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Abstract

The letter aims to generalize the second KP equation to a new one which still possesses a trilinear form. We construct
Wronskian determinant solutions, based on its associated trilinear equation, instead of a Hirota bilinear form. Multi-soliton
solutions are generated from the presented Wronskian formulation with higher-order dispersion relations. It is then shown that
the extended second KP equation possesses resonant N-wave solutions. Moreover, generic one-lump and two-lump waves are
built via the improved long wave limit procedure.

(© 2021 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights
reserved.
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1. Introduction

Nonlinear partial differential equations including lower-dimensional integrable soliton equations and higher-
dimensional nonlinear evolution equations arise in various areas of applied science, such as plasma physics,
biology, chemistry and mathematical physics. Integrable soliton equations possess a few nice aspects: N-soliton
solutions, Lax representations, infinitely many conservation laws, Biacklund transformation [3,17,26-28], etc. The
Kadomtsev—Petviashvili (KP) hierarchy is one of the most basic integrable models in soliton theory [4,13].
According to the physical and mathematical characteristics of the KP hierarchy, it is also significant to pay a
great deal of attention to extensions and generalizations for the KP hierarchy. Some related generalizations have
been investigated, such as the (2+1)-dimensional Date-Jimbo—Kashiwara—-Miwa (DJKM) equation [3,8,11,35,39],
the (2+1)-dimensional Bogoyavlenskii—Kadomtsev—Petviashvili (BKP) equation [33,34,38], the KP equation with a
self-consistent source [23] and the second KP equation [15,20].
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The second equation in the commuting KP hierarchy (see [15,20]) has been introduced by applying t-subalgebras
and master subalgebras, which reads as

u, = =72 u, 0, uy — 360°9 2uyyy — 1440 un, — 360U,y . (1.1)

If o = (v/6/6)I,1 = o/—1 and & = +/6/6, then Eq. (1.1) reduces to the so-called second KPI equation
1
u; +2uvy +4uu, — gvyy +Uyyy =0, Vpy = Uy (1.2)

and the second KPII equation

1
u; + 2u vy +4uuy, + g”w +tyyy =0, Vyy = Uy, (1.3)

respectively. In Ref. [20], it was shown that the second KPI equation (1.2) existed a general kind of lump solutions
with higher-order rational dispersion relations whereas the second KPII equation (1.3) had no lumps. Hirota trilinear
forms play a leading part in presenting such solutions. These motivate us to explore an extended form for the second
KP equation (1.1), expressed as

Uxxy +2au vy +4auuy, +bvy, +cu; =0, Vex = Uy, (1.4)

where a, b and ¢ are all arbitrary non-zero real constants. By the potential u = v, the nonlinear equation (1.4) is
written as

Wxxxxy + 4awxxywx +2a WXxny + 6a 1p)cx WXy +b 1pyyy +c wxxt =0. (15)

Taking the choicea = 1,b = +1,c = -2 and a =2, b = —1, ¢ = 1, the potential equation (1.5) is transformed to
the (2+1)-dimensional DJKM equation

Uxxxxy + 4u.xxyux + 2uxxxuy + 6uxyuxx + Uyyy — zuxxt = 0, (16)
and the (2+1)-dimensional BKP equation
Uy + Uyxxxxy + lzuxxuxy + Suxuxxy + 4uxxxuy = Uyyy, (17)

respectively. For all we know, there are a large number of studies on Eqgs. (1.6) and (1.7) [3,8,11,33-35,38,39]. For
example, Wronskian and Grammian determinant solutions have been derived for the DJKM equation through the
Hirota bilinear formulation [39].

The goal of this paper is to investigate exact solutions to the extended second KP equation (1.4), including a
Wronskian formulation, two-lump and resonant N-wave solutions. Eq. (1.4) possesses a trilinear form, and so, we
would like to construct a Wronskian formulation, based on its associated trilinear equation, instead of a Hirota
bilinear form in Section 2. Besides, N-soliton solutions will also be generated from the presented Wronskian
structure. In Section 3, using the long wave limit approach, generic one-lump, two-lump and resonant N-wave
solutions will be built from the corresponding multi-soliton solutions. Section 4 gives our conclusions and remarks.

2. Wronskian and N -soliton solutions

We first show that the extended second KP equation (1.4) has a trilinear form. Under the following transforma-
tions

2 2
u=—(nf), v=—(nf),, 2.1
a a
Eq. (1.4) is mapped into the trilinear form

fzfxxxxy + b fzfyyy +c fzfxxt - ffxxxxfy + szxxfxxy
- Cffxxft -2 ffxfxt - 4ffxfxxxy -3b ffyfyy +4fxfxxxfy
- zfxzxfy +2b ff - 4fxxfxfxy +2c fxzft +4fX2fxxy =0. (22)
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Next, we introduce the shorthand notation [5,9,10,18,24] to replace Wronskians as follows:

1 N-—1
o B o eV

A -
Wi, ¢, ....on) = . } : . =10,1,....N=1| =[N —-1], (2.3)
¢'N ¢i1) D
N N
0 _ 9’ ¢t
where ¢; . Let us present a set of sufficient conditions such that the Wronskian determinant (2.3) is a

solution to the trlhnear equation (2.2),

Theorem 2.1. Suppose that a group of functions ¢; = ¢;(x,y,t) (1 <i < N) satisfy the following conditions:
¢i,y = lgl(bi,mm ¢i,t - ﬂ2¢i,xxmm (24)
with
, 1 -2
B = B’ B =—5. (2.5)
c

Then the Wronskian determinant f = |N/—\l| defined by (2.3) solves the trilinear Eq. (2.2).

According to the existing research results [38], Theorem 2.1 might be proved (see the Appendix for details).
As an application case of Theorem 2.1, a set of sufficient conditions for the second KPI equation (1.2) is expressed
as follows:

y =2V6 10 i = F2V6 Iy (2.6)
where I = v/—1.
The Wronskian solutions to the trilinear Eq. (2.2) can be written as:
N =W, ¢, ..., dnN), 2.7)
where
¢ =5 e, E = pix+ Biply+ Bopit +constant, & = gix + Big2y + Bag?t + constant, (2.8)
in which p;, g; are free parameters and B, B, are defined by (2.5). Let N = 2, and then fy is given as
¢1 Pix
= W s =
f2 (91, ¢2) b o
_| ettt piet tqiet | Aith N 41 prefi Tt 4 g
€2 4 e52  pref2 + g eh2 278 4 pzefz—fz +q
— e$+€z(q2 _ 6]1)|:1 4 ueélfa + pz—_qlefz ) + M &5l —E1+6— §2i| (2.9)
q2 — 41 92— q1 92 —4qi

Since the exponential factor in f> makes no contribution to the solutions u and v given by the transformations
(2.1), the factor ith (g2 — q1) can be omitted. Assuming that two phase constants §; and 8 satisfy the relations

51 q2 — P1 P2 — 41

51701 — , 952*52 — , (2.10)
92 — q1 92 —q1
and taking the following variables transformations [10]
E+6—> & 48— E, @11

then the above W(¢1, ¢2) can be rewritten as

(p1 — p2)(q1 — q2)6E1+§2—$—§3
(p1 — q2)(q1 — p2) '
which is the two-soliton solution to the trilinear Eq. (2.2).

W1, o) o 1+ f1781 o278 2.12)
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In the general Wronskian determinant (2.7) , we have

o
o= W@ b= | ¢2.
- ¢§$> gy
eélféi 41 plefréz +q - pi\’*lefréz +q{V*1
eEN*E;N +1 pNeéN*.ETV +qn px_le&’*.&?\’ +q11\\,’—1

Each element of the above determinant (2.13) is the sum of an exponential function and a constant; so it can be
divided into the sum of 2" determinants by rows. Next, extracting the common factors associated with exponential
functions from each determinant and using the following Vandermonde determinant:

1 ¢ - qg 1
L ¢ - qz al
o =[] @n—a. (2.14)
. : : N | 1<l<m
1 qN qN

the above Wronskian solution fx has the form

A+bttiy S lsv@ =
Sy = I (g ql>(1+ 5"
l_[ " Z I—[ 1%-:[1‘/ (gs —qi)

1<i<m

N H1<V<N (gr — pi)gr — Pj)(Pi -pj)
+ Z egi_gi"’;/ EJ
1_[ 1<S<N (gs — qi)(qs — Q/)(Qz )

1<i<j
N Hii?ﬁl (gr — P)@r — P)qr — p)(pi — P)(pi — P)(Pj — Pk)
+ ok
Z niiﬁ,”k (g5 — 9)(qs —a)(qs — q)(qi —a))qi — q)(qj — qr)

I<i<j<k

x eSiEtE —Etah | —H1<’<m b Z)e&ﬁ%z%*"w@). (2.15)
Hl<l<m - ql)

We omit the factor ef1+&2++in ]_[Zlvskm(qm — ¢q;) and make a series of variable transformations

55 Hlir;fiN (gr — pi) PR

ey S s B R BN, (2.16)
<s<N . — {;
5 qs — 4qi

and then fy is equivalent to

1+Ze‘§‘ &y Z AjjesiEite =

e

I<i<j
N R R R N R
+ Z AijAjkAikeEi*SiJFEj*fjJFEk*Ek T l_[ AijerV:] §i=6i (2.17)
1<i<j<k 1<i<j
where
Ay = (pi — P4 —4q,)) <i<j<N, 2.18)

(pi —q))qi — pj)’

and &; and 5, are defined by (2.8).
Furthermore, taking the following new parameters:

ki = pi —qi. [ = Bi(p; — q}). wi = Ba(p} — g,
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and using the condition (2.5), the dispersion relation of the trilinear Eq. (2.2) reads as

Li(k} + bI})
Obviously, the corresponding two-soliton and four-soliton solutions to the trilinear form (2.2) become
fr=14e" +e” + Ape™n, 2.21)

and

4 4 4
fa=1+ Ze"" + Z At 4+ Z AjjA AT
i=1

1<i<j I<i<j<k
4
+ l_[ AjjemntmEmtng (2.22)

I<i<j
respectively, with
i =kix + Ly +wit + 87,
and
202k, _ I .\2 1. — k)2
where w; are defined by (2.20).

By analogy with the N-soliton solutions of the (2+1)-dimensional KP [10], the N-soliton solution to the extended
second KP equation (1.4) can be expressed as follows:

2 2 N AN e
u = E(ln f)xx, V= ;(ln f))‘7 f = fN = Z eZISi<1N1ﬂj lnAl]+Z;=1ﬂzﬂz’ (224)

n=0,1
where 7;, A;; and w; are defined by (2.20) and (2.23) respectively. Here ) u=o,1 indicates the summation over all

possible combinations of u; =0,1,(i =1,2,..., N) and Zf’skl- is the sum over all possible combinations of the
N elements with the specific condition 1 <i < j.

3. Resonant and multi-lump solutions

The investigation of exact solutions has always been one of the main topics in soliton theory. It has been found
there exist various kinds of exact solutions to soliton equations, such as resonant solutions and lump solutions.
Resonant multiple wave solutions, which are linear combinations of exponential waves, can be construct for many
soliton equations by applying the linear superposition principle. A few cases with N-wave satisfying and not
satisfying the dispersion relation were presented [6,19,22]. In contrast to resonant solutions, lumps are a type
of analytic rational solutions which tend to zero in all directions in the space [1,2,7,14,16,20,21,29-31]. In what
follows, we will focus on resonant multiple waves and lump solutions for the extended second KP equation (1.4),
based on the above N-soliton solutions.

3.1. Resonant solutions
In the two-soliton solution (2.21), the resonant condition corresponds to A, = 0 or co. Choosing the phase shift

Aj» = 0 and using the transformations (2.1), a direct calculation yields the following resonant two-wave solutions
to the trilinear Eq. (2.2):

f=1+e"+e®, ni=kx+Ly+wt+8,i=1,2, (3.1)
where
- ki(lv/b + kiky — k3) s — bk} + bl5)
bk, ' ck?

724



L. Cheng, Y. Zhang, W.-X. Ma et al. Mathematics and Computers in Simulation 187 (2021) 720-731

——

B

.

3
e /v X
2k

)=

Fig. 1. (a) Profile of u in the two-wave solution (3.1) with (3.2) and parameters: k; = 1,k = —1,l, = 2,t = 1. (b) Profile of u in the
three-wave solution (3.5) with N =3,e1 =1,ep =1,e3 =1,k; = 1,ky =2,k3 = —1,t = 1. (¢) Profile of u in the four-wave solution (3.5)
with N=4,81 = 1,82 = 1,83 = 1,84 = 1,k1 = 1,k2=—1.8,k3 = —1,k4 = 1.5,l‘= 1.

_ —ki(Vbly + kiky — k3)(2kTk3 — 2kik3 4 2v/bkikaly + k3 — 24/bk31, + bI3)

w (3.2)
: NS
and
ki(an/b — kika + k3) L (k3 + bl3)
ll = 9 w2 = _—21
bk, ck?
ki(v/bly — kika + k2)(2kik3 — 2k%k3 + 2+/bkikaly — ki — 24/Dk21, — bl3) 33)
wp = . .
: Vbck3
Moreover, under the choices
l ilk2 :sz“' 1,2 N (3.4)
i ==K, W = F— =K, L = 1,24,..., IV, .
Vb cv/b

the phase shifts (2.23) can be expressed as A;; = 0,1 <i < j < N, which generate a kind of resonant N-wave

solutions to the extended second KP equation (1.4):

2 2 N Ly 2
==l v="(nf)y,  f=1+) e TN (3.5)
i=1
or
2 2 al kix——i2y+ 2 k4
u==(nfle, v="(nf), f=14) e TR (3.6)

i=1

where ¢;’s and k;’s are arbitrary constants. Figs. 1 and 2 exhibit three-dimensional plots of the resonant wave
solutions (3.1) and (3.5) to the second KPII equation (1.3) witha = 1,b = é, ¢ = 1 for three subsequent time
instances. In the resonant two-wave solution (3.1), we can observe that two line solitons merge into a big soliton
after a resonant interaction and the amplitude of the resonant soliton will increase as shown in Fig. 1(a). Fig. 1(b)
and (c) describe that such soliton resonance behaviors can also occur in the resonant three- and four-wave solutions.
Fig. 2 similarly shows the resonant behaviors of the traveling two-kink , three-kink and four-kink waves in the (x, y)
plan. It is not difficult to see that the propagation of kink wave fusion or fission tends to be more complicated with
the increase of the number of solitons.
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Fig. 2. Profiles of v in the two-,three- and four-wave solutions. The related expressions and parameters are the same as in Fig. 1.

3.2. Multi-lump solutions

We now discuss the long wave limit of the two-soliton solution to obtain generic lump solutions. Let us set the
following variable substitution:

mi = vitkix +Ly +wit + &)+ 8, i=>1, (3.7)
and then the two-soliton solution (2.21) can be equivalently rewritten as

H=14e"+el 4 Apen™n, (3.8)
where

Li(y?k} + bl?)
cki2
kM3 (ki — yaka)® + blkily — kaly)?

m=yi[kix+liy— t+§i]+5?,i=1,2,

A2 = Tk 1 k) + bkl — kol 39
Let us put es? =—1, v/, =0Q1), ki =0Q1),l; =0(),i =1, 2 and take the limit as y; — 0. We get
4kfkg
fo= vl + g + 0], (3.10)
with
b3 .
O =kix +1Liy——5t+&,i=12, (3.11)
ck;
owing to
PP 112 51, SN (3.12)

b(kily — kaly)?
By means of the transformation (2.1), the factor y;y, can be ignored in the expression (3.10). We still denote the
above expression as f>, then f, has the following form:

4k3k3

=60+ B, Bp=——7""°-"—, 3.13
f2=0616, + Bip 2= k) (3.13)
where 6;,i = 1, 2 are defined by (3.11). To construct nonsingular rational solutions, we choose
ki=r+dl, h=n+dl, G =h+ml, I1=+vV-1,
k2=k>1k7 l2=lik9 é‘zzgfk’riydiyhymeRyi:lazs (3‘14)
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where the asterisk indicates the complex conjugate. Substituting these expressions into (3.13) yields a class of
quadratic function solutions as follows:

b[0F = dD03 = 3radd) — 2rids (A — 3r}d)] >z
f2 <r1x +nry eI "
b[(r} — d})Bridy — d3) — 2ridi(r} — 3r2d2)] >2
+ (dix +doy — .
( 1X +dyy Ty "

(r? 4+ d?)}
b(ridy — rady)*’
where r1d, — ryd; # 0 and the other parameters involved are arbitrary. Obviously, this kind of quadratic function
solutions is always positive when the coefficient b < 0. Therefore, under the conditions r1d, —r,d; # 0 and b < 0,
one-lump waves of Eq. (1.4) can be expressed as
2 2(f2xxf2_f22 ) 2f2v
u=—(n =" = In = —,

a( f2)xx af22 ( fZ)y f2
which are localized along all space directions. It is also demonstrated that the above polynomial solutions never
generate any lump solution to the extended KP equation (1.4) when the coefficient b > 0.

By making a long wave limit on the four-soliton solutions (2.22), the resulting polynomial function solution to
Eq. (1.4) can be written as [31]

Ja = 01026304 + B126:04 + B136:204 + B146205 + By36,64

(3.15)

(3.16)

+ B246163 + B346,0, + Bi2B3s + Bi3Bos + B14Bos, (3.17)
where
bi? ,
9i=kix+liy——2t+§i, 1 =1,2,3,4, (318)
ck;
and
4k

Bi=—"—"7——, 1<i<j<4 3.19
I bkl — Kl ‘= (3-19)
Taking b < 0, kyyi = k', by = IF, &y = &, i = 1,2, and applying the results presented in Ref. [31], we can
get two-lump wave solutions to Eq. (1.4) via the transformation (2.1). In what follows, let us present an illustrative
example to shed light on a multiple collision of two lumps.
If we choose

ki =14LL=—142Lk=2-LL=141k =k ki=k

L=, 4=050=2+L=4+3L8=¢,04=2, (3.20)
the second KPI equation (1.2) possesses a special two-lump solution as follows:
2(f4xxf4_f42x) 2f4 )
u=2(0n f3)yy = ————— y=2(n fy), = ==,
f4 xx f42 f4 y f4
where
5 1729 553
= 10x* + 10y* + ——r* + 14x3y + 14xy® +33x%y? — — X% — =—x%y¢
fa= 1007 10y7 4 gt Moy o Lay™ 4 33 150" T st
N 6131 2 329 +2023 2 1729 o 116 £ +299 22 29;
1200 257 600 " 7 5400 15T 1207 135 7
799 379 1367 358
50, 70y® — —— 13 + 60x%y — —x% + 90
+ 505 + 70y° — Joent 4 60x%y — Tt + 90xy* + 7 5
279 2 4 1853 2y 4287 2 2577 , 133841t2 34764 889183
—_ X X
s T 0 5 5 2 T 1200 25 07 1250
65297 - 7444 N 11002 1809107t N 30985 3:21)
— X - . .
125 ' T3 15 > 2250 3
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Fig. 4. The propagation of v in the two-lump solution (3.21) when (a) t = —50, (b) t =0 and (c) t = 50.

Figs. 3 and 4 show three three-dimensional plots of the two-lump solutions u and v at several time steps. We see
that the two-lump solution u possesses two distinct peaks in the propagation process, and decays algebraically in
all directions in the (x, y)-plane. The lump wave with high amplitude is behind the lump wave with low amplitude.
Because the lump wave with high amplitude moves faster than the other, after a period of time, the lump wave with
high amplitude catches up with the other to run ahead.

4. Concluding remarks

In summary, we furnished a Wronskian formulation for the extended second KP equation (1.4), using its Hirota
trilinear form. The resulting Wronskian determinant structure generated N-soliton solutions and resonant wave
solutions. Moreover, generic one-lump and two-lump solutions were obtained via the long wave limit technique.

We also remark that in the N-soliton solution (2.24) with (2.23), the parameters k;, [; and w;, defining the wave
numbers and frequency, satisfy the following dispersion relation

kil + bl + ckiw; =0, 4.1

which involves higher-order structure compared with the dispersion relation of the KPI equation [31]. Thus the
numerators of higher-order rational dispersion relations are of degree 5 in the one-lump solution (3.15). More
research problems need to be investigated, including how to apply trilinear forms to explore interaction solutions
and integrability [12,25,32,36,37] for the extended second KP equation.
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Appendix

The proof of Theorem 2.1 is as follows:
Proof. By the condition (2.4), various derivatives of the Wronskian determinant can be computed as follows:

fi=IN=2,N|. fu=IN=3N—1LN+[N-2N+1]|
for=IN—4,N—2,N—1,N|+2IN —3,N—1,N+1|+|N —2,N +2],
fox =IN =35, N=3,N=2,N—1,N|+3IN—4,N-2,N—1,N +1|
+2IN—3,N,N+1|+3N—3,N—1,N+2|+|N—2,N +3]|,
fr=B(=IN=3,N=1,N|+|N —2,N +1]),
fo=PBi(-IN—4,N—=2,N—1,N|+IN —2,N +2]),

foy=B1(~IN=5,N=3,N=2,N—1,N|—=[N—4,N—2,N—1,N+1|
+IN=3,N—1,N+2|+|N —2,N +3|),

feery =Bi(—IN—6,N =4, N =3, N=2,N—1,N|—|N —4,N —2,N,N + 1|
~2N—-5,N—3,N—2,N—1,N+1|+|N—3,N,N +2|
+ 2N =3, N—1,N+3[+|N—2,N +4|),

feersy =Bi(<IN—7,N =5, N—4 N—=3,N—=2,N—1,N|—3|[N—5N—3,N—2,N,N +1]
~N—-5N—3,N—2,N—1,N+2—3IN—6,N—4 N—3,N—2,N—1,N+1]|
“IN—4,N—1,NN+1|4+2[N—4,N—2,N—1,N+3|+|N —2,N +5]|
+ IN=3,N+1,N+2[+3|N—3,N,N+3|+3IN —3,N — 1, N +4|),

fiy=B(IN=5,N=3,N—=2,N—1,N|—|[N—4,N—-2,N—1,N +1]
+2IN =3, N.N+1| =N =3, N = 1N +2|+ N =2, N +3]),

fow =B(~IN—7,N=5N—4N—-3,N-2,N—I,N|+|N—6,N—4N—3,N—2,N—1,N+1|
—3N-5N-3,N—2,N,N+1/+2[N—5N—-3N—2N—1,N+2|
+3N—4N—1,N,N+1—2[N—4, N—2,N—1,N+3|—=3|N—3,N+1,N +2|
+3IN=3,N,N+3|—IN—3,N—I,N+4/+|N —2,N +5|),

fi=B(~IN=5N =3 N=2N-1LN|+ N -4, N-2N-1LN+1
— IN=3,N—=1,N+2|+|N —2,N +3|),

fu=P(-IN—6,N—4 N—3,N—-2,N—1,N|+|N—4 N -2 N,N+1]|
~ IN=3.N.N+2[+|N —2,N +4|),

ferr=Po(~IN—=7,N =5 N—4 N—-3,N—2,N—1,N|+|N—5N—-3,N—2,N,N+1|
~ IN—6,N—4,N—-3,N—2N—1,N+1|+|N—4,N—1,N,N +1]

—IN=3,N+1,N+2|—|N—3,N,N+3|+|N—3,N—1,N+4/+|N —2,N +5|).
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Substituting these derivatives into Eq. (2.2) and using the condition (2.5), we can now calculate that
I frvxxy 6 2 fygy + € £ frnt
— 2 —— —
= —84IN — 1| [IN=5,N =3, N =2, N.N+1]— N =3, N.N +3]]

= [fexax Sy + 2F fax fexy — € [hax Jt = 2¢ ffx for — &S fx foxxy = 3D [y fyy
=8,31|17—\1|[(|17—\3,N—1,N|—|N/—\2,N+1|)|N/—\3,N,N+1|
+|IN—2,N|(IN=5,N=3,N=2,N—=1,N+1|+|N—4,N—2,N,N +1|
— IN=3,N,N+2|—|N—=3,N—1,N+3|)+|N—2,N+3][N —3,N — 1, N|
- |N/—\2,N+1||N/—\5,N—3,N—2,N—l,Nl],

4fcfeexfy = 2f e fy +2b ) = Afux fu fry + 20 2 i + A4S fary
=8ﬁ1[(|17—\3,N—1,N|—|17—\2,N+1|)|N/—\2,N+1||N/—\3,N—1,N|
— (IN=3,N=1,N|—[N—=2,N+1[)IN=2,N|IN =3,N — 1, N + 1|
+ IN—2,N|(IN=2,N|IN=3,N—1,N+2|— [N —2,N +2|[IN —3,N — 1, N|
+ IN/—\Z,N—i-1||N/—\4,N—2,N—1,N|—|N/—\2,N||N/—\4,N—2,N—1,N+1|)].
Therefore, the left hand side of Eq. (2.2) yields
8,31[|N/—\1|(|N/—\1||N/—\3,N,N+3|—IN/—\Z,NllN/—\S,N—l,N—f-3|
+ |17—\2,N+3||17—\3,N—1,N|)—|17—\1|(|N/—\1||N/—\5,N—3,N—2,N,N+1|
_ |N/—\2,N||17—\5,N—3,N—2,N—1,N+1|+|N/—\2,N+1||N/—\5,N—3,N—2,N—1,N|)
- |N/—\2,N|(|N/—\1||N/—\3, N,N+2—|N—2,N||N—3,N—1,N +2]
+|N—2,N+2||N -3, N - 1,N|) +|N/—\2,N|<|N/—\1||N/—\4,N—2, N,N +1]
- |17—\2,N||17—\4,N—2,N—1,N+1|+|N/—\2,N+1||N/—\4,N—2,N—1,N|)

+ (IN=3,N = LN = N2, N+ 1) (N = TIN =3, N, N +1]
— IN/—\2,N||N/—\3,N—1,N+1|+|N/—\2,N+1||N/—\3,N—1,N|)] (A1)

It is obvious that the sums of three terms in parenthesis in the above expressigl\(A.l) are all Pliicker
relations [10]; so the left hand side of Eq. (2.2) is equal to zero and f = W = |N — 1| solves the trilinear
Eq. (2.2).
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