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Abstract
This work investigates dispersion-driven lump wave structures within a generalized (2+1)-
dimensional Calogero–Bogoyavlenskii–Schiff-like framework. By employing a generalized
bilinear form of the governing equation, we construct positive quadratic function solutions
via symbolic computation, which in turn generate lump wave structures. The analysis shows
that the stationary points of the quadratic function align along a straight trajectory in the
spatial plane and propagate with constant velocity, where the lump amplitude vanishes. The
emergence of these lump waves results from the interplay of eight nonlinear terms and four
dispersion terms in the model.

Keywords Generalized bilinear form · Lump wave · Symbolic computation · Nonlinearity ·
Dispersion

1 Introduction

Closed-form exact solutions play a central role in mathematical physics and engineering, as
they not only yield fundamental insights but also provide systematic frameworks for tackling
complex nonlinear phenomena. However, deriving such solutions remains a highly nontrivial
task, motivating extensive efforts to either obtain explicit expressions or to characterize the
precise conditions under which they exist.

Within soliton theory and the study of integrablemodels, a wide variety of wave structures,
including solitons, rogue waves, and lump waves, have been constructed through symbolic
computation and analytical techniques. These localized and dispersive waveforms emerge
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from the delicate balance between nonlinearity and dispersion, and their explicit construction
continues to be a central theme in exploring wave dynamics across physical and engineering
applications.

In applied sciences, dipole and quadrupole solitons in photonic Moiré lattices have
been analyzed based on a perturbed nonlinear Schrödinger equation [1]. The integration
of deep-learning prediction with ultrafast optical setups holds great potential for advancing
the application of ultrafast optical lasers in optical communication and information stor-
age [2]. Studies have shown that incorporating common dye molecules absorbing in the
near-ultraviolet and blue spectral regions enhances optical transparency at adjacent longer
wavelengths [3]. Furthermore, a passive mode-locked fiber laser has been reported, within
the framework of a nonlinear Schrödinger equation model, to achieve simultaneous single-
wavelength tuning and multi-wavelength spacing tuning based on the split-step Fourier
method [4].

Two fundamental techniques in soliton theory and the study of integrable systems are the
Hirota bilinear method [5] and the inverse scattering transform (IST) [6]. The Hirota method
offers a direct and systematic framework for constructing exact solutions, such as solitons and
lump waves, particularly in nonlinear dispersive equations of higher dimensions, including
(2 + 1)- and (3 + 1)-dimensional models [7–11]. By contrast, the IST serves as a nonlinear
analogue of the Fourier transform, specifically adapted to integrable equations. It provides
a powerful tool for addressing initial-value problems through associated Lax pairs [12], as
well as for analyzing the long-time asymptotic behavior of dispersive waves, even in regimes
without solitons [13].

Let x, y represent spatial variables and t denote time. For a given polynomial P(x, y, t),
a Hirota bilinear differential equation in (2+1)-dimensions can be formulated as

P(Dx , Dy, Dt ) f · f = 0, (1)

where Dx , Dy and Dt are Hirota’s bilinear operators [5], defined by

Dm
x Dn

y D
k
t f · f = ( ∂

∂x
− ∂

∂x ′
)m( ∂

∂ y
− ∂

∂ y′
)n( ∂

∂t
− ∂

∂t ′
)k

f (x, y, t) f (x ′, y′, t ′)
∣∣
x ′=x,y′=y,t ′=t ,

with m, n, k ≥ 0. Through Bell polynomial theory, nonlinear PDEs for a scalar field u can
often be derived from bilinear forms via logarithmic derivative transformations (see, e.g.,
[14]):

u = β(ln f )xx , β(ln f )yy, β(ln f )xy, β(ln f )x , β(ln f )y, (2)

where β �= 0. Hirota’s method enables the construction of N -soliton solutions in the expo-
nential superposition form (see, e.g., [7, 15]):

f =
∑

λ=0,1

exp(
N∑

i=1

λiηi +
∑

i< j

λiλ j ci j ), (3)

where the sum runs over all binary combinations λ1, λ2, · · · , λN ∈ {0, 1}. The phase shifts
ci j and wave phases ηi are specified by

exp(ci j ) = − P(ω j − ωi , ki − k j , li − l j )

P(ω j + ωi , ki + k j , li + l j )
, where 1 ≤ i < j ≤ N , (4)

and
ηi = ki x + li y − ωi t + ηi,0, where 1 ≤ i ≤ N . (5)
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The key constraint ensuring solvability is the dispersion relation:

P(−ωi , ki , li ) = 0, where 1 ≤ i ≤ N . (6)

Thus, the central problem reduces to verifying that a function of the form (3) indeed solves (1)
under the conditions (6). A systematic algorithm for this verification, with explicit examples
in (1+1)- and (2+1)-dimensions, is detailed in [15, 16].

Beyond solitons, other explicit coherent structures arise in bilinear formulations. Lump
waves and roguewaves, for instance, are rationally localized in spacewhile vanishing at infin-
ity in all directions [17, 18]. The Kadomtsev-Petviashvili I (KPI) equation is well known to
support diverse families of lump solutions [8], some of which emerge as long-wave limits of
multi-soliton configurations [19]. These rationally localized structures are not limited to inte-
grable models: lump-type solutions also appear in nonintegrable KP, BKP, KP-Boussinesq
and generalized KdV-type extensions [20, 21], generalized Bogoyavlensky-Konopelchenko
equations [22, 23], and even in higher-dimensional linear wave systems via linear superpo-
sition [24, 25].

A widely used approach for deriving lump solutions is the sum-of-squares ansatz, where a
positive quadratic function is substituted into the bilinear equation [8, 17]. Through logarith-
mic derivative transformations, such quadratic forms give rise to lump solutions in diverse
nonlinear wave models. In this study, we apply this method to a (2+1)-dimensional general-
izedCalogero-Bogoyavlenskii-Schiff-like (gCBS-like) equation that includes eight nonlinear
terms and four distinct dispersive contributions. These nonlinear and dispersive effects jointly
serve as the balancing mechanisms sustaining the lump structures. By employing symbolic
computation in a computer algebra system, we obtain explicit lump solutions and investigate
the stationary points of the underlying quadratic function, which shed light on the associated
wave dynamics. We conclude with a discussion of the results and suggest possible directions
for further research.

2 A Generalized CBS-like Model

It is well known that Hirota bilinear derivatives can be extended to describe differential terms
of all orders. Our analysis begins with a generalized class of bilinear differential operators,
as put forward in [26]:

Dm
p,x D

n
p,y D

k
p,t f · f

= ( ∂

∂x
+ αp

∂

∂x ′
)m( ∂

∂ y
+ αp

∂

∂ y′
)n( ∂

∂t
+ αp

∂

∂t ′
)k

f (x, y, t) f (x ′, y′, t ′)
∣∣
x ′=x,y′=y,t ′=t , (7)

where
αk
p = (−1)r(k), k ≡ r(k) mod p, 0 ≤ r(k) < p. (8)

For instance, when p = 3, the cyclic pattern is

α3 = −1, α2
3 = α3

3 = 1, α4
3 = −1, α5

3 = α6
3 = 1, · · · . (9)

For p = 5, one obtains

α5 = −1, α2
5 = 1, α3

5 = −1, α4
5 = α5

5 = 1, α6
5 = −1, α7

5 = 1, α8
5 = −1, α9

5 = α10
5 = 1, · · · .

(10)
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Similarly, for p = 7, the sequence reads
{

α7 = −1, α2
7 = 1, α3

7 = −1, α4
7 = 1, α5

7 = −1, α6
7 = α7

7 = 1,

α8
7 = −1, α9

7 = 1, α10
7 = −1, α11

7 = 1, α12
7 = −1, α13

7 = α14
7 = 1, · · · .

(11)

Setting p = 3, we propose a generalized Calogero-Bogoyavlenskii-Schiff-like (gCBS-
like) bilinear equation:

FgCBS-like( f )

:= (
D3
3,x D3,y + σ1D3,t D3,x + σ2D3,t D3,y + σ3D3,x D3,y + σ4D

2
3,y

)
f · f

= 2[3 fxx fxy + σ1( ft x f − ft fx ) + σ2( fty f − ft fy) + σ3( fxy f − fx fy)

+σ4( fyy f − f 2y )] = 0, (12)

where D3,x , D3,y and D3,t denote the generalized bilinear derivatives, and σi for 1 ≤ i ≤ 4
are arbitrary constants. This formulation generalizes the CBS equation from the case p = 2
(see, e.g., [27]). By redefining the dependent variable as

u = 2(ln f )x , v = 2(ln f )y, (13)

we obtain the associated nonlinear gCBS-like model equation:

PgCBS-like(u, v) := 9

8
u2uxv + 3

8
u3uy + 3

4
uuxxv + 3

4
u2xv + 3

4
u2uxy + 9

4
uuxuy

+3

2
uxxuy + 3

2
uxuxy + σ1utx + σ2uty + σ3uxy + σ4uyy = 0, (14)

subject to vx = uy . This newmodel contains eight nonlinear terms and four dispersion terms.
Special cases illustrate its structure. For σ1 = σ4 = 1 with all other coefficients vanishing,

the generalized equation (14) reduces to a CBS-like form:

9

8
u2uxv+3

8
u3uy+3

4
uuxxv+3

4
u2xv+3

4
u2uxy+9

4
uuxuy+3

2
uxxuy+3

2
uxuxy+utx+uyy = 0.

For σ2 = σ4 = 1 with all other coefficients vanishing, we obtain another CBS-like equation:

9

8
u2uxv+3

8
u3uy+3

4
uuxxv+3

4
u2xv+3

4
u2uxy+9

4
uuxuy+3

2
uxxuy+3

2
uxuxy+uty+uyy = 0,

again with vx = uy .
Finally, the connection between the bilinear and nonlinear forms is exact:

PgCBS-like(u, v) = [ FgCBS-like( f )
f 2

]
x . (15)

Hence, u and v defined by (13) solve the nonlinear model (14) whenever f satisfies the
bilinear equation (12).

This newmodel raises natural questions concerning its integrability properties, particularly
whether it admits lump solutions, a hallmark of integrable systems. In the next section, we
investigate this issue with emphasis on lump structures shaped by the dispersion terms.

3 LumpWaves Governed by Dispersion

We now proceed to construct lump wave solutions of the gCBS-like model equation (14)
by performing symbolic computations on its associated generalized bilinear form (12). In
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particular, we demonstrate that the inclusion of all four dispersion terms is essential for
the emergence of lump-type solutions. Furthermore, we analyze the stationary points of the
resulting quadratic function to gain insight into their spatial characteristics.

3.1 Construction of Lump Solutions Via the Sum-of-Squares Ansatz

The sum-of-squares ansatz provides a systematic approach for constructing lump solutions
of higher-dimensional nonlinear evolution equations [8]. The method begins by expressing
the dependent variable as a logarithmic derivative of a positive quadratic function. Typically,
this quadratic form takes the sum-of-squares structure:

f = ξ21 + ξ22 + a9, ξ1 = a1x + a2y + a3t + a4, ξ2 = a5x + a6y + a7t + a8, (16)

ensuring the rational solution in all spatial directions. The parameters a1, a2 and a5, a6 rep-
resent two pairs of wave numbers, a3 and a7 denote the frequencies of the two underlying
travelling waves, and a4, a8, and a9 correspond to translation-invariant properties. Substitut-
ing this ansatz into the generalized bilinear equation (12) reduces the problem to determining
the nine parameters ai through an algebraic system. This framework provides a foundation
for generating general lump wave structures of lower order in (2+1)-dimensional settings
[17], with symbolic computation used to determine the coefficients.

Solving the resulting system symbolically yields explicit expressions for the frequency
and constant parameters:

a3 = − 1

(a1σ1 + a2σ2)2 + (a5σ1 + a6σ2)2
[
a2(a

2
1 + a25)σ1σ3

+(a1a
2
2 − a1a

2
6 + 2a2a5a6)σ1σ4

+a1(a
2
2 + a26)σ2σ3 + a2(a

2
2 + a26)σ2σ4

]
, (17)

a7 = − 1

(a1σ1 + a2σ2)2 + (a5σ1 + a6σ2)2
[
a6(a

2
1 + a25)σ1σ3

+(2a1a2a6 − a22a5 + a5a
2
6)σ1σ4

+a5(a
2
2 + a26)σ2σ3 + a6(a

2
2 + a26)σ2σ4

]
, (18)

and

a9 = −3(a1a2 + a5a6)(a21 + a25)
2σ1 + 6(a21 + a25)(a1a2 + a5a6)2σ2

(a1a6 − a2a5)2(σ1σ4 − σ2σ3)

−3(a1a2 + a5a6)(a21 + a25)(a
2
2 + a26)σ

2
2

(a1a6 − a2a5)2σ1(σ1σ4 − σ2σ3)
. (19)

All remaining parameters can be chosen freely.Here,a3 anda7 encode the dispersion relations
of the (2+1)-dimensional nonlinear dispersive system, indicating that variations in dispersion,
whether positive or negative, can cause solitons to propagate with different group velocities
(see also [28]). Meanwhile, a9 depends on the wave numbers and plays a crucial role in
shaping the lump structure (see also [29–31]). Higher-order dispersion relations have been
previously studied in the KP hierarchy [32], and related dynamical behaviors have been
explored in various generalized KP-type models (see, e.g., [33, 34]). All expressions, (17),
(18) and (19), are simplified using symbolic computation.
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For well-defined solutions, the following conditions on dispersion coefficients and wave
numbers must hold:

σ1(σ1σ4 − σ2σ3) �= 0, (20)

and
a1a6 − a2a5 �= 0. (21)

These conditions imply

(a1σ1 + a2σ2)
2 + (a5σ1 + a6σ2)

2 �= 0, (22)

ensuring the well-posedness of a3 and a7. Furthermore, the determinant condition (21) guar-
antees

a21 + a25 �= 0, a22 + a26 �= 0, (23)

which in turn ensures the spatial localization of the solutions u and v defined via the log-
arithmic derivative transformations (13). That is, u and v decay to zero as x2 + y2 → ∞,
confirming their localization.

A sufficient condition for the positivity of f is:

σ1

σ1σ4 − σ2σ3
< 0,

σ2

σ1σ4 − σ2σ3
< 0, a1a2 + a5a6 > 0, (24)

or
σ1

σ1σ4 − σ2σ3
> 0,

σ2

σ1σ4 − σ2σ3
< 0, a1a2 + a5a6 < 0, (25)

which ensures that a9 > 0 according to (19). Consequently, f defined in (16) is positive and
the corresponding solutions u and v are analytic throughout the domain of x, y and t .

In summary, under the two conditions (21) and (20), the resulting solutions u and v

constitute a well-defined, rationally localized lump wave solution of the gCBS-like model.

3.2 Evolution of Stationary Points

We now determine the stationary points of the quadratic function f defined in (16). These
points satisfy the system

fx (x(t), y(t), t) = 0, fy(x(t), y(t), t) = 0.

Since f is quadratic in x and y, this reduces to the linear system:

a1ξ1 + a5ξ2 = 0, a2ξ1 + a6ξ2 = 0,

where ξ1 and ξ2 are defined as in (16). Assuming the non-degeneracy condition (21), we
obtain

ξ1 = a1x + a2y + a3t + a4 = 0, ξ2 = a5x + a6y + a7t + a8 = 0, (26)

where, by the second partial derivative test, the quadratic function f attains a local minimum
at any fixed time t . Solving this system for x and y as functions of t gives the trajectory of
stationary points:

x(t) = (a22 + a26)(σ1σ4 − σ2σ3)

(a1σ1 + a2σ2)2 + (a5σ1 + a6σ2)2
t + a2a8 − a4a6

a1a6 − a2a5
, (27)

y(t) = (a21 + a25)σ1σ3 + 2(a1a2 + a5a6)σ1σ4 + (a22 + a26)σ2σ4
(a1σ1 + a2σ2)2 + (a5σ1 + a6σ2)2

t − a1a8 − a4a5
a1a6 − a2a5

. (28)
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Fig. 1 3d-plots of u with t = 0 (left), t = 3 (middle) and t = 5 (right)

Fig. 2 x curves of u with t = 0 (left), t = 3 (middle) and t = 6 (right)

Fig. 3 y curves of u with t = 0 (left), t = 3 (middle) and t = 6 (right)

Fig. 4 3d-plots of v with t = 0 (left), t = 3 (middle) and t = 5 (right)
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Fig. 5 x curves of v with t = 0 (left), t = 5 (middle) and t = 8 (right)

These expressions describe the motion of the stationary points over time. They lie along
a straight line, which we refer to as the characteristic trajectory, along which both spatial
coordinates advance at constant velocities. On this trajectory, the lump waves u and v vanish,
while remaining rationally localized in the surrounding space. These expressions describe
the trajectory of stationary points at any fixed time t .

Figures 1, 2, 3, 4, 5 and 6 present 3d and 2d visualizations of the lumpwaves u = 2(ln f )x
and v = 2(ln f )y , calculated using the parameter sets given below:

σ1 = −2, σ2 = 1, σ3 = 3, σ4 = 5,

and
a1 = −1, a2 = −2, a4 = −3, a5 = −2, a6 = 2, a8 = −3.

4 Concluding Remarks

We have analyzed a (2+1)-dimensional generalized Calogero-Bogoyavlenskii-Schiff-like
(gCBS-like) model and derived its lump wave solutions through symbolic computation using
computer algebra systems. The resulting lump wave is localized and vanishes along a char-
acteristic trajectory determined by the stationary points of the associated quadratic function.

Lump waves arise in a broad spectrum of physical and mathematical contexts, reflecting
their versatility and the inherent complexity of modeling nonlinear dispersive phenomena.
Previous studies have explored lump solutions in linear wave models [24, 25] as well as in
nonlinear, nonintegrable models in both (2+1)-dimensions [35–41] and (3+1)-dimensions

Fig. 6 y curves of v with t = 0 (left), t = 8 (middle) and t = 12 (right)
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[33, 42–44]. The construction of lump waves frequently employs Hirota bilinear forms and
their generalizations,which provide efficient tools for systematically analyzing such localized
structures [17].

Moreover, lump waves display rich interactions with other coherent structures in (2+1)-
dimensional integrable models, including homoclinic and heteroclinic waves [45–47].
Meanwhile, N -soliton solutions and integrability properties have been extensively inves-
tigated in both local and nonlocal integrable systems using Riemann-Hilbert methods and
bi-Hamiltonian structures [48–54]. The existence, dynamics, and interactions of lump waves
in (2+1)-dimensional generalizations of integrable systems, whether standard or general-
ized bilinear, scalar or multi-component, remain open and compelling directions for further
research (see, e.g., [55–62]).

In summary, the study of lump waves offers valuable insight into nonlinear dispersive
dynamics and may inform applications in physical and engineering systems where localized,
coherent, and energy-concentrated structures play a critical role.
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