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Abstract
The aim of this paper is to study an extended modified Korteweg–de Vries–Calogero–
Bogoyavlenskii–Schiff (mKdV-CBS) equation and present its Lax pair with a spectral
parameter. Meanwhile, a Miura transformation is explored, which reveals the relationship
between solutions of the extended mKdV-CBS equation and the extended (2+1)-dimensional
Korteweg–de Vries (KdV) equation. On the basis of the obtained Lax pair and the existing
research results, the Darboux transformation is derived, which plays a crucial role in
presenting soliton solutions. In addition, soliton molecules are given by the velocity resonance
mechanism.

Keywords: extended mKdV-CBS equation, Lax pair, Darboux transformation, soliton solution

(Some figures may appear in colour only in the online journal)

1. Introduction

Nonlinear phenomena are general problems in every field of
engineering technology, science research, the natural world
and human society activities. Nonlinear integrable equations
play a crucial role in revealing nonlinear phenomena in var-
ious fields due to their fascinating features, such as N-soliton
solutions [1–6], Bäcklund transformations [7–9], Lax pairs
and the Painlevé test [10–13]. Among these integrable
features, the Lax pair is a wonderful representation of
integrable systems involving two linear operators, which can
be differential operators or matrices [14]. A pair of linear

operators L and A related to a given nonlinear partial differ-
ential equation may pave a way for solving the equation. It is
difficult to find L and A corresponding to a given equation, so
assuming that L and A are given and determining which
partial differential equation they correspond to is actually
simpler. The Painlevé test is widely and successfully used to
study the integrability of nonlinear partial differential
equations through analyzing the singularity structure of the
solution. There are abundant successful examples of the
method [14–16].

For integrable equations, in addition to investigating their
integrable properties, the study of exact solutions has always
been an important foundational topic in nonlinear science. There
are many types of effective approaches to solve integrable
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equations, such as the inverse scattering method [15, 16], the
Darboux transformation [17–20], Painlevé series expansion
method [21] and Hirota direct method [22]. Among the existing
techniques, the Darboux transformation is one of the most
important ways for discussing compatibility equations of spectral
problems. It is worth mentioning that the Darboux transformation
is extremely useful in finding soliton solutions for nonlinear
integrable equations from a trivial seed solution. In fact, through
iteration, N-soliton solutions represented by special determinants,
such as the Wronskian or Grammian, can be generated. Such N-
soliton solutions have certain research value and practical sig-
nificance in various scientific fields. Moreover, a Lax pair is very
helpful for constructing Darboux transformations of integrable
systems [23–25].

The Korteweg–de Vries (KdV) equation was first derived
analytically by Johannes Korteweg together with his student,
Gustav de Vries, in 1895 when they developed a theory for
nonlinear waves [26]. The standard KdV equation is written as

( )u uu u6 0, 1.1t x xxx+ + =

which describes the disturbance of long, one-dimensional water
waves on shallow-water surfaces with small amplitude [27]. By
using the recursion operator of the KdV equation [28]

( ) ( )u u u4 2 , 1.2x x x
2 1F º ¶ + + ¶-

the KdV equation (1.1) can also be referred to as

( )u u u 0,t x+ F =

where f f xd .x
1 ò¶ =- Moreover, applying the same form of the

KdV recursion operator (1.2), the (2+1)-dimensional Calogero–
Bogoyavlenskii–Schiff (CBS) equation is obtained by

( ) ( )u u u 0, 1.3t y+ F =

which is equivalent to

( )u u uu u u4 2 0. 1.4t xxy y x x y
1+ + + ¶ =-

Taking the potential u=jx, equation (1.4) becomes

( )4 2 0. 1.5xt xxxy x xy xx yj j j j j j+ + + =

The CBS equation, also known as the breaking soliton equation,
was proposed by Calogero and Degasperis [29], and also con-
structed by Bogoyavlenskii and Schiff via different techniques
[30, 31]. This equation is widely used to describe the (2+1)-
dimensional interaction between Riemann waves and long waves
in shallow water [30, 31]. The KdV equation and the CBS
equation are two well-known integrable models in (1+1) and (2
+1)-dimensions, respectively, both possessing N-soliton solu-
tions [22, 32, 33], Painlevé properties and infinitely many con-
servation laws [14, 34].

As a modified form of the standard KdV equation (1.1) in
the nonlinear term, the modified Korteweg–de Vries (mKdV)
equation

( )v v v v6 0, 1.6t x xxx
2- + =

is also one of the well-known nonlinear integrable equations.
Miura transformations exist between the KdV equation and
the mKdV equation. The following Miura transformation

( )u v v , 1.7x
2= - 

connects the solution u of the KdV equation (1.1) with
the solution v of the mKdV equation (1.6) [35]. Similarly,
employing the Miura transformation (1.7), the modified
Calogero–Bogoyavlenskii–Schiff (mCBS) equation

( ) ( )v v v v v v4 2 0, 1.8t y x x y xxy
2 1 2- - ¶ + =-

can be derived from the CBS equation (1.4) [32]. It is easy to
see that equation (1.8) is reduced to the modified KdV
equation (1.6) in the case of y= x. The N-soliton solutions for
the mCBS equation (1.8) can be generated through the Hirota
direct method [32, 36].

Latterly, a novel (2+1)-dimensional mKdV system

( )
( )

u u u u u u u u u4 2 6 0,

1.9
t y x x y xxy x xxx

2 1 2 2- - ¶ + - + =-

was introduced by combining the mKdV equation (1.6) and
the mCBS equation (1.8) by Wang and Wazwaz et al [37–39].
This equation is known as the (2+1)-dimensional modified
Korteweg–de Vries–Calogero–Bogoyavlenskii–Schiff (mKdV-
CBS) equation, which has attracted the attention of many scho-
lars. The nonlocal symmetry and soliton-cnoidal wave interaction
solutions for equation (1.9) were established by virtue of the
truncated Painlevé expansion and consistent Riccati expansion
approach, respectively [37]. A large number of solutions with
various physical characteristics, including multiple soliton solu-
tions, kink solutions and singular solutions [38], were given by
applying the simplified Hirota’s method and other ways. By
means of a direct symbolic computation, three classes of rational
solutions for equation (1.9)were presented [39]. To the best of our
knowledge, the Lax pair with a spectral parameter and Darboux
transformation for equation (1.9) have not been revealed in pre-
vious articles.

In our previous work, a (2+1)-dimensional generalized
KdV equation was investigated in the form [40]

( )
( ) ( )

a uu u

b u u u uu cu

6

2 4 0, 1.10
x xxx

xxy x x y y t
1

g
g g

+

+ + ¶ + + =-

where the constants a, b, c and γ satisfy γc(a2+ b2)≠ 0.
Obviously, taking a= b= c= γ= 1, equation (1.10) is a
combination of the KdV equation (1.1) and the CBS
equation (1.4), which is also referred to as the (2+1)-
dimensional KdV-like model [8]. The bilinear Bäcklund
transformation and Lax pair for equation (1.10) were obtained
[40], implying that a linear combination in a soliton hierarchy
is still integrable. The extended form (1.10) may potentially
describe the propagation of long, two-dimensional solitary
waves in the branches of physics, including plasma physics,
condensed matter, nonlinear optics and fluid dynamics.

Motivated by the recent studies mentioned above, we
will consider an extension of the mKdV-CBS equation (1.9)
by connecting equation (1.10), written as

( )
( ( ) )

( )

a v v v

b v v v v v cv

6

2 4 0,

1.11

xxx x

xxy x x y y t

2 2

2 1 2 2 2

g

g g

-

+ - ¶ - + =-

2
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where the constants a, b, c and γ are arbitrary, which satisfy
γc(a2+ b2)≠ 0. It is obvious that for a= b= c= 1 and
γ=± 1, equation (1.11) reduces to the mKdV-CBS
equation (1.9). Taking a= b= c= 1 and 1g =  - ,
equation (1.11) yields the following mKdV-CBS equation:

( ) ( ( ) )
( )

v v v v v v v v v6 2 4 0.

1.12
xxx x xxy x x y y t

2 1 2 2+ + + ¶ + + =-

We can clearly see that the extended form (1.11) contains sig-
nificant integrable equations as its special cases, such as the
mKdV equation and the mCBS equation. The mKdV equation
and the mCBS equation possess wide applications in the fields
of nonlinear science [41, 42]. In particular, the mKdV equation
is used to describe the propagation of solitons in lattices, the
motion of nonlinear Alfvén waves in plasma and fluid
mechanics [41]. Therefore, we believe that equation (1.11) can
be effectively applied in practical systems.

The paper is structured as follows. In section 2, based on
the Lax pair of equation (1.10), the extended mKdV-CBS
equation (1.11) will be derived, thereby presenting its Lax
pair with a spectral parameter. Furthermore, the Darboux
transformation will be furnished with the help of the obtained
Lax pair. In section 3, one-soliton, two-soliton solutions and
soliton molecules will be explored for equation (1.11). Some
concluding remarks will be given in the final section.

2. Lax pair and Darboux transformation

In this section, we first present the Lax pair of the generalized
KdV equation (1.10) obtained through the bilinear Bäcklund
transformation [40]. The Lax pair of equation (1.10) can be
expressed as

( )L u a, 2.1x1
2 g l= ¶ + -

( )
( ( ) ) ( )

L c a u u

b u u b

4 6 3

2 4 , 2.1

t x x x

x y x y y

2
3

1

g g

g l g

= ¶ + ¶ + ¶ +

+ ¶ ¶ + ¶ --

where λ is an arbitrary constant. We see that equation (1.10)
arises from the compatibility condition [L1, L2]= 0 of the
above system. The system (2.1) is equivalent to the following
representation:

( )u a, 2.2xxf lf g f= -

( )

( ( ) ) ( )

u u

u u b

4 6 3

2 4 , 2.2

t
a

c xxx x x

b

c x y x y y
1

f f g f g f

g f lf g f

=- + +

- ¶ + --

where f is an eigenfunction and λ is a spectral parameter. The
compatibility condition fxxt= ftxx is nothing but the potential
u is a solution of equation (1.10). We next consider another
second-order spectral problem corresponding to (2.2a) as
follows:

( )v2 , 2.3xx xy ly g y= -

where ψ is an eigenfunction and λ is a spectral parameter.
Substituting the transformation [22]

( )e 2.4v1y f= g- ¶-

between the eigenfunctions f and ψ into (2.3), then (2.3)
becomes

( ) ( )v v . 2.5xx x
2 2f g g f lf+ - - =

Setting

( )u v v , 2.6x
2g= - -

then we see that (2.5) is the spectral problem (2.2a). More-
over, substituting (2.4) and (2.6) into (2.2b), a direct calcul-
ation yields

[( ) ]

[( ( ) )

( ) ] ( )

v v v

v v

v

2 2 4 4

2 2

4 4 , 2.7

t
a

c x x

b

c x y y x

y x y

2 2

2 1 2

1

y g g l y lg y

g g y

ly lg y

= + - -

+ ¶ +

- - ¶

-

-

where (2.2a) and the following constraint

[ ] [ ( ) ]

( )

a

c
v v

b

c
v v v v2 2 0

2.8

xx x y xy x t
2 3 2 1 2 1g g- + ¶ - - ¶ =- -

have been applied. It is easy to observe that condition (2.8) is
just equation (1.11) by taking the derivative with respect to x
at both ends of (2.8). By using (2.3) and (2.7), it can directly
verify that the compatibility condition ψxxt= ψtxx is nothing
but the potential v is a solution of the extended mKdV-CBS
equation (1.11). Namely, setting

( )L v a2 , 2.9x x1
2 g l¢ = ¶ + ¶ -

[( ) ]

[( ( ) ) ( )]
( )

L c a v v v

b v v v

b

2 2 4 4

2 2 4 4 ,

2.9

t x x

x y y x y x y

2
2 2

2 1 2 1

g g l lg

g g l lg

¢ = ¶ - + - ¶ -

- ¶ + ¶ - ¶ - ¶- -

equation (1.11) is generated from the compatibility condition
[ ]L L, 01 2¢ ¢ = of these two operators. This shows the system (2.9)
is a Lax pair of equation (1.11). Further, we also found
that formula (2.6) is a Miura transformation, which provides
a relation between solutions of equation (1.10) and equation (1.11).

In the following, according to the spectral problem (2.3), we
derived the Darboux transformation for the extended mKdV-CBS
equation (1.11) via the same method presented in the existing
literature [14, 19, 22]. We consider a linear transformation ¯y y

¯ ( ), 2.10xy sy y= +

which transforms (2.3) into the following spectral problem with a
potential v̄

¯ ¯ ¯ ¯ ( )v2 . 2.11xx xy ly g y= -

Applying the spectral problem (2.3), the above transformation
(2.10) becomes

¯ ( )
( )

( )

v v v v

v

2 4 4 2

1 2 2 .

2.12

xx x xx x x

x

2 2y g g s g s s gs ls y

l s gs y

= - - + + - +

+ + -

In addition, substituting (2.10) and its first-order derivative into
(2.11) gives

¯ ( ¯ ¯ ¯ )
( ¯ ) ( )

vv v v
v

4 2 2
2 . 2.13

xx x x
2y g s gs g ls y

gls l y
= - - +

+ - +

3
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Comparing the coefficients of ψx and ψ in (2.12) and (2.13), we
have

¯ ( )v v , 2.14xs
gs

= -

¯ ¯ ¯ ( )
v v a v v

vv v v

4 4 2 2

4 2 2 . 2.15
xx x x

x

2 2

2

s sg gs g g
sg g gs

+ - - -
= - -

Substituting (2.14) into (2.15) and integrating the resulting form,
we get

( )v2 , 2.16x
2 1 2

1s s gs s l- + =- - -

where λ1 is a constant. Furthermore, assuming ff x
1s = - - and

substituting it into (2.16) yields

( )f vf f2 . 2.17xx x 1g l+ =

Consequently, the above results can be summarized as the fol-
lowing theorem:

Theorem 2.1. Suppose that the linear problems (2.3) and
(2.11) of equation (1.11) have potentials v and v̄ , respectively.
Then the linear transformation

¯ ( )
( )

( )f x

f x
,

,

,
2.18x

x

1

1
y y sy s

l
l

= + = -

converts (2.3) into (2.11), where

⎡
⎣⎢

⎤
⎦⎥

¯
( )
( )

( )v v
f x

f x

1
ln

,

,
, 2.19x

x

1

1g
l
l

= +

and f is the fixed solution of (2.3) with 1l l= .

As we know, transformation (2.18) with (2.19), which
transforms the linear problem (2.3) into the linear problem
(2.11) with the same form, is defined as the Darboux trans-
formation [14, 22]. It is worth pointing out that the Darboux
transformation is very powerful in constructing soliton solu-
tions. Before applying the above theorem to soliton theory,
we also need to consider the following proposition:

Proposition 2.1. Suppose that f satisfies (2.17) and the
following temporal part

[( ) ]

[( ( ) )

( ) ] ( )

f v v f vf

v v f f

v f

2 2 4 4

2 2 4

4 . 2.20

t
a

c x x

b

c x y y x y

x y

2 2
1 1

2 1 2
1

1
1

g g l l g

g g l

l g

= + - -

+ ¶ + -

- ¶

-

-

Under the Darboux transformation (2.18) with (2.19), then ȳ
satisfies

¯ [( ¯ ¯ ) ¯ ¯ ¯ ]

[( ( ¯ ) ¯ ) ¯

¯ ( ¯ ) ¯ ] ( )

v v v

v v

v

2 2 4 4

2 2

4 4 . 2.21

t
a

c x x

b

c x y y x

y x y

2 2

2 1 2

1

y g g l y lg y

g g y

ly lg y

= + - -

+ ¶ +

- - ¶

-

-

Using the same calculation as described in the existing
literature [14, 19], the proof of proposition 2.1 will be given
in appendix.

3. Soliton solutions and soliton molecules

From the presented results in section 2, it can be seen that if v
is a solution to the extended mKdV-CBS equation (1.11),
then v̄ determined by (2.19) is also a solution of
equation (1.11). We now construct soliton solutions for
equation (1.11) by utilizing the Darboux transformation.
Taking v= 0 as the seed solution and choosing k1 1

2l = in
(2.17) and (2.20), we obtain the following linear partial
differential equations:

( )f k f a, 3.1xx 1
2=

( ) ( )

( )

f
a

c
k f

b

c
d f k f k d f

b

4 2 4 4 ,

3.1

t x x y1
2 2

1 1
2

1
2

2g g= - + - -

where d1, d2 are arbitrary integral constants, and k1 is a non-
zero constant. Solving the above system (3.1), we have

( )f C e C e , 3.21 21 1= +x x-

with

⎡⎣ ⎤⎦( )

( )

k x l y k d k k l t

d

2 4

, 0. 3.3

a

c

b

c1 1 1
4

1
3 2

1 1 1
2

1

1
0

2

x g

x

= + - - -

+ =

Here C1, C2, l1, d1 and 1
0x are arbitrary given that every term

in the solution makes sense. Through transformation (2.19),
an exact one-soliton solution of equation (1.11) can be given
as

¯
( )

( )v
C C k

C e C e

4
. 3.41 2 1

1
2 2

2
2 21 1g

=
-x x-

In particular, taking C C ei , i 12 1= = -d- , the above one-
soliton solution (3.4) can be expressed as

¯ ( ) ( )v
k2i

sech 2 , 3.51
1g
x d= +

where ξ1 is defined by (3.3) and δ is an arbitrary constant.
We iterate the above Darboux transformation, a direct

computation yields:

⎡
⎣

⎤
⎦

⎡
⎣

⎤
⎦

¯̄ ¯

( )

¯ ( )
¯ ( )

( ( ) ( ))
( ( ) ( ))

v v

v

ln

ln , 3.6

x

x x

W f x f x

W f x f x x

1 ,

,

1 , , ,

, , ,

x

r x x

r

2

2

1 2

1 2

= +

= +

g
y l
y l

g
l l
l l

where Wr( f (x, λ1), f (x, λ2))= f (x, λ1)fx(x, λ2)− f (x, λ2)fx(x,
λ1) is the standard Wronskian determinant. Let us take

⎡⎣ ⎤⎦

( ) ( )

( )

( )

v f x f x

k x l y k d k k l t

i

0, , cosh , , sinh ,

2 4

, 1, 2. 3.7

i i i
a

c i
b

c i i i

i

1 1 2 2

4 3 2
1

2

0

l x l x

x g

x

= = =

= + - - -

+ =

4
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A two-soliton solution of equation (1.11) possesses the form

( )
¯̄

( ) ( )
[( ) ( ) ( ) ( )]

3.8
v

k k k k

k k k k

2 sinh 2 sinh 2

cosh cosh
,1

2
2
2

2 1 1 2

1 2
2 2

1 2 2 1
2 2

1 2

x x
g x x x x

=
- +

+ - - - +

with ξi, i= 1, 2 being given by (3.7) and the parameters
involved make the solution meaningful. The N-times iterated
or N-fold Darboux transformation leads to

⎡
⎣⎢

⎤
⎦⎥

[ ]
( ( ) ( ) ( ))
( ( ) ( ) ( ))

( )

v N v
W f x f x f x

W f x f x f x

1
ln

, , , , , ,

, , , , , ,
,

3.9

r x x x N

r N x

1 2

1 2


g

l l l
l l l

= +

where

( ( ) ( ) ( ))
( ( ))

W f x f x f x

f x

, , , , , ,

det , .

r N

x
i

j i N j N

1 2

1
1 ,1

l l l

l= ¶ -
   

Furthermore, we choose

⎡⎣ ⎤⎦

( ) ( )

( )

( )

v f x f x

k x l y k d k k l t

i N

0, , cosh , , sinh ,

2 4

, 1 ,

3.10

l l l l

i i i
a

c i
b

c i i i

i

2 1 2 1 2 2

4 3 2
1

2

0

l x l x

x g

x

= = =

= + - - -

+

+ +

 

then the function v[N] defined by (3.9) and (3.10) is an
N-soliton solution of equation (1.11). Figure 1 shows the
evolution of a special two-soliton solution ¯̄v determined by
(3.8) with the parameter selections

( )

a b c k l k l

d

1, 1, 3, 2, 1,

0.

3.11

1 1 2 2

1 1
0

2
0

g

x x

= = = = = = = = -

= = =

Figure 2 displays the propagation of a special three-soliton
solution determined by (3.9) with (3.10) under the parameter
selections

( )

a b c k l k l

k l d

1, 1, 3, 2, 1,

3, 4, 0.

3.12

1 1 2 2

3 3 1 1
0

2
0

3
0

g

x x x

= = = = = = = = -

= = - = = = =

It can be observed that two or three solitary waves propagate
at a certain speed, collide after a while, and then continue to
propagate in their original shapes.

Soliton molecules are bound states of solitons, which
have been observed in systems from optical fibers to mode-
locked lasers. At present, soliton molecules have increasingly
become an interesting topic in various areas, including

Figure 1. Three-dimensional plots of ¯̄v determined by (3.8) with (3.11) when t=−2 in (a), t= 0 in (b) and t= 2 in (c).

Figure 2. Three-dimensional plots of v[3] determined by (3.9) with (3.10) and (3.12) when t=− 1.6 in (a), t= 0 in (b) and t= 1.6 in (c).

5

Commun. Theor. Phys. 77 (2025) 035002 L Cheng et al



nonlinear optics, fluid mechanics and Bose–Einstein con-
densates, since they provide important insights into the fun-
damental interactions between solitons and the potential
dynamics in complex nonlinear systems. There are different
solution methods for finding soliton molecules, for instance,
the velocity resonance mechanism proposed by Lou [43, 44].
A new mechanism for discovering soliton molecules, called
velocity resonance, was introduced by employing velocity
resonance ki/kj= ωi/ωj, where the parameters ki, kj and ωi, ωj

are wave numbers and frequencies, respectively. Under the
above resonant condition, the ith and jth solitons are bounded
and develop a soliton molecule by choosing appropriate
solution parameters. This method can not only be extensively
applied to (1+1)-dimensional systems [45], but also to
higher-dimensional nonlinear systems [44]. In this section, we
would like to investigate soliton molecules of equation (1.11).

For the (2+1) dimensional equation (1.11), the velocity
resonant conditions become

( )

( )
( )

k

k

l

l

k d k k l

k d k k l
k k

2 4

2 4
, .

3.13

i

j

i

j

a

c i
b

c i i i

a

c j
b

c j j j
i j

4 3 2
1

2

4 3 2
1

2

g

g
= =

- + -

- + -
¹ 

The solution of equation (3.13) can be obtained as follows:

( )l
ak

b
l

ak

b
, . 3.14i

i
j

j= - = -

Therefore, via the resonance condition (3.14), the two-soliton
solution (3.8) of equation (1.11) yields a two-soliton molecule

¯̄

( )

( )( )
[( ) ( ) ( ) ( )]

v

k x k y k t i

,

, 1, 2, 3.15

k k k k

k k k k

i i
a

b i
b d

c i i

2 sinh 2 sinh 2

cosh cosh

2 0

1
2

2
2

2 1 1 2

1 2
2 2

1 2 2 1
2 2

1 2

2
1x x

=

= - + + =

x x
g x x x x

g

- +

+ - - - +

with arbitrary non-zero constants ki and d1.
From solution (3.15), a special two-soliton molecule

profile of ¯̄v with the parameters

( )
a b c k k

d

1, 1, 0.5,

3, 1, 2, 3.16
1 2

1 1
0

2
0

g
x x

= = = = = =

= = =

is plotted in figure 3. It can be observed that two line soliton
waves are parallel to each other in the (x, y)-plane, and they
carry different widths and amplitudes due to k1≠ k2, l1≠ l2.
However, the velocities of the two solitons in the molecule
are the same. It is also worth explicitly noting that the
selection of the parameters 1

0x and 2
0x will cause a change in

the distance between two solitons in the molecule.

4. Concluding remarks

In summary, an extended mKdV-CBS equation (1.11) has
been explored by means of the existing results, thereby pre-
senting its Lax pair with a spectral parameter. Meanwhile, a
Miura transformation has been found, which provides a
relation between solutions of the extended mKdV-CBS
equation (1.11) and the extended KdV equation (1.10). Then,
associated with the resulting Lax pair, the Darboux transfor-
mation has been derived to the introduced equation in detail.
The resultant Darboux transformation has been applied to
soliton solutions. Furthermore, the soliton molecules have
been given by the velocity resonance mechanism. Our results
indicate that equation (1.11) is integrable and they provide
good supplements to the existing literature. The present study
is believed to contribute to a general understanding of the
complex dynamical phenomena in areas such as fluids, ocean
dynamics and plasmas. In particular, the investigation of
soliton solutions would be helpful in describing the behaviors
of wave propagations in dispersive wave theories.

We also point out that equation (1.11) can be written as a
Hirota bilinear form:

· ( )D f f a0, 4.1x
2 ¢ =

( ) · ( )aD bD D cD f f b0, 4.1x x y t
3 2+ + ¢ =

under the logarithmic transformations

⎡
⎣⎢

⎤
⎦⎥

( ) ( ) ( )v
f

f
ff

1
ln , ln , 4.2

xg
r=

¢
= ¢

Figure 3. Three-dimensional plots of ¯̄v determined by (3.15) with (3.16) when t= 0 in (a), t= 2 in (b) and density plot in (c).
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where the auxiliary function ρ satisfies ρxx+ γ2v2= 0 and D
is the Hirota’s bilinear differential operator [1]. There are any
potential extensions or future research directions that could be
built upon our work. A large number of interesting solutions
generated by the Darboux transformation and the Hirota
bilinear form, including lump solutions [46–49], Hirota N-
soliton solutions, breathers and Wronskian solutions
[4, 7, 50–52], will be discussed in the future.
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Appendix

We give a proof of proposition 2.1.

Proof. We differentiate the transformation (2.18) with respect
to t, and by using (2.7), we obtain

⎡⎣

⎤⎦

⎡⎣

⎤⎦

¯ ( )

( )

( )

( ) ( )
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A B B vB
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2

2

4 4 ,
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a

c x
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c x t x
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c x

b
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c y xy

1 1 1, 1

2 2 2, 2

1 1, 1

2 2, 2

y s s gs

s s gs s y

s ls

s ls y ly lsy

= + + -

+ + + - +

+ + +

+ + + - +

where

( ) ( )
A v B v v

A v B v v

4 , 4 2 2 ,

4 , 2 2 . A2
x

x y x y y

1 1
2 2

2
1

2
2 1 2

lg l g g
lg g g

=- = - + +

=- ¶ = ¶ +- -

In addition, substituting (2.18) into (2.21) yields

}
{ }

{¯ [ ¯ ¯ ( )]

[ ¯ ¯ ( ) ]

( ¯ ¯ ) ( ¯ ¯ )

( ) ( )
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A B A B

1 2
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b

c

b
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where

¯ ¯ ¯ ¯ ¯
¯ ¯ ¯ ( ¯ ) ¯ ( )
A v B v v

A v B v v

4 , 4 2 2 ,

4 , 2 2 . A4
x

x y x y y

1 1
2 2

2
1

2
2 1 2

lg l g g
lg g g

=- = - + +

=- ¶ = ¶ +- -

To prove proposition 2.1, we only need to prove that the
above two expressions hold simultaneously.

Let us firstly verify that the coefficients of ψ in (A1) and
(A3) are equal. According to (2.18) and (2.19), we can obtain
the following relational expressions:

( )v1 2 , A5x 1
2s gs l s= - + +

( )v v2 2 2 , A6xy y y y1s gs gs l ss= + +

⎛
⎝

⎞
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¶ =-

⎛
⎝

⎞
⎠

( )v2 . A8x

y
y y

y
1 2

s
s

l s g
s
s

= + +

By using (A5), we have

( ¯ ) ( ¯ )
( ) ( )

A A B B A

v4 1 2 0, A9
x

x x

1 1 1 1 1,

1
1

2

ls s
ls s gs l s s
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= - - + =-

which is equivalent to

¯ ¯ ( )A A B A B , A10x1 1, 1 1 1s ls ls+ + = +

with A1, B1 and ¯ ¯A B,1 1 being given by (A2) and (A4),
respectively. To verify

¯ ¯ ( )A A B A B , A11x2 2, 2 2 2s ls ls+ + = +

we next only need to verify

( ¯ ) ( ¯ ) ( )A A B B A 0, A12x2 2 2 2 2,ls s- + - - =

with A2, B2 and ¯ ¯A B,2 2 being given by (A2) and (A4),
respectively. By applying (2.14), (2.19), (A7) and (A8), a
direct computation leads to

⎡
⎣⎢

⎤
⎦⎥

( )
( ¯ ) ( ¯ )
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So we need to show
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that is to say
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On the one hand, again by using (A8) and (A5), the left hand
side of (A15) becomes
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On the other hand, by applying (A5) and (A6), the right hand
side of (A15) becomes

( )( ) ( )

( )

v v

v v

v v . A17

x
y y y

y y y

y

2 2 1 1
1

1 1 1
2

1
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g
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s

s

s s

s

This shows that (A11) is valid. Hence, from (A10) and (A11),
we can see that the coefficients of ψ in (A1) and (A3) are
equal.

Let us secondly verify that the coefficients of ψx in (A1)
and (A3) are also equal. By employing (2.18 ) and (2.20), we
get
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We now verify the following equality:
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Via (A18), (A5), (2.14) and (2.19), a direct calculation yields
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By virtue of the formula (A9) associated with the spectral
parameter λ1 , the final expression in (A20) is equal to zero.
Directly we can also compute that

( )
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where the formulas (A5), (A7) and (A11) associated with the
spectral parameter λ1 have been applied. Therefore, based on

(A20) and (A21), we show that equality (A19) holds. This
completes the proof.
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