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Abstract
This paper focuses on a (2+1)-dimensional fourth-order nonlinear wave equation with
five categories of nonlinear terms, which can be reduced to spatially symmetric non-
linear models. Rational and lump solutions are derived by taking suitable limits of the
soliton solutions obtained via the Hirota bilinear method. Furthermore, a kind of spe-
cific N -soliton solutions satisfying certain constraints is also obtained. Additionally, a
specialized spatially symmetric model is presented to explore the corresponding lump
waves. The derived lump solutions feature a critical point line, where their two spatial
coordinates move at a constant velocity.Moreover, a reduced case is computed, reveal-
ing that nonlinearity and dispersion jointly control lump waves. This work enriches
the solution structure of high-dimensional nonlinear equations and provides insights
for describing complex dispersive phenomena.

Keywords Hirota bilinear form · Soliton solution · Lump wave · Long wave limit

1 Introduction

Nonlinear partial differential equations are used to describe natural phenomena and
physical laws inmanymodern scientific and engineering fields such as plasma physics,
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nonlinear optics, quantum mechanics and electromagnetic fluid dynamics. By estab-
lishing and studying corresponding nonlinear evolution equations, some physical
mechanisms behind natural phenomena can be revealed. One of the important funda-
mental issues in the subject is the exploration of exact solutions for nonlinear evolution
equations. The investigation of nonlinear evolution equations has also brought many
new theories andmethods to the field ofmathematical physics. In particular, in the pro-
cess of solving nonlinear evolution equations, a series of effective analytical techniques
such as the Hirota direct method [1–4], Bäcklund transformations [5–7], Darboux
transformations [8], the Wronskian technique [7, 9, 10] and the Riemann-Hilbert
approach [11, 12] have been developed. These methods not only enrich the theory of
solving partial differential equations, but also provide reference and inspiration for the
development of other mathematical branches.

Among the current solving techniques, the Hirota bilinear method, first devel-
oped by Ryogo Hirota in 1971, is an effective method for solving exact solutions
of integrable nonlinear evolution equations [13]. The basic idea of this method is
to transform nonlinear partial differential equations into bilinear equations through
appropriate dependent variable transformations. Under new variables, exact solutions
such as multiple soliton solutions can be expressed in a relatively simple form, thereby
transforming the problem of solving nonlinear partial differential equations into the
problem of solving bilinear equations. As a type of exponentially localized solutions,
soliton solutions can characterize a wide range of nonlinear phenomena. Since the
Hirota method is algebraic rather than analytic, it exhibits significant advantages in
seeking multiple soliton solutions. Furthermore, within the Hirota bilinear theory, by
solving the corresponding Hirota bilinear forms, various special solutions of nonlinear
equations can also be generated, including complexiton solutions [14–16] and lump
solutions [17, 18]. Similar to solitons, lump waves are typically expressed as ratio-
nal functions of the independent variables, which decay to zero in all directions in
the spatial domain [19–21]. Unlike some other solutions that may have singularities,
lump solutions are non-singular. The long wave limit method, a key soliton theory
technique, derives rational solutions for nonlinear evolution equations by applying
a long wave limit to N -soliton solutions obtained by direct methods. By adequately
choosing parameters of the two-soliton solution, the long wave limit of the solution
yields a two-dimensional, non-singular lump decaying in all directions [17, 18]. The
long wave limit method can be applied not only to local nonlinear equations but also
to nonlocal integrable systems to obtain high-order rational solutions and rogue waves
[22, 23].

To summarize, the (2+1)-dimensional nonlinear equations emerge to model
multi-dimensional nonlinear phenomena in physics and engineering, generalize lower-
dimensional theories, and challenge mathematical techniques for solving complex
nonlinear systems. The Kadomtsev-Petviashvili (KP) equation is a well-known inte-
grable system used to describe weakly nonlinear dispersive wave propagation in two
dimensions [24]. The KP equation is given by

(ut + 6uux + uxxx )x + σ 2uyy = 0, σ 2 = ±1, (1.1)
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which is regarded as the KPI equation if σ 2 = −1 and the KPII equation if σ 2 = 1.
The difference between the two lies in the sign of the uyy term, which leads to distinct
behaviors of the solutions and physical interpretations in different applications. The
KPI equation has a large number of lump solutions while the KPII equation does not
typically exhibit such solutions. By applying a direct symbolic computation, the KPI
equation (1.1) possesses a class of lump solutions as follows [20]:

u = 2(ln f )xx , f =
(
a1x + a2y + a1a22 − a1a26 + 2a2a5a6

a21 + a25
t + a4

)2

+
(
a5x + a6y + 2a1a2a6 − a22a5 + a5a26

a21 + a25
t + a8

)2 + 3(a21 + a25)
3

(a1a6 − a2a5)2
, (1.2)

where the involved parameters ai ’s are arbitrary but a1a6 − a2a5 �= 0. Such lump
solutions can also be obtained by performing the long wave limit procedure on the
soliton solutions [25]. Many other integrable equations have lump solutions such as
the Davey-Stewartson II equation [17], the B-type Kadomtsev-Petviashvili (BKP)
equation [26] and the Ishimori-I equation [27]. It has been further found that many
non-integrable models may possess lump solutions, including the generalized KP,
BKP and Sawada-Kotera equations in (2+1)-dimensions [28–32].

Motivated by the existing research, the main purpose of this study is to discuss a
(2+1) dimensional fourth-order nonlinear evolution equation and search for its lump
solutions by taking the longwave limit of soliton solutions. The framework of the paper
is organized as follows. In Section 2, we would like to consider a fourth-order non-
linear wave equation containing five fourth-order derivative terms, which can reduce
to spatially symmetric nonlinear models. A class of one-lump solutions will be pre-
sented by performing long wave limits of the corresponding two-soliton solutions.
Moreover, a class of specific N -soliton solutions satisfying certain constraints will
also be obtained. In Section 3, a special spatially symmetric model will be investi-
gated to shed light on the presented results. Finally, our concluding remarks will be
given in the last section.

2 Soliton and Lump Solutions

2.1 AModel Including Five Types of Nonlinear Terms

In this section, we first introduce a (2+1)-dimensional fourth-order nonlinear equation

α1[uxxxx + 6(uxv)x ] + α2[uyyyy + 6(uyw)y] + α3[uxxxt + 3(ux pt + utv)x ]
+ α4[uyyyt + 3(uyqt + utw)y] + α5(uxxyy + 4uuxy + 5uxuy + uyyv + uxxw

+ vxwy) + β1uxt + β2uyt + β3uxy + β4uxx + β5uyy = 0, (2.1)

where vy = ux , wx = uy, px = v, qy = w, the coefficients αi , 1 ≤ i ≤ 5 are
real constants that are not all zero, and βi , 1 ≤ i ≤ 5 are real constants satisfying
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β2
1 + β2

2 �= 0. It is easy to see that the coefficients ai , 1 ≤ i ≤ 5 involve five types of
fourth-order derivative terms. Through the dependent variable transformations

u = 2(ln f )xy, v = 2(ln f )xx , w = 2(ln f )yy, p = 2(ln f )x , q = 2(ln f )y, (2.2)

the above nonlinear equation (2.1) is converted into the following bilinear form:

(α1D
4
x + α2D

4
y + α3D

3
x Dt + α4D

3
y Dt + α5D

2
x D

2
y

+ β1Dx Dt + β2DyDt + β3Dx Dy + β4D
2
x + β5D

2
y) f · f = 0, (2.3)

where Dx , Dy and Dt are Hirota’s bilinear derivatives [1]. Equation (2.1) contains
many meaningful integrable models as its special examples, especially the spatially
symmetric nonlinear models. By taking the choices

α1 = β1 = 1, β5 = −1, α2 = α3 = α4 = α5 = β2 = β3 = β4 = 0,

and

α1 = α2 = α4 = α5 = β1 = β3 = β5 = 0, α3 = β2 = β4 = 1,

the above form (2.3) becomes the bilinear KPI equation

(D4
x + Dx Dt − D2

y) f · f = 0, (2.4)

and the bilinear Hirota-Satsuma-Ito (HSI) equation in (2+1)-dimensions [33]

(D3
x Dt + DyDt + D2

x ) f · f = 0, (2.5)

respectively. Upon setting α1 = α2, β1 = β2, β4 = β5 and α3 = α4 = 0 in Eq. (2.1),
the Hirota bilinear form (2.3) gives a spatially symmetric generalized bilinear KP
model in (2+1)-dimensions [34]:

[α1(D
4
x + D4

y) + α5D
2
x D

2
y + β1(Dx Dt + DyDt ) + β3Dx Dy

+β4(D
2
x + D2

y)] f · f = 0. (2.6)

Moreover, taking α1 = α2 = α5 = β3 = 0, α3 = α4 = α, β1 = β2 = β4 = β5 = 1,
then Eq. (2.3) gives the following spatially symmetric bilinear HSI model [35]:

(αD3
x Dt + DyDt + D2

x + αD3
y Dt + Dx Dt + D2

y) f · f = 0. (2.7)

These equations all possess lump waves generated from positive quadratic wave func-
tions through symbolic calculations with Maple.

In conclusion, the (2+1)-dimensional fourth-order nonlinear equation (2.1), con-
taining five types of fourth-order derivative terms, refines existingmodels by capturing
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richer nonlinear dynamics, enhancing descriptions of real-world systems with con-
current nonlinear mechanisms, and offering a more precise characterization of
(2+1)-dimensional phenomena. Notably, this newmodel can be reduced to both theKP
equation and the Hirota-Satsuma-Ito equation. Though both this new model and the
KP equation are (2+1)-dimensional, the new model incorporates unique higher-order
and nonlinear features beyond the KP framework.

2.2 One-soliton, Two-soliton and Lump Solutions

As is well known, if a nonlinear model equation is expressed as a Hirota bilinear
equation, one-soliton and two-soliton solutions can always be calculated based on the
corresponding Hirota bilinear form. However, the existence of three-soliton solutions
is guaranteed by passing the three-soliton solution test [36–39]. Now, assume the wave
variables are

ηi = ki (pi x + li y + wi t + δi ) + η
(0)
i , 1 ≤ i ≤ N , (2.8)

where ki , pi , li , 1 ≤ i ≤ N , are constants to be determined, δi , η
(0)
i , 1 ≤ i ≤ N , are

arbitrary constant shifts, and the dispersion relations are satisfied:

wi = −α1k2i p
4
i − α2k2i l

4
i − α5k2i l

2
i p

2
i − β3li pi − β4 p2i − β5l2i

α3k2i p
3
i + α4k2i l

3
i + β1 pi + β2li

, 1 ≤ i ≤ N .

(2.9)

Proposition 2.1 Let η1 be defined by (2.8), wherew1 is given by (2.9). Then the Hirota
bilinear Eq. (2.3) admits a class of one-soliton solutions

f = 1 + eη1 . (2.10)

Moreover, the first class of low-order rational solutions to Eq. (2.1) is given by

u = −2p1l1
θ21

, v = −2p21
θ21

, w = −2l21
θ21

, p = 2p1
θ1

, q = 2l1
θ1

, (2.11)

where

θ1 = p1x + l1y − β3 p1l1 + β4 p21 + β5l21
β1 p1 + β2l1

t + δ1. (2.12)

Proof Substituting (2.10) into (2.3) yields the dispersion relation w1 given by (2.9),
which means that f = 1 + eη1 is a class of solutions of Eq. (2.3). In (2.10), setting

eη
(0)
1 = −1 and taking the limit as k1 → 0, we expand f as

f = −k1θ1 + O(k21), (2.13)
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where θ1 is defined by (2.12). Due to the logarithmic derivative transformations (2.2),
f corresponds to θ1. Using the transformations (2.2), we obtain the first class of
low-order rational solutions (2.11) for Eq. (2.1). This completes the proof.

Next, we introduce a set of constants

Ai j = − P(ki pi − k j p j , ki li − k j l j , kiwi − k jw j )

P(ki pi + k j p j , ki li + k j l j , kiwi + k jw j )
, 1 ≤ i < j ≤ N , (2.14)

where the polynomial function P and constants wi , 1 ≤ i ≤ N , are defined by

P(x, y, t) = α1x
4 + α2y

4 + α3x
3t + α4y

3t + α5x
2y2

+β1xt + β2yt + β3xy + β4x
2 + β5y

2 (2.15)

and (2.9), respectively.

Proposition 2.2 Let η1, η2 be defined by (2.8), where (2.9) holds. Then the Hirota
bilinear Eq.(2.3) has the following two-soliton solutions:

f = 1 + eη1 + eη2 + A12e
η1+η2 , (2.16)

where the constant A12 is defined by (2.14) with (2.15). Furthermore, suppose the
coefficients βi , 1 ≤ i ≤ 5, satisfy β2

1β5 − β1β2β3 + β2
2β4 �= 0. Then the second class

of rational solutions to Eq. (2.1) can be expressed as

u = 2(ln f )xy, v = 2(ln f )xx , w = 2(ln f )yy, p = 2(ln f )x , q = 2(ln f )y,

(2.17)

f = θ1θ2 + B12, (2.18)

where

θi = pi x + li y − β3 pi li + β4 p2i + β5l2i
β1 pi + β2li

t + δi , i = 1, 2, (2.19)

B12 = b1α1 + b2α2 + b3α3 + b4α4 + b5α5

(l1 p2 − l2 p1)2(β2
1β5 − β1β2β3 + β2

2β4)
, (2.20)

with bi , 1 ≤ i ≤ 5, being given by

b1 = 12p21 p
2
2(p2β1 + l2β2)(p1β1 + l1β2),

b2 = 12l21 l
2
2(p2β1 + l2β2)(p1β1 + l1β2),

b3 = −6p21 p
2
2(p1l2 + p2l1)(β1β3 + β2β4) − 6p1 p2l1l2(p1l2 + p2l1)β2β5

−12p31 p
3
2β1β4 − 12p21 p

2
2l1l2β2β3 − 6p1 p2(p

2
1l

2
2 + p22l

2
1)β1β5,

b4 = −6l21 l
2
2(p1l2 + p2l1)(β2β3 + β1β5) − 6p1 p2l1l2(p1l2 + p2l1)β1β4

−12l31l
3
2β2β5 − 12l21 l

2
2 p1 p2β1β3 − 6l1l2(p

2
1l

2
2 + p22l

2
1)β2β4,

b5 = 2(p1β1 + l1β2)(p2β1 + l2β2)(p
2
2l

2
1 + 4p1 p2l1l2 + p21l

2
2). (2.21)
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Proof According to Hirota’s bilinear theory [1], under the dispersion relations (2.9)
and the constant A12 defined by (2.14), there always exists a class of two-soliton
solutions (2.16) to the Hirota bilinear equation (2.3). For the phase shift A12 defined

by (2.14) with (2.9) and (2.15), choosing eη
(0)
i = −1 and taking ki → 0 with k1/k2 =

O(1), pi = O(1) and li = O(1) for i = 1, 2, we can obtain

A12 = 1 + k1k2(b1α1 + b2α2 + b3α3 + b4α4 + b5α5)

(l1 p2 − l2 p1)2(β2
1β5 − β1β2β3 + β2

2β4)
+ O(k3), (2.22)

where bi , 1 ≤ i ≤ 5, are given by (2.21) and k = max(k1, k2). As a result, the class
of two-soliton solutions (2.16) becomes

f = k1k2

[
θ1θ2 + b1α1 + b2α2 + b3α3 + b4α4 + b5α5

(l1 p2 − l2 p1)2(β2
1β5 − β1β2β3 + β2

2β4)

]
+ O(k3),

(2.23)

where θi , i = 1, 2, are given by (2.19). Since k1k2 can be neglected from (2.23) as
previously discussed, f is equivalent to θ1θ2 + B12, with B12 defined by (2.20) and
bi , 1 ≤ i ≤ 5, by (2.21). Therefore, through the transformations (2.2), the second class
of rational solutions to Eq. (2.1) is expressed as (2.17) together with (2.18)-(2.21). This
completes the proof.

In general, f generated by Proposition 2.2 is generally singular at some position. To
get non-singular rational solutions of the (2+1)-dimensional nonlinear equation (2.1),
we seek quadratic function solutions to Eq. (2.3), which can generate lump solutions
to Eq. (2.1) through the transformations (2.2).

Theorem 2.1 Suppose that the coefficients of the second-order linear terms satisfy
β2
1β5 − β1β2β3 + β2

2β4 �= 0. Then the (2+1)-dimensional bilinear equation (2.3)
admits a class of quadratic function solutions as follows:

f = (a1x + a2y + a3t + a4)
2 + (a5x + a6y + a7t + a8)

2 + a9, (2.24)

where

a3 = − (a21 + a25)(a2β3 + a1β4)β1 + (a22 + a26)(a1β3 + a2β5)β2

(a1β1 + a2β2)2 + (a5β1 + a6β2)2

− (a1a22 − a1a26 + 2a2a5a6)β1β5 + (a21a2 − a2a25 + 2a1a5a6)β2β4

(a1β1 + a2β2)2 + (a5β1 + a6β2)2
,

(2.25)

a7 = − (a21 + a25)(a6β3 + a5β4)β1 + (a22 + a26)(a5β3 + a6β5)β2

(a1β1 + a2β2)2 + (a5β1 + a6β2)2

− (a5a26 − a22a5 + 2a1a2a6)β1β5 + (a25a6 − a21a6 + 2a1a2a5)β2β4

(a1β1 + a2β2)2 + (a5β1 + a6β2)2
,

(2.26)
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a9 = c1α1 + c2α2 + c3α3 + c4α4 + c5α5

(a1a6 − a2a5)2(β2
1β5 − β1β2β3 + β2

2β4)
, (2.27)

with the parameters ci , 1 ≤ i ≤ 5, in (2.27) being given by

c1 = −3(a21 + a25)
2[(a1β1 + a2β2)

2 + (a5β1 + a6β2)
2],

c2 = −3(a22 + a26)
2[(a1β1 + a2β2)

2 + (a5β1 + a6β2)
2],

c3 = 3(a21 + a25)
2(a1a2 + a5a6)(β1β3 + β2β4) + 3(a21 + a25)

2(a22 + a26)β2β3

+3(a21 + a25)(a
2
2 + a26)(a1a2 + a5a6)β2β5 + 3(a21 + a25)

3β1β4

+3[(a22 − a26)a
2
1 + 4a1a2a5a6 − (a22 − a26)a

2
5](a21 + a25)β1β5,

c4 = 3(a22 + a26)
2(a1a2 + a5a6)(β1β5 + β2β3) + 3(a22 + a26)

2(a21 + a25)β1β3

+3(a21 + a25)(a
2
2 + a26)(a1a2 + a5a6)β1β4 + 3(a22 + a26)

3β2β5

+3[(a21 − a25)a
2
2 + 4a1a2a5a6 − (a21 − a25)a

2
6](a22 + a26)β2β4,

c5 = −[(a1β1 + a2β2)
2 + (a5β1 + a6β2)

2][3(a1a2 + a5a6)
2 + (a1a6 − a2a5)

2].
(2.28)

Here, the involved six real parameters a1, a2, a4, a5, a6, a8 are arbitrary but satisfy
a1a6 − a2a5 �= 0.

Proof We select parameters:

p1 = a1 + Ia5, l1 = a2 + Ia6, δ1 = a4 + Ia8, p2 = p∗
1, l2 = l∗1 , δ2 = δ∗

1 ,

(2.29)

where a1, a2, a4, a5, a6, a8 ∈ R and I = √−1. Here the asterisk represents the com-
plex conjugate. This leads to θ1 = θ∗

2 in (2.19). Substituting (2.29) into (2.18) gives

f = (a1x + a2y + a3t + a4)
2 + (a5x + a6y + a7t + a8)

2 + a9,

with a3, a7, a9 determined by (2.25), (2.26) and (2.27), respectively. The constants
ci , 1 ≤ i ≤ 5, involved in (2.27) are defined by (2.28). All other parameters are
arbitrarily but must satisfy a1a6 − a2a5 �= 0. The proof is finished.

It is easy to observe that the two frequency parameters a3 and a7 generated from
the wave variables (2.19) represent a type of dispersion relations in (2+1)-dimensional
nonlinear dispersive waves, independent of the fourth-order coefficients. The constant
term parameter a9, generated by the phase shift (2.20) describes a complex relation
with wave numbers and plays a key role in constructing lump waves within the Hirota
bilinear form. The solutions in (2.24) are positive quadratic function if and only if the
parameter a9 > 0, and so, we require two basic positivity conditions for a9 > 0 as

a1a6 − a2a5 �= 0, (2.30)
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and

(c1α1 + c2α2 + c3α3 + c4α4 + c5α5)(β
2
1β5 − β1β2β3 + β2

2β4) > 0, (2.31)

where ci , 1 ≤ i ≤ 5, are determined by (2.28). These conditions guarantee the
essential properties of lump waves. Therefore, a class of lump solutions u, v, w can
be formulated via the transformations (2.2) under the two basic conditions (2.30) and
(2.31). �	

2.3 N-soliton solutions

In general, the Hirota bilinear equation (2.3) has a class of three-soliton solutions

f = 1 + eη1 + eη2 + eη3 + A12e
η1+η2 + A13e

η1+η3 + A23e
η2+η3

+A12A13A23e
η1+η2+η3 , (2.32)

if and only if the corresponding three-soliton condition [37–39]

∑
σ1,σ2,σ3=±1

P(σ1 p̄1 + σ2 p̄2 + σ3 p̄3)P(σ1 p̄1 − σ2 p̄2)P(σ2 p̄2 − σ3 p̄3)

P(σ1 p̄1 − σ3 p̄3) = 0, (2.33)

is satisfied, where ηi , Ai j , 1 ≤ i, j ≤ 3, and P are defined by (2.8), (2.14) and (2.15),
respectively, and p̄i = (ki pi , ki li , kiwi ), 1 ≤ i ≤ 3. It is direct to check that the
general model (2.3) doesn’t have three-soliton solutions [3]. As we know, a general
class of (1+1)-dimensional bilinear generalized KdV equations that possess N -soliton
solutions is expressed as [40]

(aD4
x + bD3

x Dt + cD2
x + dDx Dt ) f · f = 0, (2.34)

where a, b, c, d are arbitrary constants satisfying b2 + d2 �= 0. By utilizing a dimen-
sional reduction, we can obtain specific N -soliton solutions of Eq. (2.3) that satisfy
certain constraints.

Theorem 2.2 Let us impose the conditions

li = γ pi , 1 ≤ i ≤ N , (2.35)

in the wave variables (2.8), where γ is a non-zero constant. If γ satisfies

(α1 + α2γ
4 + α5γ

2)(β1 + β2γ ) − (α3 + α4γ
3)(β3γ + β4 + β5γ

2) �= 0,

(2.36)
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then the Hirota bilinear Eq. (2.3) has a class of specific N-soliton solutions:

f =
∑

μ=0,1

exp
( N∑

i=1

μiηi +
∑
i< j

μiμ j ln Ai j

)
, (2.37)

where μ = (μ1, μ2, · · · , μN ), μ = 0, 1 indicates that each μi sets 0 or 1, and

ηi = ki

[
pi (x + γ y) − (α1 + α2γ

4 + α5γ
2)k2i p

3
i + (β3γ + β4 + β5γ

2)pi

(α3 + α4γ
3)k2i p

2
i + (β1 + β2γ )

t

]

+η
(0)
i , 1 ≤ i ≤ N , (2.38)

Ai j =
[(α3 + α4γ

3)(k2i p
2
i − ki k j pi p j + k2j p

2
j ) + 3(β1 + β2γ )](ki pi − k j p j )

2

[(α3 + α4γ
3)(k2i p

2
i + ki k j pi p j + k2j p

2
j ) + 3(β1 + β2γ )](ki pi + k j p j )2

, 1 ≤ i < j ≤ N , (2.39)

with η
(0)
i ’ s being arbitrary constant phase shifts. If γ satisfies

(α1 + α2γ
4 + α5γ

2)(β1 + β2γ ) − (α3 + α4γ
3)(β3γ + β4 + β5γ

2) = 0,

(α3 + α4γ
3)2 + (β1 + β2γ )2 �= 0, (2.40)

then the Hirota bilinear Eq. (2.3) has a set of resonant solutions:

f = 1 + ε1e
η1 + · · · + εNe

ηN , (2.41)

where ηi , 1 ≤ i ≤ N , are defined by (2.38), and εi ’ s are arbitrary constants.

Proof Taking an invertible linear transform of x, y, and t ,

x ′ = x + γ y, t ′ = t, (2.42)

then the Hirota bilinear equation (2.3) becomes

[
(α1 + α2γ

4 + α5γ
2)D4

x ′ + (α3 + α4γ
3)D3

x ′ Dt ′

+(β1 + β2γ )Dx ′ Dt ′ + (β3γ + β4 + β5γ
2)D2

x ′
]
f · f = 0, (2.43)

which presents a class of bilinear generalized KdV equations (2.34). According to
the algorithm proposed in Ref. [40] for verifying the Hirota condition, each equation
in (2.43) satisfies the N -soliton conditions and possesses N -soliton solutions. Under
the condition (2.40), the N -soliton solution to each bilinear equation in (2.43) has the
form of (2.37), where
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ηi = ki

[
pi x

′ − (α1 + α2γ
4 + α5γ

2)k2i p
3
i + (β3γ + β4 + β5γ

2)pi

(α3 + α4γ 3)k2i p
2
i + (β1 + β2γ )

t ′
]

+η
(0)
i , 1 ≤ i ≤ N , (2.44)

and Ai j , 1 ≤ i < j ≤ N , are defined by (2.39). Substituting the variable transfor-
mation (2.42) into the above N -soliton solution yields (2.37) with (2.38) and (2.39).
Therefore, we obtain the class of specific N -soliton solutions (2.37) to the Hirota
bilinear Eq. (2.3). Let us next set


 = (α1 + α2γ
4 + α5γ

2)(β1 + β2γ ) − (α3 + α4γ
3)(β3γ + β4 + β5γ

2).

(2.45)

By using the conditions (2.35), it is direct to compute that

wi = − (α1 + α2γ
4 + α5γ

2)k2i p
3
i + (β3γ + β4 + β5γ

2)pi

(α3 + α4γ
3)k2i p

2
i + (β1 + β2γ )

, 1 ≤ i ≤ N , (2.46)

P(ki pi − k j p j , γ ki pi − γ k j p j , kiwi − k jw j )

=
−ki k j pi p j
[(α3 + α4γ

3)(k2i p
2
i − ki k j pi p j + k2j p

2
j ) + 3(β1 + β2γ )](ki pi − k j p j )

2

[(α3 + α4γ
3)k2i p

2
i + (β1 + β2γ )][(α3 + α4γ

3)k2j p
2
j + (β1 + β2γ )] ,

1 ≤ i, j ≤ N , (2.47)

where P is defined by (2.15). Under the condition (2.40), the final expression in (2.47)
is equal to zero. Therefore, we have shown that the Hirota bilinear Eq. (2.3) has a set
of resonant solutions [41] given by (2.41).

We see that the conditions (2.35) reduce the (2+1)-dimensional case (2.3) to the
(1+1)-dimensional case. Taking N = 3, a class of specific three-soliton solutions f
is given by (2.32), where ηi and Ai j , 1 ≤ i, j ≤ 3, are defined by (2.38) and (2.39),
respectively. For Eq. (2.1), let us take

α1 = 1, α2 = −1, α3 = 1, α4 = 2, α5 = 1, β1 = 1, β2 = 2, β3 = −1, β4 = 2, β5 = 1.
(2.48)

Via the transformations (2.2), a special three-soliton solution (u, v, w) determined by
the expressions (2.32), (2.38) and (2.39) with the parameter values

k1 = 1, k2 = −1, k3 = 3

2
, γ = 2, p1 = 1, p2 = 2, p3 = −1, η(0)

1 = η
(0)
2 = η

(0)
3 = 0,

(2.49)

is plotted in Figs.1 and 2. As shown in Fig. 1, in each of the plots for u, v and w,
we can observe that the three line-like soliton waves run parallel to each other in
the (x, y) plane. This parallel behavior originates from the constraint pi/p j = li/l j .
This constraint ensures that the direction of propagation of each soliton wave is the
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Fig. 1 Three-soliton solution (u, v, w) (2.2) generated by the function (2.32) with (2.38) and (2.39) under
the selections (2.48) and (2.49) at t = 0

Fig. 2 The propagation of the three-soliton solution u (2.2) generated by the function (2.32) with (2.38)
and (2.39) under the selections (2.48) and (2.49) at t = −20 in (a), t = 15 in (b), and t = 30 in (c)

same, resulting in their parallelism. In the u plot, the heights of the three solitons are
different. Similarly, for v and w plots, the amplitudes of the three solitons in each plot
are distinct. This means that the maximum values of u, v, and w for their respective
solitons are different. Figure 2 displays the propagation process of the special three-
soliton solution corresponding to the field u. It can be seen that the wave behind
gradually catches up with the wave ahead and interacts with it. After a period of time,
the three solitons separate again and continue to propagate in the reverse order of their
initial sequence. Before and after the interaction, the original shapes and propagation
velocities of these solitons remain unchanged. This is a typical characteristic of soliton
dynamics in nonlinear systems, demonstrating the unique propagation and interaction
behaviors of the three-soliton solution for the u field.
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3 A Spatial Symmetric Nonlinear Model

In this section, a special spatial symmetric nonlinearmodel will be provided to seek the
corresponding lump solutions and consider their characteristic dynamical properties.

Let us first take α1 = α2 = 0, α3 = α4, β1 = β2, β4 = β5. The fourth-order
nonlinear equation (2.1) becomes the following spatial symmetric (2+1)-dimensional
model equation:

α3[uxxxt + 3(ux pt + utv)x ] + α3[uyyyt + 3(uyqt + utw)y]
+α5(uxxyy + 4uuxy + 5uxuy + uyyv + uxxw + vxwy)

+β1(uxt + uyt ) + β3uxy + β4(uxx + uyy) = 0, (3.1)

with vy = ux , wx = uy, px = v, qy = w, which possesses a Hirota bilinear form

[α3(D
3
x Dt + D3

y Dt ) + α5D
2
x D

2
y + β1(Dx Dt + DyDt ) + β3Dx Dy

+β4(D
2
x + D2

y)] f · f = 0, (3.2)

under the dependent variable transformations (2.2). Based on the obtained results
(2.25)-(2.27), a straightforward substitution gives a set of solutions for the parameters
in (2.24), where

a3 = −β3[a2(a21 + a25) + a1(a22 + a26)]
β1[(a1 + a2)2 + (a5 + a6)2]

−β4[(a1 + a2)(a21 + a22) + a1(a25 + 2a5a6 − a26) − a2(a25 − 2a5a6 − a26)]
β1[(a1 + a2)2 + (a5 + a6)2] ,

(3.3)

a7 = −β3[a6(a21 + a25) + a5(a22 + a26)]
β1[(a1 + a2)2 + (a5 + a6)2]

−β4[(a5 + a6)(a25 + a26) + a5(a21 + 2a1a2 − a22) − a6(a21 − 2a1a2 − a22)]
β1[(a1 + a2)2 + (a5 + a6)2] ,

(3.4)

a9 = 3α3β3c′
1 + 3α3β4c′

2 + α5β1c′
3

β1(2β4 − β3)(a1a6 − a2a5)2
. (3.5)

The above polynomials c′
i , 1 ≤ i ≤ 3, are defined as follows:

c′
1 = (a21 + a25)

2(a1a2 + a5a6 + a22 + a26) + (a22 + a26)
2(a1a2 + a5a6 + a21 + a25),

c′
2 = (a21 + a22 + a25 + a26)[(a21 − a26)

2 + (a22 − a25)
2 + 2(a1a5 + a2a6)

2

+(a1a2 + a5a6)(a
2
1 + a22 + a25 + a26)],

c′
3 = −[(a1 + a2)

2 + (a5 + a6)
2][3(a1a2 + a5a6)

2 + (a1a6 − a2a5)
2]. (3.6)
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Based on the above solution formulas, we require the following basic condition:

β1(2β4 − β3)(a1a6 − a2a5) �= 0. (3.7)

It is easy to see that a1a6 − a2a5 �= 0 implies (a1 + a2)2 + (a5 + a6)2 �= 0. Moreover,
under the condition (3.7), the parameter a9 is positive if and only if

(3α3β3c
′
1 + 3α3β4c

′
2 + α5β1c

′
3)β1(2β4 − β3) > 0. (3.8)

If α3 �= 0, we impose either

a1a2 + a5a6 > 0, α3β1β3(2β4 − β3) ≥ 0, α3β1β4(2β4 − β3) > 0,

α5(2β4 − β3) ≤ 0, (3.9)

or

a1a2 + a5a6 ≥ 0, α3β1β3(2β4 − β3) > 0, α3β1β4(2β4 − β3) ≥ 0,

α5(2β4 − β3) ≤ 0, (3.10)

then the condition (3.8) can be satisfied. If α3 = 0 and α5 �= 0, the condition

α5(2β4 − β3) < 0, β1(a1a6 − a2a5) �= 0, (3.11)

guarantees that the solutions for u, v, w are analytic and localized in all directions in
the space. Evidently, the conditions specified by (3.9), (3.10) and (3.11) incorporate
the coefficients, α3, α5, of the nonlinear terms and the coefficients, β1, β3, β4, of the
dispersion terms. This implies that both the nonlinearity and the dispersion jointly
influence the lump waves of the model equation (3.2). For example, a reduced case is
presented as follows.

Example 3.1 We take α3 = β4 = 0, β3 = σ 2, σ 2 = ±1, and α5β1 �= 0, then the
spatial symmetric (2+1)-dimensional bilinear equation (3.2) is reduced to

(α5D
2
x D

2
y + β1Dx Dt + β1DyDt + σ 2Dx Dy) f · f = 0. (3.12)

According to (3.5), we have

a9 = α5[(a1 + a2)2 + (a5 + a6)2][3(a1a2 + a5a6)2 + (a1a6 − a2a5)2]
σ 2(a1a6 − a2a5)2

. (3.13)

If σ 2 = 1, then the condition for the existence of lump waves reads

a1a6 − a2a5 �= 0, α5 > 0, (3.14)
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and if σ 2 = −1, the condition for the existence of lump waves reads

a1a6 − a2a5 �= 0, α5 < 0. (3.15)

Taking σ 2 = 1, α5 = 2, β1 = −1, and considering the following special values of the
free parameters:

a1 = 1, a2 = −1, a4 = 3, a5 = 2, a6 = 1, a8 = 6, (3.16)

the corresponding f defined by (2.24) becomes

f =
(
x − y − 1

3
t + 3

)2

+ (2x + y + t + 6)2 + 24, (3.17)

which provides a lump solution (u, w, v) to the reduced case (3.12) via the logarithmic
transformations (2.2). The profiles of the lump solution are vividly depicted in Fig. 3.
From the three-dimensional plots, it is observed that the lump solution u displays two
peaks paired with two hollows, while v and w are characterized by one peak with
two hollows. The curves show the spatiotemporal evolution of three fields u, v and w.
All fields exhibit localized peaks near x ≈ 0 with rapid decay, reflecting the rational
localization property of lump solutions.

Secondly, we discuss critical points of the quadratic function f defined by (2.24).
For this purpose, we need to consider solutions to the system

∂ f

∂x
(x(t), y(t), t) = 0,

∂ f

∂ y
(x(t), y(t), t) = 0. (3.18)

Due to the condition given by a1a6 − a2a5 �= 0, the system (3.18) is equivalent to

ξ1 = a1x + a2y + a3t + a4 = 0, ξ2 = a5x + a6y + a7t + a8 = 0. (3.19)

Based on (3.3) and (3.4), solving the above system (3.19) for x and y, critical points
of the quadratic function f can be written as:

x(t) = β3(a22 + a26) + β4(a21 + 2a1a2 − a22 + a25 + 2a5a6 − a26)

β1[(a1 + a2)2 + (a5 + a6)2] t + a2a8 − a4a6
a1a6 − a2a5

,

(3.20)

y(t) = β3(a21 + a25) − β4(a21 − 2a1a2 − a22 + a25 − 2a5a6 − a26)

β1[(a1 + a2)2 + (a5 + a6)2] t − a1a8 − a4a5
a1a6 − a2a5

,

(3.21)

at any time t . Clearly, the critical points define a linear path alongwhich the two spatial
coordinates advance at a constant rate.
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Fig. 3 Three-dimensional plots and x-curves of the lump solution (u, v, w) determined by (2.2) with the
function f given by (3.17) when y = 0 in (a),(b),(c) and (d),(e),(f), respectively

4 Concluding Remarks

In summary, by applying an appropriate limiting procedure to the soliton solutions
derived via the Hirota bilinear method, we have obtained soliton solutions and lump
waves for a fourth-order nonlinear equation containing five types of nonlinear terms
in (2+1)-dimensions. The derived specific N -soliton solutions can be transformed into
resonant solutions when appropriate parameter configurations are selected. We have
also proposed a technique to deduce lump waves by extending the involved parame-
ters to the complex field. In addition, we have provided a special spatially symmetric
nonlinear model for exploring the corresponding lump waves. The resulting lump
solutions possess a line of critical points, whose two spatial coordinates move with
constant velocities. Furthermore, we have calculated a reduced case, which demon-
strates the importance of the second-order linear dispersion terms and fourth-order
nonlinear terms for the existence of lump solutions.

This study establishes a connection for transforming specific N -soliton solutions
into resonant solutions through parameter adjustment, and extends relevant parameters
to the complex field, which provides an effective technical pathway for lump wave
derivation. Studying these lump solutions is novel and important because the highly
general fourth-order (2+1)-dimensional equation, with five fourth-order terms and
reducing to key integrable models, reveals unique non-singular, spatially decaying
lumps with moving critical lines, shaped by high-order derivative interactions. These
solutions enrich soliton theory by extending localized wave understanding to higher-
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dimensional, higher-order systems and clarify dispersion relations and phase shift
mechanisms through parameters like a3, a7, and a9.

We note that the lump solutions obtained in this paper can also be generated from
positive quadratic function solutions using symbolic calculations with Maple. How-
ever, our work adopts the long wave limit method that extends the involved parameters
to the complex field, which offers distinct clarity. It reveals that parameters a3 and a7
directly characterize a class of dispersion relations in (2+1)-dimensional nonlinear
dispersive waves. The constant term a9, related to the phase shifts, exhibits a complex
relationship with wave numbers. In particular, the fourth-order derivative terms such
as D3

x Dt , D3
y Dt and D2

x D
2
y enhance the complexity of the structure of a9.

The novelty and originality of our work lies in the introduction of five fourth-order
bilinear terms, which produce nonlinear terms in the model equation that have not
appeared in the literature. As is well recognized, nonlinearity interacts with various
types of dispersion to generate both lump and soliton waves. Our study makes a novel
contribution to this important area of nonlinear wave research.

Given that more nonlinear phenomena in the real world are described by interaction
solutions between lump waves and other interesting waves, both homoclinic and het-
eroclinic waves [42, 43], we hope to explore lump solutions and interaction solutions
to nonlinear evolution equations of various orders and dimensions in the future.
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