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Abstract
Based on a soliton hierarchy associated with ( )so 3,  , we construct two integrable nonlocal PT-
symmetric generalized mKdV equations. The key step is to formulate two nonlocal reverse-
spacetime similarity transformations for the involved spectral matrix, and therefore, integrable
nonlocal complex and real reverse-spacetime generalized ( )so 3,  -mKdV equations of fifth-
order are presented. The resulting reduced nonlocal integrable equations inherit infinitely many
commuting symmetries and conservation laws.

Keywords: integrable equation, lax pair, nonlocal reduction, PT-symmetry, zero curvature
equation

1. Introduction

Matrix spectral problems associated with matrix Lie algebras are
used to study integrable equations [1, 2], whose Hamiltonian
structures are often furnished by the trace identity [3, 4], and
whose Riemann–Hilbert problems can be formulated to establish
inverse scattering transforms [5]. The well-known integrable
equations associated with simple Lie algebras include the KdV
equation [6], the NLS equation [7], the derivative NLS equation
[8], higher-order NLS and mKdV equations [9, 10], the nonlocal
NLS equation [11] and the nonlocal mKdV equation [12].

If we build matrix spectral problems by using non-semi-
simple matrix Lie algebras, the so-called integrable couplings,
both continuous and discrete, can be generated, and the varia-
tional identity [13] helps furnish their Hamiltonian structures,
which lead to novel hereditary recursion operators in block
matrix form [14]. Darboux transformations are also presented to
solve integrable couplings [15].

We will apply the special orthogonal Lie algebra
g ( )= so 3,  . This Lie algebra can be realized by all 3× 3
trace-free, skew-symmetric real matrices. Thus, a basis can be

taken as

⎡

⎣
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⎤
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with the corresponding structure equations being given by

[ ] [ ] [ ] ( )= = =h h h h h h h h h, , , , , . 21 2 3 2 3 1 3 1 2

We can take other representations of so(3, ) to start to study
integrable equations. The Lie algebra so(3, ) is one of the only
two three-dimensional real Lie algebras, whose derived algebra
is equal to itself. The other such Lie algebra is the special linear
algebra ( )sl 2,  , which has been widely used to study integrable
equations [2]. It is worth noting that the two complex Lie
algebras, ( )sl 2,  and ( )so 3,  , are isomorphic to each other
over the complex field. The following matrix loop algebra

g̃ ( ) { ( )∣
} ( )l

= = Î
-

~ A Aso 3, so 3, entries of
Laurent series in , 3

 

λ being a spectral parameter, will be used in our construction.
This matrix loop algebra has already been used to construct
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integrable equations [16]. Based on the perturbation-type loop
algebras of ( )~so 3,  , we can also construct integrable cou-
plings [14].

In this paper, starting from matrix spectral problems, we
would first like to revisit an application of ( )so 3,  to
integrable equations [16], with a slightly modified spectral
matrix. We will then make two pairs of nonlocal integrable
reductions for the spectral matrix to generate two fifth-order
scalar nonlocal reverse-spacetime equations, which are
Liouville integrable, i.e. possess infinitely many commuting
symmetries and conservation laws. The presented scalar
nonlocal integrable equations are a nonlocal complex reverse-
spacetime generalzied so(3, )-mKdV equation:
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where r* denotes the complex conjugate of r, and a nonlocal
real reverse-spacetime generalzied so(3, )-mKdV equation:
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It is easy to see that both nonlocal integrable equations are
PT-symmetric. Namely, they are invariant under the parity-
time transformation: x→− x, t→− t, i→− i.

2. A fifth-order integrable system

2.1. Matrix spectral problems

Let i denote the unit imaginary number. We consider a Lax
pair of matrix spectral problems:
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In the above spectral problems, λ is a spectral parameter,
( )=u r s, T is a potential, ( )f f f f= , ,1 2 3

T is a column
eigenfunction, and el, fl, gl are determined by
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The coefficients el, fl, gl are defined by
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under the integration conditions
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solves the stationary zero curvature equation

[ ] ( )= i , . 9x  

More examples can be found in the literature (see,
e.g. [17, 18]).

Now, the zero curvature equation
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leads to a fifth-order integrable system ut= X:
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where ( )=X X X,1 2
T.

2.2. An application of the trace identity

We apply the trace identity [3] with our spectral matrix i:
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where the constant γ is given by
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Then, we obtain the following bi-Hamiltonian structure [19]
for the integrable system (11):
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where the Hamiltonian pair, J1 and J2, is given by
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and the Hamiltonian functionals, 1 and 2 , are determined
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The Hamiltonian formulation leads to infinitely many sym-
metries and conservation laws for the integrable system (11),
which can often be generated through symbolic computation
by computer algebra systems (see, e.g. [20, 21]). The operator

⎡
⎣⎢
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is a hereditary recursion operator [22, 23] for the integrable
system (11).

3. Nonlocal generalized so(3, R)-mKdV equations

3.1. Integrable complex reverse-spacetime reductions

Firstly, we consider a pair of specific complex reverse-
spacetime similarity transformations for the spectral matrix:
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where † and * stand for the Hermitian transpose and the
complex conjugate, respectively. They lead to the potential
reductions

( ) ( ) ( )s s- - = - = r x t s x t, , , 1. 20*

Under these potential reduction, one has
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We can prove these results by the mathematical induction.
Actually, under the induction assumption for l= n and using
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the recursion relation (7), we can compute

( ) ( ) ( ) ( )

( ) [ ( ) ( ) ( )]
( ) ( )
( ) [ ( ) ( )

( ) ( )]
( ) [ ( ) ( ) ( ) ( )]

( ) ( )

s

s

- - = - - - + - - - -

= - +

= -

- - = - - - - -

- - - - -

= - -

= -

+
+

+
+

+ +

+
+

+ +
+

+

f x t g x t r x t e x t

f x t s x t e x t

g x t

e x t r x t g x t

s x t f x t

r x t g x t s x t f x t

e x t

, i , , ,

1 i , , ,

1 , ,

, i , ,

, ,

i 1 , , , ,

1 , .

n n x n

n
n x n

n
n

n x n

n

n
n n

n
n x

1 ,

1
,

1
1

1, 1

1

1
1 1

1
1,

* * * *

* * *

* *

Therefore, one obtains
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This tells that the potential reductions defined by (20) are
compatible with the zero curvature equation of the integrable
system (11). Then, one obtains two reduced scalar nonlocal
integrable equations associated with so(3, ):

∣ ( )( ) ( )= s=- - -r X , 24t s x t r x t1 , ,*

where ( )=X X X,1 2
T is defined as in (11). The infinitely many

symmetries and conservation laws for the integrable system
(11) will be reduced to infinitely many ones for the above
nonlocal integrable equations in (24), under (20).

With σ= 1, the third-order nonlinear reduced scalar
integrable equation presents a nonlocal complex reverse-
spacetime PT-symmetric generalized so(3, )-mKdV
equation of fifth-order:
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where r* denotes the complex conjugate of r. Note that the
first component of X is even with respect to s and odd with
respect to r. Therefore, the fifth-order reduced scalar nonlocal
integrable equation with σ=−1 in (24) is exactly the same as
the complex nonlocal reverse-space generalized so(3,
)-mKdV equation (25).
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respectively. Then, through applying the hierarchy of sym-
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1  , a kind of specific solutions to the

nonlocal integrable equation (25) can be determined by
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where exp is the exponential map, εj, 1� j�m, are small
parameters, and r0 is an arbitrarily given solution. In part-
icular, we can take r0= aeiθx, where a is an arbitrary constant
and θ is a constant angle determined by e4iθ+ 1= 0.

3.2. Integrable real reverse-spacetime reductions

Secondly, we consider another pair of specific real reverse-
spacetime similarity transformations for the spectral matrix:
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where T means taking the matrix transpose as before. They
generate the potential reductions
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Under these potential reductions, one can have
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These results can be verified by the mathematical induction.
A direct computation can be made as follows. Under the
induction assumption for l= n and applying the recursion
relation (7), we can have
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Then, we arrive at
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and therefore, we obtain

(( [ ])( ))
( [ ])( ) ( )

l
l

- + - -
=-Q - + Q-

x t

i x t

i , , ,

, , , . 30
t x

t x

T

1

   
   

This guarantees that the potential reductions in (27) are
compatible with the zero curvature equation of the integrable
system (11).

In this way, one obtains two reduced scalar nonlocal
integrable equations associated with so(3, ):

∣ ( )( ) ( )= s= - -r X , 31t s x t r x t1 , ,

where ( )=X X X,1 2
T is given as in (11). Moreover, the infi-

nitely many symmetries and conservation laws for the
integrable system (11) are reduced to infinitely many ones for
the above nonlocal integrable equations in (31), under (27).
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With σ= 1, the fifth-order nonlinear reduced scalar
integrable equation presents a nonlocal real reverse-spacetime
PT-symmetric generalized so(3, )-mKdV equation:

( ( )) ( ( ))

( ) ( )

( ( ))

( ( ))

( ) ( ) ( )

= - - + - -

+ -

- - - - - -

- - -

- - - +

´ - - - - - +

r r r x t r r r x t

r r r

r r x t r x t rr r

r r x t

r r x t r r

x t r x t r r r

15

8
,

15

4
,

15

8

5

2
5 , , 10
5

2
,

5

2
, 5

, ,
5

2
. 32

t x x

x x

x xx x xx

x x

xxx xx

x xxx x

4 2 2

4 3

2

2

2
5

It is easy to see that even and odd properties with respect to r
and s in the two components of X implies that the fifth-order
nonlinear reduced scalar integrable equation with σ=−1 in
(31) is exactly the same as the nonlocal real reverse-spacetime
generalized so(3, )-mKdV equation (32).

Similarly, define

( ) ( )∣[ ] [ ] [ ]
( ) ( )= = F s

-
= - -Z XZ Z n, , 1,n n n n

s x t r x t1 2
T 1

, , 

where again, ( )=X X X,1 2
T and Φ are defined by (11) and

(18), respectively. Then, by using the hierarchy of symmetries
[ ]Z n, 1n
1  , a kind of specific solutions to the nonlocal

integrable equation (32) can be presented as follows:

( ) ( ) ( )[ ] [ ] [ ]e e e=r Z Z Z r mexp exp exp , 1,m
m

1 1
1

2 1
2

1 0 
where again, exp is the exponential map, εj, 1� j�m, are
small parameters, and r0 is an arbitrarily given solution.
Particularly, we can take ( ) ( )= + + +r a cx t b cx tsin d cos d0 ,
where a, b, c, d are constants satisfying a2= b2

and = + +d b c b c c1015

2
4 2 3 5.

4. Conclusion and remarks

We have presented two fifth-order nonlocal integrable
equations from a pair of matrix spectral problems associated
with the special orthogonal Lie algebra ( )so 3,  . The pre-
sented nonlocal integrable equations inherit the common
integrable characteristic: the existence of infinitely many
symmetries and conservation laws.

Each pair of nonlocal integrable reductions generates the
two same reduced nonlocal integrable equations. This
phenomenon for integrable equations associated with

( )so 3,  is different from the one for integrable equations
associated with ( )sl 2,  . In the case of sl(2, ), there are two
inequivalent focusing and defocusing integrable reductions,
both local and nonlocal.

For integrable equations associated with the special
orthogonal Lie algebra ( )so 3,  , there are still many inter-
esting questions. Particularly, we would like to know how to
formulate Riemann–Hilbert problems so that the associated
inverse scattering transforms [11] could be presented and N-
soliton solutions [24, 25] could be worked out, which might

lead to lump wave solutions [26–28] or rogue wave solutions
[29, 30] to their higher-dimensional counterparts.

We remark that in general, establishing the global exis-
tence of solutions for nonlocal differential equations can be
very challenging compared to local existence results. It is
important to note that the global existence of solutions is not
guaranteed for general Cauchy problems of nonlocal differ-
ential equations. Soliton solutions are explicitly presented
only for particular integrable equations in the nonlocal case
(see, e.g. [11, 12, 31, 32]). Analyzing mathematical properties
of nonlocal differential equations, even nonlocal linear
ordinary differential equations, and establishing their global
existence results often requires careful analysis and applica-
tions of specialized techniques. Very little is known so far
about integrable equations generated from matrix spectral
problems associated with so(3, ), in both local and nonlocal
cases.

To summarize, nonlocal integrable equations are a chal-
lenging and actively researched field. While progress has
been made in understanding specific classes of nonlocal
integrable equations, there is still much to learn about their
dynamical behavior, mathematical properties, and solution
techniques. Continued research and exploration are necessary
to advance our knowledge in this area.
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