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We aim to construct exact and explicit solutions to a generalized Bogoyavlensky-Konopelchenko equation through the Maple
computer algebra system.The considered nonlinear equation is transformed into aHirota bilinear form, and symbolic computations
are made for solving both the nonlinear equation and the corresponding bilinear equation. A few classes of exact and explicit
solutions are generated from different ansätze on solution forms, including traveling wave solutions, two-wave solutions, and
polynomial solutions.

1. Introduction

One of the fundamental problems in the theory of differential
equations is to determine a solution of a differential equation
satisfying what are known as initial values. There are two
systematical approaches in a linear world: Laplace’s method
for solving linear ordinary differential equations and the
Fourier transformmethod, for linear partial differential equa-
tions [1, 2]. In the modern theory of integrable systems, the
isomonodromic transform method and the inverse scattering
transform method have been created for attempting initial
value problems for nonlinear ordinary and partial differential
equations, respectively [3, 4].

However, only the simplest differential equations, often
linear, are solvable precisely. It is definitely not an easy
task for us to find exact solutions to nonlinear differential
equations, either ordinary or partial. Nevertheless, the Lie
group method and the Hirota bilinear method are among
effective approaches for finding exact solutions to nonlinear
differential equations. The Lie group method is to determine

Lie symmetries, which are used to solve ordinary differential
equations immediately or used to reduce partial differential
equations and to solve simpler reduced ones [5]. The Hirota
bilinear method is to transform differential equations into
bilinear counterparts and then solve the resulting bilinear
ones [6, 7].

Based on Hirota bilinear forms, one can find solitons—a
kind of analytic solutions exponentially localized [3, 4]. Some
recent studies have also been made on another kind of
interesting explicit solutions called lumps, originated from
solving integrable equations [8–15]. Lump solutions are a
class of analytical rational function solutions localized in
all directions in space [9]. A bilinear framework for getting
soliton solutions in the (2+1)-dimensional case is as follows.
Suppose that a 𝐵 determines a Hirota bilinear form

𝐵 (𝐷𝑥, 𝐷𝑦, 𝐷𝑡) 𝑓 ⋅ 𝑓 = 0, (1)

where 𝐷𝑥, 𝐷𝑦, and 𝐷𝑡 are Hirota’s bilinear derivatives, for a
given (2+1)-dimensional partial differential equation:
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𝑃 (𝑢𝑡, 𝑢𝑥, 𝑢𝑦, ⋅ ⋅ ⋅) = 0. (2)

Through the Hirota bilinear technique, soliton solutions can
be often formulated as follows:

𝑢 = 2 (ln𝑓)𝑥𝑥 , 𝑓 = ∑
𝜇=0,1

exp( 𝑁∑
𝑖=1

𝜇𝑖𝜉𝑖 + ∑
𝑖<𝑗

𝜇𝑖𝜇𝑗𝑎𝑖𝑗) , (3)

where ∑𝜇=0,1 stands for the sum over all possibilities for𝜇1, 𝜇2, . . . , 𝜇𝑁 taking either 0 or 1 and the wave variables and
the phase shifts are determined by

𝜉𝑖 = 𝑘𝑖𝑥 + 𝑙𝑖𝑦 − 𝜔𝑖𝑡 + 𝜉𝑖,0, 1 ≤ 𝑖 ≤ 𝑁, (4)

and

e𝑎𝑖𝑗 = −𝐵 (𝑘𝑖 − 𝑘𝑗, 𝑙𝑖 − 𝑙𝑗, 𝜔𝑗 − 𝜔𝑖)𝐵 (𝑘𝑖 + 𝑘𝑗, 𝑙𝑖 + 𝑙𝑗, 𝜔𝑗 + 𝜔𝑖) , 1 ≤ 𝑖 < 𝑗 ≤ 𝑁, (5)

with 𝑘𝑖, 𝑙𝑖, and 𝜔𝑖 satisfying the corresponding dispersion
relation and 𝜉𝑖,0 being arbitrary translation shifts. Solitons
contain various kinds of exact solutions to integrable equa-
tions, and taking long wave limits of 𝑁-soliton solutions can
generate special lumps [16].

In this paper, we would like to look for exact solu-
tions to a (2+1)-dimensional generalized Bogoyavlensky-
Konopelchenko equation

𝑃𝑔𝐵𝐾 (𝑢, V) fl 𝑢𝑡 + 𝛼 (6𝑢𝑢𝑥 + 𝑢𝑥𝑥𝑥)
+ 𝛽 (𝑢𝑥𝑥𝑦 + 3𝑢𝑢𝑦 + 3𝑢𝑥V𝑦) + 𝛾1𝑢𝑥
+ 𝛾2𝑢𝑦 + 𝛾3V𝑦𝑦 = 0,

(6)

where V𝑥 = 𝑢, and 𝛼, 𝛽, 𝛾1, 𝛾2, and 𝛾3 are constant coefficients,
through Maple symbolic computations. Based on its Hirota
bilinear form, a few solution ansätze will be analyzed to
compute exact solutions to the nonlinear equation and its
bilinear counterpart. Moreover, starting from the nonlinear
equation itself, we will do a thorough symbolic computation
byMaple within our capacity to generate a few classes of exact
and explicit solutions, including traveling wave solutions,
two-wave solutions, and polynomial solutions. Conclusions
and remarks will be given in the last section.

2. One-Wave Type and Two-Wave
and Polynomial Solutions

Let us consider the (2+1)-dimensional generalized Bogoy-
avlensky-Konopelchenko (gBK) equation (6). Equivalently,
the (2+1)-dimensional gBK equation (6) can be written as
follows:

V𝑡𝑥 + 𝛼 (6V𝑥V𝑥𝑥 + V𝑥𝑥𝑥𝑥)
+ 𝛽 (V𝑥𝑥𝑥𝑦 + 3V𝑥V𝑥𝑦 + 3V𝑥𝑥V𝑦) + 𝛾1V𝑥𝑥 + 𝛾2V𝑥𝑦
+ 𝛾3V𝑦𝑦 = 0.

(7)

This is a generalization of the (2+1)-dimensional Bogoyavlen-
sky-Konopelchenko (BK) equation

V𝑡𝑥 + 𝛼 (6V𝑥V𝑥𝑥 + V𝑥𝑥𝑥𝑥)
+ 𝛽 (V𝑥𝑥𝑥𝑦 + 3V𝑥V𝑥𝑦 + 3V𝑥𝑥V𝑦) = 0, (8)

a special case of whichwas introduced as a (2+1)-dimensional
version of the KdV equation in [17] and described as the
interaction of a long wave propagating along the 𝑥-axis
and a Riemann wave propagating along the 𝑦-axis [18].
For the (2+1)-dimensional BK equation (8), a Darboux
transformation has been given, together with some traveling
wave solutions [19], and a few particular properties have been
explored (see, e.g., [20, 21]).

By a direct computation, we can show that the (2+1)-
dimensional gBK equation (6) can be written as a Hirota
bilinear form [22]:

𝐵𝑔𝐵𝐾 (𝑓) fl (𝐷𝑡𝐷𝑥 + 𝛼𝐷𝑥4 + 𝛽𝐷𝑥3𝐷𝑦 + 𝛾1𝐷𝑥2
+ 𝛾2𝐷𝑥𝐷𝑦 + 𝛾3𝐷𝑦2) 𝑓 ⋅ 𝑓 = 2 [𝑓𝑡𝑥𝑓 − 𝑓𝑡𝑓𝑥
+ 𝛼 (𝑓𝑥𝑥𝑥𝑥𝑓 − 4𝑓𝑥𝑥𝑥𝑓𝑥 + 3𝑓𝑥𝑥2)
+ 𝛽 (𝑓𝑥𝑥𝑥𝑦𝑓 − 𝑓𝑥𝑥𝑥𝑓𝑦 − 3𝑓𝑥𝑥𝑦𝑓𝑥 + 3𝑓𝑥𝑥𝑓𝑥𝑦)
+ 𝛾1 (𝑓𝑥𝑥𝑓 − 𝑓𝑥2) + 𝛾2 (𝑓𝑥𝑦𝑓 − 𝑓𝑥𝑓𝑦)
+ 𝛾3 (𝑓𝑦𝑦𝑓 − 𝑓𝑦2)] = 0,

(9)

under the logarithmic transformations

𝑢 = 2 (ln𝑓)𝑥𝑥 = 2 (𝑓𝑥𝑥𝑓 − 𝑓𝑥2)𝑓2 ,
V = 2 (ln𝑓)𝑥 = 2𝑓𝑥𝑓 .

(10)

Such transformations play a prominent role in Bell poly-
nomial theories for soliton equations and their generalized
counterparts (see, e.g., [23, 24]). Precisely, we can have

𝑃𝑔𝐵𝐾 (𝑢, V) = (𝐵𝑔𝐵𝐾 (𝑓)
𝑓2 )

𝑥

, (11)

And, thus, when 𝑓 solves the bilinear gBK equation (9), 𝑢 =2(ln𝑓)𝑥𝑥 and V = 2(ln𝑓)𝑥 will solve the nonlinear gBK
equation (6).

Beginning with the gBK equation (6) and its Hirota
bilinear form (9), we can compute various exact solutions
to the gBK equation (6), through carrying out our searches
via symbolic computations. For example, lower-order lump
solutions have been presented to the gBK equation (6) in [22].

In what follows, we start with some special ansätze for𝑢 and 𝑓 to construct new exact and explicit solutions to the
gBK equation (6) (or equivalently (7)) and the bilinear gBK
equation (9). Plugging each ansatz into the nonlinear or bilin-
ear gBK equation leads to a system of algebraic equations on
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the parameters and the coefficients. Then, conduct symbolic
computations with Maple to obtain solutions to the algebraic
system and further exact solutions to the (2+1)-dimensional
gBK equation (6).

2.1. One-Wave Type Solutions. First, trying one-wave type
solutions, we can easily determine the following five exact and
explicit solutions to the bilinear gBK equation (9):

𝑓 = 𝑔1 (𝑥 − 𝛼𝛽𝑦 − 𝛼2𝛾3 − 𝛼𝛽𝛾2 + 𝛽2𝛾1𝛽2 𝑡 + 𝑎4) ,
𝑓 = exp (𝑎1𝑥 + 𝑎2𝑦 + 𝑎3𝑔2 (𝑡) + 𝑎4) ,
𝑓 = exp (− 𝛾112𝛼𝑥2 + 𝑎2𝑦 + 𝑎3𝑔3 (𝑡) + 𝑎4) ,
𝑓 = exp(𝑎1𝑥2 − 12𝛼𝑎12 + 𝛾1𝑎1𝛾3 𝑦2 + 𝑎3𝑔4 (𝑡) + 𝑎4) ,
𝑓 = ℎ(𝑎1𝑥 + 𝑎2𝑦

+ 4𝛼𝑎14 + 4𝛽𝑎13𝑎2 − 𝛾1𝑎12 − 𝛾2𝑎1𝑎2 − 𝛾3𝑎22𝑎1 𝑡
+ 𝑎4) ,

(12)

where 𝑔𝑖, 1 ≤ 𝑖 ≤ 4, are arbitrary functions, ℎ = sin
or cos, and the constant parameters 𝑎𝑖, 1 ≤ 𝑖 ≤ 4, are
arbitrary provided that every term in the solutions makes
sense. Though all classes of solutions above are interesting
solutions to the bilinear gBK equation (9), only the first
class of solutions can lead to nontrivial exact solutions to
the nonlinear gBK equation (6). Amazingly, the first class
of solutions presents traveling wave solutions involving an
arbitrary function for the (2+1)-dimensional gBK equation
(6), which is a special characteristic of the the gBK equation
(6) [22]. Also from the above first class of exact solutions,
we can easily formulate various lump-type solutions (i.e.,
rational and analytical function solutions that are localized in
almost all directions in space, under the Lebesguemeasure) to
the gBK equation (6), by taking 𝑔1 to be positive polynomial
functions.

2.2. Two-Wave Solutions. To search for two-wave solutions,
let us now set 𝜉1 = 𝑎1𝑥 + 𝑎2𝑦 + 𝑎3𝑡 + 𝑎4,

𝜉2 = 𝑎5𝑥 + 𝑎6𝑦 + 𝑎7𝑡 + 𝑎8, (13)

where 𝑎𝑖, 1 ≤ 𝑖 ≤ 8, are constant parameters to be
determined. Try an ansatz of two-wave solutions to the
bilinear gBK equation (9):

𝑓 = e𝜉1 + e𝜉2 + 𝑎9, (14)

where 𝑎9 is another constant parameter to be determined. and
we can show that the resulting system of algebraic equations
has two classes of explicit solutions:

𝑎3 = − 1𝑎1 − 𝑎5 (𝛼𝑎14 − 4𝛼𝑎13𝑎5 + 6𝛼𝑎12𝑎52 − 4𝛼𝑎1𝑎53
+ 𝛼𝑎54 + 𝛽𝑎13𝑎2 − 𝛽𝑎13𝑎6 − 3𝛽𝑎12𝑎2𝑎5
+ 3𝛽𝑎12𝑎5𝑎6 + 3𝛽𝑎1𝑎2𝑎52 − 3𝛽𝑎1𝑎52𝑎6 − 𝛽𝑎2𝑎53
+ 𝛽𝑎53𝑎6 + 𝛾1𝑎12 + 𝛾2𝑎1𝑎2 − 2𝛾1𝑎1𝑎5 − 𝛾2𝑎1𝑎6
+ 𝛾3𝑎22 − 𝛾2𝑎2𝑎5 − 2𝛾3𝑎2𝑎6 + 𝛾1𝑎52 + 𝛾2𝑎5𝑎6
+ 𝛾3𝑎62 − 𝑎1𝑎7 + 𝑎5𝑎7) ,

𝑎9 = 0,

(15)

and

𝑎2 = 𝑎1𝑏𝑎5 ,
𝑎3 = − 𝑎1𝑎52 (3𝛽𝑎12𝑎5𝑏 − 3𝛽𝑎1𝑎52𝑏 + 𝛽𝑎53𝑏 + 4𝛼𝑎12𝑎52

− 6𝛼𝑎1𝑎53 + 3𝛼𝑎54 + 𝛽𝑎12𝑎5𝑎6 − 3𝛽𝑎1𝑎52𝑎6
+ 2𝛽𝑎53𝑎6 + 𝛾2𝑎5𝑏 + 2𝛾3𝑎6𝑏 + 𝛾1𝑎52 − 𝛾3𝑎62) ,

𝑎7 = −𝛼𝑎54 + 𝛽𝑎53𝑎6 + 𝛾1𝑎52 + 𝛾2𝑎5𝑎6 + 𝛾3𝑎62𝑎5 ;

(16)

where the constant 𝑏 satisfies
𝛾3𝑏2 − (2𝛽𝑎12𝑎5 − 3𝛽𝑎1𝑎52 + 𝛽𝑎53 + 2𝛾3𝑎6) 𝑏

− 3𝛼𝑎12𝑎52 + 6𝛼𝑎1𝑎53 − 3𝛼𝑎54 − 𝛽𝑎12𝑎5𝑎6
+ 3𝛽𝑎1𝑎52𝑎6 − 2𝛽𝑎53𝑎6 + 𝛾3𝑎62 = 0,

(17)

and the other parameters could be arbitrary provided that the
solutions of 𝑢 and V presented by (10) will be well defined.

If we try another ansatz for two-wave solutions:

𝑓 = e𝜉1 + ℎ (𝜉2) + 𝑎9, ℎ = sin or cos, (18)

and then we can have

𝑎2 = 𝑏𝑎5 ,
𝑎3 = − 1𝑎25 (4𝛼𝑎13𝑎52 + 𝛽𝑎13𝑎5𝑎6 + 3𝛽𝑎12𝑎5𝑏

+ 𝛽𝑎1𝑎53𝑎6 − 𝛽𝑎53𝑏 + 𝛾1𝑎1𝑎52 − 𝛾3𝑎1𝑎62 + 𝛾2𝑎5𝑏
+ 2𝛾3𝑎6𝑏) ,

𝑎7 = 4𝛼𝑎54 + 4𝛽𝑎53𝑎6 − 𝛾1𝑎52 − 𝛾2𝑎5𝑎6 − 𝛾3𝑎62𝑎5 ,
𝑎9 = 0,

(19)
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where the constant 𝑏 needs to satisfy a quadratic equation
𝛾3𝑏2 − 2𝑎1 (𝛽𝑎12𝑎5 + 𝛽𝑎53 + 𝛾3𝑎6) 𝑏 − 3𝛼𝑎14𝑎52

− 6𝛼𝑎12𝑎54 − 3𝛼𝑎56 − 𝛽𝑎14𝑎5𝑎6 − 4𝛽𝑎12𝑎53𝑎6
− 3𝛽𝑎55𝑎6 + 𝛾3𝑎12𝑎62 = 0.

(20)

This is different from (17). When 𝛾3 ̸= 0, these are two
quadratic equations and so each of them has two roots for 𝑏;
but when 𝛾3 = 0, they become linear and so only one solution
for 𝑏 is possible.

Then, through the transformations in (10), we can obtain
diverse classes of exact and explicit two-wave solutions to the
(2+1)-dimensional gBK equation (6).

2.3. Polynomial Solutions. Let us thirdly try an ansatz on
polynomial solutions for V:

V = 𝑛∑
𝑖,𝑗,𝑘=0

𝑎𝑖,𝑗,𝑘𝑥𝑖𝑦𝑗𝑡𝑘, (21)

where 𝑛 ∈ N and 𝑎𝑖,𝑗,𝑘, 1 ≤ 𝑖, 𝑗, 𝑘 ≤ 𝑛, are constants
coefficients to be determined. By symbolic computations for
the case of 𝑛 = 2, we can get the following two classes of exact
polynomial solutions to the gBK equation (7):

V = −𝑎0,2,1𝛾3𝑥𝑡2 + 𝑎0,2,1𝑦2𝑡 + 𝑎0,1,2𝑦𝑡2 − 2𝑎0,2,0𝛾3𝑥𝑡
+ 𝑎0,2,0𝑦2 + 𝑎0,1,1𝑦𝑡 + 𝑎0,0,2𝑡2 + 𝑎1,0,0𝑥 + 𝑎0,1,0𝑦
+ 𝑎0,0,1𝑡 + 𝑎0,0,0,

(22)

and

V = 3𝑎2,0,0 (2𝛼𝑎2,0,0𝑏 − 𝛽3𝑎0,1,1)𝛽2 𝑥𝑡2

− 3𝛼𝑎2,0,0 (2𝛼𝑎2,0,0𝑏 − 𝛽3𝑎0,1,1)𝛽3 𝑦𝑡2 + 𝑎2,0,0𝑥2

− 2𝛼𝑎2,0,0𝛽 𝑥𝑦 − 2𝑎2,0,0𝑏𝛽2 𝑥𝑡 + 𝛼2𝑎2,0,0𝛽2 𝑦2 + 𝑎0,1,1𝑦𝑡
+ 𝑎0,0,2𝑡2 + 𝑎1,0,0𝑥 + 𝑎0,1,0𝑦 + 𝑎0,0,1𝑡 + 𝑎0,0,0,

(23)

where the constant 𝑏 is given by

𝑏 = 3𝛼𝛽2𝑎1,0,0 + 3𝛽3𝑎0,1,0 + 𝛼2𝛾3 − 𝛼𝛽𝛾2 + 𝛽2𝛾1, (24)

and the other involved parameters are arbitrary.
The first class of polynomial solutions does not depend

on any coefficient of the nonlinear terms in the gBK equation
(7), but the second class depends critically on the coefficient𝛽 of the second group containing nonlinear terms in the
gBK equation (7) and involves two more monomials: 𝑥2 and𝑥𝑦. It is also surprising that the cases of 𝑛 ≥ 3 are just
too complicated for us to work out any nontrivial explicit
polynomial solutions.

Taking 𝑎0,2,1 = 𝑎0,1,2 = 0 in the first solution (22) and

𝑎0,1,1 = 2𝛼𝑎2,0,0𝑏𝛽3 (25)

in the second solution (23), we obtain two quadratic function
solutions immediately:

V = −2𝑎0,2,0𝛾3𝑥𝑡 + 𝑎0,2,0𝑦2 + 𝑎0,1,1𝑦𝑡 + 𝑎0,0,2𝑡2
+ 𝑎1,0,0𝑥 + 𝑎0,1,0𝑦 + 𝑎0,0,1𝑡 + 𝑎0,0,0, (26)

and

V = 𝑎2,0,0𝑥2 − 2𝛼𝑎2,0,0𝛽 𝑥𝑦 − 2𝑎2,0,0𝑏𝛽2 𝑥𝑡 + 𝛼2𝑎2,0,0𝛽2 𝑦2
+ 2𝛼𝑎2,0,0𝑏𝛽3 𝑦𝑡 + 𝑎0,0,2𝑡2 + 𝑎1,0,0𝑥 + 𝑎0,1,0𝑦
+ 𝑎0,0,1𝑡 + 𝑎0,0,0,

(27)

where 𝑏 is defined by (24).

2.4. An Illustrative Example. Let us now take

𝛼 = 1,
𝛽 = −1,
𝛾1 = 2,
𝛾2 = 1,
𝛾3 = −1.

(28)

Then, from (7), we obtain the following specific gBK equation

V𝑡𝑥 + (6V𝑥V𝑥𝑥 + V𝑥𝑥𝑥𝑥) − (V𝑥𝑥𝑥𝑦 + 3V𝑥V𝑥𝑦 + 3V𝑥𝑥V𝑦)
+ 2V𝑥𝑥 + V𝑥𝑦 − V𝑦𝑦 = 0. (29)

Based on our presented solutions, this nonlinear equation has
a traveling wave solution

V = − 2 sinh (−𝑥 − 𝑦 + 2𝑡 − 5)
cosh (−𝑥 − 𝑦 + 2𝑡 − 5) + 10 , (30)

a two-wave solution

V = 2e𝑥−2𝑦−3𝑡−1 + 4e2𝑥−3𝑦−5𝑡+2
e𝑥−2𝑦−3𝑡−1 + e2𝑥−3𝑦−5𝑡+2

, (31)

and a polynomial solution

V = (−33𝑥 − 33𝑦 + 5) 𝑡2 + (14𝑥 + 3𝑦 + 1) 𝑡 + 2𝑥𝑦
+ 𝑦2 − 𝑥 + 2𝑦 + 1. (32)

All the solutions computed above via symbolic compu-
tations supplement the solution theories available on soliton
solutions and dromion-type solutions, generated through
powerful existing approaches such as the Hirota perturba-
tion method and symmetry constraints including symmetry
reductions (see, e.g., [25–30]).
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3. Concluding Remarks

We have constructed a few classes of exact and explicit
solutions, including two-wave solutions and polynomial solu-
tions, to a (2+1)-dimensional generalized Bogoyavlensky-
Konopelchenko (gBK) equation. Symbolic computations
with Maple are the adopted technique and the Hirota bilinear
form is a basis for getting one-wave type and two-wave
solutions.

The obtained result enriches the existing studies on the
(2+1)-dimensional Bogoyavlensky-Konopelchenko equation
[19–22]. We remark that there are plenty of interaction
solutions to integrable equations (see, e.g., [31]), particularly
between lumps and other kinds of exact solutions to (2+1)-
dimensional nonlinear integrable equations (see, e.g., [32–35]
for lump-kink interaction solutions and [36–39] for lump-
soliton interaction solutions).

However, we couldn’t find any interaction solutions
between lump (or lump-type) solutions and kink (or soliton)
solutions, and any nontrivial 𝑁-wave solutions, including𝑁-
soliton solutions, where 𝑁 ≥ 3, for the (2+1)-dimensional
gBK equation (6). We believe that the existence of interaction
solutions and three-wave solutions to partial differential
equations should be a characteristic property of complete
integrability for the differential equations under considera-
tion. It is definitely interesting to search for exact solutions
and interaction solutions to partial differential equations
in both (1+1)- and (2+1)-dimensions. Another important
problem is to identify nonlinear partial differential equations
that possess soliton solutions and interaction solutions, to
understand integrable properties of nonlinear equations.
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[11] X. Lü, S. T. Chen, and W. X. Ma, “Constructing lump solutions
to a generalized Kadomtsev-Petviashvili-Boussinesq equation,”
Nonlinear Dynamics, vol. 86, no. 1, pp. 523–534, 2016.

[12] W. Tan, H. P. Dai, Z. D. Dai, and W. Y. Zhong, “Emergence and
space-time structure of lump solution to the (2+1)-dimensional
generalized KP equation,” Pramana—Journal of Physics, vol. 89,
article 77, 2017.

[13] Y. Zhang, H. H. Dong, X. E. Zhang, and H. W. Yang, “Ra-
tional solutions and lump solutions to the generalized (3+
1)-dimensional shallow water-like equation,” Computers and
Mathematics with Applications, vol. 73, no. 2, pp. 246–252, 2017.
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