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In this paper, we study the interaction solutions of the first BKP equation by using
the Hirota direct method and taking long-wave limit. In order to obtain the interaction

solutions, the multi-soliton solutions are firstly derived using the Hirota direct method,

then the interaction solutions are successfully constructed by properly choosing appro-
priate parameters and taking long-wave limit on the soliton solutions. These parameters

have great influences on the propagation directions, shapes as well as energy. Moreover,

the dynamic properties of these obtained solutions are illustrated vividly by some graphs.
The results in this work could be used to solve nonlinear problems in nonlinear optics

and engineering field.

Keywords: BKP equation; Hirota direct method; multi-soliton solutions; breather; lump
wave; interaction solution.

1. Introduction

In the past decades, the study of exact solutions and integrability of nonlinear

partial differential equations has been a hot topic in the field of integrable sys-

tems and soliton theory.1–21 The integrable nonlinear evolution equations possess

¶Corresponding author.
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many important properties, for example, the existence of solitons, the Hamilto-

nian structures, an infinite number of conservation laws, the Bäcklund transforma-

tions and the Lax pairs.22 After Gardner et al.23 established the inverse scattering

transform method, many effective methods for finding exact solutions have been

proposed, among which are the Bäcklund transformation,24–26 the Darboux trans-

formation,27,28 the Hirota bilinear method,29,30 the variable separation approach,31

similarity transformation,32,33 the dressing method34 and the inverse scattering ap-

proach.35 Particularly, the Hirota direct method has been widely used to study

nonlinear evolution equations due to its simplicity and directness. Recently, the

multi-soliton and interaction solutions of nonlinear evolution equations have at-

tracted a lot of attentions. The aim of this paper is to study the interaction solutions

of the first BKP equation, which reads

uyt − uxxxy − 3(uxuy)x − 3uxx = 0 . (1)

The first BKP equation (1) has been studied by a lot of researchers.36–39 Mixed

lump-kink solutions, periodic solitary-wave solutions, Wronskian and linear super-

position solutions and other solutions. In Ref. 31, the mixed lump solutions are

investigated. In Ref. 32, some new exact periodic solitary-wave solutions for the

(3 + 1)-dimensional generalized BKP equation were derived. In Ref. 33, the Wron-

skian and linear superposition solutions of the BKP equations were given. In Ref. 34,

the BKP equations were studied by the multiple exp-function algorithm and some

new solutions were constructed. Yue et al.40 constructed some localized exact solu-

tions of the (3 + 1)-dimensional BKP-type equation. In the present paper, we will

propose some new localized solutions and the corresponding interaction solutions

of the first BKP equation (1).

This paper is organized as follows. In Sec. 2, multi-soliton solutions of the first

BKP equation are constructed using the Hirota bilinear method. Then, choosing

appropriate parameters and taking long-wave limit, some interesting and useful

interaction solutions are derived in Sec. 3. Finally, some discussions are given in

Sec. 4.

2. Multi-Soliton Solutions

In fact, the multi-soliton solutions of Eq. (1) can be obtained by using the Hirota

direct method. Based on Painleve analysis, Eq. (1) enjoys the following Hirota

bilinear form as

(DyDt −D3
xDy − 3D2

x)τ · τ = 0 , (2)

through the logarithmic transformation

u = 2(ln τ)x, (3)

where the Hirota bilinear derivatives Dx, Dy and Dt are defined by

Dm
x D

n
yD

k
t a · b = (∂x − ∂x′)m(∂y − ∂y′)n(∂t − ∂t′)ka(x, y, t)b(x′, y′t′)|x=x′,y=y′,t=t′ .
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(4)

According to the standard perturbation method, the solution τ can be given in the

following form:

τ = 1 +

N∑
i=1

eηi +

N∑
i<j

Aije
ηi+ηj +

N∑
i<j<k

AijAikAjke
ηi+ηj+ηk

+ · · ·+

(∏
i<j

Aij

)
e
∑N

i=1 ηi , (5)

with ηj = ajx+ bjy + (aj
3 + 3b−1j aj

2)t+ η
(0)
j , (j = 1, 2, . . . , N) and

Aij =
aiajbibj(bi − bj)(ai − aj)− (aibj − ajbi)2

aiajbibj(bj + bi)(aj + ai)− (aibj − ajbi)2
, 1 ≤ i < j ≤ N , (6)

where aj , bj , η
(0)
j (j = 1, 2, . . . , N) are arbitrary constants.

For example, after the direct computations in Maple, we obtained the first three

solutions of:

When N = 1, we get

τ = 1 + eη1 , (7)

where η1 = a1x+ b1y+ (a1
3 + 3b−11 a1

2)t+ η
(0)
1 and a1, b1, η

(0)
1 are arbitrary

constants.

When N = 2, the function τ is

τ = 1 + eη1 + eη2 +A12e
η1+η2 , (8)

where ηj = ajx+ bjy + (aj
3 + 3b−1j aj

2)t+ η
(0)
j , (j = 1, 2)

A12 =
a1a2b1b2(b1 − b2)(a1 − a2)− (a1b2 − a2b1)2

a1a2b1b2(b2 + b1)(a2 + a1)− (a1b2 − a2b1)2
,

and aj , bj and η
(0)
j (j = 1, 2) are arbitrary constants.

When N = 3, we obtained τ as follows:

τ = 1 + eη1 + eη2 + eη3 +A12e
η1+η2 +A13e

η1+η3

+A23e
η2+η3 +A12A13A23e

η1+η2+η3 , (9)

where ηj = ajx+ bjy + (aj
3 + 3b−1j aj

2)t+ η
(0)
j , (j = 1, 2, 3),

Aij =
aiajbibj(bi − bj)(ai − aj)− (aibj − ajbi)2

aiajbibj(bj + bi)(aj + ai)− (aibj − ajbi)2
,

and aj , bj and η
(0)
j (j = 1, 2, 3) are arbitrary constants. Then the multi-soliton so-

lution of Eq. (1) can be got by plugging Eq. (4) with Eq. (5) into the logarithmic

transformation u = 2(ln τ)x.
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3. Interaction Solutions

Based on the methods obtained in the previous section, we will derive the analytical

expressions for the breather solutions, the lump solutions and the interaction solu-

tions between the breathers and other solutions of the first BKP equation (1) by

selecting appropriate parameters for the corresponding soliton solution (3). Unless

otherwise specified, we take η
(0)
j = 0 (j = 1, 2, 3, . . .) through the whole paper.

3.1. Breather and lump solutions

In order to get the analytical expressions for the breather and lump solutions, we

select the following appropriate parameters for the two-soliton solution in Eq. (3)

Case 1. When setting a1 = a∗2 = α1 + iβ1, b1 = b2 = δ1, the τ function takes the

following form:

τ = 1 + 2 exp(ζ1) cos(β1x+ ω1t) +A12 exp(2ζ1) , (10)

with

A12 =
β1

2

β1
2 + α1

3δ1 + α1β1
2δ1

, (11)

ζ1 = α1x+ δ1y +

[
3

δ1
(α1

2 − β12) + α1

(
α1

2 − 3β1
2
)]
t, (12)

ω1 =
β1
δ1

(
3α1

2δ1 − β12δ1 + 6α1

)
. (13)

Case 2. Let a1 = a2 = α1, b1 = b∗2 = δ1 + iγ1, then τ has the form

τ = 1 + 2 exp(ζ̂1) cos(γ1y + ω̂1t) +A12 exp(2ζ̂1) , (14)

with

A12 =
γ1

2

γ12 + α1δ1
3 + α1δ1γ12

, (15)

ζ̂1 = α1x+ δ1y + α1
3t+

3α1
2δ1

δ1
2 + γ12

t , (16)

ω̂1 =
−3α1

2γ1

δ1
2 + γ12

. (17)

Case 3. Choosing a1 = a∗2 = α1 + iβ1, b1 = b∗2 = δ1 + iγ1, we derive a new form of

function τ . For simplicity, it is not given here.

Figure 1 shows the breather solitons of the first BKP equation (1) at t = 0

with specific parameters. Figure 1(a) displays the x-periodic breather formulated

by τ function in Eq. (10) with Eqs. (11)–(13), where the parameters are α = 0,

β1 = 1, δ1 = 2. Figure 1(b) displays the (x, y)-periodic breather in Case 3 above,

where the parameters are α = −2, β1 = 1
2 , δ1 = 1, γ1 = 2. Figure 1(c) displays
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Fig. 1. (Color online) The breather solitons of the first BKP equation at t = 0: (a) displays the

x-periodic breather formulated by τ function in Eq. (10) with α = 0, β1 = 1, δ1 = 2, (b) displays

the (x, y)-periodic breather in Case 3 above with α = −2, β1 = 1
2

, δ1 = 1, γ1 = 2 and (c) displays

the y-periodic breather formulated by τ function in Eq. (14) with α1 = 2, δ1 = 0, γ1 = 1.

the y-periodic breather formulated by τ function in Eq. (14) with Eqs. (15)–(17),

where the parameters are α1 = 2, δ1 = 0, γ1 = 1.

Case 4. Setting b1 = p1a1, b2 = p2a2, η01 = −η02 = iπ and taking a1 → 0, a2 → 0

with a1
a2

= O(1), then the τ function in Eq. (8) can be rewritten as

τ = a1a2(ω0 + ω1ω2/(p1p2)) , (18)

where

ω0 =
2p1p2(p2 + p1)

(−p2 + p1)2
, ωj = pjx+ pj

2y + 3t, j = 1, 2 . (19)

Substituting Eq. (18) into the bilinear transformation in Eq. (3) leads to the lump

solution of Eq. (1) as follows:

u = 2(ln(ω0 + ω1ω2/(p1p2)))x , (20)

where ω0, ω1 and ω2 are defined in Eq. (19). Figures 2(a) and 2(b) show the density

plots of the first-order lump solitons at t = 0 with specific parameters p1 = −1−2i,

Fig. 2. (Color online) The structures of the lump wave Eq. (20) at t = 0 with specific parameters

(a) p1 = −1 − 2i, p2 = −1 + 2i and (b) p1 = 1 − 2i, p2 = 1 + 2i.
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p2 = −1 + 2i and p1 = 1−2i, p2 = 1 + 2i, respectively. It is observed that the lump

solitons have one peak and two valleys. It is obvious that the two-soliton solution

of the first BKP equation (1) can be turned into the breather or lump solutions

with the appropriate parameters. Additionally, the lump solution is the limit case

of the breather solution.

3.2. Interaction solutions between one line soliton

and other solutions

In this section, we consider the interaction solutions between one line soliton and

other solutions using the three-soliton solution with function τ in Eq. (9) by select-

ing proper parameters. Similarly, taking

a1 = α1, a2 = α1, b1 = δ1 + iγ1, b2 = δ1 − iγ1 ,

then the function τ in Eq. (9) becomes

τ = 1 + 2eζ̂1 cos(γ1y + ω̂1t) +A12e
2ζ̂1 + eζ̂2 + eζ̂1+ζ̂2(A13e

iξ1 +A∗13e
−iξ1)

+A12A13A
∗
13e

2ζ̂1+ζ̂2 (21)

with

ζ̂1 = α1x+ δ1y + α1
3t+

3α1
2δ1

δ1
2 + γ12

t, ζ̂2 = a3x+ b3y + a3
3t+ 3 a3

2b−13 t ,

ω̂1 =
−3α1

2γ1

δ1
2 + γ12

, ξ1 = γ1y −
3α1

2γ1t

δ1
2 + γ12

, A12 =
γ1

2

γ12 + α1δ1
3 + α1δ1γ12

,

A13 =
α1a3(δ1 + iγ1)b3(δ1 + iγ1 − b3)(α1 − a3)− (α1b3 − a3(δ1 + iγ1))3

α1a3(δ1 + iγ1)b3(b3 + δ1 + iγ1)(a3 + α1)− (α1b3 − a3(δ1 + iγ1))3
.

Substituting the function τ in Eq. (21) into the transformation (3), a new kind

of exact solution to the first BKP equation (1) is obtained. To the best of our

knowledge, this solution has not been reported before. Figures 3(a) and 3(b) display

Fig. 3. (Color online) The interaction phenomena between a breather solution and a line soliton
solution at t = 0 with specific parameters α1 = 2, a3 = 3, b3 = 4: (a) δ1 = 0, γ1 = −1/2 and

(b) δ1 = 1/3, γ1 = −1/4.
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Fig. 4. (Color online) The interactions between a lump wave and a line soliton wave with specific

parameters p1 = −1 − 3i, p2 = −1 + 3i, a3 = 0.5 at different time: (a) t = −10, (b) t = 0 and

(c) t = 10.

the interaction process between a line soliton and a breather soliton at t = 0 with

parameters α1 = 2, a3 = 3, b3 = 4, and δ1 = 0, γ1 = −1/2 and δ1 = 1/3, γ1 = −1/4,

respectively. So that choosing different parameters, the three-soliton solution of

Eq. (1) can be turned into different interaction solutions: one breather soliton along

with a line soliton.

Assuming b1 = p1a1, b2 = p2a2, η
(0)
1 = −η(0)2 = iπ and η

(0)
3 = 0, we can rewrite

function τ in Eq. (9) in another form. For simplicity, we omit it here. Figures 4(a)

and 4(c) demonstrate the interaction processes between a line soliton and a lump

soliton at different time with parameters p1 = −1 − 3i, p2 = −1 + 3i, a3 = 0.5. It

is also noticed that line soliton and lump soliton interact at point (x, y) = (0, 0) at

time t = 0, and the lump wave travels from the left side to the right side of the line

soliton. Moreover, if selecting the proper parameters, the three-soliton solution of

Eq. (1) can be turned into a interaction solutions between a line soliton solution

and a lump solution. Actually, the lump wave is the limit case of the breather wave

as shown in Fig. 3.

3.3. Interaction solutions between breather and other solutions

Finally, on the basis of the four-soliton solution for τ function in Eq. (5) with

N = 4, a lot of interesting and complicated solutions can be derived. For sim-

plicity, we will not present their analytical expressions herein. Actually, the four-

soliton solution can be turned into two special cases with different parameters: two

breather solitons (periodic solitons) or two line solitons along with a breather soli-

ton. Figures 5(a)–5(c) show the interaction process between two breather solitons

at t = −10, 0, 10 with parameters

a1 = 2/3, a2 = 2/3, b1 = 1/2i, b2 = −1/2i ,

a3 = 1/2, a4 = 1/2, b3 = 1 + 1/4i, b4 = 1− 1/4i .
(22)

It is noticed from Fig. 5 that one breather is y-periodic along the y-direction and

the other breather is periodic in the angular bisection of the x- and y-axes, we call it
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Fig. 5. (Color online) The interactions between two breather solutions with specific parameters:

a1 = 2/3, a2 = 2/3, b1 = 1/2i, b2 = −1/2i, a3 = 1/2, a4 = 1/2, b3 = 1 + 1/4i, b4 = 1 − 1/4i at

different time: (a) t = −10, (b) t = 0 and (c) t = 10.

Fig. 6. (Color online) The interactions between a breather soliton and two line solitons with
specific parameters: a1 = 2/3, a2 = 2/3, b1 = 1/3, b2 = −1/3, a3 = 1/2, a4 = 1/2, b3 = 1 + 1/6i,

b4 = 1 − 1/6i at different time (a) t = −2, (b) t = 0 and (c) t = 2.

(x, y)-periodic breather, and they interact at point (x, y) = (0, 0). Figures 6(a)–6(c)

show the interaction processes between two line solitons and a breather solution at

time t = −2, 0, 2 with parameters

a1 = 2/3, a2 = 2/3, b1 = 1/3, b2 = −1/3 ,

a3 = 1/2, a4 = 1/2, b3 = 1 + 1/6i, b4 = 1− 1/6i .
(23)

It is observed from Fig. 6 that the two line solitons and a breather soliton interact

at point (x, y) = (0, 0) at time t = 0, and with the evolution of time one line soliton

moves from the positive x-axis to the negative direction of the x-axis, and the other

line soliton moves in an opposed way.

Figures 7(a) and 7(b) show a different case of the interaction processes between

two line solitons and a breather solution at time t = −10, 0, 10 with parameters

a1 = 2/3, a2 = 2/3, b1 = 1/3, b2 = −1/3 ,

a3 = 1/2, a4 = 1/2, b3 = 1/6i, b4 = −1/6i .
(24)
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Interaction solutions of the first BKP equation

Fig. 7. (Color online) The interactions between a breather and two line solitons with specific

parameters a1 = 2/3, a2 = 2/3, b1 = 1/3, b2 = −1/3, a3 = 1/2, a4 = 1/2, b3 = 1/6i, b4 = −1/6i

at different time: (a) t = −10, (b) t = 0 and (c) t = 10.

In Fig. 7, it is seen that the breather soliton is y-periodic and is located between

two line solitons.

4. Conclusions

In this research, we studied the interaction solutions of the first BKP equation

using the Hirota direct method and taking long-wave limit. First, based on the

Hirota bilinear method, multi-soliton solutions of the first BKP equation are de-

rived. Then through choose appropriate parameters, some interesting interaction

solutions among some solutions, including line solitons, breathers, lumps, are con-

structed, respectively. The corresponding evolution profiles over time are given to

illustrate their dynamic qualities. Taking long wave limit of some soliton solutions,

lumps and line solitons are constructed. Moreover, the interaction between them

are also found with special parameter constraints. In the same way, interaction solu-

tions between breather and a line soliton or two line soliton or another breather are

also constructed, respectively. They have different dynamic properties. It is noted

that the parameters have great impact on these solutions, such as the propagation

directions and shapes.

Furthermore, all the results in this paper can provide an effective way to solve

some nonlinear problems in nonlinear optics, plasmas, Bose–Einstein condensates,

and so on.
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