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(S I N N

Abstract: Starting from a kind of higher-order matrix spectral problems, we generate integrable
Hamiltonian hierarchies through the zero-curvature formulation. To guarantee the Liouville in-
tegrability of the obtained hierarchies, the trace identity is used to establish their Hamiltonian
structures. Illuminating examples of coupled nonlinear Schrodinger equations and coupled modified
Korteweg-de Vries equations are worked out.
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1. Introduction

Constructing integrable equations is a challenging and active area of research in
mathematical physics, requiring a combination of mathematical insight and technical
expertise. Integrable equations often have a rich array of analytic and geometric structures,
and the study of their solutions can reveal new and unexpected connections to other areas
of mathematical physics.

There are various approaches to constructing integrable equations. One common
method is to apply Lax pairs of matrix spectral problems [1-3]. The existence of recursion
structures behind matrix spectral problems leads to integrable hierarchies, the members of
which commute with each other and so present integrable equations.

Let us consider a vector potential: 1 = (uy, - - -, ;)T and assume that A is the spectral
parameter. The standard procedure for using Lax pairs is to start from a loop algebra ¢ to
formulate a spatial spectral matrix:

U=U(u,A) =eo(A) +uer(A) +- - +ugeg(A), (1)

where e, - - -, ¢; are linear independent, and ¢ is a pseudoregular element in the loop
algebra g, which satisfies

Kerad,, ®Imad,, = §, [Kerad,,, Kerad,,| = 0.

These properties guarantee that there will be a Laurent series solution Z = } ¢~ A—5Z8 to
the stationary zero-curvature equation:

Z. =ilU, Z]. @)
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Once a spatial matrix spectral problem is determined, an integrable hierarchy can be
derived via a hierarchy of zero-curvature equations:

U — v +iu, v =0, r > 0. 3)

These zero-curvature equations are the compatibility conditions between the spatial and
temporal matrix spectral problems:

—igy = Up, —iy = Vg, r >0, @

and so they will present integrable equations. A basic tool to show the Liouville integrability
is the trace identity [4,5]:

5 au d ou
_ - — AT Z)\7 -
(5u/tr(ZaA)dxf/\ ST (Z5 ), ©)

where % denotes the variational derivative with respect to u and v is the constant:

- —%% In [tr(Z2)].
Various integrable hierarchies are constructed through the zero-curvature formulation,
based on special linear algebras (see, e.g., [2,6-15]) and special orthogonal algebras (see,
e.g., [16-19]). Bi-Hamiltonian structures can often be found, which show the Liouville
integrability of the associated zero-curvature equations [20]. There are many integrable
hierarchies with two scalar potentials, p and q. The following four spectral matrices:

A _Az)\p A Ap | A Ap
u_{q —A]’u_bq —Az}’u_bq SN el PP P L

where pg + v = 1, generate the Ablowitz—Kaup-Newell-Segur hierarchy [2], the Kaup—
Newell hierarchy [21], the Wadati-Konno-Ichikawa hierarchy [22] and the Heisenberg
hierarchy [23], respectively. The four counterparts of spectral matrices associated with
so(3,R) are

0 g —A 0 —Ag —A?
U=14q 0 —p |,U=|Ag 0 —=Ap |,
Ap O A Ap 0 ]
0 —Ag =2 0 —-Ag —Av
U=|Aq 0 —Ap |, U=]| A O —Ap],
A Ap 0 Av Ap 0

where p? 4+ g2 +v? = 1.

This paper aims to construct integrable hierarchies of four-component equations through
the zero-curvature formulation. Hamiltonian structures of the resulting hierarchies are pro-
vided by using the trace identity. Two illuminating examples are four-component nonlinear
Schrodinger type equations and four-component modified Korteweg—de Vries type equations.
A conclusion is provided, together with concluding remarks, in the final section.

2. Seventh-Order Matrix Spectral Problems and an Integrable Hierarchy

Within the zero-curvature formulation, let us introduce a seventh-order matrix spatial
spectral problem:
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(A p1r p1 p2 P11 0 ]
q1 0 0 0 0 0 p1
q1 0 0 0 0 0 P1
—ipy=Up=UmwA)p,U=|g 0 0 0 0 0 p |, ®)
q1 0 0 0 0 0 pP1
11 0 0 0 0 0 P1
LO g1 1 92 g1 q1 —A

where u is the four-dimensional potential

u=u(x,t)=(p1,p2 L]1,qz)T~ @)

This spectral problem is different from the matrix Ablowitz-Kaup-Newell-Segur spectral
problem and its reductions (see, e.g., [24,25]), and it was determined by a machine learning
process with Maple symbolic computation.

In order to construct an associated integrable hierarchy, we start by solving the sta-
tionary zero-curvature equation (2) by looking for a Laurent series solution:

[ a bl bl b2 bl bl 0 7
C1 0 0 d 0 0 b1
cqc 0 0 d 0 0 I
Z=|c —d —d 0 —d —d b |=Y A7zl (8)
cqc 0 0 d 0 0 b 5>0
C1 0 0 d 0 0 b]
L0 ¢ a @ ¢ o —al
with
a=Y A7l b= Y AT, o= Y AT, a= YAl )
s>0 s>0 s>0 s>0

where j = 1,2. Obviously, the corresponding stationary zero-curvature equation (2) engen-
ders the initial conditions:

A9 0, b0 0 _ 0 _ 0 g 0 o, (10)

and the recursion relation:

pitl — _z'bf;]x + prall 4 podl, a1
ptl — —ibgf]x + ppall — 4pydl,
it = icgi]x +quall — gdl, 12)
C£s+1] = ic[zs,]x + goal) + 4g,dV,
and . 1 1 1 1
a =ity — b 4 pry Y — o),
aLSH} = i(—4q1bgs+1] — qzbgs“] +4plcgs+l] + chgsﬂ]) (13)
= —(Aqby + qab5) + dprcth 4 pack)),
where s > 0. We take the initial values,
a1, dl — o, (19)

and choose the constant of integration as zero,

a0 =0, d"), =0, s> 1. (15)
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Then, we can work out the first four sets of als!, bgs], bgs], cgs], cg] and dls!:
b%” =P, bL” = p2, Cgl] =q1, CE] =g, all =0, d = 0;

b = —ipry, by = —ipa, ¢ = i ¢ = i,
a2l = —4p1q1 — pogn, d® = —p1go + pogu;

{ bb —P1xx — P91 — 2p1paga + P31,
by = —paex + 4p302 — Sp1p2ds — P32,
{ = —q1,xx — 4p107 + P103 — 2p20142,

V= e — 8p10102 + Aot — p2d,

{ all = —i(4p191,x — 4p1xq1 + P292,x — P2,x92),
dBl = —i(p1gax — P21y — P1xd2 + P2x1);

and

Bl

{ bg‘” = i(p1xx +12p1p1,2q1 + 3p1P2,2q2 — 3P2P2,xq1 + 3P1,xP292),
5 = 1(Po,xxx + 12P1P2xq1 — 12p1P1,xq2 + 12p1xP291 + 3P2P2,x92),

{ CQAH = —i(q1xxx + 12P19191,x — 3P19292,x + 3P29192,« + 3P291,292),

ng = —i(qo,xxx + 12191922 +12P191,x92 — 12p29191,x + 3P29292,2),

al¥l = 24plq] — 6p1a3 + 24p1padiga — 6p3a7 + 3p563
F4p191,0x T 4P10x01 F P202,xx + P2,xxq2 — 4P1,x01,x — P2,x02,x0
dfl = 12(p1g1 + §p292) (102 = P21) + Prxxd2 = P2at
—P2q1,xx + P192xx — P1xq2,x + P2xq1,2-
Now, we can introduce the temporal matrix spectral problems:
—igy = Vg = vil(u, V), VI = (X72), = Xr:ASZV_S], r>0, (16)
5=0

which are the other parts of the Lax pairs of matrix spectral problems in the zero-curvature
formulation. The compatibility conditions of the spatial and temporal matrix spectral
problems, (6) and (16), are the zero-curvature equations (3). Those equations yield a
four-component integrable hierarchy:

up = K[r] _ (ib£r+l],ib£r+1], _ic[1r+1] Ic[zH_l]) L r>0, (17)

r

or precisely,
pry, = b, gy = bl g, = —icl Y, gy = —id ™ >0, (18)

The first two nonlinear examples in the above integrable hierarchy are the coupled
nonlinear Schrodinger equations
ip1, = prc 40+ 2p1p2g2 — P31,
ip2y, = P2xx — 4102+ 8p1p2d1 + P342,
i1, = —q10 — 4P107 + P195 — 2p20172,
92,1, = —Q20x — 8p1142 + 4P2q} — pad},

(19)
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and the coupled modified Korteweg-de Vries equations
Pits = —P1lxxx — 12p1p1,xq1 — 3p1P2,xq2 + 3p2p2,x01 — 3P1,xP292,
P2t = —P2xxx — 12P1P2x91 + 12P1P1,x92 — 12p1,xp2dn — 3p2p2,x 2, 20)

1ty = —q1xxx — 12p19191,x + 3P1G292,« — 3P20192,x — 3P241,492,
92,65 = —2,xxx — 12P19192,x — 12p191,492 + 12p29191,x — 3P29292,x-

They provide supplements to the classes of integrable nonlinear Schrédinger equations and
modified Korteweg—de Vries equations.

To furnish Hamiltonian structures for the integrable hierarchy (18), we apply the trace
identity (5) to the matrix spectral problem (6). Noting that the solution Z is given by (8),
we can directly compute

ou ou
tr(Zﬁ) = 2a, tr(ZE) = (861,2C2,8b1,2b2)T,

and thus, an application of the trace identity (5) yields

5% /A_s_la[s"’]] dx = /\_7%/\7_5(4655},cgs],élbgs],bgs})T, s> 0.

Considering the case with s = 2, we see y = 0, and therefore, we arrive at

OHL!

= (e an T, s > o, 1)

where the Hamiltonian functionals are given by

[s+2]
H[S]z—/z+1dx,520. (22)

Based on (21), we can find the Hamiltonian structures for the integrable hierarchy (18):

10
SHIT i

:KM:]W’]_ .

Ut , T > O, (23)

r

0

where | is a Hamiltonian operator and the Hamiltonian functionals 7—[[’], r > 0, are
defined by (22). The associated Hamiltonian structures exhibit a connection S = | %
from a conserved functional H to a symmetry S. Further, we can explore basic integrable
properties of the hierarchy (18). The commuting property of those vector fields K"l r > 0:

[kl kb2l] = Kl () [Kls2)) — kB2 () (K1) = 0, 5,5, > 0, (24)
is guaranteed by exploring a Lax operator algebra:
[V, vil] = vislr ) K2l — vl ) k0] 4 (v vl = 0, 51,5, > 0, (25)

which is a consequence of the isospectral zero-curvature equations. Moreover, it follows
from a recursion structure K'+1l = ®Kl") and the skew-symmetric property of ®] that the
conserved functionals also commute under the corresponding Poisson bracket:

SHISU 7 sl
(M, ]y, = /( 5 )T 5 dx =0, 51,5 > 0. (26)
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A combination of the Hamiltonian operator | with the recursion operator ® [26] can
generate a bi-Hamiltonian structure [20] for each integrable equation in the hierarchy (18).

3. Cases of Bigger Matrix Spectral Problems
Let us fix an arbitrary natural number m. We take a generalization of the matrix spatial

spectral problem (6):

A P1 P2 P1 0
. q1 P1T
—ipy = Ugp, U= q2 0 p% , (27)
q1 . . P1
0 a 92 4 A o3y < (2m43)

where
pi=(p . p)a1="(q. 7)),
e e e’
m m

and we assume a Laurent series solution to the stationary zero-curvature equation (2):

a b1 bz bl 0
c 0 d 0 bl
Z=1|c| —dT 0 —-dT | b, =Y Az, (28)
¢ 0 d 0 bl 520
T T
0 ¢ 0 g 0 om+43)x (2m+3)

where the entries of Z are defined by (9) and

b= (b, b)), c1=0(c1, - ,c1), d=(d,---,d)".
—— —_——

m m m

Then, the corresponding stationary zero-curvature equation (2) yields

bix = i(Aby — p1a — pad),
by x = i(Aby — paa+2mpd),
Cly = —i()\cl —qi1a+ QQd),
cox = —i(Acy — goa — 2mgqd),
dx = i(q1b2 — qab1 + p1c2 — paca),
ay = i(2mpyc1 + paca — 2marby — qaby)
= —A"1(2mg1by x + q2bay + 2mpicyy + pacay),

and an application of the trace identity (5) leads to

1) _. 0
E/adx =A Vﬁ)\7(2mcl,cz,2mb1,b2)r

Following these equalities, we obtain the Hamiltonian structures for the associated inte-
grable equations:

[]
uy, = KV = (ipl 1 ipl 1, el el ihT J‘S?M ,r>1, 29)
where .
Li 0
0 20 ; Hm qlr+2] -0 20
U el ’ __/H—l’r_' (30)
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Again, we have the two Abelian algebras of symmetries and conserved functionals, as
depicted in (24) and (26).

Upon taking the initial values in (14) and zero constants of integration, we can work
out the first two nonlinear examples in the generalized hierarchy (29), which are the coupled
nonlinear Schrodinger equations

Py, = P1Lax +2mpaq1 +2p1p2g2 — Pag1,
P2, = Poxx — 2mpaqa + dmp1pagr + p3q2,

. (31)
iq16, = —q1,0x — 2Mp1q3 + P13 — 220192,
2,1, = —(2,xx — 4MP1q1G2 +2mpaqy — p2d5,
and the coupled modified Korteweg-de Vries equations
P1ts = —Plxxx — OMP1P1,xq1 — 3P1P2,x92 + 3P2P2,x01 — 3P1,xP292
P2t = —P2,xxx — OMP1P2,2q1 + 6Mp1p1,2q2 — 6mp1 xp2g1 — 3p2pP2,292, 32)

I1t5 = —q1xxx — 6MP1G191,x + 3p19292,c — 3P20192,x — 3P291,x92,
92,t5 = —G2,xxx — 6MP1G192,x — 6MP1q1,242 + 6MP2g1q1,x — 3P29242,x-

where m is an arbitrary natural number. We point out that some of the coefficients in the
above two integrable equations depend on the number of copies of p; and g7 in the spatial
spectral matrix U defined by (27).

4. Concluding Remarks

Kinds of higher-order matrix spectral problems were introduced and their associated
integrable Hamiltonian hierarchies were generated through the zero-curvature formulation.
A crucial step was to formulate a Laurent series solution to the corresponding stationary
zero-curvature equations. All integrable equations in the resulting hierarchies were shown
to be Liouville integrable via the trace identity.

We remark that one can generalize the considered matrix spectral problems further by
involving more copies of p, as we did for p;. Of course, we can also introduce more depen-
dent variables in matrix spectral problems so that bigger systems of integrable Hamiltonian
equations, consisting of more components, can be generated (see, e.g., [27,28]). If we take
non-semisimple Lie algebras to begin with, then more general integrable structures, such
as integrable couplings, could be explored (see, e.g., [18,29,30]).

It would be interesting to determine structures of soliton solutions for the resulting
integrable equations by incorporating and integrating a wide variety of techniques in
soliton theory, such as the Riemann-Hilbert technique [31], the Zakharov-Shabat dress-
ing method [32], the Darboux transformation [33,34] and the determinant approach [35].
Other interesting solutions can often be worked out by taking wave number reductions
of soliton solutions (see, e.g., [36—40]). Upon imposing nonlocal group reductions for the
considered matrix spectral problems, novel nonlocal reduced integrable equations can also
be computed (see, e.g., [41,42]), and their soliton solutions need further investigation.
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