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We aim to construct exact and explicit solutions to a generalized Bogoyavlensky-Konopelchenko equation through the Maple
computer algebra system. The considered nonlinear equation is transformed into a Hirota bilinear form, and symbolic computations
are made for solving both the nonlinear equation and the corresponding bilinear equation. A few classes of exact and explicit
solutions are generated from different ansdtze on solution forms, including traveling wave solutions, two-wave solutions, and

polynomial solutions.

1. Introduction

One of the fundamental problems in the theory of differential
equations is to determine a solution of a differential equation
satisfying what are known as initial values. There are two
systematical approaches in a linear world: Laplace’s method
for solving linear ordinary differential equations and the
Fourier transform method, for linear partial differential equa-
tions [1, 2]. In the modern theory of integrable systems, the
isomonodromic transform method and the inverse scattering
transform method have been created for attempting initial
value problems for nonlinear ordinary and partial differential
equations, respectively [3, 4].

However, only the simplest differential equations, often
linear, are solvable precisely. It is definitely not an easy
task for us to find exact solutions to nonlinear differential
equations, either ordinary or partial. Nevertheless, the Lie
group method and the Hirota bilinear method are among
effective approaches for finding exact solutions to nonlinear
differential equations. The Lie group method is to determine

Lie symmetries, which are used to solve ordinary differential
equations immediately or used to reduce partial differential
equations and to solve simpler reduced ones [5]. The Hirota
bilinear method is to transform differential equations into
bilinear counterparts and then solve the resulting bilinear
ones [6, 7].

Based on Hirota bilinear forms, one can find solitons—a
kind of analytic solutions exponentially localized [3, 4]. Some
recent studies have also been made on another kind of
interesting explicit solutions called lumps, originated from
solving integrable equations [8-15]. Lump solutions are a
class of analytical rational function solutions localized in
all directions in space [9]. A bilinear framework for getting
soliton solutions in the (2+1)-dimensional case is as follows.
Suppose that a B determines a Hirota bilinear form

B(D,,D,,D,) f-f =0, ey

where D,, Dy, and D, are Hirota’s bilinear derivatives, for a
given (2+1)-dimensional partial differential equation:
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P (ut, U Uy ) =0. (2)

Through the Hirota bilinear technique, soliton solutions can
be often formulated as follows:

N
u=2 (lnf)xx , f= Z €xp (Z."‘igi + Z.“i.“j%) > (3)
u=0,1 i=1 i<j

where ¥, stands for the sum over all possibilities for

Uis Uy» - - . » pyy taking either 0 or 1 and the wave variables and
the phase shifts are determined by

Ei:kix—'—liy_wit-'—gi»o’ 1<i<N, (4)
B(ki—kphi- 10— @)
B(kl + kj,l,' + lj)wj +wi)’

e = 1<i<j<N, (5

with k;, [;, and w; satisfying the corresponding dispersion
relation and &;, being arbitrary translation shifts. Solitons
contain various kinds of exact solutions to integrable equa-
tions, and taking long wave limits of N-soliton solutions can
generate special lumps [16].

In this paper, we would like to look for exact solu-
tions to a (2+1)-dimensional generalized Bogoyavlensky-
Konopelchenko equation

Popc (u,v) = uy + a (6une, + 1)

+p (uxxy +3uu, + 3uxvy) + i, (6)
+Yaly + Y3V, = 0,

where v, = u,and «, f, y;, 5, and y; are constant coeflicients,
through Maple symbolic computations. Based on its Hirota
bilinear form, a few solution ansdtze will be analyzed to
compute exact solutions to the nonlinear equation and its
bilinear counterpart. Moreover, starting from the nonlinear
equation itself, we will do a thorough symbolic computation
by Maple within our capacity to generate a few classes of exact
and explicit solutions, including traveling wave solutions,
two-wave solutions, and polynomial solutions. Conclusions
and remarks will be given in the last section.

2. One-Wave Type and Two-Wave
and Polynomial Solutions

Let us consider the (2+1)-dimensional generalized Bogoy-
avlensky-Konopelchenko (gBK) equation (6). Equivalently,
the (2+1)-dimensional gBK equation (6) can be written as
follows:

Vix T (6vaxx + vxxxx)
+ ﬁ (Vxxxy + 3vaxy + 3Vxxvy) T V1 Viex T szxy (7)

T Y3V, = 0.
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This is a generalization of the (2+1)-dimensional Bogoyavlen-
sky-Konopelchenko (BK) equation

Vtx +a (6VXVXX + Vxxxx)
(8)
+p (vxxxy + 3V, vy, + 3vxxvy) =0,
a special case of which was introduced as a (2+1)-dimensional
version of the KdV equation in [17] and described as the
interaction of a long wave propagating along the x-axis
and a Riemann wave propagating along the y-axis [18].
For the (2+1)-dimensional BK equation (8), a Darboux
transformation has been given, together with some traveling
wave solutions [19], and a few particular properties have been
explored (see, e.g., [20, 21]).
By a direct computation, we can show that the (2+1)-
dimensional gBK equation (6) can be written as a Hirota
bilinear form [22]:

BgBK(f) = (Dth+an4+ﬁDx3Dy+y1Dx2
+y2Dny+Y3Dy2)f°f=2[ftxf_ftfx
ta (fxxxxf - 4fxxxfx + 3fxx2)

+ B(fexsyf = Faxcfy =3 Fexyfx + 3fuxfsy) Y
11 (fuef = 1) 02 (fopf ~ o))
1 (fyf = £,)] =0
under the logarithmic transformations
1o, -2l 1)
(10)

v=2(Inf) = %

Such transformations play a prominent role in Bell poly-
nomial theories for soliton equations and their generalized
counterparts (see, e.g., [23, 24]). Precisely, we can have

Bypx
PgBK(u’V) = (gT(f)> >
X
And, thus, when f solves the bilinear gBK equation (9), u =
2(In f),, and v = 2(In f), will solve the nonlinear gBK
equation (6).

Beginning with the gBK equation (6) and its Hirota
bilinear form (9), we can compute various exact solutions
to the gBK equation (6), through carrying out our searches
via symbolic computations. For example, lower-order lump
solutions have been presented to the gBK equation (6) in [22].

In what follows, we start with some special ansatze for
uand f to construct new exact and explicit solutions to the
gBK equation (6) (or equivalently (7)) and the bilinear gBK
equation (9). Plugging each ansatz into the nonlinear or bilin-
ear gBK equation leads to a system of algebraic equations on

(11)
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the parameters and the coefficients. Then, conduct symbolic
computations with Maple to obtain solutions to the algebraic
system and further exact solutions to the (2+1)-dimensional
gBK equation (6).

2.1. One-Wave Type Solutions. First, trying one-wave type
solutions, we can easily determine the following five exact and
explicit solutions to the bilinear gBK equation (9):

2. 2

B B

f=exp(ax+tay+ayg, (1) +a,),

foesp (- vy s +a.).

12066112 + a4

yz + asg, (t) +a4> ,
Y3

f=exp (a1x2 -
(12)

f=h<a1x+a2y

4 3 2 2
+ daa,” +4fa;"a, - y1a,” — Y414, — Y30,

where g;,1 < i < 4, are arbitrary functions, i = sin
or cos, and the constant parameters a;, 1 < i < 4, are
arbitrary provided that every term in the solutions makes
sense. Though all classes of solutions above are interesting
solutions to the bilinear gBK equation (9), only the first
class of solutions can lead to nontrivial exact solutions to
the nonlinear gBK equation (6). Amazingly, the first class
of solutions presents traveling wave solutions involving an
arbitrary function for the (2+1)-dimensional gBK equation
(6), which is a special characteristic of the the gBK equation
(6) [22]. Also from the above first class of exact solutions,
we can easily formulate various lump-type solutions (i.e.,
rational and analytical function solutions that are localized in
almostall directions in space, under the Lebesgue measure) to
the gBK equation (6), by taking g, to be positive polynomial
functions.

t

a,

2.2. Two-Wave Solutions. To search for two-wave solutions,
let us now set
& =ax+ay+ast +ay,

(13)

& =asx +agy +at +ag,

where g;, 1 < i < 8, are constant parameters to be
determined. Try an ansatz of two-wave solutions to the
bilinear gBK equation (9):

f=ér+e? ta, (14)

where a, is another constant parameter to be determined. and
we can show that the resulting system of algebraic equations
has two classes of explicit solutions:

_ 4 3 22 3
a; = — (ocal —4aa, as + 6aa,"a;” — 4aa, as

a, —as
+ oca54 + [3’a13a2 - /3a13a6 - 3[3’a12a2a5
2 2 2 3
+3Ba,“asaq + 3Pa,a,as” — 3Pa a5 ag — Pa,as
3 2 (15)
+Bas’ag + y1a,” + y,a1a, — 2y,4,05 — 1,006
2 ) 2
T V30, — V2005 — 2Y30,05 + Y105 + Y0506
2
T Va6 —a a; + a5a7) >
ag =0,
and

a,b
B =—>
as

a
a; = _a_lz (3[3’a12a5b — 3Bayas°b + fas’b + 4aa,as”
5

— 6aaas’ + 3aas’ + Pa,’asag — 3Pa,as ag (16)
3 2 2
+2pas”ag + y,asb + 2y;a5b + y1a5” — ;a4 ) >

4 3 2 2
__aas + Bas’as + y1a5” + 1,a506 + y3ds .
- b

as

where the constant b satisfies
y3b2 - (2/3a12a5 - 3[31111152 + ﬁa53 + 2y3a6) b
- 3aa,’as” + 6aa,as° — 3aas’ — fa, asag (17)
+ 3,86116152616 —2pas’ag + y3a62 =0,
and the other parameters could be arbitrary provided that the

solutions of u and v presented by (10) will be well defined.
If we try another ansatz for two-wave solutions:

f=e"+h(&)+as h=sin or cos, (18)

and then we can have

b
a a’
1
a;=-— (4oca13a52 + Ba,’asag + 3Ba, asb
as
3 3 2 2
+ Bajas”ag — fas"b + yia1as” — y3a,a6” + y,asb (19)
+ 2y3a6b) ,
4 3 2 2
_ daas” +4Pas ag — y1a5” — Y,a505 — V39
as ’
a =0,



where the constant b needs to satisfy a quadratic equation
2 2 3 4 2
y3b° - 24a, (,Bal as + Pas” + y3a6) b-3aa,"as
— 6aa,’as’ — 3aas’ — Pa,*asa — 4fa,’as°a;  (20)
- 3[31155(16 + y3a12a62 =0.

This is different from (17). When y; # 0, these are two
quadratic equations and so each of them has two roots for b;
but when y; = 0, they become linear and so only one solution
for b is possible.

Then, through the transformations in (10), we can obtain
diverse classes of exact and explicit two-wave solutions to the
(2+1)-dimensional gBK equation (6).

2.3. Polynomial Solutions. Let us thirdly try an ansatz on
polynomial solutions for v:

n
v= Z ai,j,kxlyjtk’ (21)
i,j,k=0
where n € N and g, j;,
coefficients to be determined. By symbolic computations for
the case of n = 2, we can get the following two classes of exact
polynomial solutions to the gBK equation (7):

1 < i,j,k < n, are constants

_ 2 2 2
V= =Gy V3XtT + Agp Yt + Ay 0V — 2a0,50Y3Xt
2 2
T Ago0Y T a1 Y+ Aottt +a0X +ag 10y (22)
+ Ayt + dg 05

and

3 3a500 (2““2,0,05 - :33%,1,1) 2
= /3 > Xt
3aa, 0, (20‘“2,0,019 - :33610,1,1)
_ 5
20,00 2a,00b
_ xy —
B B

2
Ayt +a0X +ag 0+ gt + ago0

2 2
"+ a, 0X
y 2,0,0 (23)

2
X 00 2

B2 Y- tagyt

where the constant b is given by

b= 30‘,32611,0,0 + 3:83610,1,0 + 0‘2)/3 —afy, + /32?1’ (24)

and the other involved parameters are arbitrary.

The first class of polynomial solutions does not depend
on any coefficient of the nonlinear terms in the gBK equation
(7), but the second class depends critically on the coefficient
B of the second group containing nonlinear terms in the
gBK equation (7) and involves two more monomials: x* and
xy. It is also surprising that the cases of n > 3 are just
too complicated for us to work out any nontrivial explicit
polynomial solutions.
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Taking a,,, = g, = 0 in the first solution (22) and

20ay 4 0b

1,1 = 7/33 (25)

in the second solution (23), we obtain two quadratic function
solutions immediately:

2 2
v ==2a0,50Y3Xt + Ago0Y" + Ao VE+ Gyt

(26)
+ay00X T ag10Y + o1t +dgo0s
and
2
_ 2 2y 2a,,0b X oo 2
V=ay00X — ,3 Xy — /32 xt + ,32
20a,,,0b 2 (27)
+ T)/f + Ayt + A100X T Ay 10Y
+ a1t + A0,00
where b is defined by (24).
2.4. An Illustrative Example. Let us now take
a=1,
B=-1,
Y =2 (28)
Y, =1
ys=-L

Then, from (7), we obtain the following specific gBK equation

Vix + (6vaxx + Vxxxx) - (Vxxxy + 3vaxy + 3Vxxvy)

(29)
+ 2V + V=V, = 0.

Based on our presented solutions, this nonlinear equation has
a traveling wave solution

2sinh (-x - y +2t - 5)

V:_cosh(—x—y+2t—5)+10’ (30)
a two-wave solution
x-2y-3t-1 2x-3y-51+2
v= ZZx—zy—at—l i:fx—3y—5t+2 ’ (31)
and a polynomial solution
v=(-33x-33y+5)t" + (14x + 3y + 1)t + 2xy o)

+y2—x+2y+1.

All the solutions computed above via symbolic compu-
tations supplement the solution theories available on soliton
solutions and dromion-type solutions, generated through
powerful existing approaches such as the Hirota perturba-
tion method and symmetry constraints including symmetry
reductions (see, e.g., [25-30]).
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3. Concluding Remarks

We have constructed a few classes of exact and explicit
solutions, including two-wave solutions and polynomial solu-
tions, to a (2+1)-dimensional generalized Bogoyavlensky-
Konopelchenko (gBK) equation. Symbolic computations
with Maple are the adopted technique and the Hirota bilinear
form is a basis for getting one-wave type and two-wave
solutions.

The obtained result enriches the existing studies on the
(2+1)-dimensional Bogoyavlensky-Konopelchenko equation
[19-22]. We remark that there are plenty of interaction
solutions to integrable equations (see, e.g., [31]), particularly
between lumps and other kinds of exact solutions to (2+1)-
dimensional nonlinear integrable equations (see, e.g., [32-35]
for lump-kink interaction solutions and [36-39] for lump-
soliton interaction solutions).

However, we couldn’t find any interaction solutions
between lump (or lump-type) solutions and kink (or soliton)
solutions, and any nontrivial N-wave solutions, including N-
soliton solutions, where N > 3, for the (2+1)-dimensional
gBK equation (6). We believe that the existence of interaction
solutions and three-wave solutions to partial differential
equations should be a characteristic property of complete
integrability for the differential equations under considera-
tion. It is definitely interesting to search for exact solutions
and interaction solutions to partial differential equations
in both (1+1)- and (2+1)-dimensions. Another important
problem is to identify nonlinear partial differential equations
that possess soliton solutions and interaction solutions, to
understand integrable properties of nonlinear equations.
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