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Abstract. The aim of this paper is to investigate a class of generalised Kadomtsev—Petviashvili (KP) and B-type
Kadomtsev—Petviashvili (BKP) equations, which include many important nonlinear evolution equations as its special
cases. By applying the fundamental Pfaffian identity, a general Pfaffian formulation is established and all the involved
generating functions for Pfaffian entries need to satisfy a system of combined linear partial differential equations.
The illustrative examples of the presented Pfaffian solutions are given for the (3+1)-dimensional generalised KP,
Jimbo—-Miwa and BKP equations. Moreover, we use the linear superposition principle to generate exponential

travelling wave solutions and mixed resonant solutions of the considered equations.
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1. Introduction

The study on exact solutions to nonlinear partial differ-
ential equations, especially soliton solutions or multiple
wave solutions, has attracted more and more attention
from physicists as well as mathematicians in applied
mathematics, fluid mechanics, plasma physics, chem-
istry, biology and other fields. It is well known that the
Hirota bilinear form plays a crucial role in the soli-
ton theory. Once a nonlinear equation is written in
bilinear form, one can systematically derive particu-
lar solutions including determinant-type solutions with
a Wronskian or Grammian structure [1-5]. Neverthe-
less, not all nonlinear equations have determinant-type
solutions, and some soliton equations possess Pfaffian
solutions complementing Wronskian and Grammian
determinant solutions [6-9]. By using the formulation
in terms of determinants or Pfaffians, various classes of
interesting exact solutions, such as solitons solutions,

rational solutions, positons and complexiton solutions
can be derived [3,4,7,10,11].

In this paper, with the help of specific mathematical
techniques, a new and generalised Hirota bilinear equa-
tion is proposed and studied, which reads as

(D}Dy 4 a12Dy Dy + a13Dy D, + a14 Dy D
+axDyD; + axyDyD; + aza DDy + ay1 D2

+anD; +auD?)f - f =0, (1)

where Dy, Dy, D, and D, are the Hirota bilinear
differential operators [12] and the coefficients a;;’s
(1 < i,j < 4) are the real parameters. Equivalently,
we have

(fxxxy + alfoy +ai3 fr; +aia far + 023fy2 + a24fyt
+azfu +ai for Fanfyy Faxnf)f
- fxxxfy + 3fxxfxy - 3fxfxxy
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—anfrfy —afaf: —aafx fi
—ax fyf; — acufyfi —azaf: fr

—anfi —anf; —anf; =0. (2)
Under the transformation
6
u=—(nf)x, (3)
o

this equation is mapped into
Uxxxy + a(”xuy)x + apuxy + a3y,
Fajaux + a3y, + azquy + azquzy

Faiuxx + axniyy +azzu;; = 0, 4)

where « is a non-zero parameter.

In the study of nonlinear physical phenomena, many
nonlinear equations of mathematical physics, such as
the (3+1)-dimensional Jimbo-Miwa equation [13-15],
the (3 + 1)-dimensional generalised Kadomtsev—
Petviashvili (KP) equation [3] and the (3 + 1)-dimen-
sional generalised B-type Kadomtsev—Petviashvili
(BKP) equation [6,16] are special cases of eq. (4). We list
the following two interesting special examplesin (3+1)
dimensions which provide a physical background of the
generalised nonlinear equation (4).

e The second equation in the well-known KP hier-
archy is the Jimbo—Miwa equation, which is used
for describing the propagation of three-dimensional
nonlinear waves in physics. This equation does not
pass the well-known integrability tests [13]. If « =
3,a10 = a4 = a3 = az4 = aj] = axy = a3z =
0,a24 = —1l,a;3 = —3anda = 3,a1p = a3 =
aly =ay =azy =ay =ay =0,a =2,a33 =
—3, then eq. (4) reduces to the (3 4 1)-dimensional
equations of Jimbo—Miwa type presented in [14]:

Uyt — Uxxxy — 3(uxuy)x + 3uy; =0 )
and
Uxxxy + 3(”x”y)x + 2My; —3u,;, =0 (6)

respectively. Through the logarithmical derivative
transformation u = 2(In f),, the nonlinear equa-
tions (5) and (6) are written as

(DIDy — D;Dy —3D,D,)f - f =0 (7
and
(D}Dy+2D,Dy — 3D} f - f =0, (8)
respectively.

e lfa=3ap=a3=ay4=a3=ay=an=
a3 = 0,a3¢ = —1 and a;; = —3, then eq. (4)

becomes the (3 + 1)-dimensional nonlinear Ma—Fan
equation [14,17]:
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Uzt — Uxxxy — 3(quy)x + 3uyx =0, )

which belongs to a class of generalised BKP equa-
tions. The BKP equation is a physically impor-
tant equation that exhibits the evolution of non-
linear waves in areas such as plasma physics,
fluid mechanics, solid state physics and optical
fibres. Thus, the (3 + 1)-dimensional nonlinear
Ma—Fan equation can also have good physical char-
acteristics, as a higher-dimensional extension of
the BKP equation. Under the dependent variable
transformation ¥ = 2(In f),, eq. (9) is mapped
into

(D}Dy, — D,D, — 3D f - f =0. (10)
This paper is structured as follows. In §2, by applying
the fundamental Pfaffian identity, a Pfaffian formulation
is established for eq. (1), with all generating functions
for Pfaffian entries satisfying a system of combined
linear partial differential equations. The fundamental
Pfaffian identity is the key for constructing the Pfaf-
fian formulation. In §3, based on the presented theory,
illustrative examples will be presented, including the
(3 + 1)-dimensional generalised KP, BKP and Jimbo—
Miwa equations. Additionally, the linear superposition
principles of exponential, hyperbolic and trigonomet-
ric function solutions are also proposed for eq. (1) in
§4. Finally, our conclusions and remarks are given in
§5.

2. Pfaffian formulation

‘We first list some of the basic results in terms of Pfaffi-
ans. By introducing an 2N x 2N skew-symmetric matrix
A = (ajj)1<i,j<2N, the Pfaffian Pf(A) of A is defined
conventionally as follows [12]:

Pf(A) = (a1, a2, ..., 00N)
app a3 aipn
ax -+ a2N
AIN—1,2N

= E $gN(0) A inAisiy * * * Qiny_1iny »
(e

where the summation is taken over all permutations

(1 2 ... ZN)
o = . . .

21 1 -+ I2N
with

i1 < iz,i3 < i4,...,i2N_1 < izN,il < i3

<...<i2N_]



Pramana — J. Phys. (2019) 93:4

and sgn(o) = £1 means the parity of the permutations
o. For instance, when N = 1, 2, the Pfaffians can be
expressed as
Pf(A) = (a1, a2) = aiy,
Pf(A) = (a1, a2, a3, a4)

= a1pa3z4 — aizaz4 + aqazs.
Moreover, there exist Pfaffian identities similar to the

Jacobi identity for determinants. The simplest Pfaffian
identity used is [12]

(a1, 00, 3,04,1,2,...,2N)(1,2,...,2N)
=(x1,a,1,2,...,2N)(a3,a4,1,2,...,2N)
—(oy,a3,1,2,...,2N)(0p,004,1,2,...,2N)
+(oy,04,1,2,...,2N) (02, @3, 1,2,...,2N).
(11

Here we to focus on Pfaffian solutions and establish a set
of sufficient conditions that make the Pfaffian to solve
the bilinear equation (1).

Theorem 1. Bilinear equation (1) has the Pfaffian form
solution

fv =Pf(a;j)i<i<j<on,

X
aij =cjj+ f DYy dx, i,j=1,2,...,2N,
(12)

where all Vi = i (x, y, z, t) satisfy the following linear
differential equations:
D, 0 o
ay 0x_1 0z 0x Sox_ n
Vi 0 Y Vi

=b3—— +bg——, 13
FTERRC FE R (13

where the constants c;j = —cj;, each Y; has the
boundary condition ¥; — 0 as x — —o0 fori =

1,2,...,2N, and 0v; /0x_1 is defined by
oY *

v 2/ Y dx

0x_1

and b;, 1 <i <5, need to satisfy

aisbs + azabrbz = 0,

by + axab1b3 + azabzbs = 0,

ax3bibs + axabibs + azababs + anb?
+a33b§ =0,

ai2by + a13bs + ajaby + ax3b1by + azababy
+2az3bybs = 0,

2by + a13by — axab1b3 — azabzbs + ayy
+a33b§ =0.

(14)
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Proof. Let us consider the Pfaffian fy as
In=(,2,...,2N) = (e),

where (i, j) = a;; and (dy,, dy,) = 0 for all integers m
and n. If we introduce the new Pfaffian entries

15)

iy =2V @iy =2V frnz0, (16)
axn ox",
where
8"11//1 /‘X /‘x /X
= Yidxdx...dx
ox",

Then we have the following derivatives of the elements
(G, j)) (A =i=j=2N):

J . . Vi a1/f .
5(17 J) ’(//j a wl J (d09 dlslv .])7
3 Loy 8 3% BWJ
370D =big [w, =y, 8x]
a‘ﬁj a‘/’i
= by | Y
1[1ﬁ Ix_ ‘/fj 8x_1]
=b1(d—1,do,l,j),
ad
i a%

) =by [w, L
_ (8% i %a%)}
dx 0x2  9x 0x?2
* m[w, 9 w_ J aaxlfll}
= b3[(do. d3. i, j) — 2(d1, da, i, j)]
+ ba(d—1, do, i, j).
By using the differential rules for Pfaffians introduced

in [12], we can compute various derivatives for f with
respect to the variables x, y, z, ¢ as follows:

fnx = (do,d1,e), fn,y=Dbi(d_1,dy,e),
fn.z = ba(do, dy, @) + bs(d—1, do, @),
S = b3l(do, d3, @) — 2(d1, da, @)] + ba(d—1, do, e),
fN,xx = (do, d2, »),
SN xxx = (d1, d2, @) + (do, d3, ),
[Ny =bi(d_1,di, ), [fn.yy =bi(d 2 do,e),
fN.yz = b1bs(d—2, do, ®) + b1ba(d—1,dy, e),
fN.xxy = bi1l(d-1, d>, ®) + (dp, di, ®)],
SN xxxy = D1l(d-1, d3, @) + 2(dy, d>, e)
+ (d-1,do, d1, d2, )],
fN.ze = b3(do, da, ®) 4 2babs(d_1, dy, e)
+b3(d_2, do, »),
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fNxz = b2(do, da, @) + bs(d—1, dy, e),
JSn.xt = b3[(do, da, @) — (d1, d3, @)] + ba(d—1, d1, e),
SNyt = b1b3[(d—1, d3, @) — (dp, d>, )

—2(d-1,do, dy, da, ®)] + b1bs(d—2, dy, ),
fN.zt = b3bs[(d—1, d3, ) — (do, d>, @)

— 2(d-1,do, dy, d2, ®)] + babs(d—2, dp, @)

+ babs(d—1,dy, @)

+ bab3[(do, da, @) — (d1, d3, )],
where the abbreviated notation e denotes the list of

indices 1, 2, ..., 2N common to each Pfaffian. Apply-
ing system (14), we can further obtain

(fxxxy + alfoy +aisfa; +arafur + a23fyz

+aoa fyr + aza fzr + a1 fax +aon fyy a3 f) f
= (b1 — 2a24b1b3 — 2a34b3b5)(e)(d_1, dy, dy, d2, )

= 3bi(e)(d-1,dp, d1, d2, ), (17)
_fxxxfy + 3fxxfxy - 3fxfxxy - alfofy
—aifxf: —awafx fr —anfyfo —anfy fi
—aza fofi —an [} —anfy —an f?
= —(b1 — 2a4b1b3 — 2a34b3bs5)(d—-1, dp, e)
x(dy, da, ®) +3b1[(do, d2, ®)(d—1,d}, ®)
—(do, dy, @)(d—1, d2, @)]
= 3b1[(do, d2, ®)(d—1,d1, ®) — (do, d1, ®)
x(d-1,d, )] —3b1(d-1, do, ®)(d1, dr, ®). (18)

Therefore, we have

(fxxxy + alfoy + a3 fy; +aia far
+az3 fyz + aza fyr + aza fu
+aiy fox + a22fyy +tanf)f — fxxxfy
+3fxxfxy - 3fxfxxy - alzfxfy — a3 fxfy
—aiafx fr —an fyfo —axufyfi —azaf:fi
—an f2 - azzfy2 —axn f?
=3bi[(d-1, do, di1, d2, ®)(e)
—(d—1,do, ®)(d1,d>, ®) + (do, d2, ®)(d_1, dy, e)
—(do, d1, @)(d-1,d>, )] =0. (19)
It is easy to see that the final expression in (19) is noth-
ing but the Pfaffian identity (11). As a result, we have

shown that the Pfaffian fy = (1,2, ...,2N) with the
conditions (12)—(14) solves eq. (1). O

3. Applications to generalised KP and BKP
equations

As we stated in §1, the generalised nonlinear equa-
tion (4) includes many important nonlinear evolution
equations as its special cases. In the following, we
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present a few examples in 3 4+ 1 dimensions to shed
light on the applications of Theorem 1. According to
system (14), there are some special cases to determine
b;, 1 <i <5, as follows.

3.1 The case of a4 # 0 but bs =0

In this case, if ajqazqs # O but ajp = a3 = 0, then a
direct computation yields

) ai3aisazs — aiaz, — azai, ) as
1 = ) 2= -
3a§4 asq
1
b3 =
a4
2 2
ajaasz, + aj,a22a33 + a13al4a34a2
b4 — 34 14 (20)

2
3azsaz,

to keep the non-triviality b1b> # 0. Based on the above

expression, two illustrative examples will be given.
The first example is the (3 4 1)-dimensional gener-

alised KP equation

Uxxxy + 3(uxuy)x Uy Uy Uy — U = 0, (2D

which has been presented by Wazwaz and El-Tantawy

[18]. By the typical transformation u = 2(In f),, the
corresponding Hirota bilinear form reads as

(D}Dy + DDy + D;Dy + DD, — D} f - f =0.
(22)

A set of sufficient conditions that make Pfaffian (12) a
solution to the (3+1)-dimensional bilinear equation (22)
can be expressed as follows:

oy _Lovi dvi _ v
ay 30x_1 9z ox
Wi _ B

= — ) 23
ot 0x3 23)

The other example is the following extended (3 + 1)-
dimensional Jimbo—Miwa equation

Uxxxy + 3uyuxx + 3ux"txy

+2(uxs +uy +uz) — 3uy; =0, (24)
which has been introduced in [19] recently. Through
the dependent variable transformation u = 2(In f),,
this equation is written as
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(D3Dy +2D, D, +2D,D,

+2D.D; —3D.D;)f - f =0. (25)

Following expression (20), the corresponding sufficient
conditions on the Pfaffian form solution read as

Wi _ 0 Wi _
dy dx_1 0z ax’
Vi 1%y
— 26
ot 2 a3 (26)

If a4 = a34 = 0 but ayz # 0, then a similar direct
computation shows that

2 2
b ajzaizdl3 — dszzdiy; —djldyy
1 = b
2
3ay
al 1
b2 = b3 =
a3 a4
am(aaizar — aszaj, — ajas;)
by = — (27)

2
3azsass

to keep the non-triviality b1by # 0.

If 14 = az4 = ax3 = 0, then we automatically have
ajp = 0 to keep the non-triviality by # 0. A direct
computation shows that

2
—ay — azzby — ayzby 1
by = , by=——,
3 a4
2
aja + axasszbs + ajzanb
4= , (28)
3azy

where b, is arbitrary to keep the non-triviality b1b, # 0.
For instance, we have the Pfaffian form solution of the
Hirota bilinear equation (8) defined by (12) with

i — 2 ovi 0y _ 3%

dy Zox_1 oz “ox

i 1Y

2 29
ot 2 9x3 29

where b is a free parameter. We next discuss the (3+1)-
dimensional generalised BKP equation

Uyr — Uyxxy — 3(Uxty)x + 3ty +3uz; =0, (30)

which has been proposed and studied in [6,15,16]. This
corresponds to the (3+ 1)-dimensional bilinear equation

(D}Dy — D;Dy —3D*-3D))f - f =0 (31)
through the dependent variable transformation
u=2(n f),.

Similarly, by inspection, a set of sufficient conditions to
the Hirota bilinear equation (31) is
W, W
ay 0x_1 0z 2o
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i 0y
ar  ox3’
recently presented by Asaad and Ma [6].

(32)

3.2 The case of arabs # 0 but a4 = azs =0

Iq this case, if (qu +a%3)(af3 —|—a§3) # 0, then a similar
direct computation leads to

—ay — ayzb? — apzb 1
py = —on —axby —aishy by—
3 a4

b (a11 + ax3bs + a3br)(arz + axbs)
5 = b

3(a13 + 2a33bs)

axn
by = (a1 + azbs + a13bz)< s
_axs(ain +axbo) asz(ain + axby)? )
3axa(a1z + 2az3by)  3aza(aisz + 2azzbs)?

(33)

where b5 is arbitrary and a3 + 2a33by # 0, to keep the
non-triviality b1bs # 0. Next we consider the second
extended (3 + 1)-dimensional Jimbo-Miwa equation
[19]
Uyxxy + 3uylyy + Suxtiyy + 2uy,
—3(ux; + Uyz; + uz;) =0. (34)

Under the dependent variable transformation u =
2(In f),, this equation can be expressed as

(D}Dy+2DyD; —3D,D,—3DyD, —3D3) f-f =0.

(35)
Based on the sufficient conditions in Theorem 1,
the extended (3 + 1)-dimensional Jimbo—-Miwa equa-

tion (34) has the following sufficient conditions on the
Pfaffian form solution:

i i
By = (by + b3) 8 r
i % B b2(1 + b)) 0y
0z >ax 1+2by dx_;’
i 133y 36301+ bo)* oy 36)
ar 2 9x3 2(1 +2b)2 9x_;’
where by # 0, —1, 2, which is a free parameter.

If a13 = a3z = 0 and a»3 # 0, then a straightforward
calculation yields

1
bi=—21 b= =
3 a3 a4
— 3axb
by — aiax — 3ax 5. 37)
3any

where bs is arbitrary to keep the non-triviality b1 by # 0.
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If a;p = a3 = 0 and a3z # O, then a similar direct
computation shows that

2
p — i3 — 4anas __as 1
1 - ) 2 - ) 3 - k)
12a33 2a33 a
2
b day1axnazz — ajza
| =
12a34a33
2
12a3,

- 5 b, (33)
axqai; — 4ayazzaz

where bs is arbitrary and a%3 — 4dajjazz # 0 to keep
the non-triviality b1b> # 0. For example, we give a
new Pfaffian form solution of the Hirota bilinear equa-
tion (31) defined by (12) with

i _ i i _ 31/fz
dy ax_; 0z 8x v
Y 33% ) 0V

= — 3p2 , 39
g 9x3 S9x_ 59
where bs is an arbitrary constant, not to be zero. Itis clear
that the corresponding sufficient conditions on Pfaffian
formulation are different from the ones (32) presented
by Asaad and Ma [6].

3.3 The case of apaazs # 0 but ajg =0

If az4 = 0 and a4 # 0, then we automatically have
b1 = 01in terms of the first and second equations in (14).
We point out that when eq. (1) reduces to the generalised
KP equation [3], given as

(D3Dy + DDy + DDy — D) f - f =0, (40)

the Pfaffian form solutlon defined by (12) and (13) is
not available.

Let us next consider the case of ay4az4 # Oandajg =
0. In this case, we automatically have b, = 0 to keep
the non-triviality by # 0. If we take a;3 # O, then a
solution of system (14) is determined by

arl ais
bj=——, bhb=0, 3= ———"
3 a12a34 — a13a24
2 2
b aii(anaizazy — ap,aszs — aj3a)
4 = ,
3ai3(a12a34 — aizass)
aiai
bs = ; (41)
36113

where ajpazs — ajzazs # 0 to keep the non-triviality
b1bs(b3 + b3) # 0. Moreover, if ajp = aj3 = 0, then a
similar direct computation shows that

ai ar
bl = - ’ b2 == 09 b3 - )
3 —ajy1ax4 + 3azabs
2 2
b 3azzaiibs — axai, — 9a33bs
4= ;

9az4bs — 3ayiaz4

Pramana — J. Phys. (2019) 93:4

where bs is arbitrary and 9az4bs — 3aj1a4 # 0 to keep
the non-triviality b1 bs (b% + bi) # 0.

3.4 The case of apy =0

In this case, the second equation in (14) determines
azq # 0 and b3bs # 0 to keep the non-triviality by # 0.
If a;p = ax3 = 0, then the first and fourth equations in

(14) lead to
T
azs’

After straightforward calculations, we get

aj3azs = 2azzayy. 42)

2 2
b ajzdiqds4 — dpldzy — aszszdiy
1 = 9

2
3a34
2 2 212
b (a13a14a34 — anaz, — aszzaiy)(axnaz,bs + ass)
4 = 7 ,
3az,b3
2 2
(a13a14a34 — ay1a3y, — assai,)
bs = — 34 14 , (43)

3a3,bs
where b3 is an arbitrary constant, not to be zero, to keep
the non-triviality by (b3 + b2) # 0. A Pfaffian form

solution defined by (12) and (13) for the Ma—Fan equa-
tion (9) is just one special example with

i _ Ay i 1 By
8y 0x_ 1’ 0z b3 ax_l’
i Y

= b3 , 44
ot ox3 )

where b3 is an arbitrary constant, not to be zero.

4. Resonant solitons and complexitons

As we know, the Hirota bilinear equations may possess
linear subspaces of solutions [14,20]. Ma and Fan [14]
and Ma et al [20] have established a sufficient and nec-
essary criterion for the existence of linear subspaces of
exponential travelling wave solutions to Hirota bilin-
ear equations. Some examples with N-waves satisfying
and not satisfying the dispersion relation have been con-
structed in [14,20,21]. This means that it is not necessary
to satisfy the dispersion relation. Complexiton solu-
tions, which are combinations of trigonometric function
waves and exponential function waves, were proposed
by Ma [22,23]. In what follows, we first describe the lin-
ear superposition principle for constructing exponential
wave function solutions, and then obtain resonant solu-
tions in terms of hyperbolic and trigonometric functions
[24,25].

Theorem 2. (Linear superposition principle). Let N-
wave variables
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n =kiix1+kaoixa+ -+ kyixuy,

where kj ; are constants and a Hirota bilinear equation,
denoted by

P(DX17D.X25~"9DXM)f.f=0’

where P is an even polynomial in the indicated vari-
ables satisfying

P(kl,,' —kl?j,...,kM,,‘ —kM,j) =0,
l<i#j<N,

(46)

(47)

then any linear combination of the exponential waves
e’i. 1 <i < N, solves the bilinear equation (46) and f
is called an N-wave solution to eq. (46).

Theorem 2 has been proved in [14,20].
For bilinear equation (1), the corresponding polyno-
mial reads as
Px,y,z,t) = x3y +apxy +apzxz +ajaxt
+ax3yz + agayt + azazt + ayyx’
+any® + azz’. (48)
Assume that the wave variables are
ni =kix +bik; 'y + (boki + bsk; )z
+(b3k; +bak; ), 1<i <N,
wherek;, 1 <i < N,arearbitrary constants, butb;, 1 <
i <5, are constants to be determined.
By the linear superposition principle in Theorem 2, we

find that the Hirota bilinear equation (1) corresponding
to polynomial (48) has the following N-wave solution:

N
f=) s
i=1

_ Z kix+b1k  yF (ki +bsk Yz (b3k3+bak e
= g;e i i i i s

Z

i=1
(49)

where ¢;’s and k;’s are arbitrary constants, but b;, 1 <
i <5, satisfy system (14). An analysis of the existence
of real b;, 1 < i <5, can be given similarly from the
results described in §3. Each exponential wave f; in this
solution does not satisfy the corresponding nonlinear
dispersion relation, i.e.,

P(ki, bik; ", baki + bsk', bak? + bak: ") # 0.

Let us assume that N = 2K is even, and take the
choices

Mi—1 = kai—1x + biky, " |y + (bakai—1 + bsky,' )z
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+ (b3k3;_y + bakyt e,

noi = (—kai—1)x + by (—kpi_1) "y
+ [ba(—kai—1) + bs(—kai—1) "1z
+ [b3(=kai—1)* + bay(—kai—1) "D,

i=1,2,...,K, (50)

which yield ny; = —mnpi—1. Then the Hirota bilinear
equation (1) corresponding to polynomial (48) pos-
sesses an /N-wave solution

K
£ =" [(e2i1 + &21) cosh(yai—1)

i=1

+(e2i—1 — €2) sinh(n2i_1)]. (51)
If we take e3; = &9;_1,i =1, ..., K, then
K
f=2) es1cosh(mi-1). (52)
i=1
If we take 63; = —&9;_1,i =1, ..., K, then
K
f=2 Z &2i—1 sinh(ma; _1). (53)

i=1

Furthermore, under the construction ky;_1 — koi_11,
I = J/(—1), we may get the following N wave solu-
tions formed by linear combinations of trigonometric
functions

K
f=2 ZSZi—l cos[kpi—1x — blkil_ly
i=1
+(bokoi—1 — b5k2_il_1)z - (b3kgi—l + b4k2_il—l)t]
(54)

and
K
f=2 282i7115in[k2i71x - blkg_,-l,ly
i=1
+(bakai—1 — bsky;! )z — (b3k3;_y + baky; ],
(55)
where g7;_1’s and kp;_1’s are arbitrary constants, and
bi, 1 < i <5, satisfy system (14). Besides, we obtain

the mixed-type function solutions such as complexiton
solutions as follows:

N
=y <e,~ cosh[kix + bik"y + (baki + bsk: )z
i=1
+(bsk; + bak; )] + A cos[kix — bik; 'y

+(boki — sk )z = (b3k? +bak ])  (56)
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and

N
£ =3 (e sinhfkix + bk y + (baki + bk )z
i=1

+(b3k3 + bak; yt] + aisin[kix — bik; 'y

+(baki = bski Dz = (b3k? + bk ), (57)
where ¢;’s, A;’s and k;’s are arbitrary constants, and
b;i, 1 <i <5, satisfy system (14).

Let us next take the (3 + 1)-dimensional Ma—Fan
equation (9) as an illustrative example to investigate
the propagations of resonant solutions and complexi-
tons. Firstly, by expression (49), the (3+ 1)-dimensional
Ma-Fan equation (9) has the following N -wave solution:

N
) —1. 1,1 3
w=2(nf)y, f=Y geiTh vtk b (5g)
i=1
where b is an arbitrary constant, not to be zero. When

N = 2, the single-front wave solution to eq. (9) is given
by
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Figure 1. The plotof the single-front wave solution (59) with
parameters: ¢ = l,eo = 1, kj = —1, ko = 2, b = 3,
z=0,1t=2.

—1 1,1 3 -1 1,—1 3
k1816k1x+k1 Ytk z+bk1t+k2826k2x+k2 y+pky ztbkst

gleklx—f—kl_ly—i-%kl_lz—f—bkft _,’_Szekzx—i—kz_ly—i—%kz_lz—i-bk%z

(59

Taking N > 3, we can obtain the resonant multiple
wave solutions u to eq. (9). For instance, the resonant
three-wave solution is presented by

u= 2(1n\f)x’

f= 8lek1x+k;‘y+gk;‘z+bk?t n Ezek2x+k;‘y+gkg'z+bk§z

-1, 1.1 3
+836k3x+k3 yt+yky zt+bk3t

kax+ky ' y+3ky bkt

+eae (60)

Figures 1 and 2 show three-dimensional graphs of
the single-front wave and resonant two-wave solutions
determined by expression (58) with special parameters,
respectively. The resonant three- and four-wave solu-
tions with special parameters are also plotted in figures 3
and 4, respectively. It is easy to see that the interaction
will become more complicated with the increase of the
positive integer N.

Secondly, we can obtain two types of complexiton
solutions to the (3 + 1)-dimensional Ma—Fan equa-
tion (9) as

u=2(In f),,

N
1
f=> [ei cosh(kix kT Yy ko bk?z)
i=1

1
+A; oS <k,~x - kl._ly - —kl._lz — bkft)} (61)

Figure 2. The plot of the two-wave solution (58) with
parameters: N = 3,1 = l,eo = 1l,e3 = 1,
ki=—-1,kr=2,k3=05,b=3,2=0,t =2.
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Figure 3. The plot of the three-wave solution (60) with
parameters: ¢ = l,ep = 1,63 = 1,64 = 1, kj = —0.5,
ko =15k3=2,ky=—-1,b=2,2=0,t = —1.

Figure 4. The plot of the four-wave solution (58) with
parameters: N =5,e1 =1, eo =1, e3=1,e4a = 1,65 = 1,
ki = =15k, = —0.75, k3 = —06,kg = 1,ks = 2,
b=2,z=0,t=-1.

and

u=2(Inf)y,

N
1
f= Z |:£,~ sinh (kix + ki_ly + —kl._lz + bk?t)
i=1

1
—+A; sin (kix —ki_ly — —ki_lz —bk?t) ] (62)
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Figure 5. The plot of the complexiton solution (61) with
parameters: N = l,e1 = 1,A1 = L,ky = —1,b = 3,
z=0,t=1.

Figure 6. The plot of the complexiton solution (62) with
parameters: N = l,e1 = L,A; = 1,k = 2,b = 1,
y=0,z=2.

where ¢;’s, A;’s and k;’s are arbitrary constants, and b
is an arbitrary constant, not to be zero. When N = 1,
the graphs of the complexiton solutions with specific
values being chosen for the parameters are presented in
figures 5 and 6, which show some singularities of the
solutions.

5. Conclusions and remarks

In summary, by means of specific mathematical tech-
niques, we built the Pfaffian formulations and con-
structed the N-wave solutions for a general class
of generalised KP and BKP equations. The obtained
N-wave solutions were formulated by linear combi-
nations of exponential travelling waves. The results
presented in this paper include Pfaffian formulations for
some important Hirota bilinear equations as their special
cases. The Pfaffian formulation introduced by (12) with



4 Page 100f 10

conditions (13) and (14) can generate types of Pfaffian
solutions when b5 # 0 to some generalised KP and BKP
equations. For example, the set of sufficient conditions
(39) in the Hirota bilinear equation (31) has not been
revealed previously to the best of our knowledge.

Moreover, it is easy to see that the constants b;, 1 <
i < 5,ofthe N wave solution defined by (49) also satisfy
system (14). Thus, the solutions should motivate us to
consider an open question: Can the N-wave solution
(49) be derived by using the Pfaffian formulation defined
by (12) and (13) to the introduced generalised KP and
BKP equations?

In addition, there are many directions which need to
be discussed, such as multiple wave solutions [26-29],
breather-type periodic soliton solutions [17] and the
bilinear Backlund transformation [30,31]. There is great
interest to understand whether positive quadratic func-
tion solutions [32-44] to eq. (1) exist. Therefore,
although difficult, it should be interesting to discover
other particular solutions to eq. (4) via these existing
methods.
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