

Wronskian N -soliton solutions to a generalized KdV equation in (2 + 1)-dimensions

Li Cheng · Yi Zhang · Wen-Xiu Ma

Received: 1 July 2022 / Accepted: 7 September 2022 / Published online: 7 October 2022
© The Author(s), under exclusive licence to Springer Nature B.V. 2022

Abstract The aim of this paper is to construct Wronskian solutions to a generalized KdV equation in (2+1)-dimensions, which possesses a trilinear form. On the basis of two useful properties associated with Hirota differential operators, a general Wronskian formulation is established and the involved functions for Wronskian entries satisfy a system of combined linear partial differential equations. The key technique is to apply the Wronskian identity of the bilinear KP equation while presenting those sufficient condi-

tions. Other illustrative examples of sufficient conditions are also given for the cKP3-4 equation, the (2 + 1)-dimensional DJKM equation, and the dissipative (2 + 1)-dimensional AKNS equation. Finally, N -soliton solutions and soliton molecules are worked out through the presented Wronskian formation.

Keywords Generalized KdV equation · Trilinear form · Wronskian formulation · N -soliton solution

L. Cheng (✉)

Key Laboratory of Crop Harvesting Equipment
Technology, Jinhua Polytechnic, Jinhua 321007, Zhejiang,
China
e-mail: jhchengli@126.com

L. Cheng
Normal School, Jinhua Polytechnic, Jinhua 321007,
Zhejiang, China

Y. Zhang · W.-X. Ma (✉)
Department of Mathematics, Zhejiang Normal University,
Jinhua 321004, Zhejiang, China
e-mail: mawx@cas.usf.edu

W.-X. Ma
Department of Mathematics, King Abdulaziz University,
Jeddah 21589, Saudi Arabia

W.-X. Ma
Department of Mathematics and Statistics, University of
South Florida, Tampa, FL 33620, USA

W.-X. Ma
School of Mathematical and Statistical Sciences, North-West
University, Mafikeng Campus, Private Bag X2046, Mmabatho
2735, South Africa

1 Introduction

It is of great significance in nonlinear science to investigate nonlinear integrable equations and discuss their integrable properties. There are many interesting characteristics, such as N -soliton solutions, bilinear Bäcklund transformations, Lax pairs, Painlevé test, and infinitely many conservation laws, which could represent integrability of nonlinear differential equations [1–15]. Among those integrable properties, the existence of N -soliton solutions usually implies the integrability [16] of the underlying nonlinear evolution equations. N -soliton solutions are a kind of exact multiple exponential wave solutions [17]. It is known that the Hirota bilinear method is widely used in constructing N -soliton solutions by perturbation [18]. Once a nonlinear differential equation is expressed as a Hirota bilinear form, one can always work out one-soliton and two-soliton solutions, based on the corresponding Hirota bilinear equation. However, when $N \geq 3$, a

Hirota bilinear equation possesses an N -soliton solution if and only if the Hirota N -soliton condition is satisfied [19, 20]. More recently, one of the authors (Ma) has presented an improved algorithm to verify the Hirota conditions via comparing degrees of the polynomials on the basis of the Hirota functions in N wave vectors [21–23]. In addition, Wronskian formulas are a universal feature for nonlinear integrable equations and also become a powerful and standard way to establish N -soliton solutions in terms of Wronskian-type determinants [24–27].

In mathematical physics, the Korteweg de-Vries (KdV) equation

$$u_t + 6uu_x + u_{xxx} = 0, \quad (1.1)$$

and its $(2+1)$ -dimensional generalization, the Kadomtsev–Petviashvili-I (KPI) equation [28]

$$u_t = -6uu_x - u_{xxx} + 3\partial_x^{-1}u_{yy}, \quad (1.2)$$

are two well-known integrable models which possess N -soliton solutions that could be generated through their Hirota bilinear forms. Based on the Lax operator of the KP equation, the commuting KP hierarchy [29], also known as the integrable positive KP hierarchy [30], was presented in previous studies. The third member of the integrable positive KP hierarchy is just the KPI equation (1.2), and the fourth member can be written as

$$u_t = 12(2u_x\partial_x^{-1}u_y - \partial_x^{-2}u_{yyy} + u_{xxy} + 4uu_y), \quad (1.3)$$

via appropriate scaling and Galileo transformations. These two equations have lump solutions with different kinds of rational dispersion relations [31, 32]. A novel $(2+1)$ -dimensional system, the combination of the Eq. (1.2) and the Eq. (1.3) (cKP3-4)

$$\begin{aligned} u_t &= a(6uu_x + u_{xxx} - 3w_y) \\ &\quad + b(2wu_x - z_y + u_{xxy} + 4uu_y), \\ u_y &= w_x, \quad u_{yy} = z_{xx}, \end{aligned} \quad (1.4)$$

has been systematically considered by Lou recently [33]. Lou named Eq. (1.4) as the cKP3-4 equation in Ref. [33]. Clearly, the cKP3-4 equation will be reduced back to an equivalent form of the standard KdV equation (1.1) when $y = x$, so the system (1.4) is also an extension of the KdV equation in $(2+1)$ -dimensions. The Lax pair, the dual Lax pair and multiple soliton solutions were written down directly by Lou [33], upon observing that a linear combination in a soliton hierarchy is still integrable.

Besides, the KdV equation has some other generalized forms in $(2+1)$ -dimensions, including the $(2+1)$ -dimensional generalized breaking soliton equation

$$\begin{aligned} u_t + au_{xxx} + bu_{xxy} + \frac{3ae}{b}uu_x \\ + 2euv_x + eu_xv = 0, \quad u_y = v_x, \end{aligned} \quad (1.5)$$

which was first proposed by Xu [34]. This generalized equation passes the Painlevé test and possesses some integrable properties, such as N -soliton solutions, bilinear Bäcklund transformations, Lax pairs and infinitely many conservation laws [34]. Infinitely many nonlocal symmetries and similarity reductions were also discussed for the equivalent form of Eq. (1.5) in Ref. [35].

Motivated by the abovementioned results, we would like to extend the cKP3-4 equation (1.4) and the $(2+1)$ -dimensional generalized breaking soliton Eq. (1.5) to a new one which still has many significant properties:

$$\begin{aligned} a(6\alpha uu_x + u_{xxx} + 3\gamma v_{xy}) + b(u_{xxy} + 2\alpha u_xv_x \\ + 4\alpha uu_y + \gamma v_{yy}) + cu_t + du_x = 0, \quad v_{xx} = u_y, \end{aligned} \quad (1.6)$$

where a, b, c, d, α and γ are real constant coefficients, which satisfy $c\alpha(a^2 + b^2) \neq 0$ to guarantee the nonlinearity of Eq. (1.6). Obviously, taking

$$\alpha = 1, \gamma = c = -1, d = 0, v_x = w \quad (1.7)$$

and

$$\alpha = \frac{e}{2b}, \gamma = 0, c = 1, d = 0, \quad (1.8)$$

in Eq. (1.6) gives Eqs. (1.4) and (1.5), respectively. Setting $a = \gamma = 0, \alpha = 2, b = 1, c = 4, d \neq 0$, and making use of the potential $u = \varphi_x$, we see that Eq. (1.6) reduces to the following dissipative $(2+1)$ -dimensional Ablowitz–Kaup–Newell–Segur (AKNS) equation:

$$4\varphi_{xt} + \varphi_{xxxx} + 4\varphi_{xx}\varphi_y + 8\varphi_x\varphi_{xy} + d\varphi_{xx} = 0. \quad (1.9)$$

The bilinear Bäcklund transformation, Lax pair, infinitely many conservation laws and various exact solutions for Eq. (1.9) were investigated in Refs. [36, 37].

To sum up, the system (1.6) includes a great number of significant integrable equations as its special cases. It is known that integrable equations play a major role in modeling complex physical phenomena due to their interesting integrability. For instance, if the coefficient $d = 0$, Eq. (1.9) is just the AKNS equation [38], which is one of the important integrable model

equations for the propagation of long waves in nonlinear dispersive systems. Moreover, since the dissipation will inevitably occur when the shallow water waves come across damping, the dissipative $(2+1)$ -dimensional AKNS equation is widely used to characterize the $(2+1)$ -dimensional interaction of waves with dissipative effect in various branches of science especially in fluid mechanics [39]. According to the physical properties of the integrable equations mentioned above, the extended $(2+1)$ -dimensional KdV equation (1.6) may be described as the interaction of two-dimensional shallow water waves in nonlinear dispersive systems. Therefore, we may trust that the discussion of Eq. (1.6) is beneficial to explain diverse physical phenomena in many areas of nonlinear science.

We consider the logarithmic transformations

$$u = \frac{2}{\alpha}(\ln f)_{xx} + \frac{u_0}{\alpha}, \quad v = \frac{2}{\alpha}(\ln f)_y, \quad (1.10)$$

where u_0 is a real parameter. Under the transformations (1.10), the extended form (1.6) is translated into a trilinear form

$$\begin{aligned} a(f^2 f_{xxxx} + 2ff_{xx}f_{xxx} - 5ff_x f_{xxxx} \\ - 6f_{xx}^2 f_x + 8f_{xxx}f_x^2 + 3\gamma f^2 f_{xyy} \\ - 3\gamma ff_x f_{yy} - 6\gamma ff_y f_{xy} + 6\gamma f_x f_y^2 \\ + 6u_0 f^2 f_{xxx} - 18u_0 ff_x f_{xx} + 12u_0 f_x^3) \\ + b(f^2 f_{xxxxy} - ff_{xxxx}f_y + 2ff_{xx}f_{xyy} \\ - 4ff_x f_{xyy} + 4f_x f_{xxx}f_y \\ - 2f_{xx}^2 f_y - 4f_{xx} f_x f_{xy} + 4f_x^2 f_{xyy} + \gamma f^2 f_{yyy} \\ + 2\gamma f_y^3 - 3\gamma ff_y f_{yy} \\ + 4u_0 f^2 f_{xyy} - 4u_0 ff_{xx}f_y - 8u_0 ff_x f_{xy} \\ + 8u_0 f_x^2 f_y) + c(f^2 f_{xxt} \\ - ff_{xx} f_t - 2ff_x f_{xt} + 2f_x^2 f_t) \\ + d(f^2 f_{xxx} - 3ff_x f_{xx} + 2f_x^3) = 0. \end{aligned} \quad (1.11)$$

It seems that the trilinear equation (1.11) cannot be directly bilinearized. But we have the following so-called quadrilinear representation of Eq. (1.11) [8, 40, 41]:

$$\begin{aligned} D_x \left[(3aD_x^4 + 9a\gamma D_y^2 + 2bD_x^3 D_y \right. \\ \left. + 3cD_x D_t + 3dD_x^2 + 18au_0 D_x^2) f \cdot f \right] \cdot f^2 \\ + D_y \left[(bD_x^4 + 3b\gamma D_y^2 \right. \\ \left. + 12bu_0 D_x^2) f \cdot f \right] \cdot f^2 = 0, \end{aligned} \quad (1.12)$$

where the D -operator is defined by

$$\begin{aligned} D_{x_1}^{n_1} D_{x_2}^{n_2} f \cdot g \\ = (\partial_{x_1} - \partial_{x'_1})^{n_1} (\partial_{x_2} - \partial_{x'_2})^{n_2} \\ f(x_1, x_2) g(x'_1, x'_2) |_{x'_1=x_1, x'_2=x_2}, \end{aligned} \quad (1.13)$$

with n_1 and n_2 being arbitrary nonnegative integers [18].

The purpose of this paper is to furnish a Wronskian formulation to the extended $(2+1)$ -dimensional KdV equation (1.6) by employing Wronskian identities of the bilinear KP hierarchy, thereby presenting its N -soliton solutions. This paper is structured as follows. In Sect. 2, by using two helpful properties associated with Hirota differential operators, a general Wronskian formulation will be constructed. Furthermore, N -soliton solutions and soliton molecules will be generated from the obtained Wronskian formulation in Sects. 3 and 4, respectively. Conclusions and remarks will be given in the last section.

2 A new Wronskian structure

The Wronskian technique is a valid method to establish exact solutions for Hirota bilinear forms. To this end, we adopt the following helpful notation defined by Freeman and Nimmo [24, 25]:

$$W(\phi_1, \phi_2, \dots, \phi_N) = \begin{vmatrix} \phi_1 & \phi_1^{(1)} & \dots & \phi_1^{(N-1)} \\ \phi_2 & \phi_2^{(1)} & \dots & \phi_2^{(N-1)} \\ \vdots & \vdots & \vdots & \vdots \\ \phi_N & \phi_N^{(1)} & \dots & \phi_N^{(N-1)} \end{vmatrix}, \quad (2.1a)$$

where $\phi_i^{(j)} = \frac{\partial^j \phi_i}{\partial x^j}$, $i, j \geq 1$. It can often be written in the compact form as follows:

$$\begin{aligned} W &= |\phi, \phi^{(1)}, \dots, \phi^{(N-1)}| \\ &= |0, 1, \dots, N-1| = \widehat{|N-1|}, \end{aligned} \quad (2.1b)$$

where $\phi^{(l)}$ denotes the column vector $(\phi_1^{(l)}, \phi_2^{(l)}, \dots, \phi_N^{(l)})^T$.

As we know, the first two equations of the KP hierarchy [42] can be written in Hirota bilinear form as

$$(D_1^4 - 4D_1 D_3 + 3D_2^2) f \cdot f = 0, \quad (2.2a)$$

$$[(D_1^3 + 2D_3)D_2 - 3D_1 D_4] f \cdot f = 0, \quad (2.2b)$$

where f is a function of the variables x_j , $j = 1, 2, 3, \dots$, and $D_j \equiv D_{x_j}$. Note that the first member

(2.2a) just becomes the typical bilinear KP equation, upon setting $(x_1, x_2, x_3) = (x, y, t)$. If the Wronskian entries $\phi_i = \phi_i(x_1, x_2, x_3, \dots)$ ($1 \leq i \leq N$) satisfy that

$$\partial_{x_j} \phi_i = \frac{\partial^j \phi_i}{\partial x^j}, \quad j = 1, 2, 3, \dots, \quad (2.3)$$

then $f = f_N = \widehat{|N-1|}$ defined by the Wronskian determinant (2.1) solves the bilinear equations (2.2a) and (2.2b) [18,43]. Sato et al. showed that the KP hierarchy equations in bilinear forms reduce to the Plücker relations for determinants when the function f is expressed by the Wronskian [18,44]. For example, under the conditions (2.3), the first member (2.2a) in the KP hierarchy yields the following identity

$$\begin{aligned} & (D_1^4 - 4D_1D_3 + 3D_2^2) \widehat{|N-1|} \cdot \widehat{|N-1|} \\ &= 24(\widehat{|N-1|} \widehat{|N-3|}, N, N+1) \\ &\quad - \widehat{|N-2|}, N \widehat{|N-3|}, N-1, N+1 \\ &\quad + \widehat{|N-2|}, N+1 \widehat{|N-3|}, N-1, N) \equiv 0, \end{aligned} \quad (2.4)$$

which is nothing but the Plücker relation.

To present Wronskian solutions, we first give two useful properties associated with Hirota differential operators.

Lemma 2.1 *If the Wronskian entries $\phi_i = \phi_i(x, y, t)$, $1 \leq i \leq N$, in the Wronskian determinant (2.1) satisfy the expressions (2.3) and the following conditions:*

$$\begin{aligned} \partial_y \phi_i &= (a_1 \partial_x + a_2 \partial_x^2 + \dots + a_m \partial_x^m) \phi_i \\ &\equiv (a_1 \partial_{x_1} + a_2 \partial_{x_2} + \dots + a_m \partial_{x_m}) \phi_i, \end{aligned} \quad (2.5a)$$

$$\begin{aligned} \partial_t \phi_i &= (b_1 \partial_x + b_2 \partial_x^2 + \dots + b_n \partial_x^n) \phi_i \\ &\equiv (b_1 \partial_{x_1} + b_2 \partial_{x_2} + \dots + b_n \partial_{x_n}) \phi_i, \end{aligned} \quad (2.5b)$$

where m, n are nonnegative integers, and $a_1, a_2, \dots, a_m, b_1, b_2, \dots, b_n$ are arbitrary constants, then $f = f_N = \widehat{|N-1|}$ defined by the Wronskian determinant (2.1) possesses the following property:

$$\begin{aligned} & D_y^p D_t^q f \cdot f \\ &= (a_1 D_1 + a_2 D_2 + \dots + a_m D_m)^p \\ &\quad (b_1 D_1 + b_2 D_2 + \dots + b_n D_n)^q f \cdot f, \end{aligned} \quad (2.6)$$

with p, q are nonnegative integers and $D_j \equiv D_{x_j}$. Here the Hirota's bilinear operators D_{x_j} , $j = 1, 2, 3, \dots$, are defined by the expression (1.13).

Lemma 2.2 *Suppose the Wronskian entries $\phi_i = \phi_i(x, y, t)$, $1 \leq i \leq N$, in the Wronskian determinant (2.1) satisfy the expressions (2.3) and*

$$\sum_{j=1}^N \lambda_{ij} \phi_j = (c_1 \partial_x + c_2 \partial_x^2 + \dots + c_m \partial_x^m) \phi_i$$

$$\equiv (c_1 \partial_{x_1} + c_2 \partial_{x_2} + \dots + c_m \partial_{x_m}) \phi_i, \quad (2.7)$$

where c_1, c_2, \dots, c_m are arbitrary constants and the coefficient matrix $A = (\lambda_{ij})_{1 \leq i, j \leq N}$ is an arbitrary real constant matrix. Then we have

$$D_k (c_1 D_1 + c_2 D_2 + \dots + c_m D_m) f \cdot f = 0, \quad (2.8)$$

where the function f is expressed by the Wronskian determinant (2.1) and $D_k = D_{x_k}$. Here the Hirota's bilinear operators D_{x_k} , $k = 1, 2, 3, \dots$, are defined by the expression (1.13).

Lemmas 2.1 and 2.2 have been proved in Ref. [45]. We only make a supplement to the proof of Lemma 2.1 (see the “Appendix” for details).

In the following, we present a well-known example to shed light on applications of Lemma 2.2. It is known that the KdV equation (1.1) is mapped into the bilinear form

$$(D_x D_t + D_x^4) f \cdot f = 0, \quad (2.9)$$

by the dependent variable transformation $u = 2(\ln f)_{xx}$. For the convenience of later discussions, we can rescale the coordinates and rewrite Eq. (2.9) as follows:

$$(D_1^4 - 4D_1D_3) f \cdot f = 0, \quad (2.10)$$

where D_1 and D_3 stand for D_x and D_t , respectively. In the KP hierarchy, the bilinear KP equation (2.2a) is reduced to the bilinear KdV equation (2.10) if one takes $D_2 = 0$, which is the “2-reduction” of the KP equation [46]. Assume that the function $f = \widehat{|N-1|}$ is defined by the Wronskian determinant (2.1) and the Wronskian entries ϕ_i satisfy the following linear conditions

$$\phi_{i,xx} = \sum_{j=1}^N \lambda_{ij} \phi_j, \quad (2.11a)$$

$$\phi_{i,t} = \phi_{i,xxx}, \quad 1 \leq i \leq N, \quad (2.11b)$$

where the λ_{ij} 's are arbitrary constants. Using the condition (2.11a) and Lemma 2.2 gives $D_2^2 f \cdot f = 0$. Then applying the conditions in (2.11) and the Wronskian identity (2.4), we can deduce that

$$\begin{aligned} & (D_1^4 - 4D_1D_3) \widehat{|N-1|} \cdot \widehat{|N-1|} \\ &= [(D_1^4 - 4D_1D_3 + 3D_2^2) - 3D_2^2] \widehat{|N-1|} \cdot \widehat{|N-1|} = 0. \end{aligned} \quad (2.12)$$

This shows that the Wronskian determinant $f = \widehat{|N-1|}$ solves the bilinear KdV equation (2.10).

According to the above results, we now give a set of sufficient conditions, under which the Wronskian determinant solves the trilinear equation (1.11).

Theorem 2.1 Assume that a set of functions $\phi_i = \phi_i(x, y, t)$, $1 \leq i \leq N$, satisfies the following combined linear conditions:

$$\phi_{i,xx} = \sum_{j=1}^N \lambda_{ij} \phi_j, \quad (2.13a)$$

$$\phi_{i,y} = r_1 \phi_{i,x}, \quad (2.13b)$$

$$\phi_{i,t} = r_2 \phi_{i,x} + r_3 \phi_{i,xxx}, \quad (2.13c)$$

with

$$r_2 = -\frac{\gamma r_1^2 (3a + br_1)}{c} - \frac{d + 4bu_0 r_1 + 6au_0}{c},$$

$$r_3 = -\frac{4}{c}(a + br_1), \quad (2.13d)$$

where $r_1 \neq 0$ is a free parameter and the coefficient matrix $A = (\lambda_{ij})_{1 \leq i, j \leq N}$ is an arbitrary real constant matrix. Then $f = f_N = \widehat{|N-1|}$ defined by the Wronskian determinant (2.1) solves the trilinear equation (1.11).

Proof We introduce an auxiliary independent variable z , so that the quadrilinear representation (1.12) becomes

$$D_x \left[(3aD_x^4 + 9a\gamma D_y^2 + 2bD_x^3 D_y + 3cD_x D_t + 3dD_x^2 + 18au_0 D_x^2 - D_y D_z) f \cdot f \right] \cdot f^2 + D_y \left[(bD_x^4 + 3b\gamma D_y^2 + 12bu_0 D_x^2 + D_x D_z) f \cdot f \right] \cdot f^2 = 0. \quad (2.14)$$

Suppose that the Wronskian entries ϕ_i , $1 \leq i \leq N$, satisfy

$$\phi_{i,z} = r_4 \phi_{i,x} + r_5 \phi_{i,xxx},$$

$$r_4 = -3b\gamma r_1^2 - 12bu_0, \quad r_5 = -4b. \quad (2.15)$$

We utilize the conditions (2.13) and Lemma 2.1, and then the function $f = f_N = \widehat{|N-1|}$ defined by the Wronskian determinant (2.1) yields

$$D_x^4 f \cdot f = D_1^4 f \cdot f, \quad D_y^2 f \cdot f = r_1^2 D_1^2 f \cdot f,$$

$$D_x^3 D_y = r_1 D_1^4 f \cdot f,$$

$$D_x D_t = D_1(r_2 D_1 + r_3 D_3) f \cdot f,$$

$$D_y D_z = r_1 D_1(r_4 D_1 + r_5 D_3), \quad D_x D_z = D_1(r_4 D_1 + r_5 D_3) f \cdot f.$$

Now, we can compute that

$$(3aD_x^4 + 9a\gamma D_y^2 + 2bD_x^3 D_y + 3cD_x D_t + 3dD_x^2 + 18au_0 D_x^2 - D_y D_z) f \cdot f$$

$$= [3aD_1^4 + 9a\gamma r_1^2 D_1^2 + 2br_1 D_1^4 + 3cD_1(r_2 D_1 + r_3 D_3) + 3dD_1^2 + 18au_0 D_1^2 - r_1 D_1(r_4 D_1 + r_5 D_3)] f \cdot f$$

$$= [(3a + 2br_1)D_1^4 + (9a\gamma r_1^2 + 3cr_2 - r_1 r_4 + 3d + 18au_0)D_1^2 + (3cr_3 - r_1 r_5)D_1 D_3] f \cdot f$$

$$= (3a + 2br_1)[D_1^4 - 4D_1 D_3] f \cdot f = 0, \quad (2.16)$$

and

$$(bD_x^4 + 3b\gamma D_y^2 + 12bu_0 D_x^2 + D_x D_z) f \cdot f$$

$$= [bD_1^4 + 3b\gamma r_1^2 D_1^2 + 12bu_0 D_1^2 + D_1(r_4 D_1 + r_5 D_3)] f \cdot f$$

$$= [bD_1^4 + (3b\gamma r_1^2 + 12bu_0 + r_4)D_1^2 + r_5 D_1 D_3] f \cdot f$$

$$= b[D_1^4 - 4D_1 D_3] f \cdot f = 0, \quad (2.17)$$

where the conditions (2.13), (2.15) and the Wronskian identity (2.12) of the KdV equation have been applied. It follows further that

$$D_x \left[(3aD_x^4 + 9a\gamma D_y^2 + 2bD_x^3 D_y + 3cD_x D_t + 3dD_x^2 + 18au_0 D_x^2) \widehat{|N-1|} \cdot \widehat{|N-1|} \right] \cdot \widehat{|N-1|^2}$$

$$+ D_y \left[(bD_x^4 + 3b\gamma D_y^2 + 12bu_0 D_x^2) \widehat{|N-1|} \cdot \widehat{|N-1|} \right] \cdot \widehat{|N-1|^2} = 0. \quad (2.18)$$

Therefore, this shows that $f = \widehat{|N-1|}$ solves the bilinear trilinear equation (1.11).

Subsequently, three application examples will be given to illustrate the Wronskian sufficient conditions of Theorem 2.1.

Case 1 The cKP3-4 equation

The case of $a^2 + b^2 \neq 0$, $\alpha = 1$, $\gamma = c = -1$ and $d = u_0 = 0$ presents

$$D_x \left[(3aD_x^4 - 9aD_y^2 + 2bD_x^3 D_y - 3D_x D_t) f \cdot f \right] \cdot f^2$$

$$+ D_y \left[(bD_x^4 - 3bD_y^2) f \cdot f \right] \cdot f^2 = 0, \quad (2.19)$$

which is mapped into the cKP3-4 equation (1.4) [33], under the logarithmic derivative transformations

$$u = 2(\ln f)_{xx}, \quad w = 2(\ln f)_{xy}, \quad z = 2(\ln f)_{yy}. \quad (2.20)$$

A set of sufficient conditions, which makes the Wronskian determinant a solution to the quadrilinear equation (2.19), can be expressed as

$$\phi_{i,xx} = \sum_{j=1}^N \lambda_{ij} \phi_j, \quad (2.21a)$$

$$\phi_{i,y} = r_1 \phi_{i,x}, \quad (2.21b)$$

$$\phi_{i,t} = -r_1^2 (3a + br_1) \phi_{i,x} + 4(a + br_1) \phi_{i,xxx}, \quad (2.21c)$$

where $r_1 \neq 0$ is a free parameter and the λ_{ij} 's are arbitrary constants.

Case 2 The $(2+1)$ -dimensional DJKM equation

The case of $\alpha = b = 1, c = -2, \gamma = -1$ and $a = d = u_0 = 0$ yields

$$D_x \left[(2D_x^3 D_y - 6D_x D_t) f \cdot f \right] \cdot f^2 + D_y \left[(D_x^4 - 3D_y^2) f \cdot f \right] \cdot f^2 = 0, \quad (2.22)$$

which is equivalent to the $(2+1)$ -dimensional Date–Jimbo–Kashiwara–Miwa (DJKM) equation [5, 47, 48]:

$$\begin{aligned} \psi_{xxxxy} + 4\psi_{xxy}\psi_x + 2\psi_{xxx}\psi_y + 6\psi_{xy}\psi_{xx} \\ -\psi_{yyy} - 2\psi_{xxt} = 0, \end{aligned} \quad (2.23)$$

under the dependent variable transformation $\psi = 2(\ln f)_x$. Note that Eq.(1.3) can be transformed into an equivalent form of the $(2+1)$ -dimensional DJKM equation (2.23) by the potential $u = \psi_x$. Based on the presented results in Theorem 2.1, the corresponding sufficient conditions for the Wronskian determinant $f = \widehat{|N-1|}$ read as

$$\phi_{i,xx} = \sum_{j=1}^N \lambda_{ij} \phi_j, \quad (2.24a)$$

$$\phi_{i,y} = r_1 \phi_{i,x}, \quad (2.24b)$$

$$\phi_{i,t} = -\frac{1}{2} r_1^3 \phi_{i,x} + 2r_1 \phi_{i,xxx}, \quad (2.24c)$$

where $r_1 \neq 0$ is a free parameter and the λ_{ij} 's are arbitrary constants. It is worth mentioning that the above sufficient conditions for the Wronskian determinant are different from the ones presented previous studies [49, 50].

Case 3 The dissipative $(2+1)$ -dimensional AKNS equation

The case of $\alpha = 2, b = 1, c = 4, d \neq 0$ and $a = \gamma = u_0 = 0$ gives

$$D_x \left[(2D_x^3 D_y + 12D_x D_t + 3d D_x^2) f \cdot f \right] \cdot f^2 + D_y \left(D_x^4 f \cdot f \right) \cdot f^2 = 0. \quad (2.25)$$

which becomes the dissipative $(2+1)$ -dimensional AKNS equation (1.9) [36, 37], through the dependent variable transformation $\varphi = (\ln f)_x$. According to Theorem 2.1, for Eq.(1.9), a set of sufficient conditions for the Wronskian solution $f = \widehat{|N-1|}$ is

$$\phi_{i,xx} = \sum_{j=1}^N \lambda_{ij} \phi_j, \quad (2.26a)$$

$$\phi_{i,y} = r_1 \phi_{i,x}, \quad (2.26b)$$

$$\phi_{i,t} = -\frac{d}{4} \phi_{i,x} - r_1 \phi_{i,xxx}, \quad (2.26c)$$

where r_1 is an arbitrary nonzero constant and the λ_{ij} 's are arbitrary constants.

3 N -soliton solutions

The Wronskian technique is a direct and comprehensive tool to construct N -soliton solutions to nonlinear integrable equations [26]. Assume that the coefficient matrix A in (2.13a) has the following form:

$$A = \begin{pmatrix} k_1^2 & & 0 \\ & k_2^2 & \\ & & \ddots \\ 0 & & k_N^2 \end{pmatrix}_{N \times N}, \quad (3.1)$$

where $0 < k_1 < k_2 < \dots < k_N$ are arbitrary constants. Substituting the above special matrix into the Wronskian conditions (2.13) and (2.15), and solving the conditions (2.13) and (2.15), we obtain a general choice for ϕ_i , which is

$$\begin{aligned} \phi_i &= e^{\xi_i} + (-1)^{i+1} e^{-\xi_i}, \\ \xi_i &= k_i x + r_1 k_i y + (r_2 k_i + r_3 k_i^3) t + (r_4 k_i + r_5 k_i^3) z + \xi_i^0, \end{aligned} \quad (3.2)$$

where ξ_i^0 's are arbitrary constants, and r_k , $2 \leq k \leq 5$, are defined by (2.13d) and (2.15). We only need to consider

$$\xi_i = k_i x + r_1 k_i y + (r_2 k_i + r_3 k_i^3) t + \xi_i^0, \quad 1 \leq i \leq N, \quad (3.3)$$

since the auxiliary parameter z can be absorbed in the auxiliary parameters ξ_i^0 . For the trilinear equation (1.11), N -soliton solutions associated with the Wronskian determinant can be written as:

$$\begin{aligned} f &= f_N = W(\phi_1, \phi_2, \dots, \phi_N), \\ &= \left| e^{\xi_i} + (-1)^{i+1} e^{-\xi_i}, k_i (e^{\xi_i} + (-1)^{i+2} e^{-\xi_i}), \dots, \right| \end{aligned}$$

$$k_i^{N-1} (e^{\xi_i} + (-1)^{i+N} e^{-\xi_i}) \Big|, \quad (3.4)$$

where ξ_i , $1 \leq i \leq N$, are defined by the expression (3.3). Via the same way presented in [51], we get

$$f_N = (-1)^{\frac{N(N-1)}{2}} \prod_{1 \leq i < l}^N (k_i - k_l) e^{-\sum_{i=1}^N \xi_i} \sum_{\mu=0,1} \prod_{1 \leq i < l}^N \left(\frac{k_l - k_i}{k_l + k_i} \right)^{-\mu_i - \mu_l} e^{\sum_{i=1}^N 2\mu_i \xi_i + \sum_{1 \leq i < l} \mu_i \mu_l A_{il}}, \quad (3.5)$$

where $\sum_{\mu=0,1}$ stands for the summation over all possible combinations of $\mu_i = 0, 1$, $i = 1, 2, \dots, N$, and the phase shifts are determined by

$$e^{A_{il}} = \left(\frac{k_l - k_i}{k_l + k_i} \right)^2. \quad (3.6)$$

When $0 < k_1 < k_2 < \dots < k_N$, we have

$$\prod_{1 \leq i < l}^N \left(\frac{k_l - k_i}{k_l + k_i} \right)^{-\mu_i - \mu_l} = e^{-\frac{1}{2} \sum_{i=1}^N \sum_{l=1, l \neq i}^N \mu_i \mu_l A_{il}}. \quad (3.7)$$

Thus, an N -soliton solution of Eq. (1.11) can be rewritten as

$$f_N = (-1)^{\frac{N(N-1)}{2}} \prod_{1 \leq i < l}^N (k_i - k_l) e^{-\sum_{i=1}^N \xi_i} \sum_{\mu=0,1} e^{\sum_{i=1}^N \mu_i \eta_i + \sum_{1 \leq i < l} \mu_i \mu_l A_{il}}, \quad (3.8)$$

if we put

$$2\xi_i - \frac{1}{2} \sum_{l=1, l \neq i}^N A_{il} \rightarrow \eta_i. \quad (3.9)$$

Omitting the factor $(-1)^{\frac{N(N-1)}{2}} \prod_{1 \leq i < l}^N (k_i - k_l) e^{-\sum_{i=1}^N \xi_i}$ and taking the logarithmic transformations (1.10), we can easily determine the following N -soliton solution to the extended KdV equation (1.6):

$$\begin{aligned} u &= \frac{2}{\alpha} (\ln f)_{xx} + \frac{u_0}{\alpha}, \\ v &= \frac{2}{\alpha} (\ln f)_y, \\ f &= f_N = \sum_{\mu=0,1} e^{\sum_{i=1}^N \mu_i \eta_i + \sum_{1 \leq i < l} \mu_i \mu_l A_{il}}, \end{aligned} \quad (3.10)$$

where $\eta_i = 2k_i x + 2r_1 k_i y + 2(r_2 k_i + r_3 k_i^3) t + \xi_i^0$, and r_k , $1 \leq k \leq 3$, are defined by the condition (2.13d). Besides, if we introduce new parameters as follows:

$$K_i = 2k_i, \quad L_i = 2r_1 k_i, \quad W_i = 2(r_2 k_i + r_3 k_i^3), \quad (3.11)$$

then the dispersion relation of the trilinear equation (1.11) reads as

$$W_i = -\frac{a}{c K_i} (3\gamma L_i^2 + K_i^4) - \frac{b L_i}{c K_i^2} (\gamma L_i^2 + K_i^4) - \frac{(d + 6au_0) K_i + 4bu_0 L_i}{c}, \quad (3.12)$$

which shows higher-order dispersion relations, compared with the KdV equation and the KP equation.

For Eq. (1.6), a special two-soliton framework of u generated by the expression (3.10) with the parameter selections

$$\begin{aligned} \alpha &= b = 1, \quad c = -2, \quad \gamma = -1, \quad a = d = u_0 = 0, \\ N &= 2, \quad k_1 = 1, \quad k_2 = 3, \quad r_1 = 0.5, \quad \xi_1^0 = 1, \quad \xi_2^0 = 3, \end{aligned} \quad (3.13)$$

is plotted in Figs. 1 and 2. Figure 1 depicts the propagation of the two-soliton solution (3.10) for the field u with the parameter choices (3.13) at several time steps. We can see that two line soliton waves are parallel to each other due to $2k_1/2k_2 = 2r_1 k_1/2r_1 k_2$ in the (x, y) -plane, and they have different amplitudes and widths. The tall and thin wave is behind the short and fat wave at the beginning of the propagation. After a while, the tall wave catches up with the short wave and collides, since the tall wave with high amplitude moves faster than the other. Figure 2 shows the evolution of two solitary waves, one of which is a line soliton in the (x, t) -plane. From Figs. 1 and 2, it is easy to observe that the interaction between two solitons is elastic without changing their original shapes and velocities before and after the interaction.

Figures 3 and 4 display the propagation of a special three-soliton solution for the field u determined by the expression (3.10) with the parameter selections

$$\begin{aligned} \alpha &= b = 1, \quad c = -2, \quad \gamma = -1, \\ a &= d = u_0 = 0, \quad N = 3, \\ k_1 &= 1, \quad k_2 = 3, \quad k_3 = -2, \quad r_1 = 0.5, \quad \xi_1^0 = 2, \\ \xi_2^0 &= 3, \quad \xi_3^0 = 1. \end{aligned} \quad (3.14)$$

The development of three solitons is the same as above.

4 Soliton molecule solutions

Very recently, soliton molecules as bound states have attracted more and more attention from scholars in some fields such as Bose-Einstein condensates, wave

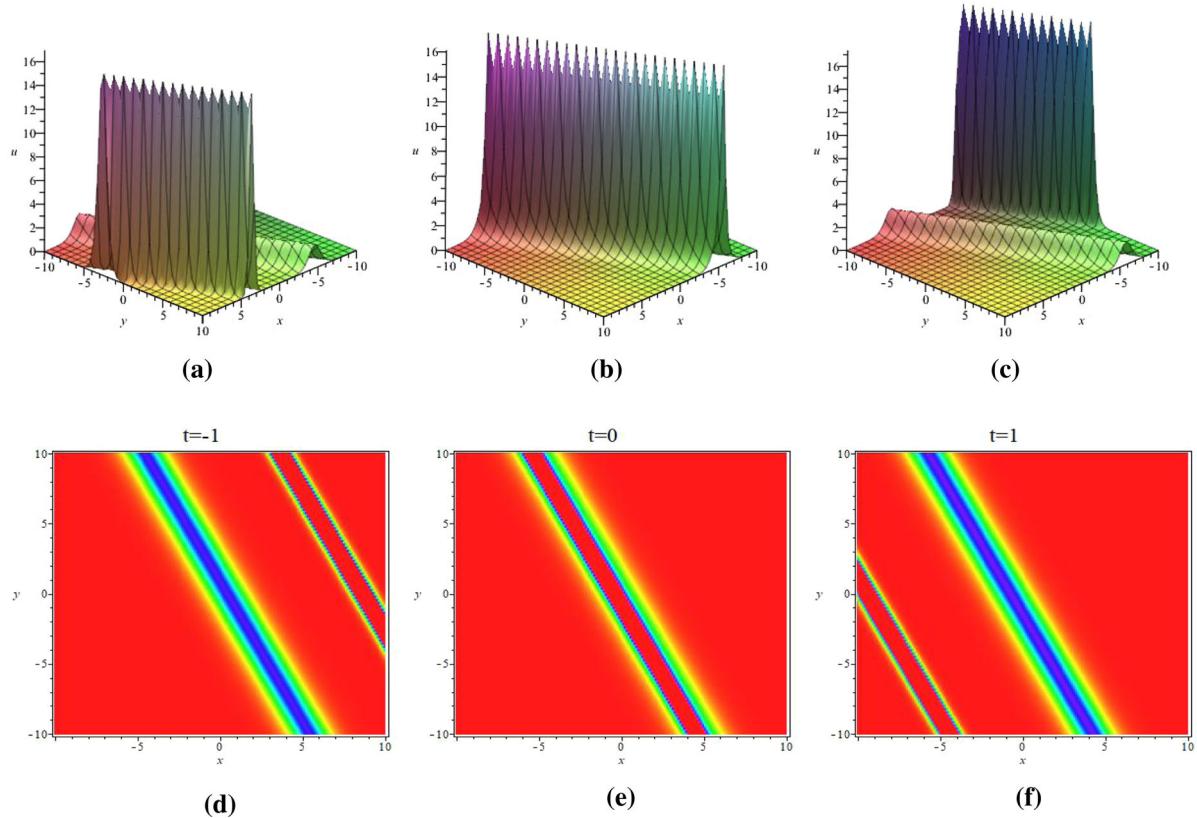


Fig. 1 Three-dimensional plots and density plots of u determined by the N -soliton solution (3.10) with (2.13d) and (3.13) when $t = -1$ in (a) and (d), $t = 0$ in (b) and (e), and $t = 1$ in (c) and (f), respectively

guides and nonlinear optics. Many kinds of theoretical or experimental approaches have been proposed to search for soliton molecules [52, 53]. In particular, a velocity resonance mechanism was introduced to explore soliton molecules of $(1+1)$ -dimensional nonlinear evolution equations by Lou [54, 55]. It was further found that the velocity resonance mechanism can be widely used to find soliton molecules in higher-dimensional systems including the cKP3-4 equation [33]. In this section, we would like to study soliton molecules, which will be generated from the previous Wronskian N -soliton solutions to Eq. (1.6).

Based on the sufficient conditions (2.13), it is obvious that under a selection of $r_1 = -a/b$, the N -soliton solution (3.10) reads as

$$u = \frac{2}{\alpha}(\ln f)_{xx} + \frac{u_0}{\alpha},$$

$$v = \frac{2}{\alpha}(\ln f)_y, \quad f = f_N$$

$$= \sum_{\mu=0,1} e^{\sum_{i=1}^N \mu_i \eta_i + \sum_{1 \leq i < l}^N \mu_i \mu_l A_{il}}, \quad (4.1)$$

where

$$\begin{aligned} \eta_i &= K_i x + L_i y + W_i t + \xi_i^0, \\ L_i &= -\frac{a}{b} K_i, \\ W_i &= -\left(\frac{2\gamma a^3}{cb^2} + \frac{2au_0 + d}{c}\right) K_i, e^{A_{il}} \\ &= \left(\frac{K_l - K_i}{K_l + K_i}\right)^2, \end{aligned} \quad (4.2)$$

with K_i and ξ_i^0 being arbitrarily prescribed constants. We can further find that the following soliton resonant condition:

$$\frac{K_i}{K_j} = \frac{L_i}{L_j} = \frac{W_i}{W_j}, \quad K_i \neq \pm K_j, \quad (4.3)$$

is satisfied, based on the expression (4.2). Thus, within the velocity resonance mechanism formulation, the solution (4.1) with (4.2) just presents a kind of soliton molecule solutions.

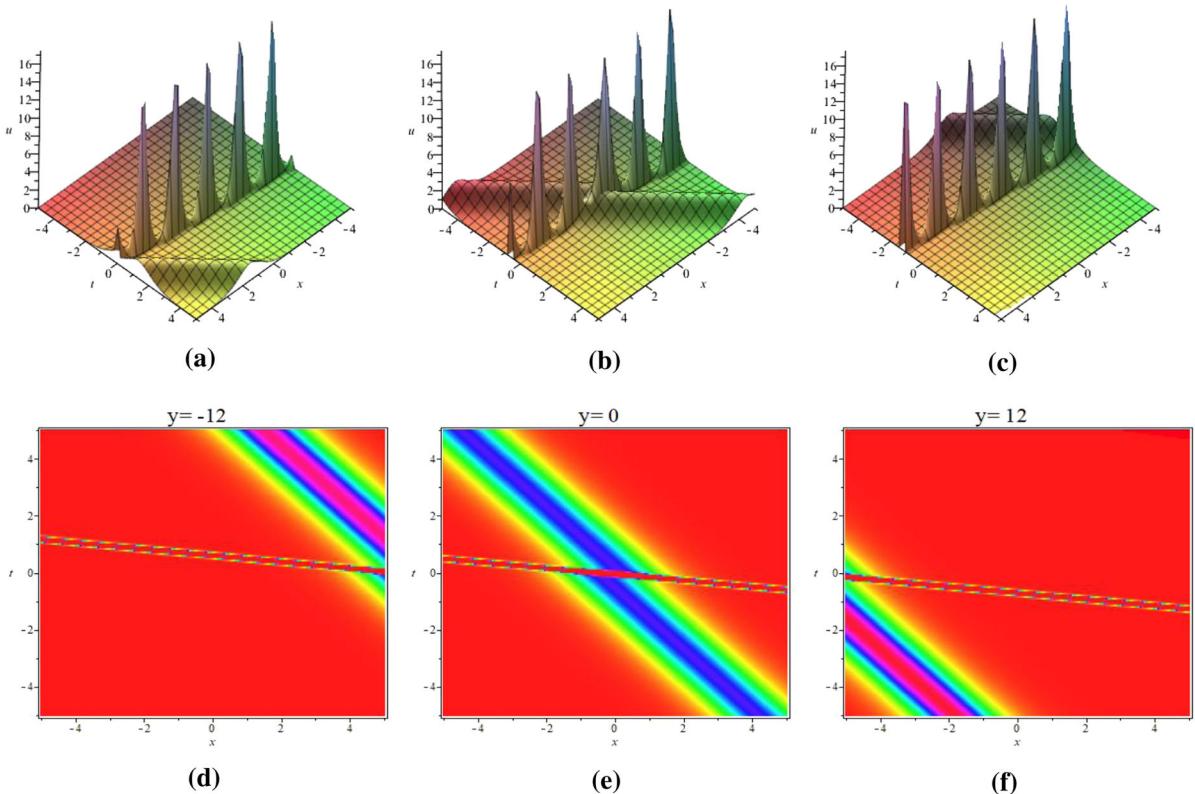


Fig. 2 Three-dimensional plots and density plots of u determined by the N -soliton solution (3.10) with (2.13d) and (3.13) when $y = -12$ in (a) and (d), $y = 0$ in (b) and (e), and $y = 12$ in (c) and (f), respectively

Particularly, setting

$$\alpha = 2, a = b = c = 1, \gamma = d = 0, u_0 = 4, \quad (4.4)$$

we obtain a generalized breaking soliton equation as follows:

$$\begin{aligned} u_t + u_{xxx} + u_{xxy} + 12uu_x + 8uu_y \\ + 4u_x v_x = 0, \quad v_{xx} = u_y, \end{aligned} \quad (4.5)$$

which has a Hirota bilinear form

$$\begin{aligned} D_x \left[\left(3D_x^4 + 2D_x^3 D_y + 3D_x D_t + 72D_x^2 \right) f \cdot f \right] \cdot f^2 \\ + D_y \left[\left(D_x^4 + 48D_x^2 \right) f \cdot f \right] \cdot f^2 = 0, \end{aligned} \quad (4.6)$$

under the logarithmic transformation $u = (\ln f)_{xx} + 2$, $v = (\ln f)_y$. Making use of the solution (4.1) with (4.2), we can present the following soliton molecule solution to Eq. (4.5):

$$\begin{aligned} u &= (\ln f)_{xx} + 2, \\ v &= (\ln f)_y, \\ f &= \sum_{\mu=0,1} e^{\sum_{i=1}^N \mu_i \eta_i + \sum_{1 \leq i < l} \mu_i \mu_l A_{il}}, \end{aligned} \quad (4.7)$$

where

$$\eta_i = K_i(x - y - 8t) + \xi_i^0, \quad e^{A_{il}} = \left(\frac{K_l - K_i}{K_l + K_i} \right)^2,$$

with K_i and ξ_i^0 being arbitrary constants. To exhibit some characteristic properties of soliton molecule solutions, three density plots of the above solution (4.7) with specific parameters are made in Fig. 5.

In addition, we can present a special set of sufficient conditions, which guarantees that the Wronskian determinant solves the trilinear equation (1.11).

Theorem 4.1 Suppose that a group of functions $\phi_i = \phi_i(x, y, t)$, $1 \leq i \leq N$, satisfies the two sets of conditions

$$\phi_{i,y} = -\frac{a}{b} \phi_{i,x}, \quad (4.8a)$$

$$\phi_{i,t} = -\left(\frac{2\gamma a^3}{cb^2} + \frac{2au_0 + d}{c} \right) \phi_{i,x}, \quad (4.8b)$$

where the parameters a and b are two nonzero constants. Then $f = f_N = \widehat{|N-1|}$ defined by the Wron-

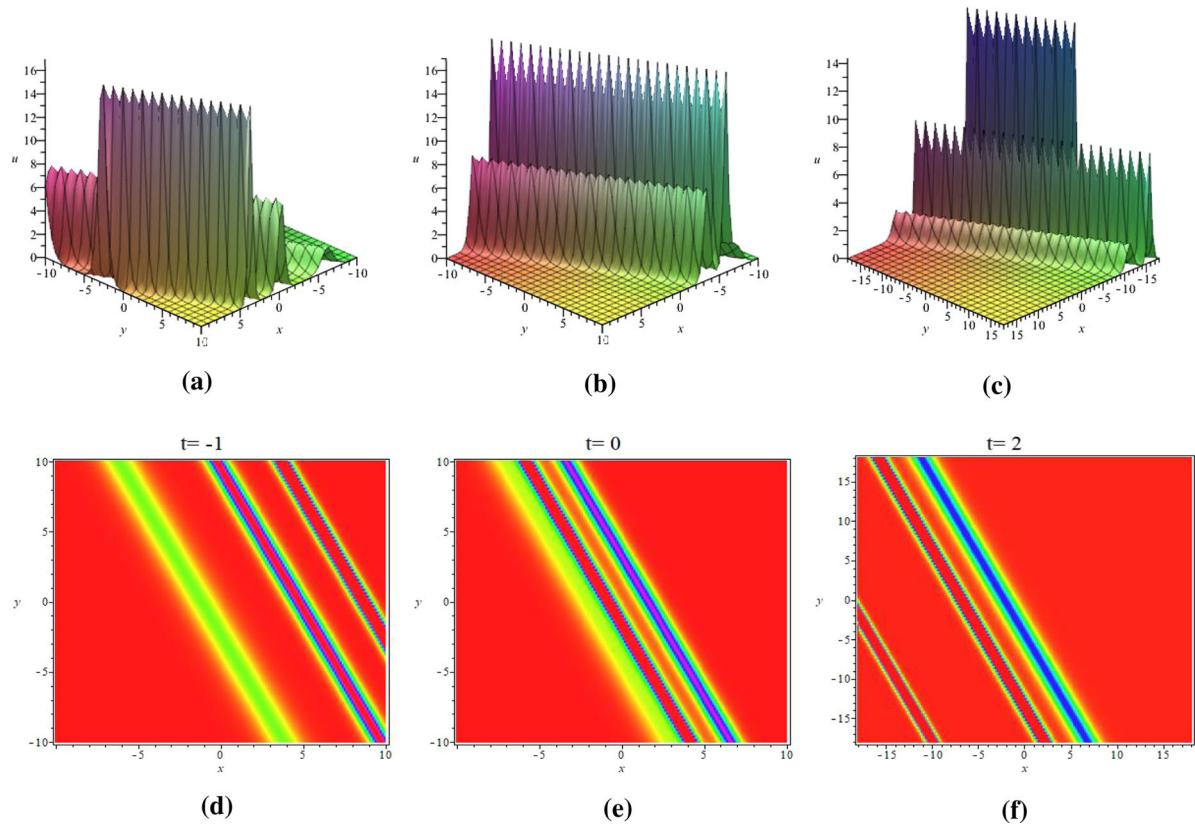


Fig. 3 Three-dimensional plots and density plots of u determined by the N -soliton solution (3.10) with (2.13d) and (3.14) when $t = -1$ in (a) and (d), $t = 0$ in (b) and (e), and $t = 2$ in (c) and (f), respectively

skian determinant (2.1) solves the trilinear equation (1.11).

Proof Under the conditions (4.8), we can obtain various derivatives of the Wronskian determinant $f = f_N = |\widehat{N-1}|$ with respect to the variables x, y, z as follows:

$$\begin{aligned} f_y &= -\frac{a}{b} f_x, \quad f_t = -\left(\frac{2\gamma a^3}{cb^2} + \frac{2au_0 + d}{c}\right) f_x, \\ f_{xy} &= -\frac{a}{b} f_{xx}, \\ f_{yy} &= \frac{a^2}{b^2} f_{xx}, \quad f_{xyy} = \frac{a^2}{b^2} f_{xxx}, \\ f_{xt} &= -\left(\frac{2\gamma a^3}{cb^2} + \frac{2au_0 + d}{c}\right) f_{xx}, \dots \end{aligned}$$

Substituting the above derivatives into the left side of the trilinear equation (1.11), we find that Eq. (1.11) holds following a direct observation. This shows that $f = f_N = |\widehat{N-1}|$ solves the trilinear equation (1.11).

5 Concluding remarks

The main goal of the paper is to investigate an extended $(2+1)$ -dimensional KdV equation and its N -soliton solutions through the improved Wronskian technique. By introducing an auxiliary parameter, we have presented a set of sufficient conditions, consisting of systems of combined linear partial differential equations, which make the Wronskian determinant to be a solution to the resulting trilinear equation. The Wronskian identity of the bilinear KP equation and two universal properties of Hirota differential operators have played vital roles in exploring Wronskian solution structures. Other illustrative examples of sufficient conditions have also been presented for the cKP3-4 equation, the $(2+1)$ -dimensional DJKM equation and the dissipative $(2+1)$ -dimensional AKNS equation. Lastly, soliton molecules have been generated through the presented Wronskian N -soliton solutions when the coefficients a and b are two nonzero constants for Eq. (1.6). The obtained

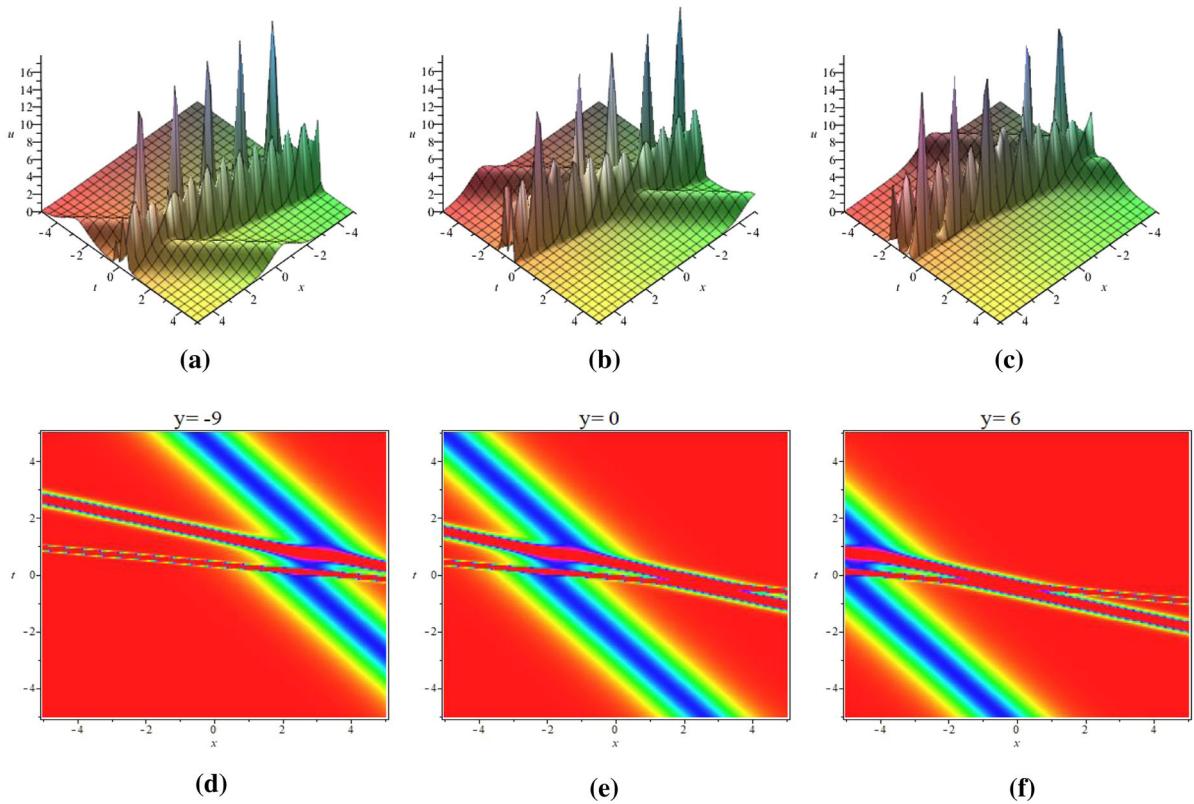


Fig. 4 Three-dimensional plots and density plots of u determined by the N -soliton solution (3.10) with (2.13d) and (3.14) when $y = -9$ in (a) and (d), $y = 0$ in (b) and (e), and $y = 6$ in (c) and (f), respectively

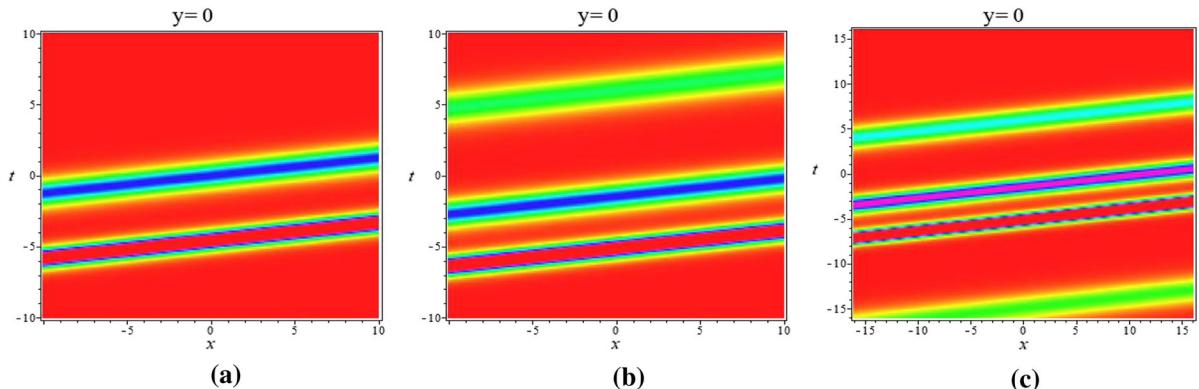


Fig. 5 **a** Two-soliton molecule profile of the solution u expressed by Eq. (4.7) with parameters: $N = 2, K_1 = \frac{1}{3}, K_2 = \frac{1}{2}, K_3 = \frac{1}{4}, \xi_1^0 = 0, \xi_2^0 = -15, \xi_3^0 = 12, y = 0$. **c** Four-soliton molecule profile of the solution u expressed by Eq. (4.7) with parameters: $N = 4, K_1 = \frac{1}{3}, K_2 = \frac{1}{2}, K_3 = \frac{1}{4}, K_4 = \frac{1}{5}, \xi_1^0 = 0, \xi_2^0 = -15, \xi_3^0 = 12, \xi_4^0 = -15, y = 0$

results amend the existing studies on those equations and enrich solution structures of higher-dimensional integrable equations.

We point out that Eq. (1.6) has a class of traveling wave solutions with an arbitrary function:

$$\begin{aligned} u &= \frac{2}{\alpha}(\ln h(\eta))_{xx} + \frac{u_0}{\alpha}, \\ v &= \frac{2}{\alpha}(\ln h(\eta))_y, \quad \eta = x - \frac{a}{b}y \\ &\quad - \left(\frac{2\gamma a^3}{cb^2} + \frac{2au_0 + d}{c} \right)t + \eta^0, \end{aligned}$$

where the coefficients a and b are two nonzero constants, h is an arbitrary function and η^0 is an arbitrary constant. Thus, even if the parameter $\gamma = 0$, the extended equation (1.6) may possess more solution structures including the missing D'Alembert-type waves [33] and various lump-type solutions [56]. Such solutions are very helpful to the study of complex nonlinear phenomena in fluid dynamics, oceanic dynamics, nonlinear optics and other fields.

We also remark that there should exist other kinds of sufficient conditions for Wronskian solutions to the resulting trilinear equation with the coefficient $\gamma \neq 0$. The N -soliton solution generated from the Wronskian formulation is of $(1+1)$ -dimension, owing to the dimensional reduction in the sufficient conditions. However, the considered generalized $(2+1)$ -dimensional KdV equation should have general N -soliton solutions, since its several integrable properties have been explored. It would be particularly interesting to check if the Hirota N -soliton conditions hold for the introduced trilinear equation and if there exist Wronskian formulations for soliton solutions to variable-coefficient generalizations of integrable equations [57, 58]. Furthermore, it has become an increasingly interesting research topic to investigate diverse hybrid solutions, including the mixed breather-soliton molecule solutions, the mixed lump-soliton molecule solutions [59, 60] and the mixed lump-kink N - M -soliton solutions [15, 61, 62]. It is hoped that more novel hybrid-type solutions could be explored for Eq. (1.6) in future works.

Acknowledgements The authors express their sincere thanks to the Referees and Editors for their valuable comments. This work is supported by Jinhua Polytechnic Key Laboratory of Crop Harvesting Equipment Technology of Zhejiang Province.

Funding The work was supported in part by NSFC under the grants 12271488, 11975145 and 11972291.

Data availability All data supporting the findings of this study are included in this published article.

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

Appendix

The proof of Lemma 2.1 is as follows:

Proof By applying the conditions (2.5) and differential rules for determinants as defined in [18], we have the following derivatives of the Wronskian determinant $f = f_N = \widehat{|\mathcal{N} - 1|}$:

$$\frac{\partial f}{\partial y} = (a_1 \partial_x + a_2 \partial_x^2 + \cdots + a_m \partial_x^m) f \quad (\text{A.1a})$$

$$\equiv (a_1 \partial_{x_1} + a_2 \partial_{x_2} + \cdots + a_m \partial_{x_m}) f, \quad (\text{A.1b})$$

$$\begin{aligned} \frac{\partial f}{\partial t} &= (b_1 \partial_x + b_2 \partial_x^2 + \cdots + b_n \partial_x^n) f \\ &\equiv (b_1 \partial_{x_1} + b_2 \partial_{x_2} + \cdots + b_n \partial_{x_n}) f. \end{aligned} \quad (\text{A.1c})$$

$$\quad (\text{A.1d})$$

Let us next suppose that

$$(a_1 + a_2 + \cdots + a_m)^n = \sum_{\substack{\lambda_1 + \lambda_2 + \cdots + \lambda_m = n \\ r = 1, 2, \dots, C_{m+n-1}^n \\ \lambda_i \in \{0, 1, 2, \dots\}}} \delta_{nr} \prod_{i=1}^m a_i^{\lambda_i}, \quad (\text{A.2})$$

where δ_{nr} , $r = 1, 2, \dots, C_{m+n-1}^n$, are expansion coefficients. Using the definition of D -operators and the above conditions (A.1), we further get

$$\begin{aligned} &D_y^p D_t^q f \cdot f \\ &= (\partial_y - \partial_{y'})^p (\partial_t - \partial_{t'})^q \\ &\quad \times f(x, y, t) f(x, y', t')|_{y'=y, t'=t} \\ &= [a_1(\partial_{x_1} - \partial_{x'_1}) + a_2(\partial_{x_2} - \partial_{x'_2}) \\ &\quad + \cdots + a_m(\partial_{x_m} - \partial_{x'_m})]^p \\ &\quad \times [b_1(\partial_{x_1} - \partial_{x'_1}) + b_2(\partial_{x_2} - \partial_{x'_2}) + \cdots \\ &\quad + b_n(\partial_{x_n} - \partial_{x'_n})]^q f(x, y, t) f(x', y, t')|_{x'=x} \\ &= \sum_{\substack{r=1 \\ \lambda_1 + \lambda_2 + \cdots + \lambda_m = p \\ \lambda_i \in \{0, 1, 2, \dots, p\}}} \delta_{pr} \prod_{i=1}^m [a_i(\partial_{x_i} - \partial_{x'_i})]^{\lambda_i} \\ &\quad \times \sum_{\substack{s=1 \\ \omega_1 + \omega_2 + \cdots + \omega_n = q \\ \omega_j \in \{0, 1, 2, \dots, q\}}} \delta_{qs} \prod_{j=1}^n [b_j(\partial_{x_j} - \partial_{x'_j})]^{\omega_j} \end{aligned}$$

$$\begin{aligned}
& \times f(x, y, t) f(x', y, t) |_{x'=x} \\
= & \sum_{\substack{r=1 \\ \lambda_1 + \lambda_2 + \dots + \lambda_m = p \\ \lambda_i \in \{0, 1, 2, \dots, p\}}}^{\mathcal{C}_{m+p-1}^p} \delta_{pr} \prod_{i=1}^m (a_i D_i)^{\lambda_i} \\
\times & \sum_{\substack{s=1 \\ \omega_1 + \omega_2 + \dots + \omega_n = q \\ \omega_j \in \{0, 1, 2, \dots, q\}}}^{\mathcal{C}_{n+q-1}^q} \delta_{qs} \prod_{j=1}^n (b_j D_j)^{\omega_j} \\
& \times f(x, y, t) f(x', y, t) |_{x'=x} \\
= & (a_1 D_1 + a_2 D_2 + \dots + a_m D_m)^p (b_1 D_1 \\
& + b_2 D_2 + \dots + b_n D_n)^q f \cdot f. \tag{A.3}
\end{aligned}$$

It means that Lemma 2.1 holds.

References

1. Ma, W.X., Yong, X.L., Lü, X.: Soliton solutions to the B-type Kadomtsev–Petviashvili equation under general dispersion relations. *Wave Motion* **103**, 102719 (2021)
2. He, X.J., Lü, X., Li, M.G.: Bäcklund transformation, Pfaffian, Wronskian and Grammian solutions to the $(3+1)$ -dimensional generalized Kadomtsev–Petviashvili equation. *Anal. Math. Phys.* **11**(1), 4 (2021)
3. Ma, W.X.: Soliton solutions by means of Hirota bilinear forms. *Partial Differ. Equ. Appl. Math.* **5**, 100220 (2022)
4. Fan, E.G., Chow, K.W.: Darboux covariant Lax pairs and infinite conservation laws of the $(2+1)$ -dimensional breaking soliton equation. *J. Math. Phys.* **52**(2), 023504 (2011)
5. Hu, X.B., Li, Y.: Bäcklund transformation and nonlinear superposition formula of DJKM equation. *Acta Math. Sci.* **11**(2), 164–172 (1991). (in Chinese)
6. Lü, X., Hua, Y.F., Chen, S.J., Tang, X.F.: Integrability characteristics of a novel $(2+1)$ -dimensional nonlinear model: Painlevé analysis, soliton solutions, Bäcklund transformation, Lax pair and infinitely many conservation laws. *Commun. Nonlinear Sci. Numer. Simul.* **95**, 105612 (2021)
7. Chen, S.J., Ma, W.X., Lü, X.: Bäcklund transformation, exact solutions and interaction behaviour of the $(3+1)$ -dimensional Hirota–Satsuma–Ito-like equation. *Commun. Nonlinear Sci. Numer. Simul.* **83**, 105135 (2020)
8. Lü, X., Ma, W.X., Khalique, C.M.: A direct bilinear Bäcklund transformation of a $(2+1)$ -dimensional Korteweg–de Vries-like model. *Appl. Math. Lett.* **50**, 37–42 (2015)
9. Xia, J.W., Zhao, Y.W., Lü, X.: Predictability, fast calculation and simulation for the interaction solutions to the cylindrical Kadomtsev–Petviashvili equation. *Commun. Nonlinear Sci. Numer. Simul.* **90**, 105260 (2020)
10. Ma, W.X., Abdeljabbar, A.: A bilinear Bäcklund transformation of a $(3+1)$ -dimensional generalized KP equation. *Appl. Math. Lett.* **25**, 1500–1504 (2012)
11. Lü, X., Chen, S.J.: New general interaction solutions to the KPI equation via an optional decoupling condition approach. *Commun. Nonlinear Sci. Numer. Simul.* **103**, 105939 (2021)
12. Ismael, H.F., Bulut, H., Osman, M.S.: The N -soliton, fusion, rational and breather solutions of two extensions of the $(2+1)$ -dimensional Bogoyavlenskii–Schieff equation. *Nonlinear Dyn.* **107**(4), 3791–3803 (2022)
13. Lü, X., Chen, S.J.: Interaction solutions to nonlinear partial differential equations via Hirota bilinear forms: one-lump-multi-stripe and one-lump-multi-soliton types. *Nonlinear Dyn.* **103**(1), 947–977 (2021)
14. Han, P.F., Bao, T.: Hybrid localized wave solutions for a generalized Calogero–Bogoyavlenskii–Konopelchenko–Schiff system in a fluid or plasma. *Nonlinear Dyn.* **108**(3), 2513–2530 (2022)
15. Han, P.F., Bao, T.: Novel hybrid-type solutions for the $(3+1)$ -dimensional generalized Bogoyavlensky–Konopelchenko equation with time-dependent coefficients. *Nonlinear Dyn.* **107**(1), 1163–1177 (2022)
16. Ma, W.X.: Integrability. In: Scott, A. (ed.) *Encyclopedia of Nonlinear Science*, pp. 450–453. Taylor & Francis, New York (2005)
17. Ablowitz, M.J., Segur, H.: *Solitons and the Inverse Scattering Transform*. SIAM, Philadelphia (1981)
18. Hirota, R.: *The Direct Method in Soliton Theory*. Cambridge University Press, Cambridge (2004)
19. Hirota, R.: Direct methods in soliton theory. In: Bullough, R.K., Caudrey, P. (eds.) *Solitons*, pp. 157–176. Springer, Berlin (1980)
20. Newell, A.C., Zeng, Y.B.: The Hirota conditions. *J. Math. Phys.* **27**(8), 2016–2021 (1986)
21. Ma, W.X.: N -soliton solutions and the Hirota conditions in $(1+1)$ -dimensions. *Int. J. Nonlinear Sci. Num.* **23**(1), 123–133 (2022)
22. Ma, W.X.: N -soliton solutions and the Hirota conditions in $(2+1)$ -dimensions. *Opt. Quantum Electron.* **52**(12), 511 (2020)
23. Ma, W.X.: N -soliton solution and the Hirota condition of a $(2+1)$ -dimensional combined equation. *Math. Comput. Simul.* **190**, 270–279 (2021)
24. Freeman, N.C., Nimmo, J.J.C.: Soliton solutions of the Korteweg–de Vries and Kadomtsev–Petviashvili equations: the Wronskian technique. *Phys. Lett. A* **95**(1), 1–3 (1983)
25. Nimmo, J.J.C., Freeman, N.C.: A method of obtaining the N -soliton solution of the Boussinesq equation in terms of a Wronskian. *Phys. Lett. A* **95**(1), 4–6 (1983)
26. Ma, W.X., You, Y.: Solving the Korteweg–de Vries equation by its bilinear form: Wronskian solutions. *Trans. Am. Math. Soc.* **357**(5), 1753–1778 (2005)
27. Liu, F.Y., Gao, Y.T., Yu, X., Ding, C.C.: Wronskian, Gramian, Pfaffian and periodic-wave solutions for a $(3+1)$ -dimensional generalized nonlinear evolution equation arising in the shallow water waves. *Nonlinear Dyn.* **108**(2), 1599–1616 (2022)
28. Kadomtsev, B.B., Petviashvili, V.I.: On the stability of solitary waves in weakly dispersive media. *Sov. Phys. Dokl.* **15**(6), 539–541 (1970)
29. Ma, W.X.: The algebraic structures of isospectral Lax operators and applications to integrable equations. *J. Phys. A Math. Gen.* **25**(20), 5329–5343 (1992)
30. Lou, S.Y.: Symmetries of the Kadomtsev–Petviashvili equation. *J. Phys. A Math. Gen.* **26**(17), 4387–4394 (1993)
31. Ma, W.X.: Lump solutions to the Kadomtsev–Petviashvili equation. *Phys. Lett. A* **379**(36), 1975–1978 (2015)

32. Ma, W.X., Zhang, L.Q.: Lump solutions with higher-order rational dispersion relations. *Pramana J. Phys.* **94**(1), 43 (2020)
33. Lou, S.Y.: A novel (2+1)-dimensional integrable KdV equation with peculiar solutions structures. *China Phys. B* **29**(8), 080502 (2020)
34. Xu, G.Q.: Integrability of a (2+1)-dimensional generalized breaking soliton equation. *Appl. Math. Lett.* **50**, 16–22 (2015)
35. Huang, L.L., Chen, Y.: Nonlocal symmetry and similarity reductions for a (2+1)-dimensional Korteweg–de Vries equation. *Nonlinear Dyn.* **92**(2), 221–234 (2018)
36. Liu, N., Liu, X.Q.: Application of the binary Bell polynomials method to the dissipative (2+1)-dimensional AKNS equation. *Chin. Phys. Lett.* **29**(12), 120201 (2012)
37. Wazwaz, A.M.: N -soliton solutions for shallow water waves equations in (1+1) and (2+1) dimensions. *Appl. Math. Comput.* **217**(21), 8840–8845 (2011)
38. Clarkson, P.A., Mansfield, E.L.: On a shallow water wave equation. *Nonlinearity* **7**(3), 975–1000 (1994)
39. Liu, Q., Zhang, W.G.: Exact travelling wave solutions for the dissipative (2+1)-dimensional AKNS equation. *Appl. Math. Comput.* **217**(2), 735–744 (2010)
40. Yong, X.L., Zhang, Z.Y., Chen, Y.F.: Bäcklund transformation, nonlinear superposition formula and solutions of the Calogero equation. *Phys. Lett. A* **372**(41), 6273–6279 (2008)
41. Xu, G.Q., Wazwaz, A.M.: Characteristics of integrability, bidirectional solitons and localized solutions for a (3+1)-dimensional generalized breaking soliton equation. *Nonlinear Dyn.* **96**(3), 1989–2000 (2019)
42. Dorizzi, B., Grammaticos, B., Ramani, A., Winternitz, P.: Are all the equations of the KP hierarchy integrable? *J. Math. Phys.* **27**(12), 2848–2852 (1986)
43. Wu, J.P.: A new Wronskian condition for a (3+1)-dimensional nonlinear evolution equation. *Chin. Phys. Lett.* **28**(5), 050501 (2011)
44. Sato, M.: Soliton equations as dynamical systems on infinite dimensional Grassmann manifolds. *RIMS Kokyuroku* **439**, 30–46 (1981)
45. Kang, Y.L., Zhang, Y., Jin, L.G.: Soliton solution to BKP equation in Wronskian form. *Appl. Math. Comput.* **224**, 250–258 (2013)
46. Hirota, R.: Reduction of soliton equations in bilinear form. *Physica D* **18**(1–3), 161–170 (1986)
47. Hu, X.B., Li, Y.: A two-parameter Bäcklund transformation and nonlinear superposition formula of DJKM equation. *J. Grad. Sch. USTC* **6**(2), 8–17 (1989). (in Chinese)
48. Wang, Y.H., Wang, H., Temuer, C.: Lax pair, conservation laws, and multi-shock wave solutions of the DJKM equation with Bell polynomials and symbolic computation. *Nonlinear Dyn.* **78**(2), 1101–1107 (2014)
49. Yuan, Y.Q., Tian, B., Sun, W.R., Chai, J., Liu, L.: Wronskian and Grammian solutions for a (2+1)-dimensional Date–Jimbo–Kashiwara–Miwa equation. *Comput. Math. Appl.* **74**(4), 873–879 (2017)
50. Cheng, L., Zhang, Y., Ma, W.X., Ge, J.Y.: Wronskian and lump wave solutions to an extended second KP equation. *Math. Comput. Simul.* **187**, 720–731 (2021)
51. Chen, D.Y.: *Introduction to Solitons*. Science Press, Beijing (2006)
52. Crasovan, L.C., Kartashov, Y.V., Mihalache, D., Torner, L., Kivshar, Y.S., Pérez-García, V.M.: Soliton “molecules”: robust clusters of spatiotemporal optical solitons. *Phys. Rev. E* **67**(4), 046610 (2003)
53. Liu, X.M., Yao, X.K., Cui, Y.D.: Real-time observation of the buildup of soliton molecules. *Phys. Rev. Lett.* **121**(2), 023905 (2018)
54. Lou, S.Y.: Soliton molecules and asymmetric solitons in three fifth order systems via velocity resonance. *J. Phys. Commun.* **4**(4), 041002 (2020)
55. Xu, D.H., Lou, S.Y.: Dark soliton molecules in nonlinear optics. *Acta Phys. Sin.* **69**(1), 014208 (2020). ((in Chinese))
56. Chen, S.T., Ma, W.X.: Lump solutions to a generalized Bogoyavlensky–Konopelchenko equation. *Front. Math. China* **13**(3), 525–534 (2018)
57. Wazwaz, A.M.: Painlevé analysis for Boiti–Leon–Manna–Pempinelli equation of higher dimensions with time-dependent coefficients: multiple soliton solutions. *Phys. Lett. A* **384**(16), 126310 (2020)
58. Wazwaz, A.M.: New (3+1)-dimensional Date–Jimbo–Kashiwara–Miwa equations with constant and time-dependent coefficients: Painlevé integrability. *Phys. Lett. A* **384**(32), 126787 (2020)
59. Dong, J.J., Li, B., Yuen, M.W.: Soliton molecules and mixed solutions of the (2+1)-dimensional bidirectional Sawada–Kotera equation. *Commun. Theor. Phys.* **72**(2), 025002 (2020)
60. Ma, H.C., Huang, H.Y., Deng, A.P.: Soliton molecules and some interaction solutions for the (3+1)-dimensional Jimbo–Miwa equation. *J. Geom. Phys.* **170**, 104362 (2021)
61. Han, P.F., Bao, T.: Interaction of multiple superposition solutions for the (4+1)-dimensional Boiti–Leon–Manna–Pempinelli equation. *Nonlinear Dyn.* **105**(1), 717–734 (2021)
62. Han, P.F., Bao, T.: Construction of abundant solutions for two kinds of (3+1)-dimensional equations with time-dependent coefficients. *Nonlinear Dyn.* **103**(2), 1817–1829 (2021)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.