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Abstract
In this paper, we study abundant exact solutions including the lump and interaction
solutions to the (2+1)-dimensional Yu–Toda–Sasa–Fukuyama equation. With sym-
bolic computation, lump solutions and the interaction solutions are generated directly
based on the Hirota bilinear formulation. Analyticity and well-definedness is guaran-
teed through some conditions posed on the parameters. With special choices of the
involved parameters, the interaction phenomena are simulated and discussed. We find
the lump moves from one hump to the other hump of the two-soliton, while the lump
separates from the hump of the one-soliton.

Keywords Hirota bilinear form · Lump solutions · Interaction solutions · YTSF
equation

1 Introduction

The nonlinear evolution equations (NLEEs) as mathematical models have been used
in many fields of science and engineering [1–10]. Soliton solutions to NLEEs, expo-
nentially localized in certain direction, have been discovered and studied with such
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methods as the Hirota bilinear method [11–15], inverse scattering [11], Bäcklund
transformation [16], Painlevé test [17], etc. In contrast to soliton solutions, lump solu-
tions are also a kind of solutions to NLEEs, which are rationally localized in all
directions in space [18,19]. An effective method has been proposed to obtain the lump
solutions to the Kadomtsev–Petviashvili (KP) equation [18], where a general class of
lump solutions have been derived with Maple. Many researchers obtained the lump
solutions to NLEEs, for example, KPI equation [20], BKP equation [21], a gener-
alized Kadomtsev–Petviashvili–Boussinesq equation [22], (2+1)-dimensional KdV
equation [23,24], and BLMP equation [25].

Recently, the interaction solutions of lump-kink and lump-soliton types have
become the hot topics of the research. It is reported that the interactions turn out
to be elastic or completely non-elastic [26]. The elastic phenomenon is that the lump
restores its shape, amplitude and velocity after collidingwith another solution [27], and
the completely non-elastic phenomenon is that the lump is swallowed up by another
solution [28].

It is valuable inmathematics and physics to study lump solutions and the interaction
phenomena for the NLEEs. The KdV equation in (1+1)-dimensional is written as

qt + �(q)qx = 0, (1)

where �(q) (= ∂2x + 4q + 2qx∂−1
x ) is the strong symmetry [29], and ∂−1

x = ∫
dx .

The potential form of Eq. (1) is

qt + qxxx + 6qqx = 0. (2)

The KdV equation can be extended to the (2+1)-dimensional KP equation

(−4qt + �(q)qx )x + 3qyy = 0, (3)

or the Bogoyavlenskii–Schiff (BS) equation

qt + �(q)qz = 0. (4)

Further, both the KP equation and the BS equation can be extended to the (3+1)-
dimensional Yu–Toda–Sasa–Fukuyama equation (YTSFE) as

(�(q)qz − 4qt )x + 3qyy = 0. (5)

Correspondingly, the potential YTSFE with q = wx can be introduced as

−4wxt + wxxxz + 4wxwxz + 2wxxwz + 3wyy = 0, (6)

where w = w(x, y, z, t) is an analytic function denoting the amplitude of the relevant
wave. The elastic quasi-plane wave in a lattice or interfacial wave in a two-layer
liquid have been well-described by the potential YTSFE [30–32]. Equation (6) has
appeared as a shallow water equation for the reacting mixtures [30], and has also



Abundant exact solutions and interaction phenomena of the… 2331

been used for investigating the dynamics of solitons and nonlinear waves in fluid
dynamics, weakly dispersive media, plasma physics [31]. For the potential YTSFE,
the rational solutions, lump solutions and the N -lump solutions have been derived for
some special cases [32]. Based on the extended homogeneous balance method, multi-
soliton solutions and multi-singular soliton solutions have been obtained [33]. New
kink multi-soliton solutions have been found by utilizing the three-wave method and
homoclinic test approach [34]. Two new approaches, including HTA and EHTA, are
introduced to get exact periodic solitary-wave and doubly periodicwave solutions [35].

Through the following transformation

x − z → x, y → y, t → t, (7)

the potential YTSFE is cast into

−4wxt − wxxxx − 6wxwxx + 3wyy = 0. (8)

By introducing the potential function u(x, y, t) = ∂w(x,y,t)
∂x , the derivation ofEq. (8)

with respect to x becomes

−4uxt − uxxxx − 6u2x − 6uuxx + 3uyy = 0, (9)

which is the (2+1)-dimensional YTSFE and will be investigated in this paper.
The extension scheme among KdV equation, BS equation, KP equation, (2+1)-

dimensional YTSFE and (3+1)-dimensional YTSFE can be summarized as:

It is shown that the KdV equation can be extended to the KP equation and the BS
equation. Further, the KP equation and the BS equation can be extended to the (3+1)-
dimensional YTSFE. Finally, the (3+1)-dimensional YTSFE can be transformed into
the (2+1)-dimensional YTSFE. To our knowledge, lump solutions and interaction
solutions to the (2+1)-dimensional YTSFE by using the bilinear method have not
been reported yet.

In this paper, we will study the lump solutions to Eq. (9) in a direct manner and
consider two kinds of interaction phenomena. The structure of this paper is as follows:
Wewill firstly investigate the lump solutions toEq. (9) in Sect. 2; The lump-soliton type
interaction solutions will be derived in Sect. 3; While the lump-kink type (interaction
between lump and a stripe) will be derived in Sect. 4. The conclusion will be arranged
in Sect. 5.
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2 Lump solutions to the (2 + 1)-dimensional YTSFE

Substituting the following dependent variable transformation

u(x, y, t) = 2(ln f (x, y, t))xx , (10)

into Eq. (9), or

w(x, y, t) = 2(ln f (x, y, t))x , (11)

into Eq. (8), we have

BYTSF := (D4
x − 3D2

y + 4Dx Dt ) f · f

= f fxxxx − 4 fx fxxx + 3 fxx fxx − 3 f fyy + 3 fy fy + 4 f fxt − 4 fx ft = 0,
(12)

where the operator D is defined by [13]

Dα
x D

β
y D

γ
t ( f · g)

=
( ∂

∂x
− ∂

∂x ′
)α( ∂

∂ y
− ∂

∂ y′
)β( ∂

∂t
− ∂

∂t ′
)γ

f (x, y, t)g(x ′, y′, t ′)
∣
∣
∣
x ′=x,y′=y,t ′=t .

To find the lump solutions to the (2+1)-dimensional YTSFE (9), we search for
quadratic function solutions to Eq. (12), and begin with

f = g2 + h2 + a9, (13)

with

g = a1x + a2y + a3t + a4,

h = a5x + a6y + a7t + a8,

where ai (1 ≤ i ≤ 9) are all real parameters to be determined. With symbolic com-
putation, we directly substitute Eq. (13) into Eq. (12), and collect the coefficients of
the like power of variables x , y and t , then set them equal to zero. Solving the sets of
these coefficient equations, we can get the following relations of ai (1 ≤ i ≤ 9),

{

a1 = a1, a2 = a2, a3 = 3

4

a1a22 − a1a26 + 2 a2a5a6
a21 + a25

, a4 = a4, a5 = a5, a6 = a6,

a7 = 3

4

2 a1a2a6 − a22a5 + a5a26
a21 + a25

, a8 = a8, a9 = a61 + 3 a41a
2
5 + 3 a21a

4
5 + a65

(a1a6 − a2a5)2

}

,

(14)
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which need to satisfy the following condition

a1a6 − a2a5 �= 0. (15)

At the same time, to guarantee the positiveness of f , we should let

a9 > 0. (16)

By substituting Eq. (14) into Eq. (13), the exact quadratic function solution to
Eq.(12) is obtained

f =
(

a1x + a2y + 3

4

a1a22 − a1a26 + 2 a2a5a6
a21 + a25

t + a4

)2

+
(

a5x + a6y + 3

4

2 a1a2a6 − a22a5 + a5a26
a21 + a25

t + a8

)2

+ a61 + 3 a41a
2
5 + 3 a21a

4
5 + a65

(a1a6 − a2a5)2
, (17)

and the functions g and h are given as follows:

g = a1x + a2y + 3

4

a1a22 − a1a26 + 2 a2a5a6
a21 + a25

t + a4, (18)

h = a5x + a6y + 3

4

2 a1a2a6 − a22a5 + a5a26
a21 + a25

t + a8. (19)

Regarding u as a function of x and y, we can find the extremum point of u as

(

x = a2a7t − a3a6t + a2a8 − a4a6
a1a6 − a2a5

, y = −a1a7t − a3a5t + a1a8 − a4a5
a1a6 − a2a5

)

,

(20)

and the maximum of u is
4(a21+a25 )

a9
. Therefore, six free parameters (a1, a2, a4, a5, a6

and a8) in Eq.(14) affect the extremum point, that is, the position of the lump solution,
and four parameters a1, a2, a5 and a6 affect the maximum. We take a selection of the
parameters

a1 = 1, a2 = 7

6
, a4 = 0, a5 = 1, a6 = −3

5
, a8 = 0,

to plot the lump solution when t = 1 in Fig. 1, where the extremum point locates at
( 15492400 ,− 17

40 ) ≈ (0.65,−0.43), and the maximum of u is 2809
900 ≈ 3.12.
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(b)(a)

(d)(c)

Fig. 1 Lump dynamic characteristics of u with t = 1: a 3-dimensional plot; b density plot; c x-curves and
d y-curves

3 Lump-soliton solutions to the (2 + 1)-dimensional YTSFE

We then study the interaction between lump and soliton of the (2+1)-dimension
YTSFE. We suppose f is the combination of two quadratic functions and one hyper-
bolic cosine function as

f = ξ21 + ξ22 + cosh ξ3 + a13, (21)

where ξi (1 ≤ i ≤ 3) are defined by

ξ1 = a1x + a2y + a3t + a4,
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ξ2 = a5x + a6y + a7t + a8,

ξ3 = a9x + a10y + a11t + a12,

while ai (1 ≤ i ≤ 13) are all real parameters to be determined.
With symbolic computation, three sets of relations among the parameters ai (1 ≤

i ≤ 13) are given in Appendix A.
Based on the expression of f , we have the exact form of w as

w(x, y, t) = 2(ln f (x, y, t))x = 2
2a1ξ1 + 2a5ξ2 + a9 sinh ξ3

ξ21 + ξ22 + cosh ξ3 + a13

= 2
2a1ξ1
cosh ξ3

+ 2a5ξ2
cosh ξ3

+ a9 sinh ξ3
cosh ξ3

ξ21
cosh ξ3

+ ξ22
cosh ξ3

+ 1 + a13
cosh ξ3

. (22)

When a11 > 0, we have

lim
t→∞

2a1ξ1
cosh ξ3

= 0, lim
t→∞

2a5ξ2
cosh ξ3

= 0, lim
t→∞

a13
cosh ξ3

= 0,

lim
t→∞

ξ21

cosh ξ3
= 0, lim

t→∞
ξ22

cosh ξ3
= 0, (23)

and

lim
t→+∞

sinh ξ3

cosh ξ3
= 1, lim

t→−∞
sinh ξ3

cosh ξ3
= −1, (24)

so we can deduce the limit of w

lim
t→+∞ w = 2a9, lim

t→−∞ w = −2a9. (25)

When a11 < 0, the results are opposite.
As an example, we choose the following parameters in the first case of interaction

solutions with ε = −1 in Appendix A

a1 = 2, a2 = 0, a4 = 0, a5 = 1

2
, a8 = 0, a9 = 1, a12 = 2,

to plot Fig. 2, which are the 3-dimensional plots and contour plots. From the contour
plots with different time, we can find that the lump appears and moves from one hump
of the soliton to the other hump, and finally is swallowed. The maximum of lump also
changes in the process, and the interaction is nonelastic.
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(a)

(b)

(c)

Fig. 2 Interaction between lump and soliton at different time a t = −20,b t = −10,c t = 0,d t = 4,
e t = 10
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(d)

(e)

Fig. 2 continued

4 Lump-kink solutions to the (2 + 1)-dimensional YTSFE

We then study the interaction between lump and a stripe of the (2+1)-dimensional
YTSFE by defining f as

f = g2 + h2 + kel + a9, (26)

with
g = a1x + a2y + a3t + a4,

h = a5x + a6y + a7t + a8,



2338 S.-J. Chen et al.

l = k1x + k2y + k3t,

where ai (1 ≤ i ≤ 9), ki (1 ≤ i ≤ 3) and k are all real parameters to be determined.
As we can see, the function f (x, y, t) combines two quadratic functions and an

exponential function. Three sets of relations among the parameters ai (1 ≤ i ≤ 9) and
ki (1 ≤ i ≤ 3) are given in Appendix B.

Based on the expression of f , we calculate the function w as

w(x, y, t) = 2(ln f (x, y, t))x = 2
2a1g + 2a5h + kk1el

g2 + h2 + kel + a9

= 2
2a1g
el

+ 2a5h
el

+ kk1
g2

el
+ h2

el
+ k + a9

el

, (27)

in which we suppose k3 > 0 and have

lim
t→+∞

2a1g

el
= 0, lim

t→+∞
2a5h

el
= 0, lim

t→+∞
a9
el

= 0, lim
t→+∞

g2

el
= 0, lim

t→+∞
h2

el
= 0,

so we can deduce the limit of w as

lim
t→+∞ w = 2k1. (28)

If k3 < 0, then we have

lim
t→+∞ w = 0. (29)

For example, we choose the following parameters in the first case of the interaction
solutions

a1 = 1, a4 = 0, a5 = 1, a8 = 0, k1 = −3

2
, k2 = −1, k = 1

2
, (30)

to plot Fig. 3, which are the 3-dimensional plots and contour plots of the solution.
From the figures, we can observe that the lump generates from the stripe, and then
separates from the stripe.

5 Concluding remarks

In this paper, based on the Hirota formulation and symbolic computation, a kind of
lump solutions and two types of interaction solutions have been studied for the (2+1)-
dimensional YTSFE, including lump-soliton and lump-kink solutions.With limitation
analysis and graphical simulation, we have found the lump appears and moves from
one hump of the soliton to the other hump, and finally is swallowed by the soliton
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(a)

(b)

(c)

Fig. 3 Interaction between lump and a stripe at different time a t = −17, b t = −5, c t = 0, d t = 1.5,
e t = 5, f t = 10
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(d)

(e)

(f)

Fig. 3 continued
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(see Fig. 2); the lump generates from the hump of the one-soliton and finally separates
from it (see Fig. 3).

Moreover, the extremum point and maximum of the lump solutions have been
given in Sect. 2. To analyze the interaction phenomenon, the interaction solutions w

in Sects. 3 and 4 have been properly divided, and the limits of the solutions have been
given according to every part. It is shown that the direct method is an effective way
to search for lump solutions and interaction solutions, and it can be used for many
other nonlinear integrable systems in mathematical physics. The result of this paper is
helpful for understanding the propagation of nonlinear waves and enrich the nonlinear
dynamics.
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Appendix A

For simplicity, we consider three cases with a1 = 0, a2 = 0 or a10 = 0, respectively:
Case 1

{

a1 = a1, a2 = 0, a3 = −3(a21 + a25)a
2
9

4a1
, a4 = a4, a5 = a5, a6 = ε

(a21 + a25)a9
a1

,

a7 = 3a5a29(a
2
1 + a25)

4a21
, a8 = a8, a9 = a9, a10 = ε

a5a29
a1

, a11 = −a39(a
2
1 − 3 a25)

4a21
,

a12 = a12, a13 = 4 a21 + 8 a21a
2
5 + 4 a45 + a49

4a29(a
2
1 + a25)

}

,

Case 2

{

a1 = 0, a2 = ε a5a9, a3 = ε
3

2
a6a9, a4 = a4, a5 = a5, a6 = a6,

a7 = −3(a25a
2
9 − a26)

4a5
, a8 = a8, a9 = a9, a10 = a6a9

a5
,

a11 = −a9(a25a
2
9 − 3 a26)

4a25
, a12 = a12, a13 = 4 a45 + a49

4a25a
2
9

}

,
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Case 3
{

a1 = a1, a2 = ε a5a9, a3 = −3

4
a1a

2
9 , a4 = a4, a5 = a5,

a6 = −εa1a9, a7 = −3

4
a5a

2
9, a8 = a8, a9 = a9, a10 = 0,

a11 = −1

4
a39, a12 = a12, a13 = 4 a41 + 8 a21a

2
5 + 4 a45 + a49

4a29(a
2
1 + a25)

}

,

where ε = ±1. Actually, these three sets of solutions contain six cases corresponding
to different values of ε.

Appendix B

Case 1

{

a1 = a1, a2 = a5k21 + a1k2
k1

, a3 = −3

4

a1k41 − 2 a5k21k2 − a1k22
k21

, a4 = a4, a5 = a5,

a6 = −a1k21 − a5k2
k1

, a7 = −3

4

a5k41 + 2 a1k21k2 − a5k22
k21

,

a8 = a8, a9 = a21 + a25
k21

, k1 = k1, k2 = k2, k3 = −k41 − 3 k22
4k1

}

,

Case 2
{

a1 = 0, a2 = εa5k1, a3 = ε
3

2
a6k1, a4 = a4, a5 = a5, a6 = a6,

a7 = −3

4

a25k
2
1 − a26
a5

, a8 = a8, a9 = a25
k21

,

k1 = k1, k2 = a6k1
a5

, k3 = −k1(a25k
2
1 − 3 a26)

4a25

}

,

Case 3

{

a1 = a1, a2 = −a5k21 + a1k2
k1

, a3 = −3

4

a1k41 + 2 a5k21k2 − a1k22
k21

, a4 = a4, a5 = a5,

a6 = a1k21 + a5k2
k1

, a7 = 3

4

−a5k41 + 2 a1k21k2 + a5k22
k21

,

a8 = a8, a9 = a21 + a25
k21

, k1 = k1, k2 = k2, k3 = −k41 − 3 k22
4k1

}

,

where ε = ±1.
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