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A B S T R A C T

The goal of this letter is to consider an extended Jimbo–Miwa equation which exists nonsingular complexiton
solutions in (3+1)-dimensions. A few types of two-wave and complexiton solutions are developed through
symbolic computations with Maple, including resonant two-wave solutions and nonsingular complexiton
solutions. Nonsingular complexitons to the generalized Jimbo–Miwa equation should be new, though there
exist plenty of studies in the literature. A few specific cases are derived to illustrate the remarkable richness
of explicit solutions for the considered equation.
1. Introduction

The research of exact solutions is an important part to nonlinear
differential equations and has become a hot topic. The determination of
exact solutions, particularly the multi-soliton solutions, can help us to
comprehend various qualitative and quantitative characteristics of non-
linear phenomena modeled by these evolution equations. For typical
soliton equations, there possess multiple-soliton solutions, constructed
from combinations of multiple exponential waves in terms of their
Hirota bilinear formulations. Such equations contain the Korteweg–
de Vries (KdV) equation, the Kadomtsev–Petviashvili (KP) equation
and the Sawada–Kotera equation [1]. It is recognized by applying
the multiple exp-function algorithm and the simplified Hirota’s ap-
proach that many higher-dimensional equations can also possess multi-
wave soliton type solutions, which include the generalized KP, B-type
Kadomtsev–Petviashvili (BKP) equations and the (3+1)-dimensional
Jimbo–Miwa equation [2–5]. Many kinds of effective methods have
been built for the investigation of soliton solutions, such as the Wron-
skian formula [6], the inverse scattering transform [7] and the Hirota
bilinear approach [1,8]. Enlarging the diversity of solitons, complexi-
ton solutions or periodic-soliton solutions have been introduced in
previous papers [9,10]. Some recent works have been carried out on
the complexiton solutions which involve two classes of transcendental
functions, namely, exponential and trigonometric functions [11–15].
The Wronskian method is highly designed to seek complexiton solu-
tions for soliton equations [10], but the complexiton solutions derived
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from the Wronskian formulation are extremely complicated to higher-
dimensional equations. The linear superposition principle also provides
a useful tool for finding complexiton solutions [11]. Moreover, com-
plexiton solutions may be generated from solitons via extending the
real parameters to the complex field [9,14,15].

The second member of the famous KP hierarchy is the Jimbo–Miwa
equation:

𝑢𝑥𝑥𝑥𝑦 + 3𝑢𝑦𝑢𝑥𝑥 + 3𝑢𝑥𝑢𝑥𝑦 + 2𝑢𝑦𝑡 − 3𝑢𝑥𝑧 = 0, (1.1)

which is applied to describing the propagation of three-dimensional
nonlinear waves with a weak dispersion [16]. More recent studies
exhibit that this equation exists diverse exact solutions [2,17–20]. The
exp-function algorithm allowed us to construct two- and three-wave
solutions and traveling wave solutions [2], and the linear superpo-
sition principle presented resonant multiple wave solutions [20]. A
direct symbolic calculation yielded abundant lump-type solutions and
interaction solutions [18,19]. Multiple periodic-soliton solutions gen-
erated from multiple line-soliton solutions were established through
the Hirota bilinear approach in Refs. [21,22]. As a generalization of
Eq. (1.1), Wazwaz presented the two extended Jimbo–Miwa equations
as follows [23]:

𝑢𝑥𝑥𝑥𝑦 + 3𝑢𝑦𝑢𝑥𝑥 + 3𝑢𝑥𝑢𝑥𝑦 + 2𝑢𝑦𝑡 − 3(𝑢𝑥𝑧 + 𝑢𝑦𝑧 + 𝑢𝑧𝑧) = 0, (1.2)

𝑢𝑥𝑥𝑥𝑦 + 3𝑢𝑦𝑢𝑥𝑥 + 3𝑢𝑥𝑢𝑥𝑦 + 2(𝑢𝑥𝑡 + 𝑢𝑦𝑡 + 𝑢𝑧𝑡) − 3𝑢𝑥𝑧 = 0. (1.3)
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Through the simplified Hirota’s method, multi-solitons of distinct phys-
ical structures were explored to each extended Jimbo–Miwa equation.
By applying the Maple computer algebra system, lump and lump–kink
solutions were obtained for the Jimbo–Miwa (1.1) and two extended
Jimbo–Miwa equations equation (1.2) and (1.3) [24]. It demonstrates
that the theoretical studies and extensions on the well-known Jimbo–
Miwa equation (1.1) in (3+1)-dimensions draw much attention of
researchers in various areas of natural science [24–28]. This motivates
us to discuss an extended Jimbo–Miwa equation for the propagation of
three-dimensional nonlinear waves.

Let us begin with a new extended Jimbo–Miwa equation in the
research and development process of nonlinear physical phenomena,
read as

𝑢𝑥𝑥𝑥𝑦 + 𝜒(𝑢𝑥𝑢𝑦)𝑥 + 𝜌1𝑢𝑥𝑦 + 𝜌2𝑢𝑥𝑧 + 𝜌3𝑢𝑦𝑡 + 𝜌4𝑢𝑦𝑦 = 0, (1.4)

where 𝜒 is a non-zero constant coefficient and 𝜌𝑖, 1 ≤ 𝑖 ≤ 4, are all
arbitrary real constants, but the constants 𝜌2 and 𝜌3 satisfy 𝜌2𝜌3 ≠ 0.
When 𝜒 = 3, 𝜌2 = −3, 𝜌3 = 2 and the other 𝜌𝑖’s are zero, the nonlinear
evolution equation (1.4) reduces to the Jimbo–Miwa equation (1.1).
The above equation (1.4) is also an extension of the (3 + 1)-dimensional
generalized BKP equation introduced in Ref. [2]

𝑢𝑡𝑦 − 𝑢𝑥𝑥𝑥𝑦 − 3(𝑢𝑥𝑢𝑦)𝑥 + 3𝑢𝑥𝑧 = 0. (1.5)

By the transformation

𝑢 = 6
𝜒
(ln 𝑓 )𝑥, (1.6)

this equation (1.4) has a Hirota bilinear formulation

(𝐷3
𝑥𝐷𝑦 + 𝜌1𝐷𝑥𝐷𝑦 + 𝜌2𝐷𝑥𝐷𝑧 + 𝜌3𝐷𝑦𝐷𝑡 + 𝜌4𝐷

2
𝑦)𝑓 ⋅ 𝑓 = 0, (1.7)

where 𝐷𝑥, 𝐷𝑦, 𝐷𝑧 and 𝐷𝑡 are Hirota differential operators [1]. Equiva-
lently, we have

(𝑓𝑥𝑥𝑥𝑦 + 𝜌1𝑓𝑥𝑦 + 𝜌2𝑓𝑥𝑧 + 𝜌3𝑓𝑦𝑡 + 𝜌4𝑓𝑦𝑦)𝑓 − 𝑓𝑥𝑥𝑥𝑓𝑦 + 3𝑓𝑥𝑥𝑓𝑥𝑦

− 3𝑓𝑥𝑓𝑥𝑥𝑦 − 𝜌1𝑓𝑥𝑓𝑦 − 𝜌2𝑓𝑥𝑓𝑧 − 𝜌3𝑓𝑦𝑓𝑡 − 𝜌4𝑓
2
𝑦 = 0. (1.8)

It is shown that Eq. (1.4) has the same degree and dimension as
the Jimbo–Miwa equation (1.1). Therefore, this equation (1.4) could
be widely used to describing a large number of phenomena in fluid
dynamics, plasma mechanics and other fields, according to the physical
nature of the Jimbo–Miwa equation. There are some studies on Wron-
skian and Grammian formulations to the Hirota bilinear equation (1.7)
by using the KP hierarchy reduction [29,30]. By applying the linear
superposition principle, the Hirota bilinear form (1.7) has been derived
to possess the following 𝑁-wave solution [30]:

𝑓 =
𝑁
∑

𝑖=1
𝜀𝑖𝑓𝑖 =

𝑁
∑

𝑖=1
𝜀𝑖𝑒

𝑘𝑖𝑥+𝛿1𝑘2𝑖 𝑦+(𝛿2𝑘
4
𝑖 +𝛿3𝑘

2
𝑖 )𝑧+(𝛿4𝑘

3
𝑖 +𝛿5𝑘

2
𝑖 )𝑡, (1.9)

where the 𝜀,𝑖s and 𝑘,𝑖s are arbitrary constants, but 𝛿𝑖, 2 ≤ 𝑖 ≤ 5, satisfy
the following system

𝛿2 =
−3𝛿1
𝜌2

, 𝛿3 =
−𝜌1𝛿1
𝜌2

, 𝛿4 =
2
𝜌3

, 𝛿5 =
−𝜌4𝛿1
𝜌3

, (1.10)

with 𝛿1 is a free parameter not to be zero. Each exponential wave 𝑓𝑖 sat-
isfies the corresponding nonlinear dispersion relation in this solution.

This paper aims to look for a few classes of exact solutions for the
extended Jimbo–Miwa equation (1.4) through symbolic computations
with Maple. Based on the associated Hirota bilinear formulation (1.7),
we would like to explore one-wave and two-wave solutions by Maple
symbolic computations in Section 2. A kind of resonant solutions can be
computed from the resulting two-wave solutions with particular phase
shifts. In Section 3, under the help of Maple, a general type of com-
plexiton solutions will be determined. In addition, we will show that
the extended Jimbo–Miwa equation (1.4) exists a class of nonsingular
complexiton solutions. Section 4 gives our conclusions and remarks.
2

2. Resonant solutions

2.1. One-wave type solutions

We now consider some special expressions with 𝑢 and 𝑓 to estab-
lish one-wave type solutions for the bilinear extended Jimbo–Miwa
equation (1.7). Conducting symbolic computations with Maple, the
following three exact solutions for the bilinear extended Jimbo–Miwa
equation (1.7) can be obtained :

𝑓 = 𝑒𝑎1𝑔1(𝑥)+𝑎2𝑦+𝑎3𝑔2(𝑧)+𝑎4𝑔3(𝑡)+𝑎5 , (2.1)

𝑓 = ℎ1

(

𝑎1𝑥 + 𝑎2𝑦 + 𝑎3𝑧 +
4𝑎31𝑎2 − 𝜌1𝑎1𝑎2 − 𝜌2𝑎1𝑎3 − 𝜌4𝑎22

𝜌3𝑎2
𝑡 + 𝑎5

)

,

ℎ1 = sin or cos, (2.2)

= ℎ2

(

𝑎1𝑥 + 𝑎2𝑦 + 𝑎3𝑧 −
4𝑎31𝑎2 + 𝜌1𝑎1𝑎2 + 𝜌2𝑎1𝑎3 + 𝜌4𝑎22

𝜌3𝑎2
𝑡 + 𝑎5

)

,

ℎ2 = sinh or cosh, (2.3)

here 𝑔𝑖, 1 ≤ 𝑖 ≤ 3, are arbitrary functions, ℎ1 is the sine or cosine
unction, ℎ2 is hyperbolic sine or hyperbolic cosine function, and the
arameters 𝑎𝑖, 1 ≤ 𝑖 ≤ 5, are arbitrary. Although all kinds of solutions
bove are fascinating solutions of the bilinear extended Jimbo–Miwa
quation (1.7), they cannot yield nontrivial exact solutions to the
xtended Jimbo–Miwa equation (1.4) via the transformation (1.6).

.2. Soliton and resonant solutions

In what follows, to investigate two-wave solutions of Eq. (1.4) , we
uppose

= 6
𝜒
(ln 𝑓 )𝑥, 𝑓 = 𝜀1𝑒

𝜃1 + 𝜀2𝑒
𝜃2 + 𝐴𝜀1𝜀2𝑒

𝜃1𝑒𝜃2 + 𝑎9,

1 = 𝑎1𝑥 + 𝑎2𝑦 + 𝑎3𝑧 + 𝑎4𝑡, 𝜃2 = 𝑎5𝑥 + 𝑎6𝑦 + 𝑎7𝑧 + 𝑎8𝑡, (2.4)

here 𝜀𝑖 ≠ 0, 𝑖 = 1, 2, are arbitrary, and 𝑎𝑖, 1 ≤ 𝑖 ≤ 9, and 𝐴 are
parameters to be computed. Substituting 𝑓 into (1.8), and applying
Maple symbolic computations, we have three cases of solutions for the
parameters 𝐴 and 𝑎𝑖, 1 ≤ 𝑖 ≤ 9, as follows:

Case 1

𝑎4 = − 1
𝜌3(𝑎2 − 𝑎6)

[

(𝑎1 − 𝑎5)3(𝑎2 − 𝑎6) + 𝜌1(𝑎1 − 𝑎5)(𝑎2 − 𝑎6)

+ 𝜌2(𝑎1 − 𝑎5)(𝑎3 − 𝑎7) + 𝜌3(𝑎6𝑎8 − 𝑎2𝑎8) + 𝜌4(𝑎2 − 𝑎6)2
]

,

𝑎9 = 0, 𝐴 = 0, (2.5)

where 𝑎2 − 𝑎6 ≠ 0 and the other parameters are arbitrary.
Case 2

𝑎4 = −
𝑎31𝑎2 + 𝜌1𝑎1𝑎2 + 𝜌2𝑎1𝑎3 + 𝜌4𝑎22

𝜌3𝑎2
,

𝑎8 = −
𝑎35𝑎6 + 𝜌1𝑎5𝑎6 + 𝜌2𝑎5𝑎7 + 𝜌4𝑎26

𝜌3𝑎6
, 𝐴 =

𝑐1
𝑐2

, (2.6)

with the constants 𝑐𝑖, 𝑖 = 1, 2, are defined by
{

𝑐1 = 3𝑎1𝑎2𝑎5𝑎6(𝑎2 − 𝑎6)(𝑎1 − 𝑎5) + 𝜌2(𝑎2𝑎7 − 𝑎3𝑎6)(𝑎1𝑎6 − 𝑎2𝑎5),
𝑐2 = 𝑎9

[

3𝑎1𝑎2𝑎5𝑎6(𝑎2 + 𝑎6)(𝑎1 + 𝑎5) + 𝜌2(𝑎2𝑎7 − 𝑎3𝑎6)(𝑎1𝑎6 − 𝑎2𝑎5)
]

,

(2.7)

where 𝑎2𝑎6𝑎9 ≠ 0, 𝑐1𝑐2 ≠ 0, and the other parameters are arbitrary.
Case 3

𝑎3 =
3𝑎1𝑎2𝑎5(𝑎1 − 𝑎5)(𝑎2 − 𝑎6)

𝜌2(𝑎1𝑎6 − 𝑎2𝑎5)
+

𝑎2𝑎7
𝑎6

,

𝑎4 = − 1
𝜌3(𝑎1𝑎6 − 𝑎2𝑎5)

[

𝑎21(𝑎
2
1𝑎6 + 2𝑎1𝑎2𝑎5 − 3𝑎25𝑎2 − 3𝑎1𝑎5𝑎6 + 3𝑎6𝑎25)

]

−
𝜌1𝑎1𝑎6 + 𝜌2𝑎1𝑎7 + 𝜌4𝑎2𝑎6 ,
𝜌3𝑎6
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𝑎8 = −
𝑎35𝑎6 + 𝜌1𝑎5𝑎6 + 𝜌2𝑎5𝑎7 + 𝜌4𝑎26

𝜌3𝑎6
, 𝐴 = 0, (2.8)

where 𝑎6𝑎9(𝑎1𝑎6 − 𝑎2𝑎5) ≠ 0 and the other parameters are arbitrary.
It is direct to see, through taking the dependent variable transfor-

mation (1.6), that the resulting exact solutions (2.5) and (2.6) yield
one-soliton and two-soliton solutions, respectively, and the third class
of exact solutions (2.8) can exhibit resonant phenomena. Furthermore,
for the two-soliton solutions (2.6) with (2.7), note that the following
special choice of parameters:

𝑎9 = 1, 𝑎1𝑎5 = 0 or 𝑎9 = 1, 𝑎1𝑎6 + 𝑎2𝑎5 = 0, (2.9)

leads to the phase shift 𝐴 = 1.
An illustrative example is given according to the above results.

Taking 𝜒 = 3, 𝜌1 = 1, 𝜌2 = −3, 𝜌3 = 2, 𝜌4 = 2, and then, from (1.4),
we arrive at the following specific Jimbo–Miwa type equation

𝑢𝑥𝑥𝑥𝑦 + 3(𝑢𝑥𝑢𝑦)𝑥 + 𝑢𝑥𝑦 − 3𝑢𝑥𝑧 + 2𝑢𝑦𝑡 + 2𝑢𝑦𝑦 = 0. (2.10)

This equation has its bilinear form

(𝐷3
𝑥𝐷𝑦 +𝐷𝑥𝐷𝑦 − 3𝐷𝑥𝐷𝑧 + 2𝐷𝑦𝐷𝑡 + 2𝐷2

𝑦)𝑓 ⋅ 𝑓 = 0, (2.11)

under the dependent variable transformation 𝑢 = 2(ln𝑓 )𝑥.
The nonlinear equation (2.10) has a class of special two-soliton

solutions

𝑢 =
2
[

𝑎1𝜀1𝑒𝜃1 + 𝑎2𝜀2𝑒𝜃2 + (𝑎1 + 𝑎2)𝜀1𝜀2𝑒𝜃1+𝜃2
]

1 + 𝜀1𝑒𝜃1 + 𝜀2𝑒𝜃2 + 𝜀1𝜀2𝑒𝜃1+𝜃2
(2.12)

with

𝜃1 = 𝑎1𝑥 + 𝑘𝑎1𝑦 + 𝑎3𝑧 −
𝑘𝑎41 + 𝑘𝑎21 − 3𝑎1𝑎3 + 2𝑘2𝑎21

2𝑘𝑎1
𝑡,

2 = 𝑎5𝑥 − 𝑘𝑎5𝑦 + 𝑎7𝑧 +
−𝑘𝑎45 − 𝑘𝑎25 − 3𝑎5𝑎7 + 2𝑘2𝑎25

2𝑘𝑎5
𝑡, (2.13)

where 𝑘, 𝑎1, 𝑎5 are arbitrary nonzero parameters and the other param-
eters are arbitrary. Also, let us choose the following two special sets of
parameters:

𝑎1 = 2, 𝑎2 = 1, 𝑎3 = −3, 𝑎5 = 5, 𝑎6 = 2, 𝑎7 = −1, 𝑎8 = 2, 𝑎9 = 0,

𝜀1 = 1, 𝜀2 = 1,

and

𝑎1 = 1, 𝑎2 = 2, 𝑎5 = 2, 𝑎6 = −1, 𝑎7 = 1, 𝑎9 = 1, 𝜀1 = 3, 𝜀2 = 5,

then Eq. (2.10) possesses a one-soliton solution

𝑢 =
2(2𝑒2𝑥+𝑦−3𝑧+9𝑡 + 5𝑒5𝑥+2𝑦−𝑧+2𝑡)

𝑒2𝑥+𝑦−3𝑧+9𝑡 + 𝑒5𝑥+2𝑦−𝑧+2𝑡
, (2.14)

and a resonant two-wave solution

𝑢 =
2(3𝑒𝑥+2𝑦−

22
5 𝑧− 63

10 𝑡 + 10𝑒2𝑥−𝑦+𝑧−7𝑡)

3𝑒𝑥+2𝑦−
22
5 𝑧− 63

10 𝑡 + 5𝑒2𝑥−𝑦+𝑧−7𝑡 + 1
, (2.15)

respectively. Three-dimensional plots of these two solutions are made
in Fig. 1. It is easy to observe that the solution (2.14) is the kink-
shape solitary wave, which spreads without any temporal evolution in
size or shape and phase speed is amplitude-dependent. In the resonant
two-wave solution (2.15) , a big soliton is grown from interacting
solitons and its amplitude is larger than any amplitude of solitons
before resonance in the interaction region, since the interaction terms
vanish.

3. Nonsingular complexiton solutions

As we stated in §1, basic approaches to complexiton solutions
include the Wronskian formula [10], the linear superposition princi-
ple [11,12] and the Hirota perturbation technique [14,15]. In this
section, our main concern is to get a general kind of complexiton
solutions, particularly nonsingular complexiton solutions via symbolic
calculations with Maple for the extended Jimbo–Miwa equation (1.4)
in (3+1)-dimensions.
3

3.1. Complexiton solutions

We begin with an ansatz for complexiton solutions:

𝑓 = 1 + 2𝜀1𝑒𝜃1ℎ(𝜃2) + 𝜀2𝑒
2𝜃1 , ℎ = sin or cos, (3.1)

here

1 = 𝑎1𝑥 + 𝑎2𝑦 + 𝑎3𝑧 + 𝑎4𝑡, 𝜃2 = 𝑎5𝑥 + 𝑎6𝑦 + 𝑎7𝑧 + 𝑎8𝑡 + 𝑎9, (3.2)

nd 𝜀1, 𝜀2 and 𝑎𝑖, 1 ≤ 𝑖 ≤ 9, are parameters to be computed. Plugging
his expression into the bilinear form (1.8) generates a set of nonlinear
lgebraic equations in terms of the parameters 𝑎𝑖, 1 ≤ 𝑖 ≤ 9, 𝜀1 and 𝜀2.
olving the algebraic system with Maple, a direct analysis provides us
ith two cases of solutions for the parameters as follows:

Case 1

2 = 0, 𝑎3 =
3𝑎5(𝑎22 + 𝑎26)(𝑎

2
1 + 𝑎25)

𝜌2(𝑎1𝑎6 − 𝑎2𝑎5)
+

𝑎2𝑎7
𝑎6

,

𝑎4 = −
2𝑎1𝑎2𝑎5(3𝑎25 + 𝑎21) + 𝑎6(𝑎41 + 3𝑎45)

𝜌3(𝑎1𝑎6 − 𝑎2𝑎5)
−

𝜌1𝑎1𝑎6 + 𝜌2𝑎1𝑎7 + 𝜌4𝑎2𝑎6
𝜌3𝑎6

,

𝑎8 =
4𝑎35𝑎6 − 𝜌1𝑎5𝑎6 − 𝜌2𝑎5𝑎7 − 𝜌4𝑎26

𝜌3𝑎6
, (3.3)

where 𝜀1𝑎6(𝑎1𝑎6 − 𝑎2𝑎5) ≠ 0 and the other parameters are arbitrary.
Case 2

𝑎3 =
(𝑎22 + 𝑎26)(3𝑎

2
1𝑎5 − 𝑎35 + 𝜌1𝑎5 + 𝜌3𝑎8 + 𝜌4𝑎6) + 𝜌2𝑎7(𝑎1𝑎2 + 𝑎5𝑎6)

𝜌2(𝑎1𝑎6 − 𝑎2𝑎5)
,

4 =
−1

𝜌3(𝑎1𝑎6 − 𝑎2𝑎5)
[

(𝑎21 + 𝑎25)(𝑎
2
1𝑎6 − 𝑎25𝑎6 + 2𝑎1𝑎2𝑎5 + 𝜌1𝑎6 + 𝜌2𝑎7)

+ 𝜌3𝑎8(𝑎1𝑎2 + 𝑎5𝑎6) + 𝜌4(𝑎5𝑎26 − 𝑎22𝑎5 + 2𝑎1𝑎2𝑎6)
]

,

𝜀2 =
−𝜀21(4𝑎

3
5𝑎6 − 𝜌1𝑎5𝑎6 − 𝜌2𝑎5𝑎7 − 𝜌3𝑎6𝑎8 − 𝜌4𝑎26)

𝑎5𝑎6(3𝑎21 − 𝑎25) + 3𝑎1𝑎2(𝑎21 + 𝑎25) + 𝑎5(𝜌1𝑎6 + 𝜌2𝑎7) + 𝑎6(𝜌3𝑎8 + 𝜌4𝑎6)
,

(3.4)

here 𝜀2(𝑎1𝑎6 − 𝑎2𝑎5) ≠ 0 and the other parameters are arbitrary given
hat all the terms in (3.4) will make sense.

By the logarithm transformation (1.6), we get a type of complexiton
olutions for the extended Jimbo–Miwa equation (1.4) as

=
12(𝑎1𝜀1𝑒𝜃1ℎ(𝜃2) + 𝑎5𝜀1𝑒𝜃1ℎ𝜃2 (𝜃2) + 𝑎1𝜀2𝑒2𝜃1 )

𝜒(1 + 2𝜀1𝑒𝜃1ℎ(𝜃2) + 𝜀2𝑒2𝜃1 )
, ℎ = sin or cos, (3.5)

where 𝜃𝑖, 𝑖 = 1, 2, the involved parameters are defined by the above
result, and ℎ𝜃2 denotes the derivative of ℎ with respect to 𝜃2. In general,
the complexiton solutions (3.5) given in this way could be found to be
singular since 𝑓 defined by (3.1) with (3.2) has zeros.

According to our presented solution (3.4) and taking 𝑎1 = 2, 𝑎2 =
−3, 𝑎5 = 2, 𝑎6 = −1, 𝑎7 = −1, 𝑎8 = 4, 𝑎9 = 2, 𝜀1 = 3, ℎ = cos, the extended
Jimbo–Miwa equation (2.10) has a special complexiton solution as
follows:

𝑢 =
𝑝1

1 + 6𝑒2𝑥−3𝑦−18𝑧+31𝑡 cos(2𝑥 − 𝑦 − 𝑧 + 4𝑡 + 2) − 5
3 𝑒

4𝑥−6𝑦−36𝑧+62𝑡
, (3.6)

where

𝑝1 = 2
[

12𝑒2𝑥−3𝑦−18𝑧+31𝑡 cos(2𝑥 − 𝑦 − 𝑧 + 4𝑡 + 2)

− 12𝑒2𝑥−3𝑦−18𝑧+31𝑡 sin(2𝑥 − 𝑦 − 𝑧 + 4𝑡 + 2) − 20
3
𝑒4𝑥−6𝑦−36𝑧+62𝑡

]

.

Three-dimensional graphics of this complexiton solution are exhibited,
which show some singularities of the solution, in Fig. 2.

3.2. Nonsingular complexiton solutions

It is known that complexiton solutions emerge as singular and
nonsingular. For higher-dimensional nonlinear evolution equations and
the coupled integrable equations [13,15,31], there exist nonsingular
complexiton solutions, and the nonsingular periodic-soliton solutions,



Results in Physics 20 (2021) 103711L. Cheng et al.
Fig. 1. (a) The two-wave solution (2.12) with special parameters: 𝑎1 = 2, 𝑎3 = 3, 𝑎5 = −1, 𝑎7 = 2, 𝑘 = 4, 𝜀1 = 1, 𝜀2 = 2, 𝑧 = 1, 𝑡 = 0. (b) The one-soliton wave (2.14) with 𝑧 = 1, 𝑡 = 1.
(c) The resonant two-wave solution (2.15) with 𝑧 = 1, 𝑡 = 0.
Fig. 2. The nonlinear wave propagation determined by the solution (3.6) with parameters: (a) 𝑧 = 1, 𝑡 = 0, (b) 𝑧 = 1, 𝑡 = 0.5, (c) 𝑧 = 1, 𝑡 = 1.
or complexiton solutions, were obtained for two higher-dimensional
fifth-order nonlinear integrable systems by Wazwaz [15]. Generally,
it is essential to explore nonsingular complexiton solutions for non-
linear differential equations because they could describe complicated
nonlinear physical phenomena.

To search for nonsingular complexiton solutions, let us now take

𝑓 = 1 + 2𝑒𝜃1ℎ(𝜃2) + 𝛾2𝑒2𝜃1 , ℎ = sin or cos, (3.7)

where 𝜃𝑖, 𝑖 = 1, 2, are defined by (3.2) and 𝛾 is a nonzero real parameter.
A similar direct symbolic calculation yields two cases of solutions for
the parameters as follows:

Case 1

𝛾 = ±1, 𝑎2 =
−𝑎5𝑎6
𝑎1

,

𝑎4 =
3𝑎21𝑎

2
5𝑎6 − 𝑎41𝑎6 − 𝜌1𝑎21𝑎6 − 𝜌2𝑎21𝑎7 + 𝜌4𝑎5𝑎26

𝜌3𝑎1𝑎6
,

𝑎8 =
−3𝑎21𝑎5𝑎6 + 𝑎35𝑎6 − 𝜌1𝑎5𝑎6 + 𝜌2𝑎1𝑎3 − 𝜌4𝑎26

𝜌3𝑎6
, (3.8)

where 𝑎1𝑎6 ≠ 0 and the other parameters are arbitrary.
Case 2

𝑎4 = −
𝑎31𝑎2(4𝛾

2 − 1) + 3𝑎1𝑎5(𝑎1𝑎6 + 𝑎2𝑎5) + 3𝑎35𝑎6
𝜌3𝑎2(𝛾2 − 1)

−
𝜌1𝑎1𝑎2 + 𝜌2𝑎1𝑎3 + 𝜌4𝑎22

𝜌3𝑎2
,

𝑎7 =
3(𝑎21 + 𝑎25)(𝑎

2
2 + 𝑎26)(𝛾

2𝑎1𝑎2 + 𝑎5𝑎6)

𝜌2𝑎2(𝛾2 − 1)(𝑎1𝑎6 − 𝑎2𝑎5)
+

𝑎3𝑎6
𝑎2

,

𝑎8 =
−1
4

𝜌3𝑎2(𝛾2 − 1)(𝑎1𝑎6 − 𝑎2𝑎5)
×
[

𝑎25(4𝑎1𝑎2𝑎5𝑎6 − 𝑎22𝑎
2
5 + 3𝑎21𝑎

2
2 + 3𝑎25𝑎

2
6 + 3𝑎26𝑎

2
1)

+ 𝑎2𝛾
2(𝑎2𝑎45 + 3𝑎2𝑎41 + 6𝑎31𝑎5𝑎6 + 2𝑎35𝑎1𝑎6)

]

−
𝜌1𝑎2𝑎5 + 𝜌2𝑎3𝑎5 + 𝜌4𝑎2𝑎6

𝜌3𝑎2
, (3.9)

where 𝑎2(𝛾2 − 1)(𝑎1𝑎6 − 𝑎2𝑎5) ≠ 0.
Note that 𝑓 in (3.7) is a positive function if the parameter ∣ 𝛾 ∣>

1 holds, and so, a kind of nonsingular complexiton solutions to the
extended Jimbo–Miwa equation (1.4) may be derived:

𝑢 = 6
𝜒

𝑎1ℎ(𝜃2) + 𝑎5ℎ𝜃2 (𝜃2) + 𝑎1𝛾2𝑒𝜃1
√

𝛾2 cosh(𝜃1 + ln
√

𝛾2) + ℎ(𝜃2)
, ℎ = sin or cos, (3.10)

where 𝜃𝑖, 𝑖 = 1, 2, are defined by (3.2), the involved parameters are
defined by (3.9) and ℎ𝜃2 denotes the derivative of ℎ with respect to 𝜃2.
Let us take 𝑎1 = 𝑎3 = 𝑎6 = 0 in case 2, then the solutions (3.10) become

𝑢 = 6
𝜒

ℎ𝑥(𝑎5𝑥 +
𝑎35−𝜌1𝑎5

𝜌3
𝑡 + 𝑎9)

√

𝛾2 cosh(𝑎2𝑦 −
𝜌4𝑎2
𝜌3

𝑡 + ln
√

𝛾2) + ℎ(𝑎5𝑥 +
𝑎35−𝜌1𝑎5

𝜌3
𝑡 + 𝑎9)

,

ℎ = sin or cos, (3.11)

where 𝑎2𝑎5 ≠ 0 and ℎ𝑥 indicates the derivative of ℎ with respect to
𝑥. This class of solutions describes a stationary wave periodic in 𝑥
with period 2𝜋∕|𝑎5| and exponentially decaying along the propagating
direction 𝑦. The condition for guaranteeing nonsingular complexiton
solutions is ∣ 𝛾 ∣> 1.

For the extended Jimbo–Miwa equation (2.10), a typical spatial
structure of nonsingular complexiton solutions (3.11) is depicted in
Fig. 3. It indicates an inclined sequence of algebraic solitons. In Refs. [9,
15,21], this solution is also called the nonsingular periodic soliton.
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Fig. 3. For Eq. (2.10), the nonlinear wave propagation determined by the expression (3.11) with parameters: 𝑎2 = 2, 𝑎5 = −1, 𝑎9 = 8, 𝛾 = 2, ℎ = sin and (a) 𝑡 = −1, (b) 𝑡 = 2, (c) 𝑡 = 4.
The parameters are chosen with 𝑎2 = 2, 𝑎5 = −1, 𝑎9 = 8, ℎ = sin
and 𝛾 = 2. As shown in Fig. 3, this solution (3.11) represents a
kink solitary wave which is periodic along the propagating direction
and analytical without any singularity. The wave number of this kink
solitary solution determines its amplitude. It is easy to observe that the
solution possesses one bottom hump and upper peak in each periodic
unit.

We point out that the kind of complexiton solutions defined by
(3.10) with (3.7) and (3.8) can also be generated from the special two-
soliton solutions (2.12) with (2.13) to Eq. (2.10), through extending the
parameters to the complex field [21]. The theoretical solutions as well
as numerical studies are beneficial in investigating the nonlinear wave
propagation in any natural varied instance due to the variation of the
parameters.

4. Concluding remarks

To conclude, we discussed an extended Jimbo–Miwa equation (1.4)
in (3+1)-dimensions, and computed a few types of two-wave solutions
and nonsingular complexiton solutions, via Maple symbolic compu-
tations. Resonant and complexiton solutions can be generated from
the resulting two-wave solutions with particular phase shifts. Hirota
bilinear formulations play a leading part in establishing two-wave and
complexiton solutions. Nonsingular complexitons to the Jimbo–Miwa
equation (1.4) should be new, though there exist plenty of studies in the
literature. Our results enlarge the type of nonlinear higher-dimensional
equations which exist nonsingular complexiton solutions.

We remark that the following invertible linear transformation:

𝑥′ = 𝑥, 𝑦′ = 𝛿1𝑦 + 𝛿3𝑧 + 𝛿5𝑡, 𝑧
′ = 𝛿2𝑧, 𝑡

′ = 𝛿4𝑡, (4.1)

where 𝛿𝑖, 1 ≤ 𝑖 ≤ 5, are defined by (1.10), can transform (1.7) into

(𝐷3
𝑥′𝐷𝑦′ − 3𝐷𝑥′𝐷𝑧′ + 2𝐷𝑦′𝐷𝑡′ )𝑓 ⋅ 𝑓 = 0, (4.2)

which yields the Hirota bilinear formulation of the Jimbo–Miwa equa-
tion (1.1). Recent studies demonstrate that there exists a class of
compelling exact solutions called lumps, stemmed from solving in-
tegrable systems [32–36]. Typical examples include the second KPI
equation and the combined fourth-order equation [37,38]. It is recog-
nized that linear partial differential equations exist lump solutions as
well [39]. Lump-type solutions, which are rationally localized in almost
all directions in space, were given to the Jimbo–Miwa equation [19]
in (3+1)-dimensions. Therefore, it is worth studying lump-type and
interaction solutions between lumps and other classes of explicit so-
lutions to the extended Jimbo–Miwa equation (1.4). It should be noted
that the kind of nonsingular complexiton solutions (3.10) may be
reduced to lump-type solutions by using the long wave limit proce-
dure [40]. Another interesting problem is to investigate integrable
properties to nonlinear multi-dimensional equations [41]. We hope that
more research will be done in the future.
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