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Through the Hirota bilinear formulation and the symbolic computation software Maple, we construct lump-type so-
lutions for a generalized (3+1)-dimensional Kadomtsev—Petviashvili (KP) equation in three cases of the coefficients in the
equation. Then the sufficient and necessary conditions to guarantee the analyticity of the resulting lump-type solutions (or
the positivity of the corresponding quadratic solutions to the associated bilinear equation) are discussed. To illustrate the
generality of the obtained solutions, two concrete lump-type solutions are explicitly presented, and to analyze the dynamic
behaviors of the solutions specifically, the three-dimensional plots and contour profiles of these two lump-type solutions
with particular choices of the involved free parameters are well displayed.
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1. Introduction

The physical phenomena and processes that occur in na-
ture generally have complicated nonlinear features. Nonlinear
evolution equations, arising as the significant models for inves-
tigating the natural phenomena of science and engineering, ap-
pear in an extensive diversity of applications in solitary wave
theory, hydrodynamics, meteorology, optical fibers, quantum
mechanics, ocean engineering, plasma physics, condensed
matter physics, and so on. Therefore searching for exact solu-
tions of nonlinear evolution equations plays an important role
in the analysis of these physical phenomena and engineering
applications and has gradually become one of the most signif-
icant topic for both physicists and mathematicians. Up to now,
a variety of exact nonlinear wave solutions for nonlinear evo-
lution equations have been well constructed, including solitary
waves, cnoidal waves, rogue waves, period waves, lump solu-
tions, shock waves, compactons, peakon propeller solitons, as
well as kinds of interaction waves. Among all these solutions,
lump solutions have attracted a growing amount of attention in
soliton theory in recent years, based on both theoretical predic-
tions and experimental observations.'=3! Lump solutions are
a kind of analytical rational function solutions, localized in all
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directions in space. They can be used to describe nonlinear
patterns on the surface of shallow water with dominating sur-

(451 in plasma,®! in nonlinear optic media, ! in

face tension,
the Bose—Einstein condensation,”!9 in thin elastic plates,!'!]
etc. From nice properties of lump solutions one can un-
derstand the shapes, amplitudes, velocities of solitons after
the collision with other solitons. Till now, many researchers
have studied lump solutions of different nonlinear equations.
For instance, Gilson and Nimmo!'?! presented lump solutions
of the B-type KP (BKP) equation. Imai!'¥ found dromion
and lump solutions of the Ishimori-I equation. Satsuma and
Ablowitz!'4l originated lump solutions in the two-dimensional
(2D) nonlinear dispersive systems, Kaup!!3! constructed the
lump solutions for the three-dimensional (3D) three-wave res-
onant interaction. More recently, making full use of the sym-
bolic computation software Maple, one of the authors (Ma)
and his collaborators have offered plentiful of lump and lump-
type solutions to various (2+1)-dimensional [(2+1)-D] and
(3+1)-dimensional [(3+1)-D] nonlinear and linear equations,
such as the KP equation,[lé’m the BKP equation,“g’lg] the
KP equation with a self-consistent source,”” the (2+1)-D
Ito equation,?’:??! the Hirota—Satsuma—Ito equation,?3! the
generalized Bogoyavlensky—Konopelchenko equation,®*! the
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(2+1)-D extended KP equation,'?>! the generalized Calogero—
Bogoyavlenskii—Schiff equation, *%! the (3+1)-D Jimbo-Miwa
equation,?”! the (3+1)-D linear PDEs,?®! the (3+1)-D nonlin-
ear evolution equation, " and so on.

In this paper, we shall focus on a generalized (3+1)-D KP
equation in the following form

P(u) 1 = 3(ugtty)x + Ugery + Ot Uy + 001y,
+ 03Uy + Olgltyz + sty + Olgliy + Ol7Uxx

+ agutyy + Ooutyy + Aol = 0, (D

including all linear second-order derivative terms, where «;
(i=1,...,10) are arbitrary constants. As the extended version
of the KP equation, the generalized (3+1)-D KP equation (1)
with a; (i =1,...,10) being random constants covers many
specific equations (see the following paragraphs). In order
to boost the possible applications of these equations in ocean
studies and other fields, it is necessary to find analytical form
of the lump-type waves for Eq. (1). As soon as the solution of
the generalized (3+1)-D KP equation is given, the lump-type
solution for all these specific equations can be acquired just by
selecting different coefficients.

When a; = —3, a5 = 2, and the other ¢; are zeros, equa-
tion (1) becomes the (3+1)-D Jimbo—Miwa (JM) equation

3(uxtty ) x + Urxxy — 3ty + 21y = 0. 2)

This equation was first introduced by Jimbo and Miwa
in 1983.5% It is the second member in the entire KP

B11 which is used to describe certain interesting

hierarchy,
(3+1)-D waves in physics. The JM equation (2) has inves-
tigated regarding its solutions, non-integrability, and symme-
tries. The Painlevé method, the tanh-coth method, the simpli-
fied Hirota’s method, the extended homoclinic test approach, a
transformed rational function method, and other methods were
applied to obtain solitons, periodic, complexiton, lump-type
solution, and travelling wave solutions to Eq. (2).[27-32-34]

While a3 = o5 = — 019 = 1, we have the generalized KP

equation
3(uxuy)x + Uxxy + Uy + Uy — Uz = 0. (3)

Numerous studies have been conducted on extracting exact
solutions and related properties to Eq. (3). For example, in
Ref. [35], based on the Pliicker relation and the Jacobi iden-
tity for determinants, Wronskian and Grammian formulations
are established. Applying the proposed bilinear Bécklund
transformation, Ma and his collaborators have computed two
classes of exponential and rational travelling wave solutions
with arbitrary wave numbers.!3®) Moreover, quasiperiodic
waves, solitary waves, asymptotic properties, and rogue waves
with interaction phenomena of Eq. (3) have been discussed in
Ref. [37].

When o3 = o5 = 0 = —07 = —0t9 = 1, equation (1)
reduces to the (3+1)-D BKP equation

3(”xuy)x + Uxxxy + (ux + Uy + Mz)t - (”xx + uZZ) =0, 4)

which can be applied to describe the propagation of nonlinear
waves in fluid dynamics. One-, two-, and multiple-soliton so-
lutions for Eq. (4) have been discussed by Wazwaz.38! Con-
servation laws for Eq. (4) have been constructed, along with
some exact solutions.?°! Bilinear-form and Bell-polynomial-
form Bécklund transformations for Eq. (4) have been pre-
sented, along with some soliton solutions as well.[ 91 On the
basis of the bilinear equation of the (3+1)-D BKP equation,
Zhao and Han!*!! constructed its lump-type solutions by sym-
bolic computation.

In Ref. [42], Ma applied the multiple exp-function algo-
rithm to construct multiple wave solutions to the (3+1)-D gen-
eralized BKP equation

3(“xuy)x + Uy — Uyt — Uy = 0, )

where the constants are chosen as o = o5 = —1. The resulting
solutions involve generic phase shifts and wave frequencies.

Letting 03 = 05 = 0 = —Q7 = —0g = —Qjp = 1, we
have the (3+1)-D generalized BKP equation

3(uxuy)x + Usxxy + (ux +uy + Mz)t - (uxx + uyy + uzz) =0. (6)

Wazwaz has established the one and two soliton solutions for

equation (6) by using the simplified Hereman—Nuseir form. [33]
By taking o3 = a5 = 09 = —atjp = 1, equation (1) turns

into the (3+1)-D generalized KP-Boussinesq equation (4344

3(uxtty) x + Urexy + (e + 1y + 1) —u; = 0. @)

Kaur and Wazwaz!*! have explored lump solutions for Eq. (7)
by reducing its (3+1)-D version into a (2+1)-D one, and they
analyzed the sufficient and necessary conditions for assuring
analyticity, positivity, and rational localization of the solutions
at the same time.

If the coefficients are taken as o5 = —1, 067 = a9 = —3,
equation (1) becomes the generalized BKP equation

3(’/‘x”y>x + Uy — Uy — 3(’/‘xx + uzz) =0, )

which is just the model investigated by Wazwaz et al. in
Ref. [46], where the authors derived the multiple soliton so-
lutions by the simplified Hirota’s direct method. Later, by
making use of the same method, Wazwaz has also studied
the multiple soliton solution for the generalized (3+1)-D KP
equation!*]

3(uxtty) x + Uy + (1 + 1y + 1) —uz; =0, 9)
3(txty)x + Uy +2(x + 1y + 1 ); — 3u, =0, (10)

3(uxtty)x + Upery + 20ty — 3(ux + 1y +u;), =0.  (11)
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In what follows, we begin with the Hirota bilinear form
of the generalized (3+1)-D KP equation and make some as-
sumptions by the superposition of quadratic functions to solve
Eq. (1) in three cases of the coefficients in Section 2. To show
the generality of the calculated lump-type solutions specifi-
cally, two representative ones are demonstrated in both analyt-
ical and graphical ways in Section 3. A summary and some
discussions are given in the last section.

2. Abundant lump-type solutions

Generally, under the first-order logarithmic transforma-
tion

u=2(Inf)y, (12)

the generalized (3+1)-D KP equation (1) can be mapped into
the Hirota bilinear form

B(f): = (DiDy+ a1 DDy + 0 DD, + a3 DD,
+04DyD; + a5DyD; + 0D, D,
+07D; + gD} + oD} + aioD?) f - f

= 2[f fexay — fyfroe — 3fcSry + 3 frenfoy

0o (ffoy = fify) + ([ frz = fof2)
+o3(ffu — fuft) + aa(f fye — o)
+as(ffy — fofe) + 06 (ffar — f2ft)
+oq(ffa—f) +os(ffw— 1)
+ao(ffu—f2)+ono(ff— 1D, (13)

where f = f(x,y,z,¢) is an unknown real function, and the
derivatives D, Dy, D, and D; are all the Hirota bilinear deriva-
tive operators defined by

(DLDIDED))f - f

(2 9N(2 9N (9 aNa 9
~ \odx  Ix dy dy dz d7 dt ot
X f(xvyvzat)g(xlvylvzlvt,)|x:x/,y:y',z:z’,t:t’- (14)

In fact, the actual relation between Eq. (1) and the bilinear
equation (13) reads

P = |20 1s)
VN
and thus, if f solves the bilinear equation (13), then u =
2(In f), will present a solution of the generalized (3+1)-D KP
equation (1).
The Hirota bilinear method allows us to establish N-

BL49 rational

soliton solutions, 8! dromion-type solutions,
function solutions,’%3!! and so on, while in the present sec-
tion, we would like to present lump-type solutions to the

generalized (3+1)-D KP equation (1) based on its bilinear

form (13). To search for lump-type solutions to the general-
ized (3+1)-D KP equation, we consider a trial solution for f in
Eq. (13) as

fF=g*++1%+ay (16)
with the wave variables

g = aix+agy+azz+agt +as,
h = agx+azy+asz+agt +ajo,
I =ayx+apny+aizz+aut +as, a7

where all the parameters a; (i = 1,...,16) are real constants to
be determined.

Based on some inspections, we shall study the following
three cases of solutions for the parameters ¢;: (i) ag = 09 = 0;
(i) g = a9 = 0; (iii) ag = o9 = 0. In each case of solutions
in the following list, the parameters not expressed in the set are
arbitrary. Moreover, to simplify the mathematical expressions
for solutions, we introduce some new constants as follows:

by = agay1 —asai3, by =agaiz —agais,

b3 = agay| —asais, by =aia; —azrae,
bs = ayag —asas, be = arag —asaz,
pi=ai+az+aiy, Pr=ar+ai+a,,
B3 =a3+ai+ats, Py=di+as+aiy,
Bs = a3 +ajo+ais, Bs = bi(as+ais) + (arby—ashs)?,
B7 = bi(aj +a3) + (an1be — ainbs)?,
By = b3(ag +ai3) + (a1by +asbr ),
m =aiax +asay +ana, M2 =aiaz+asag+aiais,
N3 = ajas +aesag +ayai4, 74 = aias+aeaio+apidis,
N5 = axaz +azag +apa13, MNe = axas4 +ajag +ainai,
N = azxas +azaio +axdis, Mg = azas-+agag +aizais,
N9 = azas +agaio +aizais,
Mo = aaas +agaio + aiadss. (18)
Case 1 We first set g = a9 = 0 for the generalized
(3+1)-D bilinear equation (13). A direct substitution of the
solution (16) with Eq. (17) into the bilinear equation (13) and
a straightforward computation yield the following set of con-

straining equations on the parameters a;:

oo R Ro R
2 Tla 7 T]7 12 Tl’
R4 aiby —asbs
a=—r, G4=——"—"—"7", 19
16 T 4 b 19

where

Ti = [(a1b —azbs)as — by (a1 0 +azou)]?

+bi[(agon +asay +asais)*

+(ar1on + a3 o4 +aj40s)?, (20)
T{ = Moy + Mo +n305+ 50
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+ N6 05 + N3 0t + B107 + B3 tio, 21
Riy = —[a3biBiaz —bi(arbr — asb3)Bros

—bi(a1b3f3 +azbr By —2azb3nz) A

+a1biPray — b} (a1 B3 — 2a3m2) ol oy

— [a1bi B30 + by (a1b3P3 + azbafy — 2a1bym2) a3

+b1(azbs — a1b) B30 — bi(asPr — 2a1m2) o

+asbiBsaio)au — (b1 (a1b3Ps — azba ) 0 + a1 Beot3

+a3 B0t — b1 (a1ba i +azb3 By — 2a1b3m) oy

+bi(a1b2ff3 +azbs Pz — 2azbana) ool oss, (22)
Riy = —laghi 10y +aobiPiaz — by (ashs s

+agby 1 — 2agb3n2) o

+aghi P10ty — b (asBs — 2agma) o) ou

— [asht B30t + b1 (agh3Ps

+agby B — 2asbaM2) 03 + aobi B3 s

—bi(asP —2aeM2) 0 + aghi B3 ool oy

— [b1(ab3Ps — agba i)z + ae etz + as P ot

—b1(ash2 1 +agb3fi —2asb3na) 0

+ b1 (asba B3 + agbs Bz — 2agbrym) oo s, 23)
Riz = —[a13b1Broa +aisbiP o

—Dbi(a11b3Bs +aizbaffi —2a13b3na) o

+anbiproy — bi(an Bs — 2a13m2) oo

—a 1D B3ty + by (a11b3 3+ aisba i — 2a11bany) 03

+aibiP306 — bi(a13fr — 2a11Mm2) o

+ai3b7 300l 0 — [b1(an1b3 Pz — arzba i) o

+a11B605 + a13Be s — b1 (a11b21

+ai3bs B —2an1b3m) oy

+bi(abafs +ai3b3fs — 2a13bama) ool os,  (24)
Riq = (2nam7 — M Bs) o + (2149 — M2 Bs) 02

+(2namio —M3Bs) o3 + (2n7M9 — M5 Bs) 04

+ (27110 — M6 Ps) &5 + (219110 — 118 Bs ) 6

+(2nF — B1Bs) ot + (215 — BsPs) o — 6B (25)
For simplifying the tedious expression of a;¢ in Eq. (19), we
did not write out the elaborate formulas for parameters ay, a4,
a7, and ajp in Egs. (21) and (25) with n; (i=1,...,10) shown
in Eq. (18), which can be found from Eq. (19) with Egs. (20)

and (22)—(24). For f to be well-defined and positive, the in-
volved parameters need to satisfy

by = agaj) —asa1z #0, Ti #0, aje>0. (26)

Case 2 We secondly consider the case a9 = ¢tjo = 0 for
the generalized nonlinear equation (1). A similar direct com-
putation generates the second solution set of the parameters:

4 Ry 4 R» Ro3
3= 7 8 =
L’

Roy4 __apbs—aibg

— 27
T as be ; 27

aie =

where

Ty = [(ainbs — a11be) 0 + ba(arion +apou)]?
+bi[(a1az+aza4—|—a4oc6)2
+(a600 + a7 04 +ag )7, (28)
Ty = Moy + Mo+ 1305+ N5

+N60s + Ns 0 + 107 + Proxs, (29)
Ry = —[apb3Brou +asbiPy o3

—ba(a1bsPr + axbePr — 2axbsn1) ots

+arb3Bog — b3 (a1 B — 2axm; ) og] 0

— [a1b3 a0 + ba(arbsPa + azbePr — 2a1bemi ) 3

+asbiPros —bi(az B —2a1m1) 0y

+ axb; o 0] 04 — [ba(a1bs Py — azbePr) o + a1 Br0t3

+axBr0s — ba(aibePi + axbsfi —2a1bsni) o

+ba(arbePa + azbsfr — 2arbeM1 ) 0] A, (30)
Ry = —[arbiBioy +agh?Bios

—by(arbs P + agbs B — 2a7bsMy ) s

+agbi i o — bi(asBy — 2a7m) o]

— lagb3 Bt + ba(aghs P

+arbe i —2asbeM1) 03 + aghi B 0ts

—bi(arB1 —2a6M1) 07 + a703 Br 0ts) 04

— [ba(aebs o — arbePr) o +as P05 + a7 fr s

—by(aebsPi +azbsPi —2asbsni ) o7

+ba(acbe Pz + azbs o — 2arbem ) 5] ot (3D
Ry = —[anbiBiay —bs(aiibe — ainbs)Bras

—by(a1bsPa +ainbePi — 2a12bsn1) o5

+anbiBio — bi(an By — 2anm) os) o

—[an1b3Braty + by(ar1bsPa +arabeBi — 2a11bem1) 03

—by(a1be — arzbs)Baas — bi(arPi —2a11m1) o

+aibiBrag)ou — [ba(aribs B — arnbePi) o +ay fras

+ai2fr0s — ba(anbePi +anbsPi —2aybsni)oy

+ba(aibePa + ainbsPa — 2a12ben1) as] e, (32)
Ros = (21417 — M Bs)ou + (21ano — 125) 02

+(2n4m10 — M3Bs) 03 + (21719 — N5 Bs5) Oa

+(2m7M10 — N6 Ps) s + (2M9M10 — N3 Ps) 06

+(2nF — BiBs) o + (217 — BaBs) g — 6B, (33)
The parameters a3, ag, a3, and a4 arising in Eqgs. (29) and
(33) with Eq. (18) are given by Eq. (27) with Eqgs. (28) and
(30)—(32). Similarly, the involved parameters need to satisfy

the conditions
by = aja7 — arag 750, T 750, aig >0 (34)

to ensure that f is well-defined and positive.

100203-4



Chin. Phys. B Vol. 28, No. 10 (2019) 100203

Case 3 Thirdly, we make ag = a9 = 0O for the general-
ized nonlinear equation (1). Using symbolic computation after
a direct substitution of Eq. (16) with Eq. (17) into the bilinear
equation (13) gains the following set of constraining equations

on the parameters:

_R _Rno Ry
7 T3 ; 12 ’

Ry _aiby+asby

b3 ’

ap
(35)
where

T3 = [(a1by + asby) oy + b3 (a0 + as0s)]?
+b3[(ago + agoy +agass)?
+(an o +a3ou+aisos)?, (36)
T3 = Moy + 1200 + 1305+ 504 + M6 s

+ M50 + 107 + Pacrs, (37
R31 = —[b3(a1by +ashy)Bron + asbifios

—b3(aibifs — asbr 1 — 2asb1m;3) 0t

+a b3 0 — b3 (a1 By — 2a4m3) ) 0y

— [a1Bs 0 + b3 (a1b1Bs + asb2 i) o + aa s o

+b3(a1bafy — asby Bi +2a1bi1mz) oy

—bs(aibyfs — asb Ba — 2asbamz) gl Qs

— [b3(a1b1Bs — asbr 1 +2a1b2m3) 0

+arb3Bsos + by (aiby + ashy ) Bsis

—b3(asPy —2a1m3) 0 + asb3Bycw] s, (38)
R3y = —[agb3Pion + agb3 P o3

— b3 (aghi Bs — aoba i — 2a9b1M3) s + ash3 P oy

— b3 (aePa — 2a0m3) 0] 0y

— [aeBs 0 + b3(ach1 Bs+ aghs i) 0 + ag Py

+b3(agb2 1 — aob1 Bi +2achbi1M3) 0

—b3(agha s — agby s — 2a9by1m3) o] 04

— [b3(agb1 Bs — aoba P + 2ashan3) 0 + agh3 Prss

+aghiPacts — b3 (agBi — 2as13) 0

+agb3ias]as, (39)
R33 = —[a13b3B10n +aisb3fios — bs(aiibi Bs

—a14ba Py — 2a14b17M3) 0 + a1 b3 B1 07

—b3(an Bs — 2a1am3) o) oy — a1 B0 + b3 (ar1b1 B

+aiabafr) o +araPs ot + b3 (an by

—aysb1f1 +2a11b1m3) 07 — b3 (a1 b2 s — arab1 Bs

—2a14byn3) 0] oy — [(b3(a11b1Bs — araba P

+2ay11ban3) 0 + ar1b3Bs0s + a13b3Backs

—b3(a1aPr — 2a11M3) 07 + a14b3 Baco] ats, (40)
R3a = (2nam7 —mBs) o + (2nano — m2Bs) 0

+(214M10 — M3B5) 0 + (2M7M9 — N5 Bs) 4
+(2n7M10 — N6 Bs) 05 + (2N9M10 — N8 Bs) s
+(2n7 — BiBs) oz + (209 — BaPs) oo — 6M1 Br. (41)

Here the parameters as, a3, a7, and a> emerging in Eqgs. (37)
and (41) with Eq. (18) are all given by Eq. (35) with Egs. (36)
and (38)—(40). For f to be well-defined and positive, the in-
volved parameters are required to satisfy the conditions

by = agar; —asais # 0,73 # 0,a16 > 0. (42)

The above three sets of solutions for the parameters pro-
duce three quadratic function solutions to the bilinear gen-
eralized (3+1)-D KP equation (13) in three different cases:
oag =09 =0, g = 0tp =0, and og = a9 = 0, respectively.
Further, under the first-order logarithmic transformation (12),
the resulting quadratic function solutions present three lump-
type solutions u to the generalized (3+1)-D KP equation (1).
In all three cases, the solutions contain eleven free constants
a;, but always satisfy the determinant equation

aq an as

ag a7 ag |=0. (43)

apy ap a3
Due to this character of the resulting parameters, it is obvious
that all the above three solutions to the generalized (3+1)-D
KP equation (1) are just lump-type solutions but not lump so-
lutions.

3. Dynamics of two specific examples

In the current section, to show dynamic behaviors of the
lump-type solutions more specifically, we would like to exhibit
two special examples of the considered generalized (3+1)-D
nonlinear equation (1), based on the lump-type solutions ob-
tained above.

3.1. Example 1: Lump-type solutions to the BKP equation

Particularly, let us firstly focus on the BKP equation (4).
For ag = o9 = 0 in Eq. (4), we may take into account its lump-
type solution within the framework of Case 1. In fact, based
on the free constants that not be constrained by Eq. (19), many
different profiles of lump-type solutions can be designed. Just
to avoid the tedious formula, we consider to fix these arbitrary
constants at first. Associated with the eleven arbitrary wave
parameters being selected as

aj=as=ag=ag=dajp=dy4=d;5=1,

az =ag=ay| = a3 =2, (44)

the corresponding function f takes the form

37 1 ? 5 ?
f= x+5y+21+§t+1 + 2x+§y+t+z+1
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2780
17 (“43) type solution to the BKP equation can be expressed as
|
36x+(412/9)y+32z+ 18t 420
T+ (37/9)y+ 22+ (1/2)t + 1) 2+ (2x+ (5/9)y+ 1 +2+ 1)2+ (2x+ (28/9)y+1 + 22+ 1)2 + (2780/17)
Under the parameters (44), by = agaj; — aga13 = —2 # 0, the denominator of a; (or a7 or ajp) in Eq. (19) T} =9 # 0 and
aye = 2780/17 > 0, which guarantee the positivity of quadratic solution f and the analyticity of lump-type solution u. The

28 2 then a direct calculation from Eq. (12) tells us that the lump-
2yl +

(46)

graphical representation of the lump-type solution u of the BKP equation, shown by Eq. (46), is portrayed to illustrate the energy
distribution of this solution in Fig. 1, which includes contour plot, 3D plot, and 2D curve.

As usual, we define the position of the maximum value and minimum value as the the peak and the trough of the lump-type
wave. In the present case, according to solution (46), the peak and the trough are respectively located at

160 5253 9 1 9 45
S (T i S ol 47
(x,7) peak < 1 17 3Y 20T 38 301 ) @7
160 v3253 9 1 9 45
(xyy)trough =1 - - - =5l =752 — , (48)
391 17 23° 207 23°7 301

which reveals that the x values of both the peak and the trough of the lump-type wave change in proportion to z and time ¢, while
the y value keeps invariant with time. The inserting of the coordinate values of the peak and the trough of the lump-type wave
(47) and (48) into solution (46) results upeax = 2v/5253/309 and uyrough = —2v/5253/309. The result shows that both the peak
value and the trough value are fixed constants, but not vary with ¢ and z. As soon as z and ¢ are given, the positions of the peak
and the trough of the lump-type wave will be determined. If we select the mentioned values of free parameters as Eq. (44) and
z=0,y=-45/391, and t = {0, 10,20}, respectively, the peaks of the lump-type wave are respectively located at (3.85,—0.12),
(—1.15,—-0.12), and (—6.15,—0.12), while the trough are located at (—4.67,—0.12), (—9.67,—0.12), and (—14.67,—0.12),
which have been depicted in Fig. 1(c).

—20: P 20 40
ol .
t=0
_______ t=10
...... t =20

Fig. 1. Lump-type profiles of Eq. (46): (a) contour plot with z =t = 0; (b) 3D plot with z =7 = 0; (c) the wave along with x axis with z =0, y = —45/391,
and 7 = {0, 10,20}, respectively.

3.2. Example 2: Lump-type solutions to the JM equation

By setting oy = —3, a5 = 2, and the other ¢; in Eq. (1) to be zeros, we have another specific example of the generalized
(3+1)-D KP equation (2), i.e., the JM equation. In the case a9 = otj9 = 0, associated with the parameters being taken as

ag=-as=as=ar=ay1=ap=a5=1, aa=as=a¢=ajp=2, (49)
the corresponding lump-type solution to the (3+1)-D JM equation can be written as
B 24x+ 20y + (376/27)z + (40/3)t + 24
(29 4+ (4/27)z—t+ 12+ (2x+y+ (38/27)z2+ 2t +2)2 + (x +y+ (14/27)z+ (1/3)t + 1)2 4 (405/22)

Figures 2(a) and 2(b) depict the contour plot and the 3D plot of the lump-type solution (50) of the JM equation, where the
arbitrary constants are selected as Eq. (49) and z =t = 0. Note that, under the circumstances, by = aja7 — axag = —3 # 0, the
denominator of a3 (or ag or a;3) in Eq. (27) T, = 27 # 0, and a6 = 405/22 > 0 guarantee the quadratic solution f to be a positive
solution and then the lump-type solution u to be analytical.

(50)

Continuing to choose the free constants as Eq. (49), we can compute from Eq. (50) that the peak and the trough are respec-
tively located at

227 227 1 1
53 50 30 50 > 7 1)

ol = - 7 - 4 2 7 P Y
(2, ) peak < S TURETE 118+118\/59((3t—|— 32 4+708), ot — ot

100203-6



Chin. Phys. B Vol. 28, No. 10 (2019) 100203

227 53 227 1

50 130 50
(2, )trough = (— T8~ 5% 118 \/59((3r +47+43)2+708), —1 )

—— - 2
50 118 118 177 T ©2)

Different from the above results of BKP equation, both the x coordinate and y coordinate of the peak and the trough of the JM
lump-type wave depend on z and ¢. After substituting the coordinate values (51) and (52) of the peak and trough into solution
(50), we have

4v/39 4y/59
Upeak = , u = — ,
P B4z 13217080 T /Br+4z+3)2+708

(33)

which tells us that the peak value and the trough value of the lump-type wave do not remain unchanged as that of the BKP lump-
type wave, but vary with the changes of z and r. When we select the mentioned values of free parameters as Eq. (49) and z =0
and ¢t = {0, 10,20}, respectively, the peaks of the lump-type wave are respectively located at (—0.18,0.28), (—18.40,3.11), and
(—35.95,5.93), while the trough are located at (—3.67,0.28), (—23.92,3.11), and (—44.85,5.93), and the maximum values and
the minimum values of the lump-type solutions are (upeak, Utrough) = ({1.15,0.72,0.45},{—1.15,—0.72,—0.45}), respectively,
which have all been displayed in Fig. 2(c).

(b)
1
§ 0
40
0 o 40
y —40 —40 x

Fig. 2. Plots of the lump-type solution (50) of the Jimbo-Miwa equation (2): (a) the contour plot with z =¢ = 0, (b) the corresponding 3D plot withz =¢ =0,
(c) the wave along with x axis with z =0, r = {0,10,20}, and y = {0.28,3.11,5.93}, respectively.

N i i [2] Frantzeskakis D J, Horikis T P, Rodrigues A S, Kevrekidis P G,
4. Summary and discussion 2 kak ki drig s kidis P G
) ) ) . Carretero-Gonzdlez R and Cuevas-Maraver J 2018 Phys. Rev. E 98
In this paper, on the basis of the Hirota bilinear for- 022205
mulation, we have investigated positive quadratic function (31 114;4)3(’75;;’5‘“4‘% Y, Chen M D and Li B 2017 Adv. Math. Phys. 2017
solutions to a bilinear generalized (3+1)-D KP equation in [4] Berger K M and Milewski P A 2000 SIAM J. Appl. Math. 61731
three different cases. The resulting solutions offer us abun- [5S] MaH C, Ni K and Deng A P 2017 Thermal Science 21 1765

[6] Petviashvili V I and Pokhotelov O V 1989 Solitary waves in plasmas

dant new exact solutions to the corresponding nonlinear equa- ; ) ! !
and in the atmosphere, Energoatomizdat, Moscow (in Russian) (1992

tion as well as some restriction conditions to ensure that Engl. transl.: Gordon and Breach, Philadelphia)

the involved quadratic functions are well-defined and posi- [7]1 Pelinovsky D E, Stepanyants Y A and Kivshar Yu S 1995 Phys. Rev. E
. . . . . 515016

tive. More specifically, by considering two concrete nonlin- (8] Baronio F, Wabnitz S and Kodama Y 2016 Phys. Rev. Letr. 116 173901

ear equations, the JM equation (2) and the BKP equation (4), [9]1 Mironov V A, Smirnov A I and Smirnov L A 2010 JETP 110 877

we have illustrated the dynamical evolutions of the obtained [10] Xu'Y X and Duan W § 2012 Chin. Phys. B 21 115202
[11] Potapov A Iand Soldatov I N 1984 Akust. Zh. 30 819

[12] Gilson C R and Nimmo J J C 1990 Phys. Lett. A 147 472
2D plots with some certain choices of the included free param- [13] ImaiK 1997 Prog. Theor. Phys. 98 1013

eters. Moreover, we have calculated the peaks and troughs of [14] Satsuma J and Ablowitz M J 1979 J. Math. Phys. 20 1496
[15] Kaup D J 1981 J. Math. Phys. 22 1176

[16] Ma W X 2015 Phys. Lett. A 379 1975

2(c). It is worth stating that the implemented procedure can [17] Zhao H Q and Ma W X 2017 Comput. Math. Appl. 74 1399

be applied to much higher dimensional nonlinear equations. [18] Zhang J B and Ma W X 2017 Comput. Math. Appl. 74 591

[19] YangJY and Ma W X 2016 Int. J. Mod. Phys. B 30 1640028

. 21.52 . [20] Yong X L, Ma W X, Huang Y H and Liu Y 2018 Comput. Math. Appl.
lumps and solitons.21°2] The details on the method for other 75 3414

nonlinear systems, other types of interaction wave solutions, [21] Ma W X, Yong X L and Zhang H Q 2018 Comput. Math. Appl. 75 289
[22] YangJY,Ma W X and Qin ZY 2018 Anal. Math. Phys. 8 427

[23] Zhou Y, Manukure S and Ma W X 2019 Commun. Nonlinear Sci. Nu-
our future research work. mer. Simulat. 68 56

[24] Chen S T and Ma W X 2018 Front Math. China 13 525
[25] Manukure S, Zhou Y and Ma W X 2018 Comput. Math. Appl. 75 2414

lump-type solutions through their contour plots, 3D plots and

the acquired lump-type solutions as shown in Figs. 1(c) and

It should also be interesting to consider interactions between

and other possible physical applications, will be reported in

References [26] Chen S T and Ma W X 2018 Comput. Math. Appl. 76 1680
[1] Estévez P G, Diaz E, Dominguez-Adame F, Cerveré J M and Diez E [27] Ma W X 2016 Int. J. Nonlinear Sci. Numer. Simul. 17 355
2016 Phys. Rev. E 93 062219 [28] Ma W X 2018 J. Geom. Phys. 133 10

100203-7


http://dx.doi.org/10.1103/PhysRevE.93.062219
http://dx.doi.org/10.1103/PhysRevE.98.022205
http://dx.doi.org/10.1103/PhysRevE.98.022205
https://doi.org/10.1155/2017/1743789
https://doi.org/10.1155/2017/1743789
http://dx.doi.org/10.1137/S0036139999356971
http://dx.doi.org/10.2298/TSCI160816066M
http://dx.doi.org/10.1103/PhysRevE.51.5016
http://dx.doi.org/10.1103/PhysRevE.51.5016
http://dx.doi.org/10.1103/PhysRevLett.116.173901
http://dx.doi.org/10.1134/S1063776110050195
http://dx.doi.org/10.1088/1674-1056/21/11/115202
http://dx.doi.org/10.1016/0375-9601(90)90609-R
http://dx.doi.org/10.1143/PTP.98.1013
http://dx.doi.org/10.1063/1.524208
http://dx.doi.org/10.1063/1.525042
http://dx.doi.org/10.1016/j.physleta.2015.06.061
http://dx.doi.org/10.1016/j.camwa.2017.06.034
http://dx.doi.org/10.1016/j.camwa.2017.05.010
http://dx.doi.org/10.1142/S0217979216400282
http://dx.doi.org/10.1016/j.camwa.2018.02.007
http://dx.doi.org/10.1016/j.camwa.2018.02.007
http://dx.doi.org/10.1016/j.camwa.2017.09.013
http://dx.doi.org/10.1007/s13324-017-0181-9
http://dx.doi.org/10.1016/j.cnsns.2018.07.038
http://dx.doi.org/10.1016/j.cnsns.2018.07.038
http://dx.doi.org/10.1007/s11464-018-0694-z
http://dx.doi.org/10.1016/j.camwa.2017.12.030
http://dx.doi.org/10.1016/j.camwa.2018.07.019
http://dx.doi.org/10.1515/ijnsns-2015-0050
http://dx.doi.org/10.1016/j.geomphys.2018.07.003

Chin. Phys. B  Vol. 28, No.

10 (2019) 100203

[29]
[30]

[31]
[32]
[33]

[34]
[35]

[36]
[37]

[38]
[39]

Zheng P F and Jia M 2018 Chin. Phys. B 27 120201

Jimbo M and Miwa T 1983 Publ. Res. Inst. Math. Sci. Kyoto Univ. 19
943

Xu G Q 2006 Chaos, Solitons and Fractals 30 71
Wazwaz A M 2012 Appl. Math. Lett. 25 1495

Darvishi M and Najafi M 2011 Int. J. Math. Comput. Phys. Electr. Com-
put. Eng. 51097

Ma W X and Lee J H 2009 Chaos, Solitons and Fractals 42 1356

Ma W X, Abdeljabbar A and Asaad M G 2011 Appl. Math. Comput.
217 10016

Ma W X and Abdeljabbar A 2012 Appl. Math. Lett. 25 1500

Wang X B, Tian S F, Feng L L, Yan H and Zhang T T 2017 Nonlinear
Dyn. 88 2265

Wazwaz A M 2012 Phys. Scr. 86 035007
Abudiab M and Khalique C M 2013 Adv. Differ. Equ. 2013 221

[40]

[41]
[42]
[43]
[44]
[45]
[46]
[47]
[48]
[49]

[50]
[51]
[52]

100203-8

Huang Z R Tian B, Zhen H L, Jiang Y, Wang Y P and Sun Y 2015
Nonlinear Dyn. 80 1

Zhao Z L and Han B 2019 Anal. Math. Phys. 9 119

Ma W X and Zhu Z N 2012 Appl. Math. Comput. 218 11871

Wazwaz A M and El-Tantawy S A 2017 Nonlinear Dyn. 88 3017

Yu J P and Sun Y L 2017 Nonlinear Dyn. 90 2263

Kaur L and Wazwaz A M 2018 Phys. Scr. 93 075203

Wazwaz A M 2011 Phys. Scr. 84 055006

Wazwaz A M and El-Tantawy S A 2016 Nonlinear Dyn. 84 1107
Hirota R 1971 Phys. Rev. Lett. 27 1192

Hietarinta J 1991 “(2+1)-dimensional dromions and Hirota’s bilinear
method”, In Antoniou I and Lambert F J (eds) Solitons and Chaos,
Research Reports in Physics, Springer, Berlin, Heidelberg

Ma W X, You Y C 2004 Trans. Am. Math. Soc. 357 1753

Yue Y F, Huang L L and Chen Y 2018 Comput. Math. Appl. 75 2538
Yang J Y, Ma W X and Qin Z Y 2018 East Asian J. Appl. Math. 8 224


http://dx.doi.org/10.1088/1674-1056/27/12/120201
http://dx.doi.org/10.2977/prims/1195182017
http://dx.doi.org/10.2977/prims/1195182017
http://dx.doi.org/10.1016/j.chaos.2005.08.089
http://dx.doi.org/10.1016/j.aml.2011.12.034
https://publications.waset.org/503/pdf
https://publications.waset.org/503/pdf
http://dx.doi.org/10.1016/j.chaos.2009.03.043
https://doi.org/10.1016/j.amc.2011.04.077
https://doi.org/10.1016/j.amc.2011.04.077
http://dx.doi.org/10.1016/j.aml.2012.01.003
http://dx.doi.org/10.1007/s11071-017-3375-7
http://dx.doi.org/10.1007/s11071-017-3375-7
http://dx.doi.org/10.1088/0031-8949/86/03/035007
http://dx.doi.org/10.1186/1687-1847-2013-221
http://dx.doi.org/10.1007/s11071-014-1321-5
http://dx.doi.org/10.1007/s11071-014-1321-5
http://dx.doi.org/10.1007/s13324-017-0185-5
https://doi.org/10.1016/j.amc.2012.05.049
http://dx.doi.org/10.1007/s11071-017-3429-x
http://dx.doi.org/10.1007/s11071-017-3799-0
http://dx.doi.org/10.1088/1402-4896/aac8b8
http://dx.doi.org/10.1088/0031-8949/84/05/055006
http://dx.doi.org/10.1007/s11071-015-2555-6
http://dx.doi.org/10.1103/PhysRevLett.27.1192
http://dx.doi.org/10.1090/S0002-9947-04-03726-2
http://dx.doi.org/10.1016/j.camwa.2017.12.022
http://dx.doi.org/10.4208/eajam

	1. Introduction
	2. Abundant lump-type solutions
	3. Dynamics of two specific examples
	3.1. Example 1:  Lump-type solutions to the BKP equation
	3.2. Example 2:  Lump-type solutions to the JM equation

	4. Summary and discussion
	References

