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a b s t r a c t

A generalized Calogero–Bogoyavlenskii–Schiff equation is considered, and based on its
Hirota bilinear form, a class of lump solutions is explicitly generated via symbolic com-
putations with Maple, together with plots of a specific lump solution. The result enlarges
the category of nonlinear partial differential equations which possess lump solutions.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

In the theory of differential equations, the Cauchy problem, one of the fundamental problems, is to find a solution of
a differential equation satisfying what are known as initial values. Laplace’s method and the Fourier transform method
are designed for solving Cauchy problems for linear ordinary and partial differential equations, respectively. In soliton
theory, powerful new solution techniques, called the isomonodromic transformmethod and the inverse scattering transform
method, have been developed for attempting Cauchy problems for nonlinear ordinary and partial differential equations,
respectively [1,2].

However, it is known that only the simplest differential equations, normally constant-coefficient and linear, are solvable
explicitly. It is definitely difficult to determine exact solutions to nonlinear differential equations. Nevertheless, some novel
studies have been made on a kind of interesting explicit solutions called lumps. Such solutions are originated from solving
soliton equations [3–5], and researchers are motivated by analytical solutions interpretable as lower dimensional branes in
open string field theory (see, e.g., [6]). In mathematics, it is known that a Padé approximant is the best approximation of a
function by a rational function of given order (see, e.g., [7]), which can be computed through Wynn’s epsilon algorithm for
a given value of the independent variable [8]. Analytical rational solutions should, therefore, be a kind of solutions one first
needs to explore for real wave motion.

Strictly speaking, lumps are a kind of rational function solutions that are localized in all directions in space, and solitons
are analytic solutions exponentially localized in all directions in space and time, historically found for nonlinear integrable
equations. By taking long wave limits, special lumps can be derived from N-soliton solutions [9]. There also exist positon
and complexiton solutions to nonlinear integrable equations, adding to the diversity of solitons [10,11]. Other studies show
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that interaction solutions [12] between two different kinds of solutions exist for (2+1)-dimensional integrable equations,
and they can be used to describe plenty of nonlinear phenomena in nature.

The Hirota bilinear method in soliton theory provides a powerful approach to looking for exact solutions [13]. Within the
Hirota bilinear formulation, solitons can be usually generated as follows

u = 2(ln f )xx, f =

∑
µ=0,1

exp(
N∑
i=1

µiξi +
∑
i<j

µiµjaij),

where

ξi = kix − ωit + ξi,0, 1 ≤ i ≤ N,

and

eaij = −
P(ki − kj, ωj − ωi)
P(ki + kj, ωj + ωi)

, 1 ≤ i < j ≤ N,

with ki and ωi satisfying the corresponding dispersion relation and ξi,0 being arbitrary phase shifts. The polynomial P above
determines a Hirota bilinear form

P(Dx,Dt )f · f = 0,

Dx and Dt being Hirota’s bilinear derivatives, for a given partial differential equation with the dependent variable u. It is
known that the KPI equation possesses lump solutions [14,15]. Other integrable equations which possess lump solutions
include the three-dimensional three-wave resonant interaction [16], the BKP equation [17,18], the Davey–Stewartson
equation II [9], the Ishimori-I equation [19] and many others (see, e.g., [4,20]). It will be very interesting to enlarge this
category of nonlinear partial differential equations that possess lump solutions.

This letter aims to explore lump solutions, through Maple symbolic computations, to a generalized Calogero–
Bogoyavlenskii–Schiff equation, based on the Hirota bilinear formulation. Explicit formulas of the parameters involved in the
solutions will be presented and three-dimensional plots and contour plots of a specific example of the presented solutions
will be made via Maple plot tools. Concluding remarks will be given in the final section.

2. A search for lump solutions

We consider a generalized Calogero–Bogoyavlenskii–Schiff (gCBS) equation

PgCBS(u, v) := ut + uxxy + 3uuy + 3uxvy + δ1uy + δ2vyy = 0, (2.1)

where vx = u, and δ1 and δ2 are two constants, or equivalently,

vtx + vxxxy + 3vxvxy + 3vxxvy + δ1vxy + δ2vyy = 0. (2.2)

This is a generalization of a (2+1)-dimensional CBS equation considered in [21]

vtx + vxxxy + 3vxvxy + 3vxxvy = 0, (2.3)

whose coefficients (3,3) have a different pattern from the original one (4,2) (see, e.g., [22] and references therein). It is direct
to see that this gCBS equation (2.1) has a Hirota bilinear form

BgCBS(f ) := (DtDx + D3
xDy + δ1DxDy + δ2D2

y)f · f

= 2
[
ftxf − ft fx + fxxxyf − fxxxfy − 3fxxyfx + 3fxxfxy

+δ1(fxyf − fxfy) + δ2(fyyf − f 2y )
]

= 0, (2.4)

under the transformations

u = 2(ln f )xx =
2(fxxf − f 2x )

f 2
, v = 2(ln f )x =

2fx
f

. (2.5)

Such characteristic transformations have been adopted in Bell polynomial theories of soliton equations and their generalized
counterparts (see, e.g., [23,24]), and precisely, we can have

PgCBS(u, v) =

(BgCBS(f )
f 2

)
x
.

Therefore, when f solves the bilinear gCBS equation (2.4), u = 2(ln f )xx and v = 2(ln f )x will solve the (2+1)-dimensional
gCBS equation (2.1).
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Based on this bilinear form of the gCBS equation (2.1), we look for a class of quadratic function solutions to the (2+1)-
dimensional bilinear gCBS equation (2.4), defined by⎧⎨⎩f = ξ 2

1 + ξ 2
2 + a9,

ξ1 = a1x + a2y + a3t + a4,
ξ2 = a5x + a6y + a7t + a8,

(2.6)

where ai, 1 ≤ i ≤ 9, are constant parameters to be determined. Plugging such a function f into (2.1) leads to a system of
algebraic equations on the parameters. Further through symbolic computations with Maple, we can show that the resulting
system of algebraic equations has a class of explicit solutions:{

a3 = −a2δ1 −
a1(a22 − a26) + 2a2a5a6

a21 + a25
δ2,

a7 = −a6δ1 −
2a1a2a6 − a5(a22 − a26)

a21 + a25
δ2,

a9 = −
3(a21 + a25)

2(a1a2 + a5a6)
(a1a6 − a2a5)2δ2

}
,

(2.7)

and the other parameters could be arbitrary provided that all the terms in the solutions of u and v will make sense.
By the transformations in (2.5), this yields a large class of lump solutions to the (2+1)-dimensional gCBS equation (2.1),

determined by⎧⎪⎪⎨⎪⎪⎩
u = 2(ln f )xx =

2(fxxf − f 2x )
f 2

=
4(a21 + a25)

f
−

8(a1ξ1 + a5ξ2)2

f 2
,

v = 2(ln f )x =
2fx
f

=
4(a1ξ1 + a5ξ2)

f
.

(2.8)

The constant δ2 in the solutions by (2.7) should not be zero, to produce lump solutions, but it could be either positive or
negative, which is different from the situation in the KPI equation [15]. We know that the condition

a1a6 − a2a5 ̸= 0 (2.9)

is necessary and sufficient for a solution f , defined by (2.6), to engender a lump solution in (2+1)-dimensions through (2.5).
Under the condition (2.9), we can solve

fx(x(t), y(t), t) = 0, fy(x(t), y(t), t) = 0, (2.10)

to obtain all critical points of f :⎧⎪⎨⎪⎩
x = x(t) =

(a2a7 − a3a6)t + (a2a8 − a4a6)
a1a6 − a2a5

,

y = y(t) = −
(a1a7 − a3a5)t + (a1a8 − a4a5)

a1a6 − a2a5
,

(2.11)

where t is arbitrarily fixed. The sum of two squares, i.e., the function f − a9, vanishes at this set of critical points. Therefore,
f > 0 if and only if a9 > 0, which implies that u and v defined by (2.5) are analytical in R3, if and only if a9 > 0, and further
according to (2.7), if and only if (a1a2 + a5a6)δ2 < 0. For any given time t , the point (x(t), y(t)) defined by (2.11) is also a
critical point of the function u = 2(ln f )xx, and so, by the second derivative test, the lump solution u has a peak at this point
(x(t), y(t)), because we have⎧⎪⎪⎨⎪⎪⎩

uxx = −
24(a21 + a25)

2

a29
< 0,

uxxuyy − u2
xy =

192(a21 + a25)
2(a1a6 − a2a5)2

a49
> 0

(2.12)

at the point (x(t), y(t)).
All the solutions generated above add to the solution theories available on soliton solutions and dromion-type solutions,

developed through powerful existing approaches such as the Hirota perturbation technique and symmetry constraints (see,
e.g., [25–29]).

We take δ1 = 1 and δ2 = −1, and then have

ut + uxxy + 3uuy + 3uxvy + uy − vyy = 0, (2.13)

where u = vx. Now, further taking

a1 = 2, a2 = −2, a4 = 1, a5 = 2, a6 = 5, a8 = −1, (2.14)
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Fig. 1. Profiles of u in (2.15) when t = 0, 0.3, 0.5: 3d plots (top) and contour plots (bottom).

which ensures the positivity of the generating function f , we can obtain a specific lump solution as follows:

u =
32
f

−
32(4x + 3y − 13t)2

f 2
, (2.15)

where

f = (2x − 2y −
33
4

t + 1)2 + (2x + 5y −
19
4

t − 1)2 +
288
49

. (2.16)

Three three-dimensional plots and contour plots of this lump solution are made, to shed light on the characteristic of the
solution, in Fig. 1.

3. Concluding remarks

We have studied a generalized (2+1)-dimensional Calogero–Bogoyavlenskii–Schiff (gCBS) equation to explore lump
solutions, via Maple symbolic computations. The result enlarges the class of nonlinear integrable equations which possess
lump solutions. Three-dimensional plots and contour plots of a specially chosen solution were made via Maple plot tools.

Through making symbolic computations, it is recognized that many other nonlinear equations possess lump solutions,
which include (2+1)-dimensional generalized KP, BKP, KP-Boussinesq and Sawada–Kotera equations [30–31]. Moreover,
some recent studies exhibited interaction solutions between lumps and other kinds of exact solutions to nonlinear integrable
equation in (2+1)-dimensions, including lump–kink interaction solutions (see, e.g., [32–34]) and lump-soliton interaction
solutions (see, e.g., [35–37]). In the (3+1)-dimensional case, lump-type solutions, which are rationally localized in almost all
directions in space, were generated for the integrable Jimbo–Miwa equations. Plenty of such solutionswere presented for the
(3+1)-dimensional Jimbo–Miwa equation (see, e.g., [38,39]) and the (3+1)-dimensional Jimbo–Miwa like equation [40]. It is,
of course, interesting to search for lump and interaction solutions to partial differential equations in whatever dimensions.

We remark that we failed to obtain interaction solutions between lumps and kink or soliton solutions for the (2+1)-
dimensional gCBS equation (2.1). The existence of such interaction solutions could reflect complete integrability of the
partial differential equations under consideration. It is also clear that diverse lump solutions, providing supplements to
exact solutions generated from different kinds of combinations (see, e.g., [41]), imply that there exist the corresponding
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Lie–Bäcklund symmetries, which may help determine conservation laws [42,43]. Conversely, it should be very interesting
to determine what kind of partial differential equations could possess lump solutions.
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