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Abstract

®

CrossMark

A new generalized fourth-order nonlinear differential equation originating from the Calogero-
Bogoyavlenskii-Schiff equation with an extra term DXD}?D, is studied. In terms of the
coefficients of this combined nonlinear equation, a class of lump solutions is constructed by the
Hirota bilinear method and calculated through the symbolic computation system of Maple.
Furthermore, the affection of the extended item on the solution is explored. Two particular lump
solutions with special choices of the involved parameters are generated and plotted, as

illustrative examples.
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1. Introduction

Originated from solving integrable equations, Hirota bilinear
forms are introduced and used to present soliton solutions.
Soliton solutions are exponentially localized solutions in
certain directions. Compared with soliton solutions, lump
solutions are a kind of rational function solutions, which are
localized in all directions in space [1]. By taking long wave
limits, some special lump solutions can be obtained from
solitons of integrable equations [2], including the KP
equation [3].
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In recent years, lots of works have been done on soliton
solutions andlump solutions to integrable equations. Some
other studies haven be made, which present insightful results
contributing to the basis of the related theory.

These equations include the Davey-Stewarton equation II
[2], the three-dimensional three-wave resonant interaction [4], the
Ishimori-I equation [5], the BKP equation [6], the CBS equation
[7], and so on.

Hirota bilinear theory plays an important role in the study
of soliton theory and lump solutions. Generally, through a
dependent variable transformation, an integrable partial diff-
erential equation in (2+1)-dimensions can be mapped into a
Hirota bilinear form:

P(Dx’ Dy’ Dl)ff: 0’ (1)
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where P is a polynomial, and D, D,, D, are the Hirota bilinear
derivatives [8], defined by

DIDID" f(x, y, 1) - g(x, y, 1)

:(i_i)l 9 _38 n(ﬁ_i)m
ox ox')J\ady oy )\or or
X f(x7 y7 t) : g(xla yla t/) |x’:x,y’:y,r’:l- (2)

When f solves (2), with the form as

N
=20 exp| 2 om + 37 mai |, 3)

1=0,1 i=1 i<j
where Zﬂzo’l denotes the sum over all possibilities for
s - py in 0, 1, and

& =kix + iy — wit + &, ISisN,

_ Plki— kg li = wj — wi) . . 4)
Pki+ ki i+l wj+ wy)’ I<i<j<N,

edi =
with k;, [;, w; satisfying the dispersion relation, and &; , being
arbitrary shifts, it presents the N-soliton solution in (2+1)-
dimensions to the corresponding PDE under the transforma-
tions: u = 2(Inf), or u = 2(Inf)yy.

Based on the Hirota bilinear form and processed by
symbolic computation system of Maple, one of the authors
(Ma) has presented the lump solutions of the KPI equation
[1]: u = 2(Inf),,, where

2
a1a22 — a1a62 + 2a2a5a6[ ta )
4

a + as

2

2a1ara¢ — a22a5 + a5a62

3 3 t+ ag
aj + as

+ (a5x + aey +

3af + a3)’
x
(a1ae — azas) 5)
The condition ajag — aas = 0 guarantees the expression (5)
makes sense.

Here, the construction of a positive quadratic rational
function is a key step to find lump solutions to nonlinear
partial differential equations and it can be applied to general
Hirota bilinear equations which contain even order terms [9].

Following this approach, lump solutions and related issues
for more nonlinear equations have been studied, for example,
BKP equation [10], SK equation [11], gBK equation [12], KPI
equation with a self-consistent source[13], gCBS equation [14]
etc. Lump solutions with higher-order rational dispersion rela-
tions have been studied in [15]. Furthermore, [16] formulates a
combined nonlinear PDE involved two Fourth-order terms and
all possible second-order terms and tries to extend the Hirota
bilinear approach to more general nonlinear equations.

The Calogero-Bogoyavlenskii-Schiff (CBS) equation

uy + uny + luxa;luy + lum =0. (6)
2 4
was constructed by Bogoyavlenskii and Schiff in different

ways [7]. It can be constructed by using the modified Lax
formalism or by reducing the self-dual Yang-Mills equation.

In this paper, we extend the CBS equation (6) to fol-
lowing generalized nonlinear partial differential equation,
which contains three fourth-order terms and all linear second-
order terms:

Pu) = a[3(uyut;)y + o] + 6[3(uxuy)x + uxxxy]
+ OQursy + 2uy8; + Uy )x
+ Villy: + V2 Uxx + V3Uxe
+ Wty + Ysltyy + Yoty = 0, @)
where s,=u,, the coefficients «, (G and 0 satisfy
a® + 32+ 62 = 0,but~y, 1 < i < 6, are arbitrary constants.

This (2+1)-dimensional nonlinear equation (7) possesses

a Hirota bilinear form:

B(f)=(aD}D, + BD}Dy + 6D.D} D, + 1\DyD;
+ %D} + 13D D,

+ DDy + 35Dy + %6DAf - f =0, ®)
under the logarithmic transformation
2

u = 2(Inf)y, = % ©)

and we have the relation P(u) = (B;{ )) .

If we get a solution to the H)icrota bilinear form
equation (8), we can generate the corresponding solution to
the nonlinear equation (7).

The equation (8) with = 0 has been studied in [16]. In
comparison with the equation in [16], DnyzD, is an extended-
term and so we assume 6§ = 0 here. In this paper, we will
explore lump solutions of equation (7) and discuss the effect
of the extended-term on the solutions.

In section 2, we construct lump solutions to equation(7)
via a positive quadratic form and calculate them through the
Maple symbolic system. In section 3, we take special values
for the coefficients in equation (8), to give specific lump
solutions to the equation in the corresponding cases, and get
their graphs through Maple. The conclusion is given in
section 4.

2. Lump solutions of a generalized fourth-order PDE
with an extra term

In this section, we will explore lump solutions of the combined
fourth-order equation (7) with € = 0. Because the equation (7)
has the bilinear form (8), we construct the solution of
equation (8) in a positive quadratic form as follows:

f = (aix + ayy + ast + as)?

+ (asx + agy + art + ag)?® + ao, 10

where a;, 1 <i <9, are the real constant parameters to be
determined.

We insert the formula (10) into equation (8) to yield a
system of algebraic equations on the parameters a;, 1 <i < 9,
and try to solve them. Most of these computations are processed
through the Maple symbolic computation system except for
some necessary sorting and simplification of the result. In order
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to facilitate the calculation and expression of the results, we
need to make some setting for -, 1 < i < 6, in equation (8), or
equation (7).

First, let 75 = 0. Equation (8) becomes:

B(f) = (aD;D, + BD;Dy + 0D,D; D, + 1Dy D,
+ 1D? + 13D D, + uDDy + sDYf - f = 0.
(11)

After some calculations, we obtain a set of solutions for
the parameters:

by
a3 == (azmy + a13)? + (@67, + asy)?’
a = — = (12)
(@2m+am) + (agy +asy)?’
do — 3(af + ad)(bya — by ) + bs0

(@ag— a2a5)* (i1 — N+ 139

and all the other a; are arbitrary. The above-involved con-
stants b;,1 < i < 5, are defined as follows:

Directly comparing our results with the context in [16],
where v, = 0, we have some new terms contained with 6 in
the denominator of ag.

Secondly, let 5 = 0. Equation (8) becomes:

B(f) = (aD;D, + BD;Dy + 0D.D}D, + v,D,D,

+ 1D} + BDD, + DDy + 6D)f - f=0.  (14)
After some calculations, we obtain:
((12 = - 2 < 2
(@31 +a1v4)” + (a7y1+ asva)
ag = — 262 2
(a3y1+a1va)” + @7y +asva)”
Ve — 3@+ ad(csa + caf) (15)
o (a1a7 — a3as) (VP72 — 3%+ 7i%)
_ cs0
(ara7 — azas)2[(a371+ a174)® + (@771 + as7)210F 2 — 139+ 7376

where all the other a; are arbitrary constants. The involved
constants ¢;,1 < i < 5, are defined as follows:

by = [(afas + 2aiasag — aza3)y, + aila; + ad)w + azx(az + ad)yslm
+ [a@@l + ad)y + axal + ad)u + (@ai + 2azasas — aiad)vslv,
by = [(—af'as + 2mazas + asae)y + as(a; + ad)u + aslas + ad)yslm
+ las(al + a$)y + aglal + ad)m + (—azas + 2aiaras + asag)slys
by = (af + ad)(mas + asag)(ny2 + 130 + (@ + ad) @i + ad)mn
1+ @+ ad) s+ (a7 + ad)(mas + asag) s
+ [(@1az + asae)* — (aias — azas)*1v37s,
by = (aas + asae)[(a2y1 + a1y3)* + (aem + asy3)*l,
bs = [3(aias + asaq)?* — (@ae — azas)*1[(aa> + asag) Ny + (a3 + ad)v37s]
+ Baaz + asae)* + (mas — azas)*1l(a; + ad)mu + @’ + as) sl
+3(@a3 + ag)(@az + asag)l(a3 + ad)ms + (af + a3)y3ul.

13)

(¢ = [(alas + 2aiasa; — azad)y, + a(as + ai)vs + az(as + ad)yslm
+ [ai(al + a3) v + as(ai + ad)vs + (@as + 2azasa; — aa7)vel .,
o = [(—al’ar + 2ayazas + a3a7) v, + as(a; + a7)ys + ar(as + a7)velm
+ [as(af + ad)v + ar(al + ad)vs + (—asas + 2ajazar + asa;) Vel s,
c3 = —(aaz + asap)[(azy + aw)? + (@ + asu)?l,
a = (af + ad)(@az + asa))(my + 3w + (af + ad)ag + a)nys
+ (@i + ailnu + (@35 + ad)(aas + asaz) 11y
+ [(@as + asaz)* — (a7 — azas)*1ue
s = didi N3 + dsda(Vi73 + 272737%) + 2d3ds(Yi2 73 + 13737%)
+ dyds2v a6 + V22 + 2d2vund] + do[2d 2372
+ ddsdsyiva s + 2dsds i3 + 4dadsnva e + 2d5 737l
+ 3daldy3vi + didsyini + dsdinins + divivel

don 4 4 2 2 2.2
+ la; Basy + a7) + 4ajazasa;(3afay — afay + 6ajazasa;

(16)

— aja3d + 3aiag) + as(ai + 3aH)nmue



Phys. Scr. 95 (2020) 095207

Q Chen et al

The parameters d;, 1 < i < 5, involved in c¢s are defined as
follows:

di = [3(aas + asar)* — (a7 — azas)?],
dy = [3(aa3 + asar)* + (aja7 — azas)?],
ds = (af + a3),

dy = (aa3 + asay),

ds = (Cl32 + a72).

7)

We find that a, and a¢ are consistent with earlier findings
in paper [16]. Although there is an extended-term DXD\,2 D, in
the equation (7), the coefficient 6, as well as a and 3, the
other coefficients of the fourth-order terms in the nonlinear
PDE (7), just appears in ao. So in each case, when e or 75 is
zero, the extension only affects ay, the constant term of the
positive quadratic form of solution (10).

According to formula (5), for the case of 75 = 0, we need
to check ajag — aras = 0 to make sure the solution f defined
by (10) with parameters (15) to generate a lump solution.
That is:

Substitute the above values (19) into the resulting para-
meters (12). Then, take the free parameters as follows:

a) = 1,02:73,04:6,05:71,(16:1,(18:73,
(22)

to get: a3 = —7, a3 = —1, ag = 128. Putting all the a;, 1 <
i <9, into the formula (10), we obtain the corresponding
positive quadratic form solution of the equation (21)

fi=@—=3y—Tt+ 62+ (—x+y—1t—3)72+ 128
(23)

By the logarithmic transformation: u = 2(Inf),, the lump
solution of the special fourth-order nonlinear equation (20) is
generated as follows:

_ 4Q2x — 4y — 61 + 9)
(x=3y —Tt+62+(—x+y—1—2372+128
(24)

up

(a7 — asas)[(af + ad) (v — 3m) — (@5 + adnvs — (@as + asar) el

ajde — dzds =

So it follows that ajagq — aras = 0 if and only if

{ala7 —azas = 0, 7]2 + 7421 = 0,

(af + ad)(ny — 13w — @i + advive — (@as + asar)uys = 0.

Besides, as it showed in formula (5), ao should be
positive to guarantee that the positive quadratic form (10)
with the above resulting parameters (15) will present lump
solutions.

3. Two specific lump solutions and their profiles

In this section, we will take special sets of values for the
coefficients in the combined fourth-order nonlinear
equation (7) to obtain the corresponding lump solutions and
study the dynamics of those solutions.

First, we take:

05:1’5:070:1’73:’Y5:1,71:72:’Y4:76:0~
19)

equation (7) is reduced to:

(et )y + Uper + (“tsy + Zuysl + “tyy)x + Uy + Uy = 0,
(20)

which has a Hirota bilinear form:

(DID; + DD} D, + D.D; + D))f - f = 0. @D

(a3 + aw)? + (e + asu)?

(18)

The three-dimensional plots and contour plots of this
lump solution (24) are showed in figure 1, which are made via
Maple plot tools.

Secondly, we take:

a=1,p=1L0=1L,u=w%=1,nm=nn=13=7=0.

(25)
to get another fourth-order nonlinear equation:
3(uxtts)x + Uoor + 3(Uxlty)y + Urery
+ (usSy + 2uy8; + Uppy)e + Uy + uy = 0. (26)

which has a Hirota bilinear form:
(DiD; + DD, + D;D}D, + DDy + D))f - f=0. (27)

Substitute the above values (25) into the resulting parameters
(15) and associated with the special value of the free para-

meters:
ag=1,a3=-3,a4s=4,as=1,a; = —1,a3 =3, (28)

we geta, = — 7, ag = 1, ag = 250.
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Figure 1. Profiles of u; when t = 0, 15, 30: 3d plots (top) and contour plots (bottom).
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Figure 2. Profiles of u, when t = 0, 50, 100: 3d plots (top) and contour plots (bottom).
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The corresponding f defined by (10) reads as follows:

h=G—=Ty—=3t+4>+ «x+y—1+3)7>+ 250,
(29)

which provides a lump solution of the special fourth-order
nonlinear equation (27):

_ 4(2x — 6y — 41+ 7)
(x—Ty =3t+42+@x+y—1+32+25
(30)

uz

Figure 2 displays the three-dimensional plots and contour
plots of this lump solution made through Maple.

4. Conclusion

In this paper, we studied a special fourth-order nonlinear
differential equation originated from the Calogero-Bogoyav-
lenskii-Schiff equation with three fourth-order terms. Two
special cases of this nonlinear equation (7), vs = 0 and
76 = 0, were studied by the Hirota bilinear method. Through
the symbolic computations with the Maple, we obtained
abundant lump solutions and found out that the coefficient of
the extended term just affects ao, the constant term of the
positive quadratic form of solution (10). Under the setting of
vs and ~s, we determined the other coefficients of the
equation (7) to obtain the related specific lump solution and
presented their profiles via the Maple plot tools. Our research
has enlarged the category of nonlinear PDEs that possess
lump solutions and tried to figure out the relation between the
lump solutions and the nonlinear terms contained in the new
equation. Still, more work needs to be done on the diversity of
Y, 1 <i<6, in this fourth-order nonlinear differential
equation (7) because of the limitation of the computation
capability of Maple and the difficulty in presenting a sim-
plified expression for the result getting from Maple.

However, it is well known that interaction solutions
between lump solutions and soliton solutions can describe
more nonlinear phenomena [17, 18] and various studies
have shown the existence of interaction solutions between
lumps and other kinds of exact solutions to nonlinear
integrable equation [19-24], even in (3+41) dimension
[25-27] and linear wave equation [28]. Since the interaction
properties involve much more complicated mathematical
computations, further investigation on related issues is
needed.
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