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In this paper, we study the interaction solutions of the first BKP equation by using
the Hirota direct method and taking long-wave limit. In order to obtain the interaction
solutions, the multi-soliton solutions are firstly derived using the Hirota direct method,
then the interaction solutions are successfully constructed by properly choosing appro-
priate parameters and taking long-wave limit on the soliton solutions. These parameters
have great influences on the propagation directions, shapes as well as energy. Moreover,
the dynamic properties of these obtained solutions are illustrated vividly by some graphs.
The results in this work could be used to solve nonlinear problems in nonlinear optics
and engineering field.

Keywords: BKP equation; Hirota direct method; multi-soliton solutions; breather; lump
wave; interaction solution.

1. Introduction

In the past decades, the study of exact solutions and integrability of nonlinear
partial differential equations has been a hot topic in the field of integrable sys-
tems and soliton theory.l 2! The integrable nonlinear evolution equations possess
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many important properties, for example, the existence of solitons, the Hamilto-
nian structures, an infinite number of conservation laws, the Backlund transforma-
tions and the Lax pairs.?2 After Gardner et al.2® established the inverse scattering
transform method, many effective methods for finding exact solutions have been
proposed, among which are the Bécklund transformation,?426 the Darboux trans-
formation,2”-2® the Hirota bilinear method >3 the variable separation approach,3!
similarity transformation,3233 the dressing method®* and the inverse scattering ap-
proach.?> Particularly, the Hirota direct method has been widely used to study
nonlinear evolution equations due to its simplicity and directness. Recently, the
multi-soliton and interaction solutions of nonlinear evolution equations have at-
tracted a lot of attentions. The aim of this paper is to study the interaction solutions
of the first BKP equation, which reads

Uyt — Ugpzzy — 3(UglUy)e — gy = 0. (1)

The first BKP equation (1) has been studied by a lot of researchers.?¢3% Mixed
lump-kink solutions, periodic solitary-wave solutions, Wronskian and linear super-
position solutions and other solutions. In Ref. 31, the mixed lump solutions are
investigated. In Ref. 32, some new exact periodic solitary-wave solutions for the
(3 + 1)-dimensional generalized BKP equation were derived. In Ref. 33, the Wron-
skian and linear superposition solutions of the BKP equations were given. In Ref. 34,
the BKP equations were studied by the multiple exp-function algorithm and some

140 constructed some localized exact solu-

new solutions were constructed. Yue et a
tions of the (3 4+ 1)-dimensional BKP-type equation. In the present paper, we will
propose some new localized solutions and the corresponding interaction solutions
of the first BKP equation (1).

This paper is organized as follows. In Sec. 2, multi-soliton solutions of the first
BKP equation are constructed using the Hirota bilinear method. Then, choosing
appropriate parameters and taking long-wave limit, some interesting and useful
interaction solutions are derived in Sec. 3. Finally, some discussions are given in

Sec. 4.

2. Multi-Soliton Solutions

In fact, the multi-soliton solutions of Eq. (1) can be obtained by using the Hirota
direct method. Based on Painleve analysis, Eq. (1) enjoys the following Hirota
bilinear form as

(DyD; — D3D, — 3D2)T -7 =0, (2)
through the logarithmic transformation
u=2(In7),, (3)
where the Hirota bilinear derivatives D, D, and D, are defined by
D' DyDfa-b= (95 — 9x)™ 0y — 9y)" (9 — O) al, y, )b(a", y't)|oma’ y—y =t -
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(4)
According to the standard perturbation method, the solution 7 can be given in the
following form:

N N N
T=1+ Zem + ZAije’“Jr"j + Z AiinkAjkeni+77j+77k

i=1 i<j i<j<k
+...+<HAij>erv_1m’ (5)
i<j
with n; = a;z + bjy + (a;° + 3b;1aj )+ 77(0), (j=1,2,...,N) and

o aiajbibj(bi — bj)(ai — (Lj) — (aibj — ajbl-)z
Y aiabib;(bj + bi)(a; + ai) — (aib; — a;bi)*7

1<i<j<N, (6)

where a;, b;, nj(-o)(j =1,2,...,N) are arbitrary constants.
For example, after the direct computations in Maple, we obtained the first three
solutions of:

When N =1, we get

T=14¢€", (7)

(0) 0)

where 7; = alx+b1y+(a13+3bfla1 Jt+mn; and al,bl,ng

constants.

are arbitrary

When N = 2, the function 7 is
T=14eM 4" 4 A12e771+772 , (8)
where 1; = a;x + bjy + (a;° + 3b a;?)t + 77(0) (j=1,2)

a1(125152(51 - 52)(611 - a2) — (a1b2 — Gle)Q
alagble(bg + bl)(ag + (Ll) — (a1b2 - a2b1)2

A =

and a;,b; and 17](-0) (j = 1,2) are arbitrary constants.
When N = 3, we obtained 7 as follows:
T=14eM 4" e+ Appe T 4 Ayt
+ Agze T - Ay Ayz Agge TR 9)
where n; = a;x + bjy + (a;3 + 3b a;?)t + 77(0) (1 =1,2,3),

_ aiagbibs(bi — bj)(a; — a;) — (aibj — a;b;)?
Y aiazbibi(by + bi)(ay + ai) — (aiby — a;b;)?’

and aj,b; and nj(.o)(j = 1,2, 3) are arbitrary constants. Then the multi-soliton so-
lution of Eq. (1) can be got by plugging Eq. (4) with Eq. (5) into the logarithmic
transformation v = 2(ln7),.
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3. Interaction Solutions

Based on the methods obtained in the previous section, we will derive the analytical
expressions for the breather solutions, the lump solutions and the interaction solu-
tions between the breathers and other solutions of the first BKP equation (1) by
selecting appropriate parameters for the corresponding soliton solution (3). Unless
otherwise specified, we take nj(.o) =0(j=1,2,3,...) through the whole paper.

3.1. Breather and lump solutions

In order to get the analytical expressions for the breather and lump solutions, we
select the following appropriate parameters for the two-soliton solution in Eq. (3)

Case 1. When setting a1 = a5 = a1 + if1,b1 = by = d1, the 7 function takes the
following form:

7 =1+ 2exp((1) cos(Brx + wit) + A1z exp(2(1), (10)
with
By’
Ay = : 11
12 512 + 041351 + Oé161251 ( )
3
G =z + oy + g(a12—612)+a1 (a1? = 35%) | t, (12)
w1 = % (3 a1251 — 51261 + 60[1) . (13)

Case 2. Let a; = ay = a1,b; = b5 = 61 + i1, then 7 has the form

7 =1+ 2exp((1) cos(11y + dit) + A2 exp(2G1) (14)
with
7’
Ay = — 3 5 (15)
71 —|—a151 +O&151’71
2 30[1261
_ 3

C1 —a1x+61y+a1 t+7512+712t, (16)
—3 2

=g (17)
0’ +m

Case 3. Choosing a; = a3 = a1 + 101, by = b3 = 01 + i1, we derive a new form of
function 7. For simplicity, it is not given here.

Figure 1 shows the breather solitons of the first BKP equation (1) at t = 0
with specific parameters. Figure 1(a) displays the z-periodic breather formulated
by 7 function in Eq. (10) with Eqgs. (11)—(13), where the parameters are a = 0,
B1 =1, 61 = 2. Figure 1(b) displays the (z,y)-periodic breather in Case 3 above,
where the parameters are o = —2, 81 = %7 01 = 1, vn = 2. Figure 1(c) displays
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(a) u (b)u (chu

Fig. 1. (Color online) The breather solitons of the first BKP equation at t = 0: (a) displays the
z-periodic breather formulated by 7 function in Eq. (10) with o =0, 81 = 1, 1 = 2, (b) displays
the (z,y)-periodic breather in Case 3 above with o = —2, 81 = %, 61 =1, 1 =2 and (c) displays
the y-periodic breather formulated by 7 function in Eq. (14) with a1 = 2,61 = 0,71 = 1.

the y-periodic breather formulated by 7 function in Eq. (14) with Egs. (15)—(17),
where the parameters are a; =2, 61 =0, 71 = 1.

Case 4. Setting by = p1a1, by = paas, Mo1 = —1g2 = i and taking a3 — 0, as — 0
with & = O(1), then the 7 function in Eq. (8) can be rewritten as
T = araz(wo +wiw2/(p1p2)) (18)
where
~ 2pipa(p2 +p1)
WO == T E
(=p2 +p1)
Substituting Eq. (18) into the bilinear transformation in Eq. (3) leads to the lump
solution of Eq. (1) as follows:

wj =p;x+pily+3t, j=1,2. (19)

u = 2(In(wp + wiw2/(P1P2)))z (20)
where wp,w; and wy are defined in Eq. (19). Figures 2(a) and 2(b) show the density
plots of the first-order lump solitons at ¢ = 0 with specific parameters p; = —1 — 21,

(a)u (b)u

-400 -200 o 200 400

X X

Fig. 2. (Color online) The structures of the lump wave Eq. (20) at ¢t = 0 with specific parameters
(a) pr = —1—2i, pp = —1+2i and (b) p1 = 1 — 2i, po = 1 + 2.
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po = —1+42i and p; = 1 — 21, po = 1+ 24, respectively. It is observed that the lump
solitons have one peak and two valleys. It is obvious that the two-soliton solution
of the first BKP equation (1) can be turned into the breather or lump solutions
with the appropriate parameters. Additionally, the lump solution is the limit case
of the breather solution.

3.2. Interaction solutions between one line soliton
and other solutions

In this section, we consider the interaction solutions between one line soliton and
other solutions using the three-soliton solution with function 7 in Eq. (9) by select-
ing proper parameters. Similarly, taking

ay=ai, ay=ai, b =06 +iy, by=0d —in,
then the function 7 in Eq. (9) becomes

=142 cos(y1y + wit) + Appe®0 4 eC 4 OHG (Ajze™ + Aje™in)

Ay Ay Afye?te (21)
with
51 = a1z + 0y + a’t+ 331—26115, 62 = asx + by + as>t + 3a32b§1t,
01" +m?
—3a1°y1 3oyt 7,2
e 512 +m? S=my 5242 N Y12+ a10:° + adim?’
Ap = a1a3(81 +i71)bs(01 + i1 — bs) (a1 — ag) — (a1bs — as(dy +im))?

araz(61 +iv1)bs(bs + 61 + im1)(ag + 1) — (anbs — az(d1 +im))3

Substituting the function 7 in Eq. (21) into the transformation (3), a new kind
of exact solution to the first BKP equation (1) is obtained. To the best of our
knowledge, this solution has not been reported before. Figures 3(a) and 3(b) display

(b)u

(a)u

X X 1
Fig. 3. (Color online) The interaction phenomena between a breather solution and a line soliton

solution at ¢ = 0 with specific parameters a1 = 2, a3 = 3, bg = 4: (a) 61 = 0, v1 = —1/2 and
(b) 61 =1/3, 1 = —-1/4.
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{a) u for =-10 (b) u for =0 {c)u for t=10

0

X X X

Fig. 4. (Color online) The interactions between a lump wave and a line soliton wave with specific
parameters p1 = —1 — 34, po = —1 4 34, a3 = 0.5 at different time: (a) ¢ = —10, (b) ¢t = 0 and
(c) t =10.

the interaction process between a line soliton and a breather soliton at ¢ = 0 with
parameters a; = 2,a3 = 3,b3 =4, and 6; = 0,7, = —1/2and 6; = 1/3, 71 = —1/4,
respectively. So that choosing different parameters, the three-soliton solution of
Eq. (1) can be turned into different interaction solutions: one breather soliton along
with a line soliton.

Assuming b; = piay, by = poas, ngo) = —néo) = ¢m and néo) = 0, we can rewrite
function 7 in Eq. (9) in another form. For simplicity, we omit it here. Figures 4(a)
and 4(c) demonstrate the interaction processes between a line soliton and a lump
soliton at different time with parameters p; = —1 — 3¢, po = —1+ 3i, a3 = 0.5. It
is also noticed that line soliton and lump soliton interact at point (z,y) = (0,0) at
time ¢ = 0, and the lump wave travels from the left side to the right side of the line
soliton. Moreover, if selecting the proper parameters, the three-soliton solution of
Eq. (1) can be turned into a interaction solutions between a line soliton solution
and a lump solution. Actually, the lump wave is the limit case of the breather wave
as shown in Fig. 3.

3.3. Interaction solutions between breather and other solutions

Finally, on the basis of the four-soliton solution for 7 function in Eq. (5) with
N = 4, a lot of interesting and complicated solutions can be derived. For sim-
plicity, we will not present their analytical expressions herein. Actually, the four-
soliton solution can be turned into two special cases with different parameters: two
breather solitons (periodic solitons) or two line solitons along with a breather soli-
ton. Figures 5(a)-5(c) show the interaction process between two breather solitons

at t = —10, 0, 10 with parameters
a1=2/3, CL2=2/3, b1=1/2i, b2:—1/2i, ( )
22
a3 =1/2, ays=1/2, bs=1+1/4i, by=1-1/4i.

It is noticed from Fig. 5 that one breather is y-periodic along the y-direction and
the other breather is periodic in the angular bisection of the z- and y-axes, we call it

1950191-7
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(a) u for =-10 (b) u for t=0 (c) u for =10

L b 60 : & :
-60 -40 -20 0 20 40 60 80 -60 -40 -20 0 20 40 60 B0 -60 -40 -20 0 20 40 60 SO0
X X X

Fig. 5. (Color online) The interactions between two breather solutions with specific parameters:
a1 =2/3,a2 =2/3,b1 =1/2i, bp = —1/2i, a3 =1/2, a4 =1/2,b3 =1+ 1/4i,by =1 —1/47 at
different time: (a) ¢ = —10, (b) ¢ = 0 and (c) ¢ = 10.

(a) u for t=-2 (b) u for t=0 (c)u for t=2

0

X X X

Fig. 6. (Color online) The interactions between a breather soliton and two line solitons with
specific parameters: a1 = 2/3, a2 =2/3,b1 =1/3,bo = —1/3, a3 =1/2, a4 =1/2, b3 =1+ 1/6¢,
bs =1 —1/6¢ at different time (a) t = —2, (b) t =0 and (c) t = 2.

(x, y)-periodic breather, and they interact at point (z,y) = (0,0). Figures 6(a)—6(c)
show the interaction processes between two line solitons and a breather solution at
time t = —2, 0, 2 with parameters

a1 =2/3, a2=2/3, by =1/3, by=—1/3,
(23)
a3:1/2, CL4=1/2, b3=1+1/6’l, b4=1—1/62

It is observed from Fig. 6 that the two line solitons and a breather soliton interact
at point (z,y) = (0,0) at time ¢ = 0, and with the evolution of time one line soliton
moves from the positive z-axis to the negative direction of the z-axis, and the other
line soliton moves in an opposed way.

Figures 7(a) and 7(b) show a different case of the interaction processes between
two line solitons and a breather solution at time ¢ = —10, 0, 10 with parameters

a1:2/3, 112:2/3, b1:1/3, b2:—1/3,

(24)
a3 =1/2, ay=1/2, by=1/6i, by=—1/6i.
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(a) u for t=-10 (b) u for =0 (c) u for =10

Fig. 7. (Color online) The interactions between a breather and two line solitons with specific
parameters a1 = 2/3, a2 =2/3,b1 =1/3,b2 = —1/3, a3 =1/2, a4 =1/2, b3 = 1/6i, by = —1/6i
at different time: (a) ¢ = —10, (b) t = 0 and (c) t = 10.

In Fig. 7, it is seen that the breather soliton is y-periodic and is located between
two line solitons.

4. Conclusions

In this research, we studied the interaction solutions of the first BKP equation
using the Hirota direct method and taking long-wave limit. First, based on the
Hirota bilinear method, multi-soliton solutions of the first BKP equation are de-
rived. Then through choose appropriate parameters, some interesting interaction
solutions among some solutions, including line solitons, breathers, lumps, are con-
structed, respectively. The corresponding evolution profiles over time are given to
illustrate their dynamic qualities. Taking long wave limit of some soliton solutions,
lumps and line solitons are constructed. Moreover, the interaction between them
are also found with special parameter constraints. In the same way, interaction solu-
tions between breather and a line soliton or two line soliton or another breather are
also constructed, respectively. They have different dynamic properties. It is noted
that the parameters have great impact on these solutions, such as the propagation
directions and shapes.

Furthermore, all the results in this paper can provide an effective way to solve
some nonlinear problems in nonlinear optics, plasmas, Bose—Einstein condensates,
and so on.
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