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Through the Hirota bilinear formulation and the symbolic computation software Maple, we construct lump-type so-
lutions for a generalized (3+1)-dimensional Kadomtsev–Petviashvili (KP) equation in three cases of the coefficients in the
equation. Then the sufficient and necessary conditions to guarantee the analyticity of the resulting lump-type solutions (or
the positivity of the corresponding quadratic solutions to the associated bilinear equation) are discussed. To illustrate the
generality of the obtained solutions, two concrete lump-type solutions are explicitly presented, and to analyze the dynamic
behaviors of the solutions specifically, the three-dimensional plots and contour profiles of these two lump-type solutions
with particular choices of the involved free parameters are well displayed.
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1. Introduction

The physical phenomena and processes that occur in na-
ture generally have complicated nonlinear features. Nonlinear
evolution equations, arising as the significant models for inves-
tigating the natural phenomena of science and engineering, ap-
pear in an extensive diversity of applications in solitary wave
theory, hydrodynamics, meteorology, optical fibers, quantum
mechanics, ocean engineering, plasma physics, condensed
matter physics, and so on. Therefore searching for exact solu-
tions of nonlinear evolution equations plays an important role
in the analysis of these physical phenomena and engineering
applications and has gradually become one of the most signif-
icant topic for both physicists and mathematicians. Up to now,
a variety of exact nonlinear wave solutions for nonlinear evo-
lution equations have been well constructed, including solitary
waves, cnoidal waves, rogue waves, period waves, lump solu-
tions, shock waves, compactons, peakon propeller solitons, as
well as kinds of interaction waves. Among all these solutions,
lump solutions have attracted a growing amount of attention in
soliton theory in recent years, based on both theoretical predic-
tions and experimental observations.[1–3] Lump solutions are
a kind of analytical rational function solutions, localized in all

directions in space. They can be used to describe nonlinear
patterns on the surface of shallow water with dominating sur-
face tension,[4,5] in plasma,[6] in nonlinear optic media,[7,8] in
the Bose–Einstein condensation,[9,10] in thin elastic plates,[11]

etc. From nice properties of lump solutions one can un-
derstand the shapes, amplitudes, velocities of solitons after
the collision with other solitons. Till now, many researchers
have studied lump solutions of different nonlinear equations.
For instance, Gilson and Nimmo[12] presented lump solutions
of the B-type KP (BKP) equation. Imai[13] found dromion
and lump solutions of the Ishimori-I equation. Satsuma and
Ablowitz[14] originated lump solutions in the two-dimensional
(2D) nonlinear dispersive systems, Kaup[15] constructed the
lump solutions for the three-dimensional (3D) three-wave res-
onant interaction. More recently, making full use of the sym-
bolic computation software Maple, one of the authors (Ma)
and his collaborators have offered plentiful of lump and lump-
type solutions to various (2+1)-dimensional [(2+1)-D] and
(3+1)-dimensional [(3+1)-D] nonlinear and linear equations,
such as the KP equation,[16,17] the BKP equation,[18,19] the
KP equation with a self-consistent source,[20] the (2+1)-D
Ito equation,[21,22] the Hirota–Satsuma–Ito equation,[23] the
generalized Bogoyavlensky–Konopelchenko equation,[24] the
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(2+1)-D extended KP equation,[25] the generalized Calogero–
Bogoyavlenskii–Schiff equation,[26] the (3+1)-D Jimbo–Miwa
equation,[27] the (3+1)-D linear PDEs,[28] the (3+1)-D nonlin-
ear evolution equation,[29] and so on.

In this paper, we shall focus on a generalized (3+1)-D KP
equation in the following form

P(u) : = 3(uxuy)x +uxxxy +α1uxy +α2uxz

+α3uxt +α4uyz +α5uyt +α6uzt +α7uxx

+α8uyy +α9utt +α10uzz = 0, (1)

including all linear second-order derivative terms, where αi

(i = 1, . . . ,10) are arbitrary constants. As the extended version
of the KP equation, the generalized (3+1)-D KP equation (1)
with αi (i = 1, . . . ,10) being random constants covers many
specific equations (see the following paragraphs). In order
to boost the possible applications of these equations in ocean
studies and other fields, it is necessary to find analytical form
of the lump-type waves for Eq. (1). As soon as the solution of
the generalized (3+1)-D KP equation is given, the lump-type
solution for all these specific equations can be acquired just by
selecting different coefficients.

When α2 =−3, α5 = 2, and the other αi are zeros, equa-
tion (1) becomes the (3+1)-D Jimbo–Miwa (JM) equation

3(uxuy)x +uxxxy−3uxz +2uyt = 0. (2)

This equation was first introduced by Jimbo and Miwa
in 1983.[30] It is the second member in the entire KP
hierarchy,[31] which is used to describe certain interesting
(3+1)-D waves in physics. The JM equation (2) has inves-
tigated regarding its solutions, non-integrability, and symme-
tries. The Painlevé method, the tanh-coth method, the simpli-
fied Hirota’s method, the extended homoclinic test approach, a
transformed rational function method, and other methods were
applied to obtain solitons, periodic, complexiton, lump-type
solution, and travelling wave solutions to Eq. (2).[27,32–34]

While α3 = α5 =−α10 = 1, we have the generalized KP
equation

3(uxuy)x +uxxxy +uxt +uyt −uzz = 0. (3)

Numerous studies have been conducted on extracting exact
solutions and related properties to Eq. (3). For example, in
Ref. [35], based on the Plücker relation and the Jacobi iden-
tity for determinants, Wronskian and Grammian formulations
are established. Applying the proposed bilinear Bäcklund
transformation, Ma and his collaborators have computed two
classes of exponential and rational travelling wave solutions
with arbitrary wave numbers.[36] Moreover, quasiperiodic
waves, solitary waves, asymptotic properties, and rogue waves
with interaction phenomena of Eq. (3) have been discussed in
Ref. [37].

When α3 = α5 = α6 = −α7 = −α10 = 1, equation (1)
reduces to the (3+1)-D BKP equation

3(uxuy)x +uxxxy +(ux +uy +uz)t − (uxx +uzz) = 0, (4)

which can be applied to describe the propagation of nonlinear
waves in fluid dynamics. One-, two-, and multiple-soliton so-
lutions for Eq. (4) have been discussed by Wazwaz.[38] Con-
servation laws for Eq. (4) have been constructed, along with
some exact solutions.[39] Bilinear-form and Bell-polynomial-
form Bäcklund transformations for Eq. (4) have been pre-
sented, along with some soliton solutions as well.[40] On the
basis of the bilinear equation of the (3+1)-D BKP equation,
Zhao and Han[41] constructed its lump-type solutions by sym-
bolic computation.

In Ref. [42], Ma applied the multiple exp-function algo-
rithm to construct multiple wave solutions to the (3+1)-D gen-
eralized BKP equation

3(uxuy)x +uxxxy−uyt −uxz = 0, (5)

where the constants are chosen as α2 =α5 =−1. The resulting
solutions involve generic phase shifts and wave frequencies.

Letting α3 = α5 = α6 = −α7 = −α8 = −α10 = 1, we
have the (3+1)-D generalized BKP equation

3(uxuy)x +uxxxy +(ux +uy +uz)t − (uxx +uyy +uzz) = 0. (6)

Wazwaz has established the one and two soliton solutions for
equation (6) by using the simplified Hereman–Nuseir form.[38]

By taking α3 = α5 = α9 = −α10 = 1, equation (1) turns
into the (3+1)-D generalized KP–Boussinesq equation[43,44]

3(uxuy)x +uxxxy +(ux +uy +ut)t −uzz = 0. (7)

Kaur and Wazwaz[45] have explored lump solutions for Eq. (7)
by reducing its (3+1)-D version into a (2+1)-D one, and they
analyzed the sufficient and necessary conditions for assuring
analyticity, positivity, and rational localization of the solutions
at the same time.

If the coefficients are taken as α5 = −1,α7 = α10 = −3,
equation (1) becomes the generalized BKP equation

3(uxuy)x +uxxxy−uyt −3(uxx +uzz) = 0, (8)

which is just the model investigated by Wazwaz et al. in
Ref. [46], where the authors derived the multiple soliton so-
lutions by the simplified Hirota’s direct method. Later, by
making use of the same method, Wazwaz has also studied
the multiple soliton solution for the generalized (3+1)-D KP
equation[47]

3(uxuy)x +uxxxy +(ux +uy +uz)t −uzz = 0, (9)

3(uxuy)x +uxxxy +2(ux +uy +ut)t −3uxz = 0, (10)

3(uxuy)x +uxxxy +2uyt −3(ux +uy +uz)z = 0. (11)
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In what follows, we begin with the Hirota bilinear form
of the generalized (3+1)-D KP equation and make some as-
sumptions by the superposition of quadratic functions to solve
Eq. (1) in three cases of the coefficients in Section 2. To show
the generality of the calculated lump-type solutions specifi-
cally, two representative ones are demonstrated in both analyt-
ical and graphical ways in Section 3. A summary and some
discussions are given in the last section.

2. Abundant lump-type solutions
Generally, under the first-order logarithmic transforma-

tion

u = 2(ln f )x, (12)

the generalized (3+1)-D KP equation (1) can be mapped into
the Hirota bilinear form

B( f ) : = (D3
xDy +α1DxDy +α2DxDz +α3DxDt

+α4DyDz +α5DyDt +α6DzDt

+α7D2
x +α8D2

y +α9D2
t +α10D2

z ) f · f

= 2[ f fxxxy− fy fxxx−3 fx fxxy +3 fxx fxy

+α1( f fxy− fx fy)+α2( f fxz− fx fz)

+α3( f fxt − fx ft)+α4( f fyz− fy fz)

+α5( f fyt − fy ft)+α6( f fzt − fz ft)

+α7( f fxx− f 2
x )+α8( f fyy− f 2

y )

+α9( f ftt − f 2
t )+α10( f fzz− f 2

z )], (13)

where f ≡ f (x,y,z, t) is an unknown real function, and the
derivatives Dx, Dy, Dz, and Dt are all the Hirota bilinear deriva-
tive operators defined by

(Di
xD j

yDk
zDl

t) f · f

=

(
∂

∂x
− ∂

∂x′

)i(
∂

∂y
− ∂

∂y′

) j(
∂

∂ z
− ∂

∂ z′

)k(
∂

∂ t
− ∂

∂ t ′

)l

× f (x,y,z, t)g(x′,y′,z′, t ′)|x=x′,y=y′,z=z′,t=t ′ . (14)

In fact, the actual relation between Eq. (1) and the bilinear
equation (13) reads

P(u) =
[

B( f )
f 2

]
x
, (15)

and thus, if f solves the bilinear equation (13), then u =

2(ln f )x will present a solution of the generalized (3+1)-D KP
equation (1).

The Hirota bilinear method allows us to establish N-
soliton solutions,[48] dromion-type solutions,[31,49] rational
function solutions,[50,51] and so on, while in the present sec-
tion, we would like to present lump-type solutions to the
generalized (3+1)-D KP equation (1) based on its bilinear

form (13). To search for lump-type solutions to the general-
ized (3+1)-D KP equation, we consider a trial solution for f in
Eq. (13) as

f = g2 +h2 + l2 +a16 (16)

with the wave variables

g = a1x+a2y+a3z+a4t +a5,

h = a6x+a7y+a8z+a9t +a10,

l = a11x+a12y+a13z+a14t +a15, (17)

where all the parameters ai (i = 1, . . . ,16) are real constants to
be determined.

Based on some inspections, we shall study the following
three cases of solutions for the parameters αi: (i) α8 = α9 = 0;
(ii) α9 = α10 = 0; (iii) α8 = α10 = 0. In each case of solutions
in the following list, the parameters not expressed in the set are
arbitrary. Moreover, to simplify the mathematical expressions
for solutions, we introduce some new constants as follows:

b1 = a8a11−a6a13, b2 = a9a13−a8a14,

b3 = a9a11−a6a14, b4 = a1a7−a2a6,

b5 = a1a9−a4a6, b6 = a2a9−a4a7,

β1 = a2
1 +a2

6 +a2
11, β2 = a2

2 +a2
7 +a2

12,

β3 = a2
3 +a2

8 +a2
13, β4 = a2

4 +a2
9 +a2

14,

β5 = a2
5 +a2

10 +a2
15, β6 = b2

1(a
2
9 +a2

14)+(a1b2−a3b3)
2,

β7 = b2
4(a

2
4 +a2

9)+(a11b6−a12b5)
2,

β8 = b2
3(a

2
8 +a2

13)+(a1b2 +a4b1)
2,

η1 = a1a2 +a6a7 +a11a12, η2 = a1a3 +a6a8 +a11a13,

η3 = a1a4 +a6a9 +a11a14, η4 = a1a5 +a6a10 +a11a15,

η5 = a2a3 +a7a8 +a12a13, η6 = a2a4 +a7a9 +a12a14,

η7 = a2a5 +a7a10 +a12a15, η8 = a3a4 +a8a9 +a13a14,

η9 = a3a5 +a8a10 +a13a15,

η10 = a4a5 +a9a10 +a14a15. (18)

Case 1 We first set α8 = α9 = 0 for the generalized
(3+1)-D bilinear equation (13). A direct substitution of the
solution (16) with Eq. (17) into the bilinear equation (13) and
a straightforward computation yield the following set of con-
straining equations on the parameters ai:

a2 =
R11

T1
, a7 =

R12

T1
, a12 =

R13

T1
,

a16 =
R14

T ′1
, a4 =−

a1b2−a3b3

b1
, (19)

where

T1 = [(a1b2−a3b3)α5−b1(a1α1 +a3α4)]
2

+b2
1[(a6α1 +a8α4 +a9α5)

2

+(a11α1 +a13α4 +a14α5)
2], (20)

T ′1 = η1α1 +η2α2 +η3α3 +η5α4
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+η6α5 +η8α6 +β1α7 +β3α10, (21)

R11 = −[a3b2
1β1α2−b1(a1b2−a3b3)β1α3

−b1(a1b3β3 +a3b2β1−2a3b3η2)α6

+a1b2
1β1α7−b2

1(a1β3−2a3η2)α10]α1

− [a1b2
1β3α2 +b1(a1b3β3 +a3b2β1−2a1b2η2)α3

+b1(a3b3−a1b2)β3α6−b2
1(a3β1−2a1η2)α7

+a3b2
1β3α10]α4− [b1(a1b3β3−a3b2β1)α2 +a1β6α3

+a3β6α6−b1(a1b2β1 +a3b3β1−2a1b3η2)α7

+b1(a1b2β3 +a3b3β3−2a3b2η2)α10]α5, (22)

R12 = −[a8b2
1β1α2 +a9b2

1β1α3−b1(a6b3β3

+a8b2β1−2a8b3η2)α6

+a6b2
1β1α7−b2

1(a6β3−2a8η2)α10]α1

− [a6b2
1β3α2 +b1(a6b3β3

+a8b2β1−2a6b2η2)α3 +a9b2
1β3α6

−b2
1(a8β1−2a6η2)α7 +a8b2

1β3α10]α4

− [b1(a6b3β3−a8b2β1)α2 +a6β6α3 +a8β6α6

−b1(a6b2β1 +a8b3β1−2a6b3η2)α7

+b1(a6b2β3 +a8b3β3−2a8b2η2)α10]α5, (23)

R13 = −[a13b2
1β1α2 +a14b2

1β1α3

−b1(a11b3β3 +a13b2β1−2a13b3η2)α6

+a11b2
1β1α7−b2

1(a11β3−2a13η2)α10]α1

− [a11b2
1β3α2 +b1(a11b3β3 +a13b2β1−2a11b2η2)α3

+a14b2
1β3α6−b2

1(a13β1−2a11η2)α7

+a13b2
1β3α10]α4− [b1(a11b3β3−a13b2β1)α2

+a11β6α3 +a13β6α6−b1(a11b2β1

+a13b3β1−2a11b3η2)α7

+b1(a11b2β3 +a13b3β3−2a13b2η2)α10]α5, (24)

R14 = (2η4η7−η1β5)α1 +(2η4η9−η2β5)α2

+(2η4η10−η3β5)α3 +(2η7η9−η5β5)α4

+(2η7η10−η6β5)α5 +(2η9η10−η8β5)α6

+(2η
2
4 −β1β5)α7 +(2η

2
9 −β3β5)α10−6β1η1. (25)

For simplifying the tedious expression of a16 in Eq. (19), we
did not write out the elaborate formulas for parameters a2, a4,
a7, and a12 in Eqs. (21) and (25) with ηi (i = 1, . . . ,10) shown
in Eq. (18), which can be found from Eq. (19) with Eqs. (20)
and (22)–(24). For f to be well-defined and positive, the in-
volved parameters need to satisfy

b1 = a8a11−a6a13 6= 0, T1 6= 0, a16 > 0. (26)

Case 2 We secondly consider the case α9 = α10 = 0 for
the generalized nonlinear equation (1). A similar direct com-
putation generates the second solution set of the parameters:

a3 =
R21

T2
, a8 =

R22

T2
, a13 =

R23

T2
,

a16 =
R24

T ′2
, a14 =

a12b5−a11b6

b4
, (27)

where

T2 = [(a12b5−a11b6)α6 +b4(a11α2 +a12α4)]
2

+b2
4[(a1α2 +a2α4 +a4α6)

2

+(a6α2 +a7α4 +a9α6)
2], (28)

T ′2 = η1α1 +η2α2 +η3α3 +η5α4

+η6α5 +η8α6 +β1α7 +β2α8, (29)

R21 = −[a2b2
4β1α1 +a4b2

4β1α3

−b4(a1b5β2 +a2b6β1−2a2b5η1)α5

+a1b2
4β1α7−b2

4(a1β2−2a2η1)α8]α2

− [a1b2
4β2α1 +b4(a1b5β2 +a2b6β1−2a1b6η1)α3

+a4b2
4β2α5−b2

4(a2β1−2a1η1)α7

+a2b2
4β2α8]α4− [b4(a1b5β2−a2b6β1)α1 +a1β7α3

+a2β7α5−b4(a1b6β1 +a2b5β1−2a1b5η1)α7

+b4(a1b6β2 +a2b5β2−2a2b6η1)α8]α6, (30)

R22 = −[a7b2
4β1α1 +a9b2

4β1α3

−b4(a7b6β1 +a6b5β2−2a7b5η1)α5

+a6b2
4β1α7−b2

4(a6β2−2a7η1)α8]α2

− [a6b2
4β2α1 +b4(a6b5β2

+a7b6β1−2a6b6η1)α3 +a9b2
4β2α5

−b2
4(a7β1−2a6η1)α7 +a7b2

4β2α8]α4

− [b4(a6b5β2−a7b6β1)α1 +a6β7α3 +a7β7α5

−b4(a6b6β1 +a7b5β1−2a6b5η1)α7

+b4(a6b6β2 +a7b5β2−2a7b6η1)α8]α6, (31)

R23 = −[a12b2
4β1α1−b4(a11b6−a12b5)β1α3

−b4(a11b5β2 +a12b6β1−2a12b5η1)α5

+a11b2
4β1α7−b2

4(a11β2−2a12η1)α8]α2

− [a11b2
4β2α1 +b4(a11b5β2 +a12b6β1−2a11b6η1)α3

−b4(a11b6−a12b5)β2α5−b2
4(a12β1−2a11η1)α7

+a12b2
4β2α8]α4− [b4(a11b5β2−a12b6β1)α1 +a11β7α3

+a12β7α5−b4(a11b6β1 +a12b5β1−2a11b5η1)α7

+b4(a11b6β2 +a12b5β2−2a12b6η1)α8]α6, (32)

R24 = (2η4η7−η1β5)α1 +(2η4η9−η2β5)α2

+(2η4η10−η3β5)α3 +(2η7η9−η5β5)α4

+(2η7η10−η6β5)α5 +(2η9η10−η8β5)α6

+(2η
2
4 −β1β5)α7 +(2η

2
7 −β2β5)α8−6β1η1. (33)

The parameters a3, a8, a13, and a14 arising in Eqs. (29) and
(33) with Eq. (18) are given by Eq. (27) with Eqs. (28) and
(30)–(32). Similarly, the involved parameters need to satisfy
the conditions

b4 = a1a7−a2a6 6= 0, T2 6= 0, a16 > 0 (34)

to ensure that f is well-defined and positive.
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Case 3 Thirdly, we make α8 = α10 = 0 for the general-
ized nonlinear equation (1). Using symbolic computation after
a direct substitution of Eq. (16) with Eq. (17) into the bilinear
equation (13) gains the following set of constraining equations
on the parameters:

a2 =
R31

T3
, a7 =

R32

T3
, a12 =

R33

T3
,

a16 =
R34

T ′3
, a3 =

a1b2 +a4b1

b3
, (35)

where

T3 = [(a1b2 +a4b1)α4 +b3(a1α1 +a4α5)]
2

+b2
3[(a6α1 +a8α4 +a9α5)

2

+(a11α1 +a13α4 +a14α5)
2], (36)

T ′3 = η1α1 +η2α2 +η3α3 +η5α4 +η6α5

+η8α6 +β1α7 +β4α9, (37)

R31 = −[b3(a1b2 +a4b1)β1α2 +a4b2
3β1α3

−b3(a1b1β4−a4b2β1−2a4b1η3)α6

+a1b2
3β1α7−b2

3(a1β4−2a4η3)α9]α1

− [a1β8α2 +b3(a1b1β4 +a4b2β1)α3 +a4β8α6

+b3(a1b2β1−a4b1β1 +2a1b1η3)α7

−b3(a1b2β4−a4b1β4−2a4b2η3)α9]α4

− [b3(a1b1β4−a4b2β1 +2a1b2η3)α2

+a1b2
3β4α3 +b3(a1b2 +a4b1)β4α6

−b2
3(a4β1−2a1η3)α7 +a4b2

3β4α9]α5, (38)

R32 = −[a8b2
3β1α2 +a9b2

3β1α3

−b3(a6b1β4−a9b2β1−2a9b1η3)α6 +a6b2
3β1α7

−b2
3(a6β4−2a9η3)α9]α1

− [a6β8α2 +b3(a6b1β4 +a9b2β1)α3 +a9β8α6

+b3(a6b2β1−a9b1β1 +2a6b1η3)α7

−b3(a6b2β4−a9b1β4−2a9b2η3)α9]α4

− [b3(a6b1β4−a9b2β1 +2a6b2η3)α2 +a6b2
3β4α3

+a8b2
3β4α6−b2

3(a9β1−2a6η3)α7

+a9b2
3β4α9]α5, (39)

R33 = −[a13b2
3β1α2 +a14b2

3β1α3−b3(a11b1β4

−a14b2β1−2a14b1η3)α6 +a11b2
3β1α7

−b2
3(a11β4−2a14η3)α9]α1− [a11β8α2 +b3(a11b1β4

+a14b2β1)α3 +a14β8α6 +b3(a11b2β1

−a14b1β1 +2a11b1η3)α7−b3(a11b2β4−a14b1β4

−2a14b2η3)α9]α4− [(b3(a11b1β4−a14b2β1

+2a11b2η3)α2 +a11b2
3β4α3 +a13b2

3β4α6

−b2
3(a14β1−2a11η3)α7 +a14b2

3β4α9]α5, (40)

R34 = (2η4η7−η1β5)α1 +(2η4η9−η2β5)α2

+(2η4η10−η3β5)α3 +(2η7η9−η5β5)α4

+(2η7η10−η6β5)α5 +(2η9η10−η8β5)α6

+(2η
2
4 −β1β5)α7 +(2η

2
10−β4β5)α9−6η1β1. (41)

Here the parameters a2, a3, a7, and a12 emerging in Eqs. (37)
and (41) with Eq. (18) are all given by Eq. (35) with Eqs. (36)
and (38)–(40). For f to be well-defined and positive, the in-
volved parameters are required to satisfy the conditions

b3 = a9a11−a6a14 6= 0,T3 6= 0,a16 > 0. (42)

The above three sets of solutions for the parameters pro-
duce three quadratic function solutions to the bilinear gen-
eralized (3+1)-D KP equation (13) in three different cases:
α8 = α9 = 0, α9 = α10 = 0, and α8 = α10 = 0, respectively.
Further, under the first-order logarithmic transformation (12),
the resulting quadratic function solutions present three lump-
type solutions u to the generalized (3+1)-D KP equation (1).
In all three cases, the solutions contain eleven free constants
ai, but always satisfy the determinant equation∣∣∣∣∣∣

a1 a2 a3
a6 a7 a8
a11 a12 a13

∣∣∣∣∣∣= 0. (43)

Due to this character of the resulting parameters, it is obvious
that all the above three solutions to the generalized (3+1)-D
KP equation (1) are just lump-type solutions but not lump so-
lutions.

3. Dynamics of two specific examples
In the current section, to show dynamic behaviors of the

lump-type solutions more specifically, we would like to exhibit
two special examples of the considered generalized (3+1)-D
nonlinear equation (1), based on the lump-type solutions ob-
tained above.

3.1. Example 1: Lump-type solutions to the BKP equation

Particularly, let us firstly focus on the BKP equation (4).
For α8 = α9 = 0 in Eq. (4), we may take into account its lump-
type solution within the framework of Case 1. In fact, based
on the free constants that not be constrained by Eq. (19), many
different profiles of lump-type solutions can be designed. Just
to avoid the tedious formula, we consider to fix these arbitrary
constants at first. Associated with the eleven arbitrary wave
parameters being selected as

a1 = a5 = a8 = a9 = a10 = a14 = a15 = 1,

a3 = a6 = a11 = a13 = 2, (44)

the corresponding function f takes the form

f =

(
x+

37
9

y+2z+
1
2

t +1
)2

+

(
2x+

5
9

y+ t + z+1
)2
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+

(
2x+

28
9

y+ t +2z+1
)2

+
2780

17
, (45)

then a direct calculation from Eq. (12) tells us that the lump-
type solution to the BKP equation can be expressed as

u =
36x+(412/9)y+32z+18t +20

(x+(37/9)y+2z+(1/2)t +1)2 +(2x+(5/9)y+ t + z+1)2 +(2x+(28/9)y+ t +2z+1)2 +(2780/17)
. (46)

Under the parameters (44), b1 = a8a11− a6a13 = −2 6= 0, the denominator of a2 (or a7 or a12) in Eq. (19) T1 = 9 6= 0 and
a16 = 2780/17 > 0, which guarantee the positivity of quadratic solution f and the analyticity of lump-type solution u. The
graphical representation of the lump-type solution u of the BKP equation, shown by Eq. (46), is portrayed to illustrate the energy
distribution of this solution in Fig. 1, which includes contour plot, 3D plot, and 2D curve.

As usual, we define the position of the maximum value and minimum value as the the peak and the trough of the lump-type
wave. In the present case, according to solution (46), the peak and the trough are respectively located at

(x,y)peak =

(
− 160

391
+

√
5253
17

− 9
23

z− 1
2

t,− 9
23

z− 45
391

)
, (47)

(x,y)trough =

(
− 160

391
−
√

5253
17

− 9
23

z− 1
2

t,− 9
23

z− 45
391

)
, (48)

which reveals that the x values of both the peak and the trough of the lump-type wave change in proportion to z and time t, while
the y value keeps invariant with time. The inserting of the coordinate values of the peak and the trough of the lump-type wave
(47) and (48) into solution (46) results upeak = 2

√
5253/309 and utrough = −2

√
5253/309. The result shows that both the peak

value and the trough value are fixed constants, but not vary with t and z. As soon as z and t are given, the positions of the peak
and the trough of the lump-type wave will be determined. If we select the mentioned values of free parameters as Eq. (44) and
z = 0, y =−45/391, and t = {0,10,20}, respectively, the peaks of the lump-type wave are respectively located at (3.85,−0.12),
(−1.15,−0.12), and (−6.15,−0.12), while the trough are located at (−4.67,−0.12), (−9.67,−0.12), and (−14.67,−0.12),
which have been depicted in Fig. 1(c).
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Fig. 1. Lump-type profiles of Eq. (46): (a) contour plot with z = t = 0; (b) 3D plot with z = t = 0; (c) the wave along with x axis with z = 0, y =−45/391,
and t = {0,10,20}, respectively.

3.2. Example 2: Lump-type solutions to the JM equation

By setting α2 = −3, α5 = 2, and the other αi in Eq. (1) to be zeros, we have another specific example of the generalized
(3+1)-D KP equation (2), i.e., the JM equation. In the case α9 = α10 = 0, associated with the parameters being taken as

a1 =−a4 = a5 = a7 = a11 = a12 = a15 = 1, a2 = a6 = a9 = a10 = 2, (49)

the corresponding lump-type solution to the (3+1)-D JM equation can be written as

u =
24x+20y+(376/27)z+(40/3)t +24

(x+2y+(4/27)z− t +1)2 +(2x+ y+(38/27)z+2t +2)2 +(x+ y+(14/27)z+(1/3)t +1)2 +(405/22)
. (50)

Figures 2(a) and 2(b) depict the contour plot and the 3D plot of the lump-type solution (50) of the JM equation, where the
arbitrary constants are selected as Eq. (49) and z = t = 0. Note that, under the circumstances, b4 = a1a7− a2a6 = −3 6= 0, the
denominator of a3 (or a8 or a13) in Eq. (27) T2 = 27 6= 0, and a16 = 405/22 > 0 guarantee the quadratic solution f to be a positive
solution and then the lump-type solution u to be analytical.

Continuing to choose the free constants as Eq. (49), we can compute from Eq. (50) that the peak and the trough are respec-
tively located at

(x,y)peak =

(
− 227

118
t− 53

59
z− 227

118
+

1
118

√
59((3t +4z+3)2 +708),

50
177

t− 130
177

z+
50

177

)
, (51)
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(x,y)trough =

(
− 227

118
t− 53

59
z− 227

118
− 1

118

√
59((3t +4z+3)2 +708),

50
177

t− 130
177

z+
50

177

)
. (52)

Different from the above results of BKP equation, both the x coordinate and y coordinate of the peak and the trough of the JM
lump-type wave depend on z and t. After substituting the coordinate values (51) and (52) of the peak and trough into solution
(50), we have

upeak =
4
√

59√
(3t +4z+3)2 +708

, utrough =−
4
√

59√
(3t +4z+3)2 +708

, (53)

which tells us that the peak value and the trough value of the lump-type wave do not remain unchanged as that of the BKP lump-
type wave, but vary with the changes of z and t. When we select the mentioned values of free parameters as Eq. (49) and z = 0
and t = {0,10,20}, respectively, the peaks of the lump-type wave are respectively located at (−0.18,0.28), (−18.40,3.11), and
(−35.95,5.93), while the trough are located at (−3.67,0.28), (−23.92,3.11), and (−44.85,5.93), and the maximum values and
the minimum values of the lump-type solutions are (upeak,utrough) = ({1.15,0.72,0.45},{−1.15,−0.72,−0.45}), respectively,
which have all been displayed in Fig. 2(c).
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Fig. 2. Plots of the lump-type solution (50) of the Jimbo–Miwa equation (2): (a) the contour plot with z = t = 0, (b) the corresponding 3D plot with z = t = 0,
(c) the wave along with x axis with z = 0, t = {0,10,20}, and y = {0.28,3.11,5.93}, respectively.

4. Summary and discussion
In this paper, on the basis of the Hirota bilinear for-

mulation, we have investigated positive quadratic function
solutions to a bilinear generalized (3+1)-D KP equation in
three different cases. The resulting solutions offer us abun-
dant new exact solutions to the corresponding nonlinear equa-
tion as well as some restriction conditions to ensure that
the involved quadratic functions are well-defined and posi-
tive. More specifically, by considering two concrete nonlin-
ear equations, the JM equation (2) and the BKP equation (4),
we have illustrated the dynamical evolutions of the obtained
lump-type solutions through their contour plots, 3D plots and
2D plots with some certain choices of the included free param-
eters. Moreover, we have calculated the peaks and troughs of
the acquired lump-type solutions as shown in Figs. 1(c) and
2(c). It is worth stating that the implemented procedure can
be applied to much higher dimensional nonlinear equations.
It should also be interesting to consider interactions between
lumps and solitons.[21,52] The details on the method for other
nonlinear systems, other types of interaction wave solutions,
and other possible physical applications, will be reported in
our future research work.
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