} = 1, \phi_{1,2} = \frac{1}{6}x^3 - \frac{1}{\delta}xy$ and $\phi_{2,1} = \frac{1}{2}x^2 - \frac{1}{\delta}y, \phi_{2,2} = \frac{1}{120}x^5 - \frac{1}{6\delta}x^3y + \frac{1}{2\delta}xy^2 + \frac{2b}{\delta}xt$, the associated Wronskian determinant and rational Wronskian solution of (1,1)-order become

$$f = W(\phi_{1,1}, \phi_{1,2}, \phi_{2,1}, \phi_{2,2}) = -\frac{1}{8}x^4 - \frac{1}{2\tilde{\delta}}x^2y + \frac{1}{2\delta}y^2 - \frac{2b}{\delta}t,$$

$$\psi = \frac{2}{\gamma} \partial_x \ln W(\phi_{1,1}, \phi_{1,2}, \phi_{2,1}, \phi_{2,2}) = \frac{8\delta cx(\tilde{\delta}x^2 + 2y)}{\gamma(\tilde{\delta}\delta cx^4 + 4\delta cx^2y - 4\tilde{\delta}cy^2 + 16\delta bt)}. \quad (3.10)$$

Let us choose $\phi_{1,1} = x, \phi_{1,2} = \frac{1}{24}x^4 - \frac{1}{2\delta}x^2y + \frac{1}{2\delta}y^2 + \frac{2b}{\delta}t$ and $\phi_{2,1} = \frac{1}{2}x^2 - \frac{1}{\delta}y, \phi_{2,2} = \frac{1}{120}x^5 - \frac{1}{6\delta}x^3y + \frac{1}{2\delta}xy^2 + \frac{2b}{\delta}xt$. A direct computation shows that the associated Wronskian determinant and rational Wronskian solution of (1,1)-order are

$$f = W(\phi_{1,1}, \phi_{1,2}, \phi_{2,1}, \phi_{2,2})$$

$$= -\frac{1}{80}x^6 - \frac{1}{8\tilde{\delta}}x^4y - \frac{1}{4\delta}x^2y^2 - \frac{b}{\tilde{\delta}c}x^2t - \frac{1}{2\tilde{\delta}\delta}y^3 + \frac{2b}{\delta c}yt,$$

$$\psi = \frac{2}{\gamma} \partial_x \ln W(\phi_{1,1}, \phi_{1,2}, \phi_{2,1}, \phi_{2,2})$$

$$= \frac{12\tilde{\delta}\delta cx^5 + 80\delta cx^3y + 80\tilde{\delta}cxy^2 + 320b\delta xt}{\gamma(\tilde{\delta}\delta cx^6 + 10\delta cx^4y + 20\tilde{\delta}cx^2y^2 + 80\delta bx^2t + 40cy^3 - 160\tilde{\delta}byt)}. \quad (3.11)$$

Remark 1. When $b = \gamma = 1, \delta = -1, c = -2$, the above-mentioned rational Wronskian solutions reduce to the solutions of the $(2+1)$ -dimensional DJKM Eq. (1.3). Note that these rational solutions only yield complex-valued solutions due to $\tilde{\delta} = \pm i$.

Remark 2. According to Theorem 2.1, the above-mentioned Wronskian determinants lead to rational Wronskian solutions of the extended $(2+1)$ -dimensional KdV Eq. (1.11) through the transformation (1.12).

IV. CONCLUDING REMARKS

In summary, based on the bilinear Bäcklund transformation, we have constructed a new Wronskian formulation for the trilinear Eqs. (1.9) and (1.13), which involves fourth-order linear partial differential equations. By means of two useful lemmas associated with Wronskian identities of the bilinear KP hierarchy, the Wronskian determinant solution has been verified by a direct calculation. The newly presented Wronskian formulation provides us with a powerful way to construct all kinds of exact solutions, particularly rational solutions. Therefore, for the generalized DJKM Eq. (1.6) and the extended KdV Eq. (1.11) in $(2+1)$ -dimensions, a few general rational Wronskian solutions have been determined by choosing the special coefficient matrix in the resulting Wronskian formulation. The presented results in this paper not only enrich the solution space of the considered equations, but also provide a direct and valuable method for verifying Wronskian sufficient conditions. The obtained solutions are expected to be widely applied in the field of science.

We point out that the extended $(2+1)$ -dimensional KdV Eq. (1.11) can also be generalized to the following form:³⁹

$$a(6\gamma uu_x + u_{xxx} + 3\delta v_{xy}) + b(u_{xy} + 2\gamma u_x v_x + 4\gamma uu_y + \delta v_{yy}) + cu_t + du_x + hu_y = 0, \quad v_{xx} = u_y, \quad (4.1)$$

where the constants a, b, c, γ , and δ satisfy $\gamma\delta c(a^2 + b^2) \neq 0$, but the constants d and h are arbitrary. Under the logarithmic derivative transformation

$$u = \frac{2}{\gamma}(\ln f)_{xx}, \quad v = \frac{2}{\gamma}(\ln f)_y, \quad (4.2)$$

this equation possesses a trilinear form,

$$D_x \left[\left(3aD_x^4 + 9a\delta D_y^2 + 2bD_x^3 D_y + 3cD_x D_t + 3dD_x^2 + 3hD_x D_y \right) f \cdot f \right] \cdot f^2 + D_y \left[\left(bD_x^4 + 3b\delta D_y^2 \right) f \cdot f \right] \cdot f^2 = 0. \quad (4.3)$$

We can similarly determine that a set of functions $\phi_i = \phi_i(x_1, x_2, x_3, \dots)$ ($1 \leq i \leq N$) satisfies the following conditions:

$$\phi_{i,xxx} = \sum_{j=1}^N \lambda_{ij} \phi_j, \quad (4.4a)$$

$$\phi_{i,y} = -\frac{1}{\tilde{\delta}} \phi_{i,xx}, \quad (4.4b)$$

$$\phi_{i,t} = \frac{2b}{\delta c} \phi_{i,xxxx} + \frac{h}{\delta c} \phi_{i,xx} - \frac{d}{c} \phi_{i,x}, \quad (4.4c)$$

where $\tilde{\delta}^2 = \delta$ and the coefficient matrix $A = (\lambda_{ij})_{1 \leq i,j \leq N}$ is an arbitrary real constant matrix. Then, the Wronskian determinant $f = f_N = \widehat{|N-1|}$ defined in (2.5) is a solution to the trilinear Eq. (4.3). The proof of the Wronskian conditions (4.4) is similar to Theorem 2.1. In addition, recent studies show that abundant exact solutions, such as lump waves, lump-soliton interaction solutions, and analytical solutions, exist in nonlinear $(2+1)$ -dimensional equations^{46–49} and $(3+1)$ -dimension equations.⁵⁰ Interestingly, it is expected that such interaction solutions could be discussed to Eqs. (1.6) and (1.11) through the Wronskian technique.

ACKNOWLEDGMENTS

The authors express their sincere thanks to the referees and editors for their valuable comments. This work was supported by the National Natural Science Foundation of China (Grant No. 12271488) and Jinhua Polytechnic Key Laboratory of Crop Harvesting Equipment Technology of Zhejiang Province.

AUTHOR DECLARATIONS

Conflict of Interest

The authors have no conflicts to disclose.

Author Contributions

Li Cheng: Conceptualization (lead); Data curation (lead); Formal analysis (lead); Investigation (lead); Methodology (lead); Project administration (lead); Software (lead); Supervision (lead); Validation (lead); Writing – original draft (lead). **Yi Zhang:** Resources (equal); Software (equal); Supervision (equal). **Wen-Xiu Ma:** Resources (equal); Software (equal); Supervision (equal). **Ying-Wu Hu:** Conceptualization (supporting); Investigation (supporting); Software (supporting).

DATA AVAILABILITY

The data that support the findings of this study are available within the article.

REFERENCES

- H. B. Peng, “Statistical fluid mechanics: Dynamics equations and linear response theory,” *Phys. Fluids* **35**(7), 071704 (2023).
- D. Singh and R. Arora, “Piston driven converging cylindrical shock waves in a non-ideal gas with azimuthal magnetic field,” *Phys. Fluids* **32**(12), 126116 (2020).
- X. Y. Gao, Y. J. Guo, and W. R. Shan, “Theoretical investigations on a variable-coefficient generalized forced-perturbed Korteweg-de Vries-Burgers model for a dilated artery, blood vessel or circulatory system with experimental support,” *Commun. Theor. Phys.* **75**(11), 115006 (2023).
- A. K. Dhar and J. T. Kirby, “Fourth-order stability analysis for capillary-gravity waves on finite-depth currents with constant vorticity,” *Phys. Fluids* **35**(2), 026601 (2023).

⁵F. F. Liu, X. Lü, J. P. Wang, and Y. C. Wu, "Dynamical behavior and modulation instability of optical solitons in nonlinear directional couplers," *Nonlinear Dyn.* **111**(11), 10441–10458 (2023).

⁶F. Cao, X. Lü, Y. X. Zhou, and X. Y. Cheng, "Modified SEIAR infectious disease model for Omicron variants spread dynamics," *Nonlinear Dyn.* **111**(15), 14597–14620 (2023).

⁷K. W. Liu, X. Lü, F. Gao, and J. Zhang, "Expectation-maximizing network reconstruction and most applicable network types based on binary time series data," *Physica D* **454**(15), 133834 (2023).

⁸X. Lü and S. J. Chen, "N-soliton solutions and associated integrability for a novel (2 + 1)-dimensional generalized KdV equation," *Chaos, Solitons Fractals* **169**, 113291 (2023).

⁹Y. Chen, X. Lü, and X. L. Wang, "Bäcklund transformation, Wronskian solutions and interaction solutions to the (3 + 1)-dimensional generalized breaking soliton equation," *Eur. Phys. J. Plus* **138**(6), 492 (2023).

¹⁰A. M. Wazwaz, W. Alhejaili, and S. A. El-Tantawy, "Study on extensions of (modified) Korteweg-de Vries equations: Painlevé integrability and multiple soliton solutions in fluid mediums," *Phys. Fluids* **35**(9), 093110 (2023).

¹¹D. Gao, X. Lü, and M. S. Peng, "Study on the (2 + 1)-dimensional extension of Hietarinta equation: Soliton solutions and Bäcklund transformation," *Phys. Scr.* **98**(9), 095225 (2023).

¹²W. X. Ma, "The algebraic structures of isospectral Lax operators and applications to integrable equations," *J. Phys. A* **25**(20), 5329–5343 (1992).

¹³S. Y. Lou, "Symmetries of the Kadomtsev-Petviashvili equation," *J. Phys. A* **26**(17), 4387–4394 (1993).

¹⁴B. B. Kadomtsev and V. I. Petviashvili, "On the stability of solitary waves in weakly dispersive media," *Sov. Phys. Dokl.* **15**(6), 539–541 (1970).

¹⁵X. B. Hu and Y. Li, "Bäcklund transformation and nonlinear superposition formula of DJKM equation," *Acta Math. Sci.* **11**(2), 164–172 (1991) (in Chinese).

¹⁶X. B. Hu and Y. Li, "A two-parameter Bäcklund transformation and nonlinear superposition formula of DJKM equation," *J. Grad. Sch. USTC* **6**(2), 8–17 (1989) (in Chinese).

¹⁷Y. H. Wang, H. Wang, and C. Temuer, "Lax pair, conservation laws, and multi-shock wave solutions of the DJKM equation with Bell polynomials and symbolic computation," *Nonlinear Dyn.* **78**(2), 1101–1107 (2014).

¹⁸Y. Q. Yuan, B. Tian, W. R. Sun, J. Chai, and L. Liu, "Wronskian and Grammian solutions for a (2 + 1)-dimensional Date-Jimbo-Kashiwara-Miwa equation," *Comput. Math. Appl.* **74**(4), 873–879 (2017).

¹⁹L. Cheng, Y. Zhang, and M. J. Lin, "Lax pair and lump solutions for the (2 + 1)-dimensional DJKM equation associated with bilinear Bäcklund transformations," *Anal. Math. Phys.* **9**, 1741–1752 (2019).

²⁰R. Hirota, *The Direct Method in Soliton Theory* (Cambridge University Press, Cambridge, 2004).

²¹W. X. Ma, "Lump solutions to the Kadomtsev-Petviashvili equation," *Phys. Lett. A* **379**(36), 1975–1978 (2015).

²²W. X. Ma and L. Q. Zhang, "Lump solutions with higher-order rational dispersion relations," *Pramana* **94**(1), 43 (2020).

²³L. Cheng, Y. Zhang, and W. X. Ma, "Wronskian N-soliton solutions to a generalized KdV equation in (2 + 1)-dimensions," *Nonlinear Dyn.* **111**, 1701–1714 (2023).

²⁴C. D. Cheng, B. Tian, T. Y. Zhou, and Y. Shen, "Wronskian solutions and Pfaffianization for a (3 + 1)-dimensional generalized variable-coefficient Kadomtsev-Petviashvili equation in a fluid or plasma," *Phys. Fluids* **35**(3), 037101 (2023).

²⁵F. Guo and J. Lin, "Interaction solutions between lump and stripe soliton to the (2 + 1)-dimensional Date-Jimbo-Kashiwara-Miwa equation," *Nonlinear Dyn.* **96**, 1233–1241 (2019).

²⁶S. Y. Lou, "A novel (2 + 1)-dimensional integrable KdV equation with peculiar solutions structures," *Chin. Phys. B* **29**(8), 080502 (2020).

²⁷X. B. Wang, M. Jia, and S. Y. Lou, "Painlevé property, local and nonlocal symmetries, and symmetry reductions for a (2 + 1)-dimensional integrable KdV equation," *Chin. Phys. B* **30**(1), 010501 (2021).

²⁸L. Cheng, W. X. Ma, Y. Zhang, and J. Y. Ge, "Integrability and lump solutions to an extended (2 + 1)-dimensional KdV equation," *Eur. Phys. J. Plus* **137**, 902 (2022).

²⁹H. L. Wu, S. W. Fan, J. X. Fei, and Z. Y. Ma, "The D'Alembert type waves and the soliton molecules in a (2 + 1)-dimensional Kadomtsev-Petviashvili with its hierarchy equation," *Commun. Theor. Phys.* **73**(10), 105002 (2021).

³⁰W. X. Ma, "Lump waves in a spatial symmetric nonlinear dispersive wave model in (2 + 1)-dimensions," *Mathematics* **11**(22), 4664 (2023).

³¹B. Liu, X. E. Zhang, B. Wang, and X. Lü, "Rogue waves based on the coupled nonlinear Schrödinger option pricing model with external potential," *Mod. Phys. Lett. B* **36**(15), 2250057 (2022).

³²Y. H. Yin and X. Lü, "Dynamic analysis on optical pulses via modified PINNs: Soliton solutions, rogue waves and parameter discovery of the CQ-NLSE," *Commun. Nonlinear Sci. Numer. Simul.* **126**, 107441 (2023).

³³W. X. Ma and Y. You, "Solving the Korteweg-de Vries equation by its bilinear form: Wronskian solutions," *Trans. Am. Math. Soc.* **357**(5), 1753–1778 (2004).

³⁴W. X. Ma, C. X. Li, and J. S. He, "A second Wronskian formulation of the Boussinesq equation," *Nonlinear Anal.* **70**, 4245–4258 (2009).

³⁵W. X. Ma, "A polynomial conjecture connected with rogue waves in the KdV equation," *Partial Differ. Equations Appl. Math.* **3**, 100023 (2021).

³⁶Y. Chen and X. Lü, "Wronskian solutions and linear superposition of rational solutions to B-type Kadomtsev-Petviashvili equation," *Phys. Fluids* **35**(10), 106613 (2023).

³⁷X. Lü and X. J. He, "Bäcklund transformation to solve the generalized (3 + 1)-dimensional KP-YTSF equation and kinky periodic-wave, Wronskian and Grammian solutions," *J. Appl. Anal. Comput.* **13**(2), 758–781 (2023).

³⁸J. J. C. Nimmo and J. X. Zhao, "Determinant and Pfaffian solutions of soliton equations," *Phys. Scr.* **89**, 038005 (2014).

³⁹L. Cheng, Y. Zhang, and Y. W. Hu, "Linear superposition and interaction of Wronskian solutions to an extended (2 + 1)-dimensional KdV equation," *AIMS Math.* **8**(7), 16906–16925 (2023).

⁴⁰N. C. Freeman and J. J. C. Nimmo, "Soliton solutions of the Korteweg-de Vries and Kadomtsev-Petviashvili equations: the Wronskian technique," *Phys. Lett. A* **95**(1), 1–3 (1983).

⁴¹J. J. C. Nimmo and N. C. Freeman, "A method of obtaining the N-soliton solution of the Boussinesq equation in terms of a Wronskian," *Phys. Lett. A* **95**(1), 4–6 (1983).

⁴²B. Dorizzi, B. Grammaticos, A. Ramani, and P. Winternitz, "Are all the equations of the KP hierarchy integrable?" *J. Math. Phys.* **27**(12), 2848–2852 (1986).

⁴³J. P. Wu, "A new Wronskian condition for a (3 + 1)-dimensional nonlinear evolution equation," *Chin. Phys. Lett.* **28**(5), 050501 (2011).

⁴⁴M. Sato, "Soliton equations as dynamical systems on an infinite dimensional Grassmann manifolds (Random systems and dynamical systems)," *RIMS Kokyuroku* **439**, 30–46 (1981).

⁴⁵R. Hirota, "Reduction of soliton equations in bilinear form," *Physica D* **18**(1–3), 161–170 (1986).

⁴⁶Y. W. Zhao, J. W. Xia, and X. Lü, "The variable separation solution, fractal and chaos in an extended coupled (2 + 1)-dimensional Burgers system," *Nonlinear Dyn.* **108**(4), 4195–4205 (2022).

⁴⁷S. J. Chen, X. Lü, and Y. H. Yin, "Dynamic behaviors of the lump solutions and mixed solutions to a (2 + 1)-dimensional nonlinear model," *Commun. Theor. Phys.* **75**(5), 055005 (2023).

⁴⁸X. Lü and S. J. Chen, "Interaction solutions to nonlinear partial differential equations via Hirota bilinear forms: one-lump-multi-stripe and one-lump-multi-soliton types," *Nonlinear Dyn.* **103**(1), 947–977 (2021).

⁴⁹S. Singh and S. Saha Ray, "Newly exploring the Lax pair, bilinear form, bilinear Bäcklund transformation through binary Bell polynomials, and analytical solutions for the (2 + 1)-dimensional generalized Hirota-Satsuma-Ito equation," *Phys. Fluids* **35**(8), 087134 (2023).

⁵⁰A. M. Wazwaz, W. Alhejaili, and S. A. El-Tantawy, "Analytical study on two new (3 + 1)-dimensional Painlevé integrable equations: Kink, lump, and multiple soliton solutions in fluid mediums," *Phys. Fluids* **35**(9), 093119 (2023).