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Abstract
In this work, we provide new optical soliton structures of the Kadomtsev-Petviashvili equa-
tion in (3 + 1)-dimensional and the Jimbo-Miwa equation in (3 + 1)-dimensional together 
with some intriguing new analysis, chaotic phenomena, bifurcation properties, and sensi-
tivity analysis. Since soliton structure with three analyses is a very interesting recent topic 
in nonlinear dynamics, we extract different chaotic structures, bifurcation analysis together 
with phase portrait and sensitivity of our mentioned nonlinear partial differential equations. 
Applications of the Kadomtsev-Petviashvili equation are in sonic waves, magneto sonic 
waves, superfluid, weakly nonlinear quasi-unidirectional waves, shallow water waves with 
weakly nonlinear restoring forces and frequency dispersion, plasma physics, etc. Advanced 
intellect could benefit from studying the Jimbo-Miwa equation, which addresses specific 
fascinating higher-dimensional waves in marine engineering, ocean sciences, various inter-
esting physical structures in the areas of optics, acoustic, mathematical modeling, epi-
demics, circuit analysis, computational neuroscience, intergalactic modeling, etc. Due to 
the huge applications of the mentioned equations, there is a high demand to investigate 
with recently developed three analyses. Making use of the recently developed advanced 
strategy, the adaptive, compatible, further advanced closed-form solitary wave structures 
are harvested to the mentioned equations in the present manuscript. All these scientifi-
cally accomplished exact soliton structures, which take the forms of rational functions and 
trigonometric functions could assist in our comprehension of remarkable nonlinear chal-
lenging situations. In contrast to the present outcomes, our newly formed discoveries will 
exhibit unique features. The outcomes that were extracted confirm that the recommended 
technique is meticulously planned, intuitive, and advantageous for measuring the dynamic 
behavior of nonlinear evolution equations within contemporary science and technology.

Keywords  Optical Soliton Solutions · Chaotic Phenomena · Bifurcation Properties · 
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1  Introduction

Nonlinear partial differential equations (NLPDEs) are associated with nonlinear physical 
configurations in a variety of subject areas that have subsequently emerged in a range of 
social, as well as scientific scenarios. Researchers from a broad spectrum of fields agree 
that this spacious idea can be used to meaningfully explain dramatic occurrences through 
various sources. Since such equations accurately capture the physical characteristics and 
actual aspects across a wide range of scientific fields, nano-technology, digital communica-
tion, modern engineering, and even the financial emergencies in the economy, the study of 
NLPDEs has recently become one of the most prominent multidisciplinary scientific 
research fields. In the fields of physics, mechanics, chemistry, biology, geophysics, hydro-
dynamics, oceanography, biochemistry, medical science, and finance sectors, NLPDEs 
may reflect an extensive variety of significant events and dynamic activities. Having soliton 
solutions for NLPDEs is one of its most significant features. Early in 1834, British scientist 
Scott Russell announced the initial detection of the solitary wave occurrence. The benefits 
of soliton comprise great commitment, excellent privacy, unchanging wave shape, and con-
sistent speed. A highly important family of NLPDEs in modern times are indeed nonlinear 
evolution equations (NLEEs). By setting up suitable surroundings, the solutions of NLEEs 
enable investigators to plan and conduct simulations in search of suitable parameters in 
model equations. This is widely acknowledged that modern engineering as well as mathe-
matical physics places a strong emphasis on precisely solving NLEEs through a variety of 
plentiful techniques. Since each new methodology leads to a new resolution, scientists in 
this area of study are constantly looking for innovative methods to apply. In light of this, an 
abundance of mathematicians and engineering teams have generated an extensive array of 
methodologies, comprising the (G�∕G)-expansion method [1], the two varia-
ble  (G�∕G, 1∕G)-expansion method [2–5], the Hirota method [6], the simple equation 
method [7], the modified auxiliary equation method [8], the higher degree B-spline algo-
rithm [9], the Haar functions method [10], the 

(
G

�

∕G2

)
-expansion method [11], the homo-

geneous balance method [12, 13], the function transformation method [14], the modified 
double sub-equation method [15], the binary bell polynomials method [16, 17], the Shehu 
transform scheme [18, 19], the Lie symmetric analysis [20], the Sardar-subequation tech-
nique [21–23], the Cole-Hopf transformation method [24, 25], the reductive perturbation 
method [26, 27], the variational iteration scheme [28], the method of Painleve analysis [29, 
30], the conservation laws methods [31], the generalized exponential rational function 
approach [32], the collocation method [33, 34], the spectral Tau method [35], and there 
may be adequate others. Wang et al. [1] familiarized the 

(
G� ∕G

)
-expansion methodology 

as an essential procedure to analyze closed soliton solutions of NLPDEs. The above-men-
tioned tactic is simpler to recognize and allows a class of NLPDEs to yield a significant 
amount of new innovative closed soliton solutions, that have further parameters. Numerous 
academics have used this method to investigate the exact solutions of different NLPDEs. In 
a former exploration, [3] practiced the two expansion algorithms to detect the rational, trig-
onometric, and hyperbolic solitary wave solutions for the fractional order Hirota-Satsuma 
coupled KdV system, which is highly advantageous for the arena of nonlinear analysis. A 
few years back, B. Hong et al. [36] produced some novel exact solutions to the two types of 
Schrödinger equations by effectively applying the 

(
G�

G� +G+A

)
-expansion procedure. Scholars 

have proven the usefulness of the suggested method and expressed an attraction to under-
stand this nonlinear phenomenon scientifically. To settle NLPDEs, this tactic was scarcely 
retained by investigators [37–39] and has been confirmed to be upright and operative. 
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Ganie et al. [40] directed this system most freshly to evaluate the several soliton solutions 
of the (1 + 1)-dimensional integro-differential Ito equation and the (2 + 1)-dimensional 
integro-differential Sawada-Kotera equation which are more suited for nonlinear analysis. 
A variety of scholars have recently presented and analyzed some additional new soliton 
solutions [41–44].

The Kadomtsev-Petviashvili (KP) equation was first proposed in 1970 by two physicists 
Boris Borisovich Kadomtsev and Vladimir Iosifovich Petviashvili. It is a natural generali-
zation of the Kortewege-de Vries (KdV) equation, and its integrability has been confirmed 
by the Painleve analysis. The (3 + 1)-dimensional KP equation was originally designed to 
analyze the dynamics of long wavelength and small amplitude solitary waves and to model 
shallow water waves with weakly nonlinear restoring forces and frequency dispersion, 
waves in ferromagnetic media, matter-wave pulses in Bose-Einstein condensates, super-
fluid, plasma physics, hydrodynamic, solid state physics, fiber optics, water engineering, 
and oceanography. In [45–49], certain exact solutions to the (3 + 1)-dimensional KP equa-
tion have been identified. In the KP hierarchy, the second equation referred to as the (3 + 1)

-dimensional Jimbo-Miwa (JM) equation, depicts various inducing (3 + 1)-dimensional 
waves in physics, fiber optics, certain higher dimensional waves in ocean studies, marine 
engineering, plasma, acoustics, heat transfer, classical mechanics, electromagnetism, aero-
space, and countless added disciplines. M. Jimbo and T. Miwa placed their starting 
announcement of this model equation, which is not Painleve integrable. The aforesaid 
model has been explored using a variety of techniques, and several intriguing exact soliton 
solutions were evaluated [49–53]. The ultimate objective of the entire investigation is to 
discover more recent, unique, and comprehensive closed-form solitary solutions for the 
(3 + 1)-dimensional KP equation and the (3 + 1)-dimensional JM equation. We are going to 
use the 

(
G�

G� +G+A

)
-expansion mechanism to collect such analytic solitary solutions. To the 

best of our knowledge and skills, the closed-form soliton solutions of the (3 + 1)-dimen-
sional KP equation and the (3 + 1)-dimensional JM equation have not progressed yet 
manipulating the 

(
G�

G� +G+A

)
-expansion approach. Consequently, inspired by the discussions 

above, the ambition of our recent research work focuses on that to produce new closed-
form solutions of the stated equations with the help of the proposed method. In the recent 
past, several analyses including bifurcation analysis, chaotic analysis, and sensitivity analy-
sis have exercised different nonlinear physical models more and more [54–61]. Bifurcation 
analysis, which incorporates phase portraiture, is a technique used in dynamical systems 
theory to study how a system’s behavior varies with changes in parameters. This analysis is 
understood by the dynamic feature innate to these above model equations. Chaotic behav-
ior, in a general sense, refers to behavior that appears random or unpredictable, yet is gov-
erned by deterministic rules. It is characterized by extreme sensitivity to initial conditions, 
which means that small changes in the starting conditions can lead to drastically different 
outcomes over time. Chaos control is a concept in the field of nonlinear dynamics and con-
trol theory aimed at stabilizing chaotic systems. These systems, characterized by sensitive 
dependence on initial conditions and unpredictable long-term behavior, can be found in 
various scientific and engineering contexts, such as weather systems, stock markets, and 
biological processes. So, chaos theory has a wide range of applications, including weather 
forecasting, ecology, and financial markets. The method known as sensitivity analysis 
assesses how uncertainty in one or more inputs may affect uncertainty in the outputs. Here, 
we complete the sensitivity analysis in accordance with the Runge–Kutta method. The 
resulting solutions, assigned kink-shaped, parabolic-shaped soliton, singular periodic 
shaped, one-sided kink-shaped soliton, and flat kink-shaped solitons have proven more 
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innovative, broadly applicable, further productive, managing, alongside responsible. If we 
compare our generated plentiful findings to the current results, they will have distinct char-
acteristics compared to the results in the literature. In mathematical physics, modern engi-
neering, and various other everyday activities, the characteristics of waves that have 
become apparent may be enhanced with the aid of these specific soliton solutions. A large 
number of NLPDEs could be supervised swiftly and modestly exercising the innovative (

G�

G� +G+A

)
-expansion strategy. In the meantime, we show the developed figures including 

diverse analyses to demonstrate the numerous diverse wave natures, which are highly ben-
eficial for learning more about NLDPEs.

This paper’s remnants are arranged in the following fashion: an introduction has been 
furnished in Sect. 1. The elementary notion of the 

(
G�

G� +G+A

)
-expansion approach is out-

lined in Sect. 2. The procedure is applied in detail in Sect. 3 with the (3 + 1)-dimensional 
KP equation and the (3 + 1)-dimensional JM equation. Bifurcation analysis is well-
appointed in Sect.  4. In Sect.  5, chaotic nature is provided. Sensitivity analysis has also 
been equipped in Sect.  6. In Sect.  7, the chosen closed soliton solutions to these model 
equations have been graphically depicted. Lastly, a conclusion has been gathered in Sect. 8.

2 � Method Highlight

In this portion of the research work, we furnish an extensive summary of the methodology 
we considered to explore for the best outcomes for the NLPDEs. We are going to address 
NLPDEs with a total of four variables x, y, z and t having w = w(x, y, z, t) namely,

therein, the P is a polynomial constructed from the partial derivative of w = w(x, y, z, t) 
and their corresponding value. The recommended method is outlined in the stages that 
eventually arise.

Stage 1: Contemplate a brand-new variable � that is the arrangement of all the self-
monitoring variables x, y, z along with t,

where m holds for constant. Equation (2.1) can be reshaped directly into an ordinary dif-
ferential equation (ODE) through the application of Eq. (2.2)

,
where P1 governs a polynomial of w and its numerous ordinary derivatives utilizing the 

independent variable �.
Stage 2: The structure that is displayed beneath can be utilized for assembling the solu-

tion to Eq. (2.3)

,

(2.1)P
(
w, wx, wxy, wxz, wxx, wt

, wtx, wty, wtz,wy, wyy, wz, wzz ⋯

)
= 0,

(2.2)w(x, y, z, t) = w(� ), � = x + y + z − mt,

(2.3)P1

(
w, ww� , w� � , ww� � , w� � � ,⋯

)
= 0,

(2.4)w(� ) =
∑

Q

k=0
ck

(
G�

G� + G + A

)k

,
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here, Q might have been regulated using the homogeneous balancing concept, wherein 
it represents the degree of the polynomial. Nonetheless, the collection of algebraic equa-
tions arising from the proposed method can be applied to readily compute the coefficients 
ck (k = 0, 1, 2, ⋯ , Q) . Additionally, G = G(� ) sustains the ensuing ODE

Where, Ck(k = 0, 1, 2,⋯ ,Q), A,R, T  stay unchanged.
We were able to govern the following two probable outputs after solving Eq.  (2.5), 

which belong.
State 1: whenever H = R2 − 4T > 0,

State 2: whenever H = R2 − 4T < 0,

It is now straightforward to arrive at the polynomial of 
(

G�

G� +G+A

)
 by employing Eq. (2.4) 

in Eq. (2.3).
Stage 3: It is now straightforward to arrive at the polynomial of 

(
G�

G� +G+A

)
 by employing 

Eq. (2.4) in Eq. (2.3) and one way for gathering the algebraic equations for ck, A, R, T  is to 
allocate the coefficient to zero. By swapping the values of ck ’s and m , we may rapidly get 
the expected solutions to the given NLPDEs after finalizing all of these algebraic 
computations.

3 � Applications

In this section, we offer the standard, sophisticated, updated, extensively useful closed 
traveling wave soliton solutions for the KP equation and the JM equation aided by the novel 
innovative 

(
G�

G� +G+A

)
-expansion approach.

3.1 � The Kadomtsev‑Petviashvili Equation

Boris Borisovich Kadomtsev and Vladimir Iosifovich Petviashvili first demonstrated the 
KP equation in 1970. The KP equation is featured in several areas of plasma physics, solid 
state physics, dust acoustic waves, fiber optics, water engineering, weakly nonlinear quasi-
unidirectional waves, oceanography, the surface waves, and internal waves in straits or 
channels, shallow-water waves when the viscosity and the surface tension are less. The 
(3 + 1)-dimensional KP equation has been exercised to effigy more dispersion impact in 
nonlinear analysis. Here, several more recent closed-form soliton solutions to the (3 + 1)

(2.5)G� � + RG� + TG + AT = 0,

�
G�

G� + G + A

�
=

B1

�
R +

√
H
�
+ B2

�
R −

√
H
�
e
√
H�

B1

�
R +

√
H − 2

�
+ B2

�
R −

√
H − 2

�
e
√
H�

.

�
G�

G� + G + A

�
=

sin
�√

−H�

2

��
RB2 + B1

√
−H

�
+ cos

�√
−H�

2

��
RB1 − B2

√
−H

�

sin
�√

−H�

2

��
(R − 2)B2 + B1

√
−H

�
+ cos

�√
−H�

2

��
(R − 2)B1 − B2

√
−H

� .
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-dimensional KP model will be explored. So, the (3 + 1)-dimensional Kadomtsev-Petviash-
vili equation ensues here [49],

The modification shown in Eq.  (2.2) undergoes execution in this most current por-
tion, additionally, Eq. (3.1.1) could have been profoundly changed into an ordinary dif-
ferential equation as

here, prime symbolizes an ordinary derivative concerning � . Integrating Eq. (3.1.2) 
two times produces,

here, the value of the integral constant is assumed zero. At this moment, the homo-
geneous balance procedure delivers us Q = 2 . Accordingly, we could compose the 
Eq. (2.4)

It is essential to derive the constants m, c0, c1 and c2.
Assortment − 1:

Assortment − 2:

The closed-form soliton solutions with reference to assortment − 1:
Consequence − 1: Permitting as H = R2 − 4T > 0,

(3.1.1)
(
wt + 6wwx + wxxx

)
x
− 3wyy − 3wzz = 0.

(3.1.2)
(
−mw� + 6ww� + w� � �

)�
− 6w� � = 0,

(3.1.3)−mw − 6w + 3w2 + w� � = 0,

(3.1.4)

w(� ) =
∑

2

k=0
ck

(
G�

G� + G + A

)k

= c0 + c1

(
G�

G� + G + A

)
+ c2

(
G�

G� + G + A

)2

.

m = R
2 − 4T − 6, c0 = −2T + 2RT − 2T

2
, c1

= 4T − 2R − 6RT + 4T
2 + 2R

2
, c2

= −2 − 4T + 4R − 2T
2 + 4RT − 2R

2
.

m = −R2 + 4T − 6, c0 = −
1

3
R
2 −

2

3
T + 2RT − 2T

2
, c1

= 4T − 2R − 6RT + 4T
2 + 2R

2
, c2 = −2 − 4T + 4R − 2T

2 + 4RT − 2R
2
.

(3.1.5)

w(� ) =
�
−2T + 2RT − 2T

2
�
+
�
4T − 2R − 6RT + 4T

2 + 2R
2
�

⎧
⎪⎨⎪⎩

B1

�
R +

√
H

�
+ B2

�
R −

√
H

�
e

√
H�

B1

�
R +

√
H − 2

�
+ B2

�
R −

√
H − 2

�
e

√
H�

⎫
⎪⎬⎪⎭

+
�
−2 − 4T + 4R − 2T

2 + 4RT − 2R
2
�

⎧⎪⎨⎪⎩

B1

�
R +

√
H

�
+ B2

�
R −

√
H

�
e

√
H�

B1

�
R +

√
H − 2

�
+ B2

�
R −

√
H − 2

�
e

√
H�

⎫⎪⎬⎪⎭

2

.
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In the meantime, make use of the modification w(x, y, z, t) = w(� ) coupled with 
� = x + y + z − mt in Eq. (3.1.5), to organize the soliton solution of Eq. (3.1.1),

Consequence − 2: Permitting as H = R2 − 4T < 0,

In a similar fashion, operate the reformation w(x, y, z, t) = w(� ) along with 
� = x + y + z − mt in Eq. (3.1.7), to establish the soliton solution of Eq. (3.1.1),

The closed-form soliton solutions with orientation to assortment − 2:
Consequence − 1: Permitting as H = R2 − 4T > 0,

(3.1.6)

w(x, y, z, t) =
�
−2T + 2RT − 2T2

�
+
�
4T − 2R − 6RT + 4T2 + 2R2

�

⎧
⎪⎨⎪⎩

B1

�
R +

√
H
�
+ B2

�
R −

√
H
�
e
√
H�

B1

�
R +

√
H − 2

�
+ B2

�
R −

√
H − 2

�
e
√
H�

⎫
⎪⎬⎪⎭

+
�
−2 − 4T + 4R − 2T2 + 4RT − 2R2

�

⎧⎪⎨⎪⎩

B1

�
R +

√
H
�
+ B2

�
R −

√
H
�
e
√
H�

B1

�
R +

√
H − 2

�
+ B2

�
R −

√
H − 2

�
e
√
H�

⎫⎪⎬⎪⎭

2

.

(3.1.7)

w(� ) =
�
−2T + 2RT − 2T

2
�
+
�
4T − 2R − 6RT + 4T

2 + 2R
2
�

⎧⎪⎨⎪⎩

sin

�√
−H�

2

��
RB2 + B1

√
−H

�
+ cos

�√
−H�

2

��
RB1 − B2

√
−H

�

sin

�√
−H�

2

��
(R − 2)B2 + B1

√
−H

�
+ cos

�√
−H�

2

��
(R − 2)B1 − B2

√
−H

�
⎫⎪⎬⎪⎭

+
�
−2 − 4T + 4R − 2T2 + 4RT − 2R

2
�

⎧⎪⎨⎪⎩

sin

�√
−H�

2

��
RB2 + B1

√
−H

�
+ cos

�√
−H�

2

��
RB1 − B2

√
−H

�

sin

�√
−H�

2

��
(R − 2)B2 + B1

√
−H

�
+ cos

�√
−H�

2

��
(R − 2)B1 − B2

√
−H

�
⎫⎪⎬⎪⎭

2

.

(3.1.8)

w(x, y, z, t) =
�
−2T + 2RT − 2T2

�
+
�
4T − 2R − 6RT + 4T2 + 2R2

�

⎧⎪⎨⎪⎩

sin
�√

−H�

2

��
RB2 + B1

√
−H

�
+ cos

�√
−H�

2

��
RB1 − B2

√
−H

�

sin
�√

−H�

2

��
(R − 2)B2 + B1

√
−H

�
+ cos

�√
−H�

2

��
(R − 2)B1 − B2

√
−H

�
⎫⎪⎬⎪⎭

+
�
−2 − 4T + 4R − 2T2 + 4RT − 2R2

�

⎧⎪⎨⎪⎩

sin
�√

−H�

2

��
RB2 + B1

√
−H

�
+ cos

�√
−H�

2

��
RB1 − B2

√
−H

�

sin
�√

−H�

2

��
(R − 2)B2 + B1

√
−H

�
+ cos

�√
−H�

2

��
(R − 2)B1 − B2

√
−H

�
⎫⎪⎬⎪⎭

2

.
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Instantly, manipulate the conversion w(x, y, z, t) = w(� ) coupled with 
� = x + y + z − mt in Eq.  (3.1.9), to establish the closed-form soliton solution of 
Eq. (3.1.1),

Consequence − 2: Permitting as H = R2 − 4T < 0,

At this instant, manage the reformation w(x, y, z, t) = w(� ) along with 
� = x + y + z − mt in Eq. (3.1.11), to launch the soliton solution of Eq. (3.1.1),

(3.1.9)

w(� ) =
�
−
1

3
R
2 −

2

3
T + 2RT − 2T

2
�
+
�
4T − 2R − 6RT + 4T

2 + 2R
2
�

⎧⎪⎨⎪⎩

B1

�
R +

√
H

�
+ B2

�
R −

√
H

�
e

√
H�

B1

�
R +

√
H − 2

�
+ B2

�
R −

√
H − 2

�
e

√
H�

⎫⎪⎬⎪⎭

+
�
−2 − 4T + 4R − 2T

2 + 4RT − 2R
2
�⎧⎪⎨⎪⎩

B1

�
R +

√
H

�
+ B2

�
R −

√
H

�
e

√
H�

B1

�
R +

√
H − 2

�
+ B2

�
R −

√
H − 2

�
e

√
H�

⎫⎪⎬⎪⎭

2

.

(3.1.10)

w(x, y, z, t) =
�
−
1

3
R2 −

2

3
T + 2RT − 2T2

�

+
�
4T − 2R − 6RT + 4T2 + 2R2

�

⎧⎪⎨⎪⎩

B1

�
R +

√
H
�
+ B2

�
R −

√
H
�
e
√
H�

B1

�
R +

√
H − 2

�
+ B2

�
R −

√
H − 2

�
e
√
H�

⎫⎪⎬⎪⎭
+
�
−2 − 4T + 4R − 2T2 + 4RT − 2R2

�

⎧⎪⎨⎪⎩

B1

�
R +

√
H
�
+ B2

�
R −

√
H
�
e
√
H�

B1

�
R +

√
H − 2

�
+ B2

�
R −

√
H − 2

�
e
√
H�

⎫⎪⎬⎪⎭

2

.

(3.1.11)

w(� ) =
�
−
1

3
R
2 −

2

3
T + 2RT − 2T

2
�
+
�
4T − 2R − 6RT + 4T

2 + 2R
2
�

⎧
⎪⎨⎪⎩

sin

�√
−H�

2

��
RB2 + B1

√
−H

�
+ cos

�√
−H�

2

��
RB1 − B2

√
−H

�

sin

�√
−H�

2

��
(R − 2)B2 + B1

√
−H

�
+ cos

�√
−H�

2

��
(R − 2)B1 − B2

√
−H

�
⎫
⎪⎬⎪⎭

+
�
−2 − 4T + 4R − 2T

2 + 4RT − 2R
2
�

⎧⎪⎨⎪⎩

sin

�√
−H�

2

��
RB2 + B1

√
−H

�
+ cos

�√
−H�

2

��
RB1 − B2

√
−H

�

sin

�√
−H�

2

��
(R − 2)B2 + B1

√
−H

�
+ cos

�√
−H�

2

��
(R − 2)B1 − B2

√
−H

�
⎫
⎪⎬⎪⎭

2

.
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3.2 � The Jimbo‑Miwa Equation

In 1983, Jimbo and Miwa primarily revealed the (3 + 1)-dimensional Jimbo-Miwa equa-
tion. The esteemed Kadomtsev-Petviashvili hierarchy of integrable systems is the originat-
ing point of this model equation. Significantly, this model is deficient in the Painleve char-
acteristic. Abundant fascinating waves in physics, fiber optics, certain higher dimensional 
waves in ocean studies, marine engineering, plasma, acoustics, classical mechanics, fluid 
dynamics, electromagnetism, and aerospace have been analyzed by the (3 + 1)-dimensional 
JM equation. To elevate the likelihood of implementing this JM equation, the model’s ana-
lytical solution nonetheless has to be established. Accordingly, the (3 + 1)-dimensional 
Jimbo-Miwa equation evolves herein [49],

Equation (3.2.1) could potentially be restored as an ordinary differential equation if we 
carried out a transformation in Eq. (2.2) like

where, the superscript means the ordinary differentiation associating � . Integrate single 
time the Eq. (3.2.2) and dropping the integrating constant to zero,

The homogeneous balance technique in this particular situation yields Q = 1 . It would 
be thus straightforward to formulate the Eq. (2.4),

For the constants m, c0 and c1 , a computation is necessary. After a successful calcula-
tion, we see

The closed-form soliton solutions with this consideration:
Circumstances-1: Accepting for H = R2 − 4T > 0,

(3.1.12)

w(x, y, z, t) =
�
−
1

3
R2 −

2

3
T + 2RT − 2T2

�
+
�
4T − 2R − 6RT + 4T2 + 2R2

�

⎧⎪⎨⎪⎩

sin
�√

−H�

2

��
RB2 + B1

√
−H

�
+ cos

�√
−H�

2

��
RB1 − B2

√
−H

�

sin
�√

−H�

2

��
(R − 2)B2 + B1

√
−H

�
+ cos

�√
−H�

2

��
(R − 2)B1 − B2

√
−H

�
⎫⎪⎬⎪⎭

+
�
−2 − 4T + 4R − 2T2 + 4RT − 2R2

�

⎧
⎪⎨⎪⎩

sin
�√

−H�

2

��
RB2 + B1

√
−H

�
+ cos

�√
−H�

2

��
RB1 − B2

√
−H

�

sin
�√

−H�

2

��
(R − 2)B2 + B1

√
−H

�
+ cos

�√
−H�

2

��
(R − 2)B1 − B2

√
−H

�
⎫
⎪⎬⎪⎭

2

.

(3.2.1)wxxxy + 3wywxx + 3wxwxy + 2wyt − 3wxz = 0.

(3.2.2)w(4) + 6w� w� � − 2mw� � − 3w� � = 0,

(3.2.3)w� � � + 3
(
w�

)2
− 2mw� − 3w� = 0.

(3.2.4)w(� ) =
∑

1

k=0
ck

(
G�

G� + G + A

)k

= c0 + c1

(
G�

G� + G + A

)
.

m =
1

2
R2 −

3

2
− 2T , c0 = c0, c1 = 2(T − R + 1).
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Now, utilize the adjustment w(x, y, z, t) = w(� ) besides � = x + y + z − mt in 
Eq. (3.2.5), to form the closed soliton solution of Eq. (3.2.1),

Circumstances-2: Accepting for H = R2 − 4T < 0,

Analogously, we apply the changes w(x, y, z, t) = w(� ) and � = x + y + z − mt in 
Eq. (3.2.7), to sort out the closed soliton solution of Eq. (3.2.1),

4 � Bifurcation Analysis

The analysis of how a system’s state shifts qualitatively when a parameter has been altered 
is known as bifurcation theory. In this part, bifurcation analysis alongside phase portraits 
is observed for the (3 + 1)-dimensional Kadomtsev-Petviashvili equation and the (3 + 1)

-dimensional Jimbo-Miwa equation.

4.1 � Bifurcation Analysis of the Kadomtsev‑Petviashvili Equation

This subsection is designed for bifurcation analysis of the stated equation. To implement 
this analysis, we apply the Galilean transformation to Eq. (3.1.3) which yields a dynamical 
system,

wherein, N1 = −3, N2 = m + 6 . At this instant, the Hamiltonian function could be 
extracted for the dynamical system in Eq. (4.1.1),

(3.2.5)

w(� ) = c0 + 2(T − R + 1)

⎧
⎪⎨⎪⎩

B1

�
R +

√
H
�
+ B2

�
R −

√
H
�
e
√
H�

B1

�
R +

√
H − 2

�
+ B2

�
R −

√
H − 2

�
e
√
H�

⎫
⎪⎬⎪⎭
.

(3.2.6)

w(x, y, z, t) = c0 + 2(T − R + 1)

⎧⎪⎨⎪⎩

B1

�
R +

√
H
�
+ B2

�
R −

√
H
�
e
√
H�

B1

�
R +

√
H − 2

�
+ B2

�
R −

√
H − 2

�
e
√
H�

⎫⎪⎬⎪⎭
.

(3.2.7)

w(� ) = c0 + 2(T − R + 1)

⎧⎪⎨⎪⎩

sin

�√
−H�

2

��
RB2 + B1

√
−H

�
+ cos

�√
−H�

2

��
RB1 − B2

√
−H

�

sin

�√
−H�

2

��
(R − 2)B2 + B1

√
−H

�
+ cos

�√
−H�

2

��
(R − 2)B1 − B2

√
−H

�
⎫⎪⎬⎪⎭
.

(3.2.8)

w(x, y, z, t) = c0 + 2(T − R + 1)

⎧⎪⎨⎪⎩

sin
�√

−H�

2

��
RB2 + B1

√
−H

�
+ cos

�√
−H�

2

��
RB1 − B2

√
−H

�

sin
�√

−H�

2

��
(R − 2)B2 + B1

√
−H

�
+ cos

�√
−H�

2

��
(R − 2)B1 − B2

√
−H

�
⎫⎪⎬⎪⎭
.

(4.1.1)

{
dw(� )

d�
= T

dT(� )

d�
= N1w

2(� ) + N2w(� )
,
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where, �1 signify the Hamiltonian constant. To compute the equilibrium points of 
Eq. (4.1.1), we solve the following dynamical system,

After a successful computation, one can originate the equilibrium points of the above 
dynamical system are (0, 0),

(
−

N2

N1

, 0

)
 . The dynamical system in Eq.  (4.1.1) has 

Jacobian

Planar dynamical systems theory exposes us that,

1.	 The equilibrium standpoint (w, T) represents a saddle point, while �1(w, T) < 0;
2.	 The equilibrium standpoint (w, T) denotes a center point, while �1(w, T) > 0;
3.	 The equilibrium standpoint (w, T) signifies a cuspid point, while �1(w, T) = 0.

Instantly, the possible outcomes that can be attained after altering the pertinent 
parameters as follows.

For suitable value of the parameter m = −3 , we notice that the equilibrium standpoint 
(0, 0) denotes a saddle point and the equilibrium standpoint (1, 0) denotes a center point 
that is presented in Fig. 1a.

We scrutinize that the equilibrium standpoint (0, 0) denotes for a center point, as well 
as the equilibrium standpoint (−1.3333, 0) denotes for saddle point together with the 
value of the parameter m = −10 , that have already shown in Fig. 1b.

H1(w, T) =
T2

2
−

N1w
3

3
−

N2w
2

2
= h1,

{
T = 0

N1w
2 + N2w = 0

.

�1(w, T) =
||||

0 1

2N1w + N2 0

|||| = −2N1w − N2.

Situation 1 ∶ N1 < 0 and N2 > 0

Situation 2 ∶ N1 < 0 and N2 < 0

Fig. 1   Bifurcation analysis of the recommended system with diverse situations for N1 and N2 along with 
numerous values of the parameters
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4.2 � Bifurcation Analysis of the Jimbo‑Miwa Equation

This subdivision is organized for bifurcation analysis of the indicated equation. Here, 
we operate.

a modification w� = U to the Eq. (3.2.3) and then utilize the Galilean transformation 
to the equation modified equation which provide us a dynamical system,

where, N3 = −3, N4 = 2m + 3 . At this moment, the Hamiltonian function could be 
obtained for the dynamical system in Eq. (4.2.1),

here, �2 means the Hamiltonian constant. To calculate the equilibrium points of 
Eq. (4.2.1), we resolve the succeeding dynamical system,

After a successful computation, we have the equilibrium points of the above dynami-
cal system are (0, 0),

(
−

N4

N3

, 0

)
 . The dynamical system in Eq.  (4.2.1) carries out 

Jacobian

Planar dynamical systems theory reveals us that,

1.	 The equilibrium standpoint (U, S) represents a saddle point, while �2(U, S) < 0;
2.	 The equilibrium standpoint (U, S) denotes a center point, while �2(U, S) > 0;
3.	 The equilibrium standpoint (U, S) signifies a cuspid point, while �2(U, S) = 0.

Quickly, the possible consequences that can be achieved by selecting the appropriate 
parameters as follows.

For suitable value of the parameter m = 1 , we see that the equilibrium standpoint 
(0, 0) signifies a saddle point and the equilibrium standpoint (1.6667, 0) signifies center 
point that is offered in Fig. 2a.

We inspect that the equilibrium standpoint (0, 0) means for a center point, as well 
as the equilibrium standpoint (−1, 0) denotes for a saddle point, that have already dis-
closed in Fig. 2b.

(4.2.1)

{
dU(� )

d�
= S

dS(� )

d�
= N3U

2(� ) + N4U(� )
,

H2(U, S) =
S2

2
−

N3U
3

3
−

N4U
2

2
= h2,

{
S = 0

N3U
2 + N4U = 0

.

�2(U, S) =
||||

0 1

2N3w + N4 0

|||| = −2N3w − N4.

State 1 ∶ N3 < 0 and N4 > 0

State 2 ∶ N3 < 0 and N4 < 0
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5 � Chaotic Phenomena

Tiny changes in input may occur in wildly varied outcomes in chaotic systems, whereby 
nonlinear dynamics convey apparently haphazard behavior. In this portion, we observe the 
chaotic nature of the (3 + 1)-dimensional Kadomtsev-Petviashvili equation and the (3 + 1)

-dimensional Jimbo-Miwa equation.

5.1 � Chaotic Behavior of the Kadomtsev‑Petviashvili Equation

Here, we include a perturbed term in the dynamical system Eq. (4.1.1), to realize the cha-
otic nature of the declared equation. So, we have the succeeding dynamical system,

where, the amplitude and frequency of the dynamical system in Eq. (5.1.1) is speci-
fied by � 1 and � 2 , respectively. Here and now, the chaotic nature of the suggested 
dynamical system is surveyed, we also explain the phase portraits of this dynamical 
system for copious values of the parameters, in Fig.  3a m = −5, � 1 = 1, � 2 = � ∕2 ; 
3b  m = −10, � 1 = 1, � 2 = � ∕2 ; 4a  m = −5, � 1 = 1, � 2 = � ; 
4b  m = −10, � 1 = 1, � 2 = � ; 5a  m = −5, � 1 = 1, � 2 = 2� and 
5b  m = −10, � 1 = 1, � 2 = 2� . In Figs.  3a and 5a, we find out complex dynamics, 

(5.1.1)

{
dw(t)

dt
= T

dT(t)

dt
= N1w

2(t) + N2w(t) + � 1cos
(
� 2t

) ,

Fig. 2   Bifurcation analysis of the suggested system with various situations for N3 and N4 alongside frequent 
values of the parameters

Fig. 3   Chaotic nature of the proposed dynamical system with � 2 = � ∕2 with abundant values of the 
parameters
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and also in Figs. 3b as well 5b have ringlet dynamics. In addition, periodic dynamics 
are exhibited in Fig.  4a, likewise, surprising periodic dynamics are also exhibited in 
Fig. 4b. This analysis supplies us the stronger concept of the system’s insight which 
might be helpful in modern mathematics, physics, and contemporary engineering.

5.2 � Chaotic Behavior of the Jimbo‑Miwa Equation

In this portion, a perturbed term has added in the dynamical system mentioned in 
Eq. (4.2.1), so that one could achieve the chaotic nature of the announced equation,

In the above dynamical system, we have two specific constants one is 
� 3 means the amplitude of this system and the other is � 4 means the fre-
quency of the earlier system. Numerous values of the parameters, in 
Fig.  6a  m = −5, � 3 = 1, � 4 = � ∕2 ; 6b  m = −1, � 3 = 1, � 4 = � ∕2 ; 
7a m = −5, � 3 = 1, � 4 = � ; 7b m = −1, � 3 = 1, � 4 = � ; 8a m = −5, � 3 = 1, � 4 = 2� 
and 8b m = −1, � 3 = 1, � 4 = 2� , support us to measure the chaotic nature of the recom-
mended dynamical system and to present the phase portraits of the directly above system. 
From a close investigation, one could see the ringlet dynamics in Figs. 6a and 8a, alongside 
the complex dynamics in Figs.  6b and 8b. Furthermore, the periodic dynamics and sur-
prising periodic are demonstrated in Fig. 7a and b, respectively. Our understanding of the 

(5.2.1)

{
dU(t)

dt
= S

dS(t)

dt
= N3U

2(t) + N4U(t) + � 3cos
(
� 4t

) .

Fig. 4   Chaotic nature of the proposed dynamical system having � 2 = � and diverse values of the parameters

Fig. 5   Chaotic nature of the proposed dynamical system being � 2 = 2� as well as numerous values of the 
parameters
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system’s insight has been strengthened as a result of this research, and it could be useful in 
modern engineering, physics, and mathematics.

6 � Sensitivity Analysis

A technique that can compute the effect of one or more input variables on the output 
variables is known as sensitivity analysis. Sensitivity analysis of the (3 + 1)-dimensional 
Kadomtsev-Petviashvili equation and the (3 + 1)-dimensional Jimbo-Miwa equation is 
identified in this segment.

Fig. 6   Chaotic nature of the advised dynamical system with � 4 = � ∕2 with copious values of the param-
eters

Fig. 7   Chaotic nature of the advised dynamical system having � 4 = � and varied values of the parameters

Fig. 8   Chaotic nature of the advised dynamical system being � 4 = 2� as well as several values of the 
parameters
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6.1 � Sensitivity Analysis of the Kadomtsev‑Petviashvili Equation

In this subsection, Runge–Kutta procedure is implemented to observe the sensitivity 
of the dynamical system designated in Eq.  (4.1.1). Here, we apply the well-established 
Runge–Kutta technique to resolve the succeeding dynamical system to detect its sensitivity,

We set the specific value of the parameter m = −10 . Initial condition of the above stated 
dynamical system have been afforded by,

a.	 a) w(0) = 0.5 and T = 0 ; b) w(0) = 0 and T = 0.5

b.	 c) w(0) = 0.2 and T = 0 ; d) w(0) = 0 and T = 0.2.

The consequence of the dynamical system after considering the different states of 
initial conditions is displayed in Fig. 9. The dynamics of class w and dynamics of class 
T  are shown by blue curves and pink curves, respectively. From Fig. 9, one could eas-
ily notice that a little change in the initial condition affects a significant effect on the 
dynamical system.

(6.1.1)

{
dw(t)

dt
= T

dT(t)

dt
= N1w

2(t) + N2w(t)
.

Fig. 9   Sensitivity analysis of the intended dynamical system along with some initial conditions and the 
value of the parameter m = −10
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6.2 � Sensitivity Analysis of the Jimbo‑Miwa Equation

In this part, to study the sensitivity of the dynamical system in Eq. (4.2.1), we exploit 
the widely acknowledged Runge–Kutta scheme. So, the earlier mentioned process is 
operated to unravel the next dynamical system to perceive its sensitivity,

At this point, we consider the definite value of the parameters m, N3, N4 = −3 . The 
system’s initial situations are given below,

	 iii.	 a) U(0) = 0.5 and S = 0 ; b) U(0) = 0 and S = 0.5

	 iv.	 c) U(0) = 0.2 and S = 0 ; d) U(0) = 0 and S = 0.2.

The fluctuations of the system’s nature for different initiation positions are shown 
in Fig. 10. Blue curves and pink curves characterize the dynamics of class U and the 
dynamics of class S , respectively. The presented figure in Fig. 10 confirms that a slide 
modification in the initial position impacts a huge change in the system’s behavior.

(6.2.1)

{
dU(t)

d�
= S

dS(t)

dt
= N3U

2(t) + N4U(t)
.

Fig. 10   Sensitivity analysis of the projected dynamical system with various initial conditions together with 
the values of the parameters m, N3, N4 = −3.
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7 � Physical Complexion and Explanation of the Graph

A graph is typically an illustrative depiction of data or quantities that have been organ-
ized systematically. It is indispensable to put together and demonstrate the information 
in a way that facilitates clarity for interpretation. The implementation of plots in several 
fields of research enhances analysis as well. Using different approaches, many scholars 
explored the (3 + 1)-dimensional KP equation and the (3 + 1)-dimensional Jimbo-Miwa 
equation. However, the mechanical features of the aforesaid equations are presented 
here in this unique analysis by applying a novel procedure, the 

(
G�

G� +G+A

)
-expansion 

approach. For the NLPDEs subject to consideration, we share the traveling wave along 
with the soliton profile in 3D, 2D, and contour forms using proper values that remain 
constant. The mechanisms associated with the complex nonlinear physical phenomenon 
can be explained by the provided solutions. This finding assists researchers in a deeper 
understanding of the most fascinating characteristics of NLPDEs that explain the sev-
eral marvels in nonlinear science and technology. This section involves the visual limn-
ing of the discovered closed-form soliton solutions to the stated previous equations.

At first, we arrange the solution of Eq.  (3.1.6) in three for-
mats, 3D with x ∈ [−15, 15], t ∈ [0, 15] , contour with 
x ∈ [−15, 15], t ∈ [0, 15]and 2D with x ∈ [−15, 15]and then achieve 
kink shape soliton that are crystalized in Fig.  11 for the parameters 
y = 1, z = 2, R =

√
5, T = 1, B1 = 0.01, B2 = −0.0001, H = R2 − 4T = 1, m = −0.1 

and t = 1 . After then, we sketch the solution of Eq.  (3.1.8) as well in 
three different arrangements, 3D using x ∈ [−1, 4], t ∈ [0, 5] , con-
tour using x ∈ [−1, 4], t ∈ [0, 5] and 2D using x ∈ [−1, 4]and have 
bell shape soliton, that is shown in Fig.  12 together with the parameters 
y = 1, z = 2, R =

√
3, T = 1, B1 = 0.001, B2 = −0.0001, H = R2 − 4T = −1, m = 0.1 

and t = 1 . The bell shape soliton solution has been displayed of Eq.  (3.1.10) 
in Fig.  13 in which 3D within x ∈ [−10, 10], t ∈ [0, 10] , contour within 
x ∈ [−10, 10], t ∈ [0, 10]and 2D within x ∈ [−10, 10] including the parameters 
y = 1, z = 2, R =

√
5, T = 1, B1 = 0.01, B2 = −0.0001, H = R2 − 4T = 1, m = −0.1 

and t = 2 . Besides these, Fig.  14 presents the singular periodic shaped soliton solu-
tion of Eq.  (3.1.12), wherein 3D with x ∈ [−15, 15], t ∈ [0, 15] , contour with 
x ∈ [−15, 15], t ∈ [0, 15]and 2D with x ∈ [−15, 15] in addition the parameters stand 
y = 1, z = 2, R =

√
3, T = 1, B1 = 0.001, B2 = −0.0001, H = R2 − 4T = −1, m = −0.001 and t = 1.

Fig. 11   The kink-shaped soliton solution of Eq. (3.1.6) presented in (a), 3D structure b provided the con-
tour shape, and c display the 2D figure
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The kink shape soliton solution has been demonstrated of Eq.  (3.2.6) 
in Fig.  15 in which 3D within x ∈ [−10, 10], t ∈ [0, 10] , contour within 
x ∈ [−10, 10], t ∈ [0, 10]and 2D within x ∈ [−10, 10] including the param-
eters y = 2, z = 1, c0 = 0.1, R =

√
5, T = 1, B1 = 0.0001, B2 = −0.0001, H = R

2 − 4T = 1, m = −0.1 
and t = 1 . Lastly, Fig.  16 depicts the kink shaped soliton solu-
tion of Eq.  (3.2.8), wherein 3D with x, t ∈ [0, 5] , contour with 
x, t ∈ [0, 5]and 2D with x ∈ [0, 5] in adding the parameters stand 

Fig. 12   The parabolic-shaped soliton solution of Eq. (3.1.8) furnished in (a), 3D structure b delivered the 
contour shape, and c assigned the 2D figure

Fig. 13   The compressed bell-shaped soliton solution of Eq. (3.1.10) presented in (a), 3D structure, b sup-
plied the contour shape, and c offered the 2D figure

Fig. 14   Singular periodic shaped solution of Eq. (3.1.12) handed in (a), 3D structure, b presented the con-
tour shape, and c allocated the 2D
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y = 2, z = 1, c0 = 0.1, R =
√
3, T = 1, B1 = 1, B2 = 2, H = R2 − 4T = −1, m = 0.001 

and t = 2.
We are able to emulate and display accurate physical behavior with the help of the 3D, 

2D, and contour plots of the soliton solutions of NLPDEs, which are arisen in modern 
science and technology. Additionally, we recognize from each figure that the upcoming 
approach to the (3 + 1)-dimensional KP equation and the (3 + 1)-dimensional Jimbo-Miwa 
equation evaluation will be much more precise and fruitful. The outcomes of the above-
mentioned model are pretty newly exposed and have not been established in the past litera-
ture, as we have lately exhibited.

8 � Conclusion

Closed-form dynamic solitary solutions to the NLPDEs are used to investigate the most 
revolutionary occurrences in mathematical physics and contemporary engineering. In a 
nutshell, the 

(
G�

G� +G+A

)
-expansion technique has made it possible for us to effectively ana-

lyze and collect innovative combined with generic closed-form soliton solutions for both 
the (3 + 1)-dimensional KP equation and the (3 + 1)-dimensional Jimbo-Miwa equation 
that possess multiple inherent applications in engineering technology and modern mathe-
matics. There are noticeable differences between our produced outcomes and the ones that 
are currently available. Most physical systems, especially, plasma physics, solid state phys-
ics, fiber optics, water engineering, oceanography, dust acoustic waves, and shallow water 

Fig. 15   The one sided kink-shaped soliton solution of Eq. (3.2.6) offered in (a), 3D structure, b organized 
the contour shape, and c assigned the 2D

Fig. 16   The flat kink-shaped soliton solution of Eq. (3.2.8) handed in (a), 3D structure, b posed the contour 
shape, and c allotted the 2D
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waves with weakly nonlinear restoring forces could be thoroughly explained by the (3 + 1)

-dimensional KP model. The most common model without the Painleve property resem-
bles the (3 + 1)-dimensional JM equation that addresses precise attractive higher-dimen-
sional waves in marine engineering, ocean sciences, fluid mechanics, mathematical mode-
ling of infectious disease, circuit analysis, and computational neuroscience. A brief but 
insightful analysis concluded that our more recent and comprehensive results may be sig-
nificant and beneficial for tangible applications as well, even if they weren’t made available 
in other publications yet. Bifurcation analysis alongside phase portrait, chaotic analysis, 
and sensitivity analysis have been applied by now with the aim to figure out the nature of 
the outcomes. After performing these analyses, our research has successfully confirmed 
that our system seems sensitive and additionally, the systems have both a saddle point and 
a center point in their state of equilibrium. An incredible wave shape associated with non-
linear natural phenomena has been generated by the fantastic physical features of the gath-
ered solutions. The visual representations of the computed exact soliton solutions having 
rational functions and trigonometric functions in the kink-shaped, parabolic-shaped soliton, 
singular periodic-shaped solution, one-sided kink-shaped soliton, and flat kink-shaped 
soliton have been depicted in contour, 2D , and 3D diagram for a specific collection of con-
stant quantities. From the outcomes of the present experiment, the advised approach is 
operative, profitable, valuable, trustworthy, simpler, and more rapid to detect multiple 
NLPDEs of mathematical physics to identify the novel exact soliton solutions.
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